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THE WEIGHTED POINTWISE ERGODIC THEOREM
AND THE INDIVIDUAL ERGODIC THEOREM

ALONG SUBSEQUENCES

BY

A. BELLOW AND V. LOSERT1

ABSTRACT. In this paper on the weighted pointwise ergodic theorem we bring

together a substantial amount of previous work by a number of mathemati-

cians and integrate it into a systematic consistent scheme; we also bring some

original contributions to the subject which extend its boundaries and suggest

further avenues of research. The paper is divided into six sections. The most

significant new results are contained in §§5 and 6.

1. Introduction. We denote by N the set of all nonnegative integers and by

Z the set of all integers.

Throughout this paper (U, A, p) is a probability space; for the sake of simplicity

we assume that Q = [0,1) (modi) endowed with the cr-field of Borel sets and

Lebesgue measure.

Let C be the group of automorphisms of (fi, A,p);T E C if T: Q —+ fi isabijection

which is bimeasurable and preserves p. In what follows we shall single out various

classes of automorphisms such as the ergodic automorphisms, the automorphisms

with discrete spectrum, the automorphisms with Lebesgue spectrum and the K-

automorphisms (see [38]).

Let T E C and let 1 < p < oo; T induces an operator Ut in Lp(ü) = LP(Q, A, p)

via

/-/»T    for/eP(il).

For p = 2, the induced operator Ut is a unitary operator; we shall often make use

of its spectral resolution.

Now let T be a continuous linear operator on LP(U) for some 1 < p < oo. Let

a = (ttn) be a sequence of complex numbers.
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DEFINITION 1.1. We say that a = (an) is a good weight in Lp for T (relative to

the Weighted Pointwise Ergodic Theorem) if, for every / E LP(Q),

l""1
im - 2»   ajTJ f(uj)    exists p-a.e.lim

n
3=0

By a slight abuse of language, in the case when S E C, we say that a = (an) is

a good weight for S in Ll, or simply that a is a good weight for S if a is a good

weight in L1 for the operator Us induced by S.

DEFINITION 1.2. We say that the Maximal Inequality holds in Lp for (T,a) if,

setting

n-l

Mf(u) = sup
71>1

\ £ a>-T'7(c
n

j=o

we have

Xp({Mf > A}) < (constant)||/||p

for all / e LP(U) and A > 0.

We recall that T: Ll(U) —> Ll(ü) is called a Dunford-Schwartz operator if T is

a contraction both for the L1 and the L°° norm; then T|Lp(fi) is also a contraction

for the Lp norm, 1 < p < oo. We have (see [17]; see also [28])

PROPOSITION 1.3. Let T be a Dunford-Schwartz operator, let a = (an) be a

bounded sequence of complex numbers and let 1 < p < oo.   Then:

(1) the Maximal Inequality holds in Lp for (T,a);

(2) the set E of all f E LP(Q) for which

1
lim  — >    a-tT3 ¡(u)    exists a-a.e.

3=0

is a closed vector space in LP(Q) and the linear operator P: E —> LP(Q) defined by

1 n~1

P/(w) = lim-y"0iT>/(w)
n    in   *■—'

J'=0

¿,s bounded.

REMARK. Statement (2) in the previous proposition is nothing else than Ba-

nach's principle (see [17 or 26]) formulated in our context.

THEOREM 1.4 [2]. Let a = (an) be a bounded complex sequence. The following

assertions are equivalent:

(i) The sequence a is a good weight in Ll for every (operator induced by some)

ergodic S E C.

(ii) The sequence a is a good weight in L1 for every (operator induced by some)

S EC.
(iii) The sequence a is a good weight in Ll for every Dunford-Schwartz operator.

REMARK. This striking theorem is essentially due to Baxter and Olsen, that is,

the equivalence (ii)<t>(iii). To show that (i)=>(ii), use "decomposition into ergodic
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parts" (see [35], or see [37] for a concise and elegant treatment of what is needed

here).

DEFINITION 1.5. A bounded complex sequence a = (an) is said to be a "good

universal weight" if a is a good weight in L1 for every Dunford-Schwartz operator

(equivalently, by Theorem 1.4, for every operator induced by some S E C ergodic).

We shall also be interested in the Individual Ergodic Theorem along subse-

quences. In what follows n = (nk) will always denote a strictly increasing sequence

of nonnegative integers. If m is a subsequence of n we write m C n.

By analogy with "weights" we may define the notion of "good subsequence for

T" and "good universal subsequence'. For instance,

DEFINITION 1.6. We say that n = (nk) is a good subsequence for T in Lp (relative

to the Pointwise Ergodic Theorem) if for every / E Lp(ft)

K-l

im   —: y    Tnk f(uj)    exists p-a.e.
—»oo K   L—'

hm
K-^oo K

fc=0

If the subsequence n has nonzero density, then the Pointwise Ergodic Theorem

along n may be reduced to a Weighted Pointwise Ergodic Theorem. In fact,

PROPOSITION 1.7. Suppose the subsequence n = (nk) has density d > 0. De-

fine the weight a = (an) by an — 1 if n = nk for some k, and an = 0 otherwise.

Then for any complex sequence (un) we have

1   K-i 1 n-l

d.   lim   —   >    un. =   lim  — }    a,u,,
K-^oo K  ¿^       k       n->oo n z-"   3   3

fc=0 j'=0

that is, the existence of either limit implies the existence of the other, with the

equality above.

For this reason, we shall deal mostly with the Weighted Pointwise Ergodic The-

orem.

Since we shall repeatedly use the "subsequence argument" in what follows, we

recall this here.

DEFINITION 1.8. An increasing sequence (Nk) of positive integers is said to be

dense in N if

lim %i = 1.
k—»oo     Nk

We shall need the following elementary result.

PROPOSITION 1.9. Let (un) and (vn) be two sequences of complex numbers.

We assume that

(1) the sequence (un) is bounded;

(2) the sequence (A ^kZo \vk\2) *s bounded;

(3) there exists a sequence (Nk) of positive integers, dense m N, such that

lim ——   }    u-jV-i    exists and = A.

Then

«k   .
3=0

1 "   *

lim — }   UjVj    exists and = A.
n—»oo n '-^

3=0
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PROOF. If Nk < n < Nk+y, then

1 ^ Nk   1   ^ 1  ^

3 = 0 K    3=0 3 = Nk

The first term on the right clearly tends to A. As for the second, we have

n-l

n

1    n— 1

-   £   U3V3

3 = Nk

^ r r  (Nk+i~Nk\ (Nk+1

c2

and the last term tends to zero.

2. Preliminaries on sequences having a correlation. In what follows we

denote by C the set of all complex numbers and by C i the unit circle

Ci = {2eC||2| = 1}.

Usually a sequence of complex numbers is denoted by a = (ak); when we want to

emphasize that we are dealing with a function on N, we write / = (f(k)).

Let a = (ak) be a complex sequence. For 1 < p < oo define ||a||p by

1   n— 1

||a||P = lim sup- V |afc|p
n     nfc=o

and let l(p) = {aj ||a||p < oo}; then l(p) is a vector space and \\ ■ \\p is a seminorm

on it.    We also define /(oo) as the space of all bounded complex sequences and

Halloo = supfe |afc| for a E /(oo).

We now consider the space S of complex sequences a = (ak) such that

1   n— 1

7a (fc) = lim - }] aJ+kä-i
U 3=0

exists for each integer k E N. This space was introduced by N. Wiener in [39,

Chapter IV]. It is clear that S E 1(2).

REMARK. A sequence a E S does not necessarily have a mean. The following is

an example:

Let a = (ak) = (e27ril°g('i:+1)). it is known that the sequence (log(n + 1)) is not

uniformly distributed mod 1 and, in fact, it is shown in [30, Example 2.4, pp. 8-9]

that the averages
.   n —1

_   y^e27Tllog(fc+l)

n ¿-*1
fe=0

do not have a limit when n —» oo. On the other hand, it is easily checked that

7a(fc) exists for all k E N. In fact, for fixed fc,

7a(fc) = lim l- J2 dj+kâj = lim 1TJ2 e2-log(0+fc+l)/(i+D)
U 3 = 0 n    U j=0

lim-i Ve2"*1«**1
n      n    f     ^

3=0

Thus a E S and 7a(fc) = 1 for each fc E N

+fc/(j+i))

n   n
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For a E S, the sequence 7a is called the correlation of a. It can be extended to

the negative integers by setting 7a(-fc) = l&(k)- It is well known that 7a is positive

definite on Z and thus by the Herglotz-Bochner theorem we have the representation

7a(n)= /    zndXa(z),        nEZ,
Jet

where the positive Borel measure Aa is uniquely determined by a; the measure Aa

is called the spectral measure corresponding to the sequence a.

If v is a bounded (complex-valued) Borel measure on Ci, we recall that the

Fourier transform v is given by

¿(fc) = f zk du(z)    for fc E Z.

In particular, for a E S, 7a = Aa.

The notions of correlation and spectral measure may be generalized as follows

(see [7]):

Let a = (ak) be a bounded complex sequence. Let n = (nr) be an increasing

sequence of positive integers such that

nr-l

-7a,(nr)(fc) = lim—   £  Vj+kO-j

j=0

exists for each fc E N; we call such a sequence admissible for a. Let Aa.K) be the

spectral measure corresponding to the correlation function 7a)(„r); then

Âa,(nr)(fc) =7a,(nr)(fc)-

We write

A(a) = {Aa>n|n = (nr) an admissible sequence for a}.

We now review some important and useful approximation results (see [15]).

Let a = (ak) be a complex sequence.  For each m E N, m > 1, we define the

positive Borel measure A™ on Ci by

|2

a:l(E) = f -
Je m

m — 1

üjZJ

3=0

dz. E E Ci a Borel set.

With this notation we have

THEOREM 2.1 [15]. Let aeS. Then the measure A™ converges weakly to Aa

as m tends to infinity.

The corresponding version for bounded complex sequences is

THEOREM 2.2 [15]. Let a be a bounded complex sequence and let n = (nr) be

an admissible sequence for a. Then the measure A™r converges weakly to Aa>n as r

tends to infinity.

PROOF. It suffices to show that A£r converges pointwise to Âaj„. For fc 6 Z we

have

Kr(k) Í y.
Jet     n

nr — l

£ aß

3=0

^nr-l—k

dz
n\ E"=0 '    K al + kai      if fc > 0,

nh Td=-k al+kâl        if fc < 0,
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and hence

limASr(fc) = 7a,n(fc) = Aa,n(fc),

finishing the proof.

