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MULTIPLIERS ON WEIGHTED LP-SPACES
OVER CERTAIN TOTALLY DISCONNECTED GROUPS

BY

C. W. ONNEWEER

ABSTRACT. Let G be a locally compact totally disconnected group with a

suitable sequence of open compact subgroups. We prove a multiplier the-

orem for certain weighted Lp-spaces over G, which is a generalization of a

Hörmander-type multiplier theorem for Lp-spaces over a local field, due to

Taibleson.

1. Introduction. For functions on R the multiplier theorem of Hörmander

can be formulated most conveniently using the following notation; cf. [7]. Let

m E Loo(R), sER and / E N; we say that m E M(s, I) if for all integers a with

0 < a < I we have

[Ras-1 I \Dam(x)\s dx)      ;Ä>ol<oo.
\ -IR<\x\<2R J I

In [4, Theorem 2.5] Hörmander proved the following theorem, stated here for func-

tions on R instead of on R™.

THEOREM H. Let m E M(2,l) for some I > 1 and let 1 < p < oo. Then

there exists a constant C > 0 so that ||T/||P < C||/||p, where Tf is defined by

(Tf)A = mf for suitable f E LP(R).

In 1979 Kurtz and Wheeden extended this theorem from Lp-spaces to weighted

Lp-spaces (over Rn), where the weight functions either satisfied the Muckenhoupt

Ap condition or else were suitable powers of \x\. Of particular interest to us is the

following result [7, Theorem 3], again formulated for functions on R instead of on

R71.

THEOREM KW. Lei 1 < s <2 and m E M(s, 1). If 1< p < oo and -1 < a <
p — 1, then there exists a C > 0 so that

l|37||p,w. <c\\f\\pMa.

Recently several attempts have been made, among others by the author in [9],

to develop a theory for differentiability of functions on certain groups, including

the Vilenkin groups and the local fields. Attempts to obtain a Hörmander-type

multiplier theorem on such groups, using as an assumption the condition M(s,l)

but with the new differentiation concept, have so far been unsuccessful. However,
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for functions on a local field Taibleson [17, Theorem 1] formulated a condition

that implied a multiplier theorem which in many respects resembles Hörmander's

theorem for functions on Rn. Taibleson used his multiplier theorem to prove an

M. Riesz-type theorem for functions on the ring of integers of a local field [17,

Corollary 1]: if Snf denotes the nth partial sum of the Fourier series of such a

function then ||5„/||p < G||/||p, provided 1 < p < oo. This and a subsequent

result [17, Corollary 4] were used by Hunt and Taibleson in their proof of the a.e.

convergence of the Fourier series of an Lp-function on the ring of integers of a local

field, 1 < p < oo; cf. [5].

In the present paper we have extended Taibleson's multiplier theorem in several

directions. First of all, we consider functions defined on a class of totally discon-

nected groups that include the additive group of a local field as a special case.

We also have obtained a larger class of multipliers than Taibleson did in [17]; cf.

Corollary 2(ii). Moreover, our main result yields multipliers for certain weighted

Lp-spaces, where the weight functions are similar to the powers of \x\ considered

by Kurtz and Wheeden; cf. Corollaries 1 and 2(i).

We mention here that our results can be used to give an alternative proof to

Gosselin's proof of an M. Riesz-type inequality (called Paley's theorem in [2]) for

functions on order-bounded Vilenkin groups. This proof closely resembles Taible-

son's proof of Corollary 1 in [17] and we therefore omit it. Since the multiplier

theorems in this paper allow certain weighted Lp-norms it is likely that the Riesz

inequality can be extended to such weighted Lp-spaces. This will be considered else-

where as will be applications of our multiplier results to certain singular integral

operators on Lp-spaces with or without weight functions.

The proof of our main theorem is based on techniques first used by Hörmander

in [4] and with modifications that, for functions on R or R™, were introduced by

Hirschman [3], Igari [6] and Kurtz and Wheeden [7]. We conclude the Introduction

with a brief outline of this paper. In §2 we present most of the definitions and

notation needed. In §3 we prove some lemmas that will be used in §4, in which we

prove our main theorem. In the final section we give some results that complement

the main theorem.

ACKNOWLEDGEMENT. An earlier version of this paper was written while the

author was visiting the National University of Singapore and was presented in June

1983, during a talk at the University of Nanjing. As a result of several questions

raised there the paper was revised extensively. The author would like to thank both

Universities for the hospitality extended to him.

2. Definitions and notation. Throughout this paper G will denote a locally

compact abelian topological group with a suitable collection of compact open sub-

groups in the sense of Edwards and Gaudry [1, §4.1]. This means that there exists

a sequence (Gn)^ such that

(i) each Gn is an open compact subgroup of G,

(ii) Gn+i § Gn and order(G„/Gn+1) < oo,

("i)U!°ooGn = Candn-ooG« = {0}.
Moreover, we shall assume that G is order-bounded, that is,

sup{order(G„/G„+i); n E Z} < oo.
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Several examples of such groups are given in [1, §4.1.2]. We mention one addi-

tional example that is of special interest to us; namely, G is the additive group of a

local field K, i.e., G = (K, +). With the notation of [15 or 18], if we take G„ = Pn

then it is easy to show that conditions (i), (ii) and (iii) are satisfied.

Let T denote the dual group of G, and for each n E Z let r„ denote the annihi-

lator of Gn, that is,

r„ = {7 E T;-y(x) = 1 for all x E Gn).