Now let M(Ci) be the set of all bounded positive Borel measures on Ci. Let

P E At(Ci) and Q E M(Ci). Let v E M(Ci) be such that P and Q are absolutely

continuous with respect to v. P ■« v, Q -« v (for example, we may take v =

P + Q). Then the affinity of P and Q (also known as the Hellinger integral) is

defined by

'dP\l/2 fdC^y

du I       \ dv
p(PQ)

jCl\du)      \du)
du.

It is exactly seen that p(P, Q) is independent of u and that p(P, Q) = 0 if and only

if P and Q are mutually singular (PA. Q).

THEOREM 2.3 [15]. Let (Pn) and (Qn) be two sequences of elements of M(Ci).

Let P E M(Ci) and Q E M(Ci). // the sequences (Pn) and (Qn) converge weakly

to P and Q respectively, then

lim sup p(Pn,Qn) < p{P,Q)-
n

For a proof see [15, pp. 372-373].

Specializing for a and b in S, namely taking P = Aa, Q = Ab, Pn = A£ and

Qn = Ag, the authors obtain the following striking corollary of Theorems 2.1 and

2.3:

COROLLARY 2.4 [15].   Lei a, be 5.  Then

ln-1

lim sup
1

n
£ a3bJ

3=0

< p(Aa,Ab)

In particular,
1  n— 1

lim — >   anbn = 0

3=0

if Aa and Ab are mutually singular.

The corresponding version for bounded complex sequences is

COROLLARY 2.5 [15].   Let a andb be bounded complex sequences.  Then

\n-l

lim sup
1

£ a3b3

3=0

< SUp/9(Aa,n,Ab,r

where the supremum in the right-hand side is taken over all (Aa n, Ab m) E A(a) x

A(b).

PROOF. Let n = (nr) be an increasing sequence of positive integers such that

lim sup
1

n-l

£ a3b3

3=0

lim —
r   nr

nr-l

£   a3b3

3=0
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By eventually going to a subsequence we may assume that n = (nr) is an admissible

sequence for both a and b. By Theorem 2.2,

A"r —► AaiI1    weakly        and       A£r —» Ab,n    weakly,

and hence, by Theorem 2.3,

/9(Aa,„,Ab,„) > limsup/)(A2r,A^)

lim sup

> lim sup

= lim sup

nr Jc1

nT — 1 nr —1

£ oj^l-l £ b
j=0 fc=0

nr — 1 nT — 1

kZ dz

/     £   £ ajbkZk~3 dz

•^Cl i=0   fc=o

nr-l

£  a3b3

3=0

= lim sup —
n       n

n-1

£ a3b3

3=0

This completes the proof.

COROLLARY 2.6. Let a and b 6e bounded complex sequences. If the spectral

measures for a and b are mutually singular, that is, if AajI1 _L Ab,m for all \a,n E

A(a) and Ab,m G A(6), i/ien

.   n-l

lim — >    ajbj = 0.

3=0

Specializing Corollary 2.4 still further (take bj = z3 for z E Ci) the authors

obtain the classical result of Wiener and Wintner [40] in its full generality; see also

Bertrandias [6, p. 25, and 37]:

Corollary 2.7 (Wiener and Wintner). Let a e S. Then for each
z eCi we have

n-1
■=3

lim sup
1

£aj

3=0

<  [Aa({z})]1/2.

From Corollary 2.7 we obtain the classical ergodic result of Wiener and Wintner

[40]; see also [37]:

Theorem 2.8 (Wiener and Wintner). Let T e C and let f e L1(Q).
Then there exists a set Q'j c fi of probability one such that for each u> E fi'/

1  n—1

lim - 2J zJ f(TJuj)    exists
n 3=0

for all z ECi. Furthermore, ifT is weakly mixing, then the above limit is zero for

all z ^ 1.

Since the proof is very similar to that of Theorem 3.15 and Corollary 3.16, we

omit it.

For future reference we also state the following lemma whose proof is straight-

forward.
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LEMMA 2.9. Let A E Al(Ci). Let H be a Hubert space and let E(-) be a spectral

measure on Ci whose values are orthogonal projections on H. For each f E H let

Pf be the positive measure on Ci defined by p/(B) = (E(B)f, f), B C Ci a Borel

set.  Then we have the orthogonal (Lebesgue type) decomposition of H relative to X:

H = Hi®H2,

where

Hi = {fEH\pf«X},        H2 = {/ 6 H\pf 1 A},

and

(i) Hi (respectively H2) is a closed vector space invariant under each E(B),

(ii) the set G of all f E Hi for which p¡ = gdX with 0 < g, g bounded, is dense

in Hi.

3.   Bounded Besicovitch sequences as good universal weights.  Let Mo

be the complex vector space spanned by the set {a| for some z ECi, ak = zk for all

fc E N}. The elements of Mo are the trigonometric polynomials P = (P(k)), where

P(k) = J2a caza (here \za\ = 1 and the sum is finite).

Let b = (bk) be a complex sequence. We say that b has a mean if lim^ ^ J21=o b3

exists.

We begin with the following elementary preliminaries [2].

REMARK. Let a(p) and a be complex sequences such that each a(p) has a mean.

Suppose that ||a(p) — a||i —» 0 as p —> oo. Then a has a mean.

LEMMA 3.1. Let l<p<oo,l<q<oobe such that \/p + l/q = 1. Let

b(n), b, c(n), c be complex sequences such that b(n) E l(p), b E l(p), c(n) E l(q),

c E l(q) and suppose that

(i) ||b(n) - b||p —» 0, ||c(n) - c||q —> 0 as n —> oo;

(ii) the sequence b(n)c(n) has a mean for each n.

Then the sequence be has a mean.

PROOF.  It suffices to note that Holder's inequality holds and therefore

||bc - b(n)c(n)||i = ||bc - bc(n) + bc(n) - b(n)c(n)||i

<||b||p||c-c(n)||, + ||b-b(n)||p||c(n)||g.

We now recall [8, Chapter II].

DEFINITION 3.2. Let 1 < p < oo. A function /: N -> C belongs to the Besicovitch

class B(p) if for each e > 0 there exists a trigonometric polynomial P = P£ such

that
1   n — 1

]]/ - P\\p = limsup - ]T |/(fc) - P(k)\p < e;
n       n fc=0

that is, f E B(p) if and only if / belongs to the || ||p-closure of )ío m 1(p)-

DEFINITION 3.3. A function /: N —» C is called a bounded Besicovitch function

if /e£(i)ni(oo).

LEMMA 3.4.   (1) Let 1 < p < oo. For f E B(p) we have

1   n —1

lim — 7    f(k)zk    exists for all z E Ci.
n   n '-^

k=0
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(2) For each f,gE B(l) n /(oo), the limit

1  n— 1

(f,g) = \im-^f(k)gjkj
n   n ¿-^

fc=0

exists.

(3)Forf,gEB(2),

(f,g) =limi£/(%(*)
n   n '—'

fc=0

exists and defines an inner space structure. In particular, we have \(f,g)\ <

\\fW2WgW2 (Cauchy-Schwartz Inequality) for all f,g E B(2).

PROOF. (1) It suffices to note that the limit in (1) exists for every f E Mo and

to use Lemma 3.1.

(2) By a two-step approximation argument; first show, using Lemma 3.1, that

the limit defining (/, g) exists whenever / E B(l) (1 /(oo), g E Mo-

(3) Again by approximation (using Lemma 3.1).

EXAMPLES. We recall several examples of classes of bounded Besicovitch func-

tions:

(1) The trigonometric polynomials.

(2) The Fourier coefficients of a complex Borel measure on the unit circle. Let

A be a complex-valued Borel measure on Ci and let

X(j) = f   z3 dX(z)    for j E N.

Then (X(j))jew is bounded Besicovitch. To see this it suffices to decompose A into

its continuous and its discrete part, A = Ac + A<¿- Note that

Xd = 'Y^Oik£Zk, y^|Qfc| < 00

k k

and thus

Ad(i) = ¿_^ akZJk    for each j E N

k

is a uniform limit of trigonometric polynomials. As for the continuous part, by

Wiener's classical theorem (see, for instance, [38, pp. 43-44; 49]),

^£|Ac(j)l-0.
3=0

(3) Almost periodic functions in the sense of Bohr, Weyl, and Eberlein. A func-

tion / : N —> C is called almost periodic in the sense of Bohr if for each £ > 0 there

exists a positive integer L such that every interval J C N of length L contains an

£-period, that is, a number s E J such that

\f(j + s)-f(j)\<£   for all j 6 N.

(Equivalently, the set of all e-periods is relatively dense in N.) We denote by

APs(N) the set of all almost periodic functions in the sense of Bohr. It is not

hard to check that if / E APB(N) then / is bounded. Also if /, g E APß(N), then
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f±g and / • g also belong to APß(N). Thus APß(N) C /(oo) and APß(N) is an

algebra.

For / E /(oo) and p E N we denote by /'p' the translate of f by p;

f{p)U) = f(j + p),      jeN.
LEMMA 3.5. If f e APß(N), then the set W(f) = {/(a)|a E N} c /(oo) is

relatively compact in /(oo).

PROOF. Given e > 0 let L = L(e) correspond to £ in the definition of almost

periodicity and let J = {j,j + l,...,j + L} be any interval of length L contained in

N. It is easily seen that every translate /("' belongs to one of the e-balls centered

at f^p\ p E J. If a E J there is nothing to prove. If a < j, then {p - a\p E J} is

an interval of length L contained in N, and hence contains an £-period; also

|/(-)(n) _ /(p)(„)| = |/(0 + „)_/(o + (p-a) + nJ|.

If a > j + L, then {a — p\p E J} is an interval of length L contained in N, and thus

contains an e-period; also

|/<°>(n) - f{p\n)\ = \f(p + (a-p)+n)- f(p + n)\.

This completes the proof.

REMARK. The converse implication in Lemma 3.5 is false. The function defined

by /(0) = 0, f(n) = 1 for n > 1 does not belong to APß(N); however, the set

{f^\a E N} is clearly relatively compact in /(oo).

A function / E /(oo) is called almost periodic in the sense of Weyl if the set

{f(a'\a E N} is relatively compact in /(oo). We denote by APw(N) the set of all

almost periodic functions in the sense of Weyl. It is not hard to check that APvy (N)

is an algebra and that both APß(N) and APiy(N) are closed under uniform con-

vergence. By Lemma 3.5 (and the remark following it) we have

APß(N)CAP„,(N).