Then we have (cf. [1, §4.1.4])

(i)* each Tn is an open compact subgroup of Y,

(ii)* r„ g rn+1 and order(r„+1/r„) = order(G„/G„+i),

(iii)*U-ocrn = randnœ00r„ = {i}.
If we choose Haar measures p on G and A on T so that p(Go) = X(To) = 1,

then p(Gn) = (A(rn))_1 :— (m„)_1 for each n E Z. We mention here two simple

inequalities for the m„ that will be used frequently. For each a > 0 and k E Z we

have
00

(1) £(mn)-Q<G(mfc)-a,

(2) Y  (m")° ^ C(mk)a-

n=—00

Here, as in the sequel, G denotes a constant that may change in value from one

occurrence to the next. Inequality (1) follows from the fact that mn+i > 2mn for

each n E Z, whereas (2) is a consequence of the order-boundedness of G.

For p with 1 < p < 00 we shall denote its conjugate by p'; thus \/p + 1/p' — 1.

For an arbitrary set A we denote its characteristic function by £a- The symbols A

and v will be used to denote the Fourier and inverse Fourier transform, respectively.

It is easy to see that for each neZwe have

(CGJA = (A(rn))-^rr,:=Fn.

We now define the weighted Lp-spaces that are of interest to us. For a E R we

define the functions va: G —► R and wa: T —> R by

,,  (T\- Í (mn)-a        iîxEGn\Gn+i        (nEZ),
v^x>-\0 ifx = 0,

and
w(^-i(mn)a     if7er„+1\rn      (nez),
îM-yj-jo if1 = i.

If G is the additive group of a local field, vi(x) is equal to the nonarchimedian

norm \x\ of x E G and, hence, va(x) = \x\a for all x E G. The same is true for

the functions wa. We shall denote the Lp-spaces with respect to the measures

Pa = va dp on G and AQ = wa dX on T by LP:Ct(G) and LPiQ(r), respectively. Also,

for /: G —y C or g: T —> C and 1 < p < 00 we set

\\f\\p,a=(Klc\f(xWva(x)dpSj     P,

/ r \ Vp
llffllp.a = ( / \g(i)\pwa(i) dX
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We shall use the notation || • ||Pia for both norms, because it will always be clear

from the context which of the norms is meant.

In order to give the definition of a (Fourier) multiplier we first introduce the

space S(G) of so-called test functions on G. A function <j): G —* C belongs to S(G)

if <f> has compact support and if <j> is constant on the cosets of some subgroup Gn

(n depending on </>) of G. Then the Fourier transform maps S(G) one-to-one onto

S(T), with 5(r) defined like 5(G); cf. [18, p. 37]. Also, a simple computation, like

in the proof of Lemma 1(a), shows that for a > — 1 each £g„ E LPjQ(G) and, hence,

S(G) C Lp,a(G). Moreover, it is easy to see that for a > —1 and 1 < p < oo, S(G)

is a dense subset of Lp,a(G).

DEFINITION 1. Let a > -1 and 1 < p < oo. For f E Lco(r) and (p E S(G)

define T(j> by (T0)A = f<f>. The function / is a multiplier on LPt0l(G) if there exists

a constant C > 0 so that for all <fr E S(G) we have ||T<£||PiQ < G||</>||P)Q.

REMARK 1. For / G L^T) and k E Z let fk = }£rk and for <j> E S(G) let Tkcj>

be defined by (Tk4>)A = fk4>- Since each <j> E S(T) has compact support, T<p = TkCp

for fc sufficiently large. Thus to prove that / is a multiplier on LPt0l(G) is equivalent

to proving that the operators Tk are all bounded on S(G) with uniformly bounded

operator norms. Also, note that Tk4> = (fk)v * <j>, the convolution of two functions

onG.

We now state Taibleson's multiplier theorem referred to in §1, using the notation

introduced here; see [17, Theorem 1, or 18, p. 218, Theorem (1.1)].

THEOREM T. Let G = (K,+) be the additive group of a local field K, let
f E L00(r), and assume there exist constants B, £ > 0 so that for all I E Z we

have

(3) /   / |/(e + r?)-/(0|2dA(e)^-(2+£)(r?)dA(r?)<ß2(m;)-£.
Jr, Jrl + l\rt

Then f is a multiplier on Lp(G) for 1 < p < oo.

One of the crucial steps in the proof of Theorem T consists in showing that

inequality (3) implies an inequality for the inverse Fourier transform of the functions

fk = f£rk', see [17, Lemma 5, or 18, p. 221, Lemma (1.8)]. We state this result

here in the form of a lemma.

LEMMA Tl. Let G = (K,+) and let f E L00(r) satisfy the hypothesis of

Theorem T.  Then there exists a C > 0 so that for all k, I E Z we have

(4) sup I j       \(fkY(x + y)- (fk)v(x)\ dp(x); y E G, 1 < C(B + \\f\U-

The other important step in the proof of Theorem T consists in proving the

following

LEMMA T2. Let G = (K,+); if f E L00(r) satisfies (4) then f is a multiplier

on LV(G) for 1 < p < oo.

The main result of this paper is a far-reaching generalization of Lemma T2. We

state it here as Theorem 1; a proof will be given in §4. To simplify its formulation
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we shall say that a function / G Loo(r) satisfies condition C(k,r) for some k E Z

and r E [1, oo) if there exist C, £ > 0 so that for all /, n E Z with n < I we have

sup] (7        l(A)v(ï-y)-(/fc)vWlrdMï)J    ;y£Gi
(5) ^ \./G„\GB+i /

<C(mn)e+1/r'(ml)-£    ifl<r<oo,

and there exists C > 0 so that for all / E Z we have

(6) supj/       |(/fc)v(x-i/)-(/fc)v(x)!dM(x); yeG,l<C    if r = 1./       \(fk
JG\Gi

REMARK 2. If inequality (5) holds for some k E Z and r G [1, oo) then for each

/ G Z and y G G; we have

v l/r

l(/fc)V(* - y) - (/*)v(*)lr «M*) < G(mi)1/r'.
/jG