This is in contrast to the theory of almost periodic functions on Z for which

(with similar definitions) APß(Z) = APw(Z); see, for instance, [8, pp. 10-12, or

16, pp. 14-16].
Fréchet [21] gave a beautiful characterization for the functions / E APw/(N)

(Frechet calls them asymptotically almost periodic; his definitions and proofs are

given for the continuous semigroup R+ = [0, +oo), but they also work in the discrete

case N), namely,

LEMMA 3.6 [21, 22]. For a function f E /(oo) the following assertions are

equivalent:

(i) / € APht(N);
(ii) / admits a decomposition f — p + uj, where p E APß(N) and lim„^+00 u>(n)

— 0 (this decomposition is unique).

A function / E /(oo) is called weakly almost periodic—in the sense of Eberlein

(see [24, 18]—if the set W(f) = {f^\a E N} is weakly relatively compact in

/(oo) (i.e. W(f) is relatively compact in /(oo) endowed with the weak topology

<r(/(oo), (/(oo))')). We denote by AP„,(N) the set of all weakly almost periodic

functions. By analogy with Lemma 3.6 Eberlein gave the following characterization

for functions / E APW(N):
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LEMMA 3.7 [19]. For a function f E /(oo) the following assertions are equiv-

alent:

(i) / E APW(N);
(ii) / admits a decomposition f = p + u>, where p E APß(N) and

1   n—1

lim  — }    \oj(k + j)} —0    uniformly in k
n—»oo n L—'

3 = 0

(this decomposition is unique).

From Lemma 3.7 we easily deduce

COROLLARY 3.8.   The set AP™(N) is an algebra.

It is also clear that

APß(N)CAPw(N)CAPw(N).

We now recall the mean properties of almost periodic functions:

LEMMA 3.9. Let T: /(oo) -► /(oo) be the shift operator Tg = g^; T is a

contraction in /(oo). Let f E AP1X)(N).  Then:

(1) c(W(f)) = the closed convex hull of {Tkf\k E N} in the weak topology

<t(/(oo), (/(oo))') is compact.

(2)

lim ^£/(fc + j) = M(/)
n—»oo n L—'

3=0

exists uniformly in fc and is a constant called the mean of f.

(3) For each fc e N

1   n —1

¿™ -£7(j)/(i + A;) = Mf •/«]

exists.

PROOF. (1) follows from the classical result that in a Banach space the closed

convex hull of a weakly compact subset is itself weakly compact.

(2) Let
..   n—1

A(n)f = - V T3f   for n > 1.
n z—'

3=0

Then A(n)f E c(W(f)) for all n and Tnf/n — 0 in /(oo). By the Mean Ergodic

Theorem (see [17, pp. 661-662, or 18]) limnA(n)/ = u exists in /(oo). Since

\imn A(n)f = limn TA(n)f, the limit function u is invariant under T and hence is

a constant which we denote by M(f) and call the mean of /. It follows that

1   n—1

- ^ /(fc + j) —> M(/)    uniformly in fc.
n j=o

(3) follows from (2) if we recall (see Corollary 3.8) that APt„(N) is an alge-

bra, closed under complex conjugation and invariant under the shift operator,

TiAP^N)) c APW(N).

Note. We shall sometimes write M(f(j)) instead of M(f) when we want to

emphasize the sequence (f(j))-
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LEMMA 3.10.   If f E APß(N), / > 0 and M(f) = 0, then f is identically zero.

PROOF, since ^ S?=o fU) ~* 0> by the characterization of strong Cesaro con-

vergence for bounded sequences (see [38, p. 43]) there is a set A C N, of density

zero, d(A) = 0, such that

i™ M = 0.
3<tA

Suppose /(/) = a > 0. The set P of (a/3)-periods of / is relatively dense, so there is

K such that every interval of length K contains some element of P. Thus ld(P+l) >

1/K and hence there are infinitely many elements belonging to (P + /) n Ac, say,

Pi + l,p2 + I, ■ ■ ■ ,pk + /, ■ ■ ■ and lim/c f(pk + I) = 0. For fc large enough we have

|/(Pfc + /)| < a/3 but also

\f(l)~f(pk + l)\<aß,

whence |/(/)| < a/3 + a/3 = 2a/3, a contradiction.

The Fundamental Theorems in the theory of almost periodic functions, namely:

(I) approximation in the mean of order 2, M[|-|2], by trigonometric polynomials, and

(II) uniform approximation by trigonometric polynomials, hold for all f E APß(N).

These can be proven directly by methods analogous to the classical ones [12].

Alternatively, one can remark first that every / E APß(N) admits an extension

to R+ = [0, -foo), /, which is almost periodic in the sense of Bohr on the half-line

R+, i.e. / 6 APß(P+) (extend / by linearity on the intervals [n,n + 1)). One

then observes that the proofs of the fundamental theorems hold if we replace R by

R+, i.e. the fundamental theorems hold for all / E APß(P+). (See [8, pp. 21-31];

here Fundamental Theorem (II) is derived from Fundamental Theorem (I) using H.

Weyl's method.)

REMARK. The case of the half-line R+ (or N) can also be reduced to the case of

R (or Z) as follows: If / E APß(Ä+), let sn be (l/n)-periods such that sn —> +oo

monotonically and set

f(x) = lim f(x + sn)    for x E R.
n

For each x E R, f(x + sn) is defined for all n sufficiently large and (f(x + sn)) is a

Cauchy sequence in R. (It suffices to observe that sn — sm is a (1/n + l/m)-period

for / if n > m; letting a = sn — sm we have for y E R+

\f(y + (sn - sm)) - f(y)\ < \f(y + a)-f(y + a + sm)\ + \f(y + sn) - f(y)\

< l/m+ 1/n.)

It is now easy to check that / extends /, that if a > 0 is an e-period for /, then a

and —a are e-periods for /. It follows that / E APß(P).

A different approach to Fundamental Theorem (II) inspired by Fejér summability

was given by Bochner. (Note that Fundamental Theorem (I) is an immediate

consequence of Fundamental Theorem (II).)

In the case of a continuous purely periodic function of period ß on the real line,

the Fejér trigonometric polynomials are given by the "convolution product" of /

with the Fejér kernel

an(x) = Mt[f(x + t)Kn(ßt)},
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where "the kernel" Kn(ßt) is defined by the equation

Kn(t)=T  (l,M)e^=l (*$$£''

This kernel has two important properties: (1) it is nonnegative; (2) its mean value

is equal to 1.

In the theory of almost periodic functions, this simple kernel is replaced by the

Bochner-Fejér kernel (which is, in fact, a finite product of Fejér kernels):

Kr¡,n2,.,n   (t) = Kni(ßit)Kn2(ß2t)---Knp(ßpt)

_ iüh L _ H \     L _ Wp[\ /,-i(v1ß1+viß2+-+vpßP)t
ni / V       n2 )      \       np

=  £

ki|<«i
\vp\<nv

where ßi,ß2, ■ ■ ■ ,ßp are real linearly independent numbers and m, n2,...,np are

positive integers. This kernel inherits the basic properties of the Fejér kernel: (1)

it is nonnegative; (2) its mean value is equal to 1 (the constant term being 1 on

account of the linear independence of the /3's). Using the matrix notation

_ /n,,n2,...,np\

\ßl,ß2,...,ßP)'

the Bochner-Fejér kernel in our discrete case becomes:

KB(k) = Kni(ßlk)Kn2(ß2k)---Knp(ßpk),        fceN.

Clearly KB = (KB(k)) belongs to M0- For / = (/(fc)) belonging to APW(N)

(see Corollary 3.8), or / belonging to B(l) (see Lemma 3.4) we can form the

corresponding Bochner-Fejér polynomial

aB(k) = M[f(k + j)KB(j)}.

With the above notation we have

FUNDAMENTAL THEOREM II.   Let f E APß(N).  There exists then a sequence

of Bochner-Fejér polynomials (aB ) such that

W°~Bn - /Hoc ^0    as n -> oo.

For a proof see [8, pp. 47-50].

LEMMA 3.11.   (1) Let 1 < p < oo. Let f E B(p).  Then:

(a) For any Bochner-Fejér polynomial aB we have ||cr¿||p < ||/||p-

(b) There exists a sequence of Bochner-Fejér polynomials (aB ) such that

\\aB   ~ /Up ^0    as n -^ oo.

(c) //, in addition, f is also bounded, then for any Bochner-Fejér polynomial <jb

we have ||<tb||oo < ||/||oo-

(2) For bounded functions all the Besicovitch classes B(p) coincide, that is

P(l)n/(oo) = P(p)n/(oo)    for l<p< oo.
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PROOF. For the proof of (l)(a) and (b) see [8, pp. 107-109].

(l)(c) follows immediately from the definition of o~B and the basic properties of

the Bochner-Fejér kernel (it is nonnegative and its mean value is equal to 1).

(2) is an immediate consequence of (l)(b) and (c).

Combining Lemmas 3.5, 3.6, 3.7, 3.11 and Fundamental Theorem II, we get

LEMMA 3.12.    We have

APß(N) c AP^ÍN) c AP„,(N) c B(2) n /(oo) = B(l) n /(oo).

We need one more observation which we state in the form of a lemma:

LEMMA 3.13.   For a sequence f = (f(j)) belonging to S f) /(oo) the following

assertions are equivalent:

(i) The spectral measure o~f corresponding to f is discrete.

(ii) The correlation of f, 7/, is almost periodic in the sense of Bohr, i.e. 7/ E

APb(N).
7/(i)=(ii) holds, then

00

<7 = £ An£Zn        (An > 0, znE Ci)

n=l

and
00

7/(fc)=  £¿r^,
n=l

the convergence being uniform in fc.

PROOF.  (i)=>(ii). By (i) we have

00

Of = J2 A"£Zn (^" > °>   2» e Cl);
n=l

here and in what follows £\ = Dirac measure at A. It follows that

lf(

p OO

r(*)=/      Zkd(Tf(z) = Y,AnZn
Jci n = l

the convergence being uniform in fc. Hence 7/ E APß(N).

(ii)=>(i). Since

7/(fc) = /    zkdaf(z)    forfceN,
Jd

it follows that

M[lf(j)z3} = of({z}) > 0

for each z E Ci. Thus 7/ is an almost periodic function in the sense of Bohr having

nonnegative Bohr-Fourier coefficients. By a classical result (see [8, p. 52]), it follows

that the Bohr-Fourier series of 7/ converges absolutely and uniformly, that is, if

7/(fc) - E"=i ¿nzk, then £~ x \An\ = £^1 An < oo and lf(k) = EZi Anzk

uniformly in fc.

By the uniqueness in the Herglotz-Bochner theorem we conclude that

00

Of = 2ZAn£Zn,
71=1
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i.e. the spectral measure Of is discrete. This concludes the proof.

Finally we review the following important theorem due to Wiener and Wintner.

THEOREM 3.14 [41]. A sequence f = (f(j)) belonging to Snl(oo) is bounded

Besicovitch, i.e. f E B(2) Cil(oo), if and only if f satisfies the following conditions:

(1) The spectral measure a = Uf corresponding to f is discrete.

(2) The amplitude T(z) = M[f(j)z3'} = limn ¿ J2]=o f(J)zJ exists for each z E
Ci.

(3) o({z}) = \Y(z)\2 for allzECi.

PROOF. Assume first that / E B(2) fl /(oo). The existence of the correlation of

/ and of T follows from Lemma 3.4. It remains to check (1) and (3). We divide the

proof into two steps.

(I) If p is a trigonometric polynomial p(k) = £QcQz£, then a direct calculation

shows that the correlation of p, 7P, is again a trigonometric polynomial

lp(k) = M[pW-p} = J2U2zk.
a

In particular, the spectral measure ap corresponding to p is discrete and is given

by °~v — J2a \ca\2£za; that is, (Tp({z}) = |rp(2)|2 for all z E Ci (where, of course,

rp(z) = M[p(k)zk} — the corresponding Bohr-Fourier coefficient), or equivalently,

(*) M[lp(k)zk} = \M[p(k) ■ zk}\2    for all zECi.

(II) By Lemma 3.11 now let (pn) be a sequence of Bochner-Fejér polynomials

such that

\\f-Pn\\l = M[\f-pn\2}^0

and

llPniloo < ll/lloo    forallneN.

It follows easily that

7/(fc) = M[/(fc) •/] = lim M[pnV -pn} = lim7P„(fc)
n n

uniformly in fc. Thus 7/ being a uniform limit of trigonometric polynomials is

almost periodic in the sense of Bohr, i.e. 7/ E APß(N). By Lemma 3.13 condition

(1) is satisfied. Since the identity (*) above holds for each pn and since the passage

to the limit is legitimate, condition (3) is also satisfied.

Assume now that / E Sn /(oo) satisfies conditions (1), (2) and (3) of the theorem.

By (1) and Lemma 3.13 there exist a sequence zi,z2,. ■ ■ ,zn,... oí distinct numbers

of Ci, and a sequence Ai,A2,..., An,... (An > 0) such that

oo oo

a = a¡ = £ ^«£*n , £ An < +00

n=\ n=l

and

7(fc) = -y/(fc) = £¿«2£,
Tl=l
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the convergence being uniform in fc. By conditions (2) and (3), T(z) = Tf(z) ^ 0

only for z E {zu z2,..., zn,...}. Let an = T(zn) (= M[f(k)~zk}); then An = \an\2.

Define now fN = (/jv(fc)) by

vfcMfc) = /(fc) - £ anzkn

n<N

To show that / E B(2) it suffices to show that

IN\\22 = Af /(fc) - £ an2^

n<N

0    as TV —» oo.

It is clear that /jv has a correlation and a direct calculation shows that it is given

by

lN(k) = l(k)~   J2   \an\2Zn-
n<N

It is also easily checked that the spectral measure <t/v corresponding to /jv is given

by <x/v = J2n>N An£zn; in fact, for each fc E N,

/      ZkdaN(Z) =   J2  AnZkn = l(k) -   £  AnZkn = 7w(*)-

n>N n<N

l!/iv|ll = M[|/iV|2] = 7yv(0)= f Ido-^(z) 0

But then

£^
n>N

as iV —> oo. This finishes the proof.

REMARK. The class of sequences / = (f(j)) belonging to STlZ(oo) and satisfying

only conditions (1) and (2) of Theorem 3.14, called Al1-almost periodic by Bertran-

dias (see [7, pp. 69-73]), is strictly larger than the class of bounded Besicovitch

sequences.

EXAMPLE. Let f(j) = (-l)\.l°s3\ (here and in what follows [x] denotes the

integral part of x, i.e. the largest integer fc < x). It is easy to see that the sequence

/ = (/(/)) has a correlation 7 = 7/ and that 7(0) = 1 for all p E N. Thus the

spectral measure a = Of corresponding to / is Dirac measure at 1, that is, a is

discrete. It is also not hard to check that the amplitude T(z) = lim„ A Y^¡=o fU)z3

exists and = 0 for all z E Ci. In particular, <t({1}) = 1 while |r(l)|2 = 0. Thus

the sequence / = (/(/)) satisfies conditions (1) and (2) of Theorem 3.14, but fails

to satisfy condition (3).

THEOREM 3.15. Let D be the set of all a E S n /(oo) satisfying the following

conditions:

(1) The spectral measure a& corresponding to a is discrete.

(2) The amplitude limn ^ YllZo a{z3 exists for all z E Ci.
Then every a E V is a good universal weight. In fact more is true. Let T E C

ergodic. For each f E L1(Q) there exists a set Í1/CÍÍ of probability one such that

n-1

lim

for any a E V and any u> G fi/.

1 ■'_*_

3oj)    exists

3=0
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PROOF. Let T E C ergodic. We divide the proof into two parts:

(I) Let g E L2(fi) and let fi^ be the set of all w E fi for which the sequence

b = (g(Tkijj)) has a correlation given by the spectral measure of Ut, via

lim I J2 9(T3+ku)g(T3'oj) = (Ukg, g) = [   Xk d(E(X)g, g).
3=0 ■/Cl

By the individual Ergodic Theorem, p(ü^) = 1. Now let Vi be the linear space

spanned by the eigenfunctions of Ut and let

V2 = {fE L2(U)\(E(-)f, f) is continuous}.

Clearly V = Vi + V2 is dense in L2(fi). By assumption (2) it is clear that if a E D

lim - 2~] Ojg(T3oj)    exists for all uj E fi

if g is an eigenfunction of Ut- Now let g E V2; then for each w E fi'9\ the spectral

measure corresponding to the sequence b = (g(Tkco)), (E(-)g,g), being continuous,

is singular with respect to <ra, and thus by Corollary 2.4,

1  n— 1

lim - Y, aj9(Tjw) = 0
n 3=0

for each aE D and oj E fi^.
¿1

(II) Now let / e L1(Q). Let gp E V be such that gp —» /. By step (I) and the
Individual Ergodic Theorem, we can find for each p a set flp C fl of full measure

with the following properties:

(Io) u) E fip => lim„ i Y%=o ai9p{TJu}) exists for all a £ C;

(2°) u> E Üp => hm„ I Z]Zo \f(T3oj) - gP(T3u)\ = / \f - gp\ dp.
Let üf = CÇ=i Op- For fixed w G Uf, let b* = (f(Tkoj)), b(p) = (gp(Tkcj)); note
that ||b* — b(p)||i —» 0 and apply Lemma 3.1 to deduce that

1  n—1

lim — yj ajf(T3'uj)    exists
n 3=0

for each aE D.

An application of Theorem 1.4 concludes the proof.

COROLLARY 3.16. Let D be the set of all a E S fl /(oo) satisfying conditions

(1) and (2) of Theorem 3.15. Let T E C. For each f E L^fi) there exists a set

fîy C fi of probability one such that for any uj E fi/,

lim — y   ajf(T3ui)    exists
n   n ^—'   J

3=0

for all aE D, in particular for all bounded Besicovitch sequences.

PROOF. Use "decomposition into ergodic parts".
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REMARKS. (1) The main theorem in [10] is a special case of Theorem 3.15: the

case when T is weakly mixing and a an arbitrary p-sequence.

Indeed it was recently shown by Losert in [31] that every p-function is a bounded

Besicovitch function and that the inclusion is strict; Losert [31] also obtains an

intrinsic characterization of p-functions in terms of the Fourier transforms of real

signed measures on Ci, analogous to that of Riemann integrable functions in terms

of continuous functions.

(2) Theorem 3.15 and Corollary 3.16 also generalize Theorem 6 in [36]: the class

of bounded Besicovitch sequences B(2) nZ(oo) is replaced by the larger class D, and

the set fi/ of full measure depends only on / but not on the particular sequence

aeP.
(3) The pioneering work on the Pointwise Ergodic Theorem along subsequences

(weights) was done by Brunei and Keane [13]. It turns out that the class of uniform

sequences introduced by Brunei and Keane is contained in the class of bounded

Besicovitch sequences (it is, in fact, already contained in the class of p-sequences,

as is shown in [10]). We sketch the proof below.

We recall the definition of a strictly L-stable (stable in the sense of Lyapunov)

system given in [13].

Let X be a compact metric space, and </>: X —> X a homeomorphism of X.

DEFINITION 3.17. We say that the system (X, <f>) is strictly L-stable if: (i) The
set {4>n\n E Z} is uniformly equicontinuous, and (ii) X possesses a dense orbit, that

is, there is an x E X such that {<pnx\n E Z} is dense in X.

We have

LEMMA 3.18 (SEE [33 OR 36]). Let (X,<h) be a strictly L-stable system.

Then (X,<j>) is strictly ergodic, that is, there exists a unique 4>-invariant (and thus

ergodic) probability on the a-field X of Borel subsets of X, which we denote by v and

each nonempty open set has positive u-measure. In particular for every f E C(X)

and x E X,

limi¿/(0fcx)= f fdv.

Throughout the remainder of this section we shall deal with a strictly L-stable

system and we shall write (X, X,v,<j>) instead of (X, <j>).

THEOREM 3.19.   Let (X, X,v,<j>) be a strictly L-stable system.  Then we have:

(1) For any f E C(X) and any x E X, the sequence u given by u = (/(</>"(a;)))

is almost periodic in the sense of Bohr, i.e. belongs to APß(N).

(2) For each g E L°°(X, X, v) there exists a set X' C X of u-probability one such

that for each x E X' the sequence v given byv = (g(4>n(x))) is bounded Besicovitch.

PROOF. (1) By our assumption, the set of functions {fo(j>n\n E Z} is uniformly

bounded and uniformly equicontinuous, and thus by Arzela's theorem it is relatively

compact for the topology of uniform convergence on X. It follows that for any fixed

x E X the sequence u = (f(<j>n(x)))„ez belongs to APw(Z) = APß(Z) and hence

its restriction to N, u belongs to APß(N).

(2) Let g E L°°(X, X,u). Choose fp E C(X) such that

fp    -»   g.
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For each p, by the Individual Ergodic Theorem, we can find a set Xp C X of full

measure such that

x € Xp => Urn - ¿ }fP(<t>k(x)) - g(<t>k(x))\ = f \fP - 9| aV.
"  nfc=o Jx

Let X' = Dpti Xp- For fixed x G X', let v = (<?(0n(x))) and u(p) - (fp(4>n(x)));

note that

Uv-u(p)|U= / |fl-/p|*'->0

and that each u(p) is almost periodic in the sense of Bohr. This concludes the

proof.

We recall that a bounded function / : X —> P is said to be Riemann integrable

with respect to v if the set D — {x E X\f is discontinuous at x} has i/-measure zero.

The following useful characterization of Riemann integrable functions is elemen-

tary but not entirely trivial (it makes use of the oscillation functions of /,

Osc/(:r) = inf <  sup |/(y) - f(z)\ \V a neighborhood of x >
[y-zev J

and of the Urysohn theorem):

LEMMA 3.20. Let f: X —» R be bounded. Then the following assertions are

equivalent:

(i) / is Riemann integrable with respect to v.

(ii) For each e > 0 there are functions u E C(X), v E C(X) such that u < f <v

and J(v — u)dv < e.

COROLLARY 3.21. Let h: X —> R be Riemann integrable with respect to v. Let

y E X. Let a be the sequence given by a — (h((pn(y))). Then for each £ > 0 there

are u = (un) and v = (vn) belonging to APß(N) such that

un < h((j>n(y)) < vn    for all n E N

and
1   n— 1

||v - u||i = lim - 5Z(vfc - ut) < e;
n   n f—^

fc=o

in particular a is bounded Besicovitch.

PROOF. By Lemma 3.20, for each £ > 0 there are f,g E C(X) such that / <
h < g and ¡(g - f)dv < e. Let u = (f(4>n(y))) and v = (g(4>n(y))). It suffices to

note that u and v are almost periodic in the sense of Bohr by Theorem 3.19 and

that

hm ~Yi9(^(y)) - î^k{y))) = i {g -f)&<e
k = 0 J

by Lemma 3.18.

We recall the definition of the Bohr compactification of Z going back to the

fundamental work of Anzai and Kakutani (see [1]). Let (Ci)d be the unit circle

group with the discrete topology. Then bZ, the Bohr compactification of Z, is the

dual of (Ci)d; bZ is a compact abelian group and Z c bZ is dense in 6Z. Further
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every / E APß(Z) = AP>y(Z) has a (unique) continuous extension to 6Z; in other

words, the almost periodic functions on Z are precisely the restrictions to Z of the

continuous functions on bZ.

We recall also that a topological group G is called monothetic if there is u E G

such that the cyclic group generated by u, {un\n E Z}, is dense in G. A monothetic

group is clearly abelian. It is well known that every compact monothetic group is

the continuous homomorphic image of bZ, i.e., is isomorphic to a quotient group of

6Z.
REMARKS. (1) It is known (see [27]) that any strictly L-stable system (X,<f>)

is "isomorphic" in the sense of Ergodic Theory [38] with a system (Y,ip), where

F is a compact metrizable monothetic group and ip is translation by an element

u E Y generating a dense cyclic group (under this isomorphism the measure v gets

mapped onto Haar measure measure on Y).

(2) The correspondence between APß(Z) and C(bZ) referred to above can be

extended to a bijection between B(p) and Lp(bZ) (1 < p < oo) which preserves

the p-norm, the algebraic (addition, multiplication, translation) and order struc-

tures (B(p) denotes, of course, the quotient space of B(p) by the space of all /

with ||/||p = 0). Using this correspondence one may show that in a certain sense

a converse to Theorem 3.19(2) also holds, namely: If v = (vn) is bounded Besi-

covitch, there exist a compact metrizable monothetic group Y, f E L°°(Y), u E G

generating a dense cyclic group such that vn = f(Tnu) (here, of course, Ty = uy)

and u is generic for the T-invariant algebra 21 generated by / and the continuous

functions on Y (i.e., ^ Sfc=o 9^Pku) ~* J 9 d-vi for ¡7 €E 21; f — Haar measure). We

omit the proof. For further details one may consult [20].

(3) Concerning Corollary 3.21, the special case when h = 1a, A E X a Jordan

set with respect to v (that is the boundary dA of A has ¡^-measure zero), leads to

the weights a = (lA(<t>n(y))) associated with the so-called "uniform sequences" of

Brunei and Keane [13].

We recall that an ergodic automorphism T E C has discrete spectrum if L2(fi)

has an orthonormal basis consisting of eigenfunctions of Ut-

We conclude this section with the following result.

THEOREM 3.22.   ForT E C ergodic the following two assertions are equivalent:

(i) T has discrete spectrum.

(ii) If g E L°°(fi), then for almost every u E fi, the sequence v given by v —

g(Tk(u})) is bounded Besicovitch.

PROOF. The technique of proof is similar to that used in the proof of Theorems

3.15 and 3.19. For the sake of completeness we include the details.

(i)=>(ii). Let {fj} be an orthonormal basis consisting of eigenfunctions of Ut

and let Vb be the linear space spanned by {fj}.

Now let g E L°°(fi). Let hp E V0 be such that

hp -> g.

By the Individual Ergodic Theorem, we can find for each p a set fip C fi of full

measure with the following property:

1 n_1 f

uj E fip => lim - Y, \g(T3u) - hp(T3uj)\ =      \g - hp\ dp.
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Let fi(g) = np*Li fip- For fixed w E fi(9), let v = (g(Tku)) and u(p) = (hp(Tkoj));

it is then clear that u(p) is a trigonometric polynomial and that ||v - u(p)||i —» 0

as p —► oo. This shows that v = (g(Tkui)) is bounded Besicovitch.

(ii)=>(i). Let V be the closed linear space spanned by the eigenfunctions of Ut

and let W = V1- = {/ E L2(Q)}{E(-)f,f) is continuous}. By Theorem 5.2 in [2],

every f E L°°(fi) can be written in the form

f = g + h,       gEVnL°°(fi), heWnL°°(fi)

(the orthogonal projection onto V defines an L°°-contraction). Suppose, by con-

tradiction, that T does not have discrete spectrum. Then W fl L°°(fi) ^ 0. Let

/ E W n L°°(fi) and let fi^ be the set of full measure consisting of all o> E fi for

which the sequence a = (f(Tkto)) has a correlation given by the spectral measure

of Ut, via

,   n-1

lim
n   n

Yf(T3+k^)f(T3Lü) = (Ukf,f) = / • Xkd(E(X)f,f)

3=0
ici

This means that the spectral measure aa corresponding to a is continuous and thus,

by Theorem 3.14 above, the bounded sequence a — (f(Tku)) cannot be Besicovitch.

Since this holds for each u) E fi^, we have reached the desired contradiction and

the proof is complete.

4. Sequences having a mean, as weights. To simplify matters we make

precise some notation which will be used throughout the rest of the paper:

NOTATION, dz will always denote Lebesgue measure on Ci.

If T E C, we denote by Ut the associated unitary operator and by E(-) the cor-

responding spectral measure; for / E L2(fi) we shall often write ///(•) = (E(-)f,f).

We begin with the following elementary result.

LEMMA 4.1.   Let a = (an) be a bounded complex sequence.  Then:

2

Ya3z3     dz = 0(n);

3=0

(2)

In particular

id

OO p

1
£ ar

3=0

n=l

-2 £ ar

dz < +0O.

< +00

for almost every z E Ci with respect to dz.

PROOF.  We only need to remark that

JCi E
3=0

aiZJ dz

n-1

£

3=0

0(n);

the rest follows immediately.
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THEOREM 4.2. Let a = (an) be any bounded complex sequence. Let T E C and

let Hi c L2(fi) correspond to the "absolutely continuous parf of the spectrum of

Ut-  Then for each f E Hi we have

.   n— 1

-£aj/(TM^°    a.e.
H 3=0

PROOF. Note that (see Lemma 2.9) Hi is the closed vector space consisting of

all / E L2(fi) for which p¡ -« dz and that

G = {/ E Hi\pf = g dz for some 0 < g < 1}

generates a dense subspace of Hi. By Proposition 1.3 it suffices to consider f EG.

We have
2

£a;/(rJ

3=0

2
n-1

Ya3zJ       dPf(Z)

3=0

|2

L 'W dp(uj) = V ajâk f f(T3oj)f(TkLj) dp(u)
(3\k) J"

=   Y U3nk   /       Z3~Zk dpj(z) =    I
U-k) Cl Cl

JCi

n-1

J2a3
3=0

g(z)dz
Jct

£aJ

3=0

dz.

From statement (2) of Lemma 4.1 we deduce

OO r.

u
n'-l

l-2   Y *3f(T3")

3=0

dp(u>) < Si
t    n'-l

-2   £  °3"

3=0

dz < +00

and therefore
1    n  — 1

~2   £  a3f(TJuJ) -* °     a-e'

3=0

The routine "subsequence argument" (see Proposition 1.9) now applies and com-

pletes the proof.

We recall that an automorphism T E C is said to have countable Lebesgue spec-

trum, or simply Lebesgue spectrum if there is a sequence {/jI/gn of elements of

L2(fi) such that /o = 1 and

{fo}U{U?fj\j>l, riEZ}

is an orthonornal basis of L2(fi).   (It is known (see [38]) that every Kolmogorov

automorphism has countable Lebesgue spectrum; in particular, every Bernoulli shift

has countable Lebesgue spectrum.)

COROLLARY 4.3. Let a = (an) be a bounded complex sequence having a mean.

Then a = (on) is a good weight (relative to the Weighted Pointwise Ergodic Theorem)

for any T E C having Lebesgue spectrum.

PROOF. UT E C has Lebesgue spectrum, note that Hi is precisely the orthog-

onal complement in L2(fi) of the constant functions and that, in turn, L2(fi) is

dense in L:(fi) (use Proposition 1.3).
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REMARK. Compare Corollary 4.3 above with Theorem 2 in [14].

We now turn to a class of sequences introduced by J. Reich [34]. Let J be a

Borel set contained in Ci\{l}.

DEFINITION 4.4. A bounded complex sequence a = (an) is said to satisfy a

"uniform order condition" on J if there is a sequence of positive integers (Nk),

dense in N, such that

D(J,(Nk)) = sup \Y
zeJ fc=i

iVfc-l

TT    /      a
Nk f-;   ■

3=0

< +00.

The following result is essentially due to J. Reich [34].

PROPOSITION 4.5. Assume that the bounded complex sequence a = (an) satis-

fies a "uniform order condition" on J. Let T E C. Then for each f E E(J)L2(Vt)

we have

1 "-1
lim — YJ a3f(T3Lü) = 0    a.e.

n   n
3=0

PROOF. We have E(Jc)f = 0 and hence

L
n-l

\ Y ",f(TJ")
3=0

dp(u) = /
Je,

-L

1  n— 1

.-,3

n
3=0

n-l

£flJ

i=o

dpf(z)

dpf(z).

Thus

OO /.

t_, Jn

Nk-1

fc=l

It follows that

ik £ a^Tv
j=0

/OO
£

fc=l

L    Nk-l

Ï7 £ ai*.
3=0

<D(J,(Nk))pk(J)<+oo

Nk
dpf(x

,     Nk-1

-  Y ajf(T3w) -» 0    a.e.
Nk

3=0

and the routine "subsequence argument" (see Proposition 1.9) completes the proof.

Again let a = (an) be a bounded complex sequence. Denote by J(a) the collec-

tion of all Borel sets J c Ci\{l} on which a satisfies a "uniform order condition".

The following definition is a slight generalization of that given by Reich in [34].

DEFINITION 4.6. We say that a bounded complex sequence a = (an) "saturates"

if there exists a sequence ( J„(a)) of Borel sets in J(a) such that

K(a) = C1\(lJjn(a))

is at most countable.
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REMARKS. (1) Let a = (an) be a bounded complex sequence and assume that

there is a sequence of positive integers (Nk), dense in N, such that

E
fc=i

Nk-1

k £ Ü3Nk
3=0

< +00

except for countably many z E Ci. Then a = (an) saturates.

(2) Let a = (an) be any bounded complex sequence. Then from Lemma 4.1 (and

Proposition 1.9) we deduce that the amplitude exists,

n-l
1

T(z) — lim — \   ajZ3 = 0,

3=0

for almost every z E Ci with respect to dz.

(3) Assume that the bounded complex sequence a = (an) saturates. Then, as is

easily seen, the amplitude exists,

1  n—1

T(z) = lim — >   a,2J = 0,
v ;       n   n ¿-^   3

3=0

for every z E \}n Jn(a), i.e. for all except countably many z E Ci.

The following is a slight generalization of a result in [34].

THEOREM 4.7.   Assume that the bounded complex sequence a = (an) saturates.

Let T E C and let W = {/ E L2(fi)|n/ is continuous).  Then for each f E W,

n-li ■»_»

lim— >    a,f(T3ui) =0    a.e.
n   n ¿^   3   v

3=0

PROOF. By Proposition 1.3 it is enough to show that there exists a dense set

in W such that for each g belonging to this set,

n-l

lim — 2_. ajg(T3tjJ) = 0    a.e.

j=o

Let / E W and let e > 0. Let (Jn(a)) be the sequence of Borel sets in J(a) given

by the saturation condition. Then Ci\(Un J„(a)) is at most countable, and since

Pf is continuous,

PS Ci\MJJ«(a))) =°-

We may assume without loss of generality that the Jn(a)'s are pairwise disjoint.

Hence there exists n such that

M/    CA    |Jj;(a)       <£.
\l = 0
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Now

f-YE(M*))f
1=0

f-E\\jMa)\f

'      // n \c\

2

/■/

and it suffices to apply Proposition 4.5 to each one of the functions gi — E(J¡(a))f,

l = Q,...,n.

COROLLARY 4.8.   Let a = (an) be a bounded complex sequence. Assume that:

(i) a saturates.

(ii) The amplitude T(z) = lim„ ¿ Yll=o a3z3 exists for every z eCi2

Then a is a good universal weight.

PROOF. Let T E C. By Proposition 1.3 it is enough to show that

n-l

(1)
1

lim — Y] ajf{T3<¿)    exists a.e.
n   n

3=0

for / belonging to a dense subset of L2(fi). By assumption (ii), (1) holds whenever

/ is an eigenfunction of Ut- By Theorem 4.7, (1) holds for every / belonging

to W = {/ E L2(fi)|u/ is continuous}. Since the vector space spanned by the

eigenfunctions and by W is dense in L2(fi), the proof is complete.

COROLLARY 4.9 [11].   Let a = (an) be a bounded complex sequence. Assume

that:

(i) a saturates.

(Ü)

1

n   n

n-l

lim - Y^ajZ3 = 0   for every z E Ci, z ^ Í,
n 3=0

-.   n—l

lim — >   a, = d.
n  n ¿-' 3

3=0

Then a is a good universal weight and

(*)

1 n_1 f
lim — YJ ajf(T3<jj) = d I  f dp    a.e.

n j=0 •'n

for every T E C ergodic and f E L1(Q).

PROOF. With the notation in the proof of Corollary 4.8, it suffices to note that

the equality (*) holds for every eigenfunction and for every f EW.

An example. Let (X, X,P) be a probability space. For each integer d E N,

d > 1, let C(d) = {0, ±d, ±2d,...} be the lattice generated by d. A random

variable Y : X —> N (or V: X —> Z) is said to be an £.(d)-lattice variable if

2 By Remark (3) following Definition 4.6 this is then equivalent with requiring that the ampli-

tude exists for every z G K{a) = Ci\((Jn Jn(a)).
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P({Y E C(d)}) = 1 but there is no d! > d such that P({Y E L(d')}) = 1. It
is well known and not hard to check that Y is an £(l)-lattice variable if and only

if E(eiaY) ji 1 for all 0 < a < 2tt.

Now let (Yn) be a sequence of independent, indentically distributed random vari-

ables, Yn: X -» N. For each k E N we write Sk{x) = Y^=o Yi(x) if k > 1 and

So(x) = 0. We now recall the following interesting result obtained by Blum and

Cogburn [9].

Theorem 4.10 (Blum and Cogburn). Assume thatY0 > 0, E(Y0) < +oo

and that Yq is an £(l)-lattice variable (that is, E(eiaY°) jí 1 for all 0 < a < 2ir).

Then for each 0 < £ < 1 there is a set C£ E X with P(C£) = 1 such that for x E C£

sup

|*-1|>6

1*1=1

1   n— I

3=0

O
ll/8

For a proof see [9].

Under the assumption of Theorem 4.10 we also have, by the Strong Law of Large

Numbers,

for P-almost every x E X; thus the integer sequence (Sk(x)) has density d =

l/E(Yo) > 0 for P-almost every x E X. It follows that there is a set C E X with

P(C) — 1 such that, for each x EC, the weight associated with the integer sequence

(Sk(x)) (as in Proposition 1.7) satisfies the assumptions of Corollary 4.9 and hence

is a good universal weight; this result is due to Blum and Reich (see [11]).

REMARKS. (1) By analogy with the terminology used by Blum and Eisenberg for

subsequences of positive integers (see for instance [11]), we call a bounded complex

sequence a = (an) ergodic if

1
lim — Y^Q-jZ3 = 0    for every z ECi, z ^ 0,

n 3=0

1  n—1

lim — >   a-j = 1.
n    n   ¿—i    Jn    n

j=0

Note that if the weight a = (an) is ergodic, then the Mean Ergodic Theorem holds

for a = (an): the limit and equality in relation (*) (Corollary 4.9) holds in the

L'-mean with d — 1 for every T E C ergodic and / E LJ(fi).

(2) Carrying over to weights the terminology used by Blum and Reich in [11]

for subsequences of positive integers, we call a bounded complex sequence a =

(an) strictly ergodic if it is ergodic and it is a good universal weight. With this

terminology, Corollary 4.9 is a slight generalization of the main theorem in [11]; it

says that if a bounded weight a = (an) is ergodic and saturates, then it is strictly

ergodic.
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5. Sequences having a correlation, as weights. We begin with the follow-

ing result.

THEOREM 5.1. Let a = (un) be a bounded complex sequences having a mean

and a correlation, and let Aa be its spectral measure. Consider the following asser-

tions:

(i) There is a sequence (Bp) of Borel subsets o/Ci\{l} such that

(1)

and for each fixed p,

(2)

K\\jBp\ =Aa(d\{l})

/.

n-l

£»i

7=0

93 dXa(z) = 0(n).

(ii) There is a sequence of positive integers (Nk), dense in N, such that

|2

(3) £
fc=i

Nk-1

WT £^Nk
3=0

< +oo for Aa-a.e. z E Ci\{l}.

(iii) The sequence a is a good universal weight.  Then we have (i)=>(ii)=>(iii).

PROOF.  (i)=>(ii). It suffices to take Nk = k2 and to note that for each fixed p,

|2

k=lJUp

Nk-l

Ni. £ ^
3=0

dXa(z) < +0O.

(ii)=>(iii). By Theorem 1.4 it suffices to consider T E C ergodic.

Let H be the orthogonal complement of the constants in L2(fi). Since a = (an)

has a mean, it suffices to show that for each / E H,

1   n—1

lim - Y ajf(T3u) = 0    a-e-
n    n

3=0

By Lemma 2.9 we have the orthogonal decomposition of H, H = Hi®H2, where

Hi = {fE H\pf « Aa},        H2 = {fE H\pf LA,}.

Consider first the case of Hi. By (3), for each f E Hi,

(

Pf *ed\{i} £
fc=i

Nfc-1

¿2^
j=0

+0O 0;

thus if we set

B„ zeCi\{i} £
fc=i

Affc-1

^È«N,
<P,

3=0
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and take p large enough, p¡(Bp) can be made as small as we wish. Hence we may

assume that f E Hi is such that / = E(B)f with B Borel contained in Bp and

Pf = gdXa with 0 < g < p (these functions are dense in Hi). We have

/Ja

1  n—1

-£0j/(Tiu;)

3=0

dp(cj)

ic.

n-l

- £ «r
3=0

1   n— 1

- £ °j*

^/(^) = /
Jb

n-l

J=0

dM/(^)

i=o
c?(z)dAa(z) <p /

Jb

t  n —1

A£< dAa(¿).

This implies

OO ~

Ac=l/"

Affc-1

J"  £ a,-f(T>'u>)
Nk

j=0

dp(uj)

~       OO iVfc-l

77 £ ai
Nk

3=0

dXa(z) <p2Xa(B) < +oo

and hence

,   ivt-i    _

-  Y «i/C^M - 0    a.e.
Nk

3 = 0

The routine "subsequence argument" (Proposition 1.9) then yields

1  n —1

-£^ ■M -+ 0    a.e.

3=0

Assume now that f E H2- By the Individual Ergodic Theorem and the spectral

theorem for Ut,

H„m I £ f(T3+ku)7(T303) = J   zk dpf(z)

for almost all ui E fi. This means that for any such u the sequence (bk) defined by

bk = /(Tfcw) has a correlation and the corresponding spectral measure is p¡. Since

Aa and pf are mutually singular, it follows from Corollary 2.4 that

.   n —1

lim — Y_, ajf(T^u>) — 0    a.e.
n   n

j=o

This finishes the proof.
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As a corollary of Theorem 5.1 we deduce

THEOREM 5.2. Let a = (an) be a bounded complex sequence having a mean

and a correlation, and let Aa be its spectral measure. If Aa is absolutely continuous

with respect to Lebesgue measure, then a is a good universal weight.

PROOF. We show that assertion (i) of Theorem 5.1 holds. We have Aa = gdz.

Let Bp = {z E Ci\{l}|g>(z) < p) for each p E N. For fixed p we have

J B

n-l

£">

3=0

dXAz
Jb,

i-i

£ a3zl

3=0

g(z)dz< 'I
Jb

n-l

£aJ

j=0

<P
JCi

n-l

£flJ

3=0

/n-l

dz = p\ Y\aj\
\3=0

dz

0(n).

We note that (see also Lemma 2.9) if T E C has countable Lebesgue spectrum,

then for each / E L2(fi) with J f dp = 0, the corresponding spectral measure pj

(recall that «/(•) = (£'(•)/,/)) is absolutely continuous with respect to Lebesgue

measure: p¡ -« dz.

Theorem 5.2 then implies

COROLLARY 5.3. LetT E C have countable Lebesgue spectrum. Let f E L°°(Q)

with f f dp — 0. Then there exists a set Í1/CÍ1 of probability one such that for

every u> E fi/, the sequence u = (un) given by un = f(Tnu>) has mean zero, has a

correlation, and its spectral measure Au = p¡; hence u is a good universal weight.

From Corollary 5.3 we immediately obtain

THEOREM 5.4. Let T E C have countable Lebesgue spectrum. Let g E L°°(fi).

There exists then a set fig C fi of probability one such that for every ui E fig the

sequence v = (vn) given by vn = g(Tnui) is a good universal weight.

PROOF. Consider f = g - jgdp.
Remarks. (1) It is known that the class of automorphisms with countable

Lebesgue spectrum is strictly larger than that of Kolmogorov automorphisms (see

[38, p. 109, and 32]). There are, in fact, automorphisms with countable Lebesgue

spectrum and zero entropy; such automorphisms cannot be Kolmogorov. For spe-

cific examples see [32].

(2) The special case of Theorem 5.4, when T E C is a Kolmogorov automor-

phism, was obtained, using different methods, by H. Furstenberg, M. Keane, J. P.

Thouvenot and B. Weiss (personal communication).

6. Sequences of positive integers of density zero and the Individual

Ergodic Theorem. We now return to the problem of the Individual Ergodic

Theorem along subsequences. We shall be concerned here only with sequences

of positive integers having density zero (for sequences of positive integers having

nonzero density we know that the Individual Ergodic Theorem may be reduced to

a Weighted Pointwisé Ergodic Theorem: Proposition 1.7).

For convenience we write N* = {1,2,3,...} and we consider only strictly in-

creasing sequences of integers from N*. We shall use the notation 1 = (lk), n =

(nk), m = (mfc) for such sequences.
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We need some more preliminaries. Let T E C, n = (nk) and p E N*. We set

i   p
WM = - £ f(Tnku)    for / 6 L^fi).

p fc=i

For each f E L1 (fi) and A > 0 we set

M00(n,T,/)H= sup |Tp,n/H|,
peN*

£œ(n,T,/,A) = {wlMooí^T./Jíw) > A},

and for ç S N*

M,,00(n,T,/)M=   sup  |Tp,n/H|,
pGN*

E9i00(n,r,/,A) = {w|M9,00(n,T,/)(a;)>A}.

We recall J. P. Conze's important result on the Weak Maximal Inequality.

THEOREM 6.1 [14]. With each sequence n = (n¿) one can associate a minimal

constant 0 < C(n) < +00 satisfying the inequality

Xp(E00(n,T,f,X)<C(n)\\f\\i

for all T E C, f E L^fi), A > 0.  Furthermore, C(n) < +00 if and only if there
exists T E C ergodic (resp. aperiodic) such that

limTpnf(u))    exist a.e.
p

for each f E L1(Q) (that is, the Individual Ergodic Theorem holds for T along the

subsequence n).

We recall now (see [29, 14]):

DEFINITION 6.2. A sequence n = (nk) is called "bad universal" (relative to the

Individual Ergodic Theorem) if C(n) = +00; equivalently, if for each T E C ergodic

(resp. aperiodic) there exists / E LJ(fi) such that (TPjn/(u;)) fails to converge a.e.

It is known that every lacunary sequence is "bad universal" (see [4]). Suppose

now that we start with a lacunary sequence (nk) and that at each stage we add a

block of consecutive integers

nk,nk + I,.-.,nk+Ik-

How fast may the lks be allowed to grow, so that the resulting sequence is still "bad

universal"? This is the question that we shall study next, using an elaboration of

the methods in [4].

DEFINITION 6.3. Let n = (nk) and 1 = (Ik) be strictly increasing sequences

of integers from N* such that Ik < rik+i - nk for all k E N*. Then the "block

sequence" m generated by n and 1 is defined to be the sequence

ni,ni + 1,... ,ni + /1,... ,nk,nk + 1,... ,nk +h,-

We refer to Ck = {nk,nk + I,.. ■ ,nk + lk} as the fcth block of m.

We now come to the main results of this section. To simplify matters we divide

the proof into several lemmas.
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In what follows, m will usually denote the "block sequence" generated by n = (nk)

and 1 = (Ik)-

Let p E N* be given.  Then starting with any ko E N*, fco > 1, define

B  i = {nk,rik + l,...,nk + lk\l < fc < fco}

and then define the following successive "composite blocks" (fco < fci < fc2 < • • • <

fcp):

Bo = {nk,nk + l,...,nfc +/fc|fc0 < fc < fci},

Pi = {nfc, nfc + 1,..., nfc + /fc|fci < fc < fc2},

Pp-i = {nk,nk + l,...,nfc + /fc|fcp_i < fc < fcp}

by induction, as follows:

We define fci to be the minimal integer > ko for which |Po| < |P-i|- Assuming

fci < fc2 < • • • < kj defined (hence Bo, Pi, • • •, P7-1 defined) we define fc^ + i to be

the minimal integer > kj such that |Pj| > |P-i| + |Po| + ■ • ■ + |Pj_i|.

With the above notation we have

LEMMA 6.4.   Assume that the sequence (Ik) satisfies the condition

(a) lkl + 1 < Y Cfe + *)    /°r dl k' - k°-
k<ki

Let p E N*.  Then we have

(1) |B_i| + |B0| + --- + |P:(| <4J+1|P_1|    forO<j <p-l.

In particular

(2) Zfc<4P|B_i| = 4PJ Y(lh + 1))     forallk<kp.
\h<k0 j

PROOF. Using condition (a) and the minimal choice of fcJ+i we have, for 0 <

j < P - 1,

\Bj\=      Y     C* + 1) = Cfci+i-i + 1) +        £       (/fc + 1)
kj<k<kj + i kj<k<kj + 1 — l

<  y (** + !)+    £   (i* + i)

fc<fcJ + 1 —1 kj<k<kj + i — 1

= YVk + i)+i(    y   e*-1)
k<kj \ kj <k<kj:+1 — 1

< (|P_i| + |P0| + • • • + }BJ-i\) + 2(|P_i| + |P0| + •  • + IB,-!]

= 3(|B_i| + |B0| + --- + |BJ_1|).

We thus showed that for 0 < j < p — 1

(3) \Bj\<3{\B-1\ + \Bo\ + --- + \Bj-1\).

Now (1) follows from (3) by induction. In fact, for j — 0 we have trivially

|B_i| + |B0| < |B_i|+3|ß_i| =4|B_i|.
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Assuming now that inequality (1) holds for j, we derive it for j + 1:

|ß_i| + |B0| + • • • + \Bj\ + [Bj-il < 4J+1|B_ij + 3(|5_i| + |B0| + • • • + \B,\)

<4J + 1|B_i| + 3-4^+1|B_1| = 4J+2|B_i|.

Thus (1) is proved. As (2) is an immediate consequence of (1), the lemma is proved.

LEMMA 6.5.   Assume that the sequence (lk) satisfies

(») /fco + i> £(*fc + i),

k<k0

Let p E N*.  Then we have

(4) fci - fco = 1,

(5) kj+i - kj < 2(kj - kj-i)   for 1 < j < p - 1.

In particular,

(6) fcp < fco + 2p.

PROOF.  (4) follows immediately from ( ») and the minimal choice of fci-

(5) By the monotone increasing property of the /fc's we have, for 1 < j < p — 1,

£ (1* + 1)>2|      Y     Cfe + 1)

= 2[BJ_i| > \Bj-il + |B_i| + |Bo| + • • • + |BJ_2|.

From the minimal choice of kj+i we deduce k3 + 2(fc^ — fcj-i) > kJ + i, whence

(6) From (5) and (4) we get by induction

kj+i - kj < 2{kj - kj-i) <---<23(ki- fc0) = 23,

and, summing over j,

p— i p— i

fcp-fci =£(fcj+i -kj)<Y2i,
3=1 3=1

whence
p—i p—i

fcp < fc! + Y v= fco + 1 + £ V < k0 + 2p.

This finishes the proof.

LEMMA 6.6.   assume í/ia¿ Z/ie sequences (nk) and (lk) satisfy the conditions:

(a) lk, + 1 < V, (/fc + 1)    /or a// fc' /arge enough,

k<ki

(ß) ^(/fc + l) = o(nfc/).

fc<fe/
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Let p E N* and 8 > 0 be given.  There is then ko large enough that?

(7) /fc < Spnko    for all k < kp.

PROOF. By (a) and (ß), it suffices to choose fco large enough that (a) holds for

all fc' > fco and

Y (lk + 1) < 4-pó>nfc0
fc<fco

and then to apply conclusion (2) of Lemma 6.4.

REMARK. With the notation of Lemma 6.6, under condition (a), condition (ß)

is equivalent with the statement: The "block sequence" m has density zero (see

also [5, Lemma 1.6]).

LEMMA 6.7. Let A E R, A > 2. Let p + 1 = [A] (p E N*). Assume that the
sequences (nk) and (lk) satisfy the following conditions:

( »') /fc/ + 1 > ¿2 ('& + 1)    /or infinitely many fc' E N*.
k<ki

iß') h = o(Afe).

(V) Afc = 0(nk).

Let 6 > 0 be given.  There is then ko large enough that

(8) /fc < 6pnk0    for all k < kp.

PROOF. By (7') there is a constant c > 0 and fco large enough that nfc/Afc > c

for all fc > fc0. By (ß1) we may also choose fco large enough that

/fc/Afc < 6pA~2"c   for all fc > fc0.

It follows that, for fc > fco,

(9) lk < 6  p- Ak~2Pc <6-p- Afc-2P(nfco/Afc°) = ö-p-nko- kk~k°-2V.

By ( »') we may also assume that

/fc0 +1 > y (fc +x)-
k<ko

Thus conclusion (6) of Lemma 6.5 applies, and (8) follows from (9) above, complet-

ing the proof.

PROPOSITION 6.8. Let A E R, A > 2. Letp+ 1 = [A] (p E N*). Assume that

the sequences (nk) and (lk) satisfy the following growth conditions:

(*) nfc+i/nfc > A > p + 1    for all k large enough.

(F) h = o(Afc).

3 With the previous notation.
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Then for the "block sequence" m generated by (nk) and (lk) the following holds:

For each q E N* and each £ > 0 there are T E C and A E A with p(A) < 2/p such

that

p\Eq,O0 (m,T,lA,-

^ ( H£ £ lA(Tnk+tu) > \ ¿(/fc + 1) for some K>\\\

V I    lfc=lt=o fc=l J /

>l-e.

PROOF. By assumption (*) we have Afc = 0(nk) and using also (/?') we have

(for fc' —> oo)

Y (lk + 1) = o IY AM = o(Afc') = o(nkl).
k<ki \k<ki      J

Thus conditions (Y) and (/?) of the previous lemmas are satisfied.

Let q E N* and e > 0 be given. Choose 6 < e/p.

Now obviously the sequence (/fc) must satisfy one of the (mutually exclusive)

assumptions (a), ( »'). Since all the other assumptions in Lemmas 6.6 and 6.7 are

satisfied, it is clear that we can choose fco large enough that

fco ><?,
(10) nk+i/nk > p + 1    for all fc > fco,

/fc < Spnko for all k <kp.

Now define for each 0 < j < p — 1 the set

A« =  (J
m£Z

j       J +1
- + m,-h m
P p

in P. If n 6 N* note that the set A„ ' — {w E fi|nw E A^'} consists of intervals of

the form [j/pn + m/n, (j + l)/pn + m/n}; these are intervals of length 1/pn repeated

periodically with period 1/n.

With the notation previously used, define now

B'j = {nk\kj <k< kJ + i}    for j = 0,... ,p- 1.

By the growth condition on (nk) (see (10)), it is easy to see that for any 0 < /',

j" < p- 1 and fc > fco, every interval belonging to the set A„fc contains an interval

belonging to the set A¿"+1. Hence we may choose

(11) aEPf)f)AUl        ae(0)-j-)

(that is, a belonging to the interior of the foremost left interval of Anjto).  From

(10) and (11) we get

(12) lka < 6    for all fc < fcp.

Below, for a real number x, we let {x} denote the fractional part of x, that is,

the residue of x mod 1.
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Define now A = [0,2/p], Tu = w - a (mod 1). Then T~mA = A + ma (mod 1).

For m E Bo, we have m = ns + t with fco < s < fci and 0 < t < ls. Since

a g p A(0)=A(o)onA(°)o+in..-nA(o)_i

«es;

we have 0 < {nsa} < 1/p and ta < 6 (use (12)), so that

0 < {nsa + ta} < 1/p+ 6.

As T~mA = A + nsa + ia (mod 1), it follows that

T-mAD 1     c 2

p p

l/p + ¿
for m E Bq;

1/p 2/p

Similarly for m E Bj (0 < j < p — 1) we have m = ns + t with kj < s < fcJ + i and

0 < í < /s. Since

ae fl Aö)=A^nAWwn-nAW+rl
neB'

we have j/p < {nsa} < (j + l)/p and ta < 6 (use (12)), so that

j/p < {nsa + ta} < (j + l)/p + 6

(for j = p—l, {n3a + ia} G [1 - 1/p, 1) U [0,8)). As before, it follows that for each

0 < j < p - 1,

(13) meBJ^T-mAD[(/ + l)/p + ¿,(/ + 2)/p]    (modi).

From (13) and the definition of kj, we obtain, for each 0 < j < p — 1,

. ,.. Ll<s<)(, + i ^0<KI, ^(^"'      W)
mod 1   => -=—=^--~w e Í±i+5,Í±2

¿^l<s<fc:î + i(^ + 1)

>

|B_i UBqU-'-UBjI

|B_iUB0U---UBj|

£ U(Tmu)

£ U(rmc) ) :

,m£Bj

\Bj\
B_i UB0U---UB,

>

Thus
P-i

u
3=0

J + 1+s.J + 2 (modi) cB,i00 im,T, lA,-j
P P

and the proposition is proved.

THEOREM 6.9.   Let u = (uj) be a lacunary sequence of positive integers, that

is, such that

Uj+i/uj>X,        /GN*,

for some constant A > 1. Let 1 = (lj) be an increasing sequence of positive integers

such that lj < Uj+i - nj for all j E N* and such that linijlj/X3 = 0.   Then the

"block sequence" v generated by u = (uj) and 1 = (lj), namely the sequence

Ui,Ui + 1, ...,Ui +/l,W2,M2 + 1, ...,U2 +/2,...,Wfc,1ifc + l,...,Uk +/fc,...,

is a bad universal sequence, that is, C(v) = +oo.
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PROOF. Let r E N* be large enough that Ar > 2. Define

(14) A = A(r) = Ar

and

(15) p+l = [A].

Consider the sequence n = (nfc)fcGN. defined by nk = Ukr and note that it satisfies

the growth condition (*) of Proposition 6.8,

nfc+i/nfc > A >p+ 1.

Note also that the sequence (Ikr)kew satisfies condition (/?') of Proposition 6.8:

lim —y = 0.
fc   Afc

Clearly also lkr < nfc+i — n¿ for all fc E N*.   Let m be the "block sequence"

generated by (n¿) and (/fcr)fceN*, namely

ni,ni + 1,... ,ni + lr, ■ ■ ■ ,nk,nk + 1, ■ - ■ ,nk + lkr,----

Let S E C, f E L+(fi) and compare the averages along m with the averages along

v. We have

(i) y £ f(snk+t") = £ £ f(suk-+tu),

fc=li=0 fc=lt=0

ai) <££/(su*+V).
fc=li=0

The number of terms N(K) in (I) is

N(K) = (lr + 1) + (¿2r + 1) + • • • + (Ikt + !)■

The number of terms N'(K) in (II) satisfies

N'(K) < r(lr + 1) + r(hr + 1) + • • ■ + r(lKr + 1).

Thus N'(K)/N(K) < r.  By Proposition 6.8 applied to m, for each £ > 0, there

are T E C and A E A with p(A) < 2/p such that

pÍBoo fm,T, U,-

> l-e.

By the estimate above

K   i

aTF)EÉ/p-'+'")>5
v     ; fc = l t=0
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implies
. Kr    lk .

^EE/<^'»>>¿,v    ' fc=lt=o

whence

pÍe^U^^a,-)) >l-£.

By Theorem 6.1 we have, for all a > 0,

ap(Eoc(y,T,lA,a)) < C(v)\\lA\\i < C(y) -2/p.

For a = l/2r we deduce (1 - e)/2r < C(\) ■ 2/p, and, letting e -+ 0, C(v) > p/4r.

It follows from (14) and (15) that p/r —» +oo, as we let r —> +oo, and thus the

theorem is proved.

REMARKS. (1) It was U. Krengel [29] who first introduced and proved the

existene of "bad universal sequences". Subsequently various other mathematicians

obtained the existence of "bad universal sequences" by different methods (see [14,

3, 4]). It follows from [14] (see Lemma 4, p. 11) that every bad universal sequence

n = (nk) must have lower density 0: ld(n) = 0.

(2) It was shown in [4] that every lacunary sequence is a bad universal sequence.

Thus, in particular, the sequences (2fe), (fc!) are bad universal. But, in fact, more

is true; each of the "block sequences" whose fcth block is given by

2fc,2fc + l,...,2fc + fc        (fc>l),

fc!,fc! + l,...,fc! + fc (fc>2)

is bad universal (each of these sequences is: (a) "ergodic" in the sense of Blum

and Reich [11]; (b) "saturates" in the sense of Reich [34]; and (c) has density

zero). This answered a question raised by Blum and Reich [11] in their Concluding

Remarks.

(3) It follows from Theorem 6.9 that there are bad universal "block sequences,"

whose blocks increase exponentially fast. In particular, for instance, the "block

sequence" whose fcth block is given by

3fc,3fc + l,3fc + 2, ...,3fc + 2fc

is a bad universal sequence.

The above remarks might lead one to believe that every "block sequence" which

has density zero is "bad universal". This is false, as was shown in [5] :

THEOREM 6.10. Assume that the "block sequence" m generated by n = (nk)

and 1 = (/fc), namely the sequence

ni,ni + 1,... ,ni + h,.. - ,nk,nk + I, - - - ,nk + lk, ■ ■ ■,

satisfies the growth condition lk > C*nfc_i (for fc > 1) for some constant C* > 0.

Then m is a "good universal sequence" relative to the Individual Ergodic Theorem4

and the almost everywhere limit of the averages along this subsequence is precisely

the projection operator onto the invariant functions.

For a proof see [5].

4We say, of course, that m = (m*,) is a "good universal sequence" relative to the Individual

Ergodic Theorem if for each T 6 C limpTpim/(a;) exists a.e., for all / G í/1(fí).
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REMARKS. (1) The "block sequence" m generated by nfc = (fc + 1)! and lk = fc!

is a "good universal sequence"—of density zero—relative to the Individual Ergodic

Theorem. This answers a question raised by H. Furstenberg: see [42, Problem 13

in Problem session] (see also [43, Chapter on Subsequence and Generalized Means,

Pointwise Convergence Section, Good and Bad Sequences]).

(2) For further remarks and comments relating to the above questions see [5].
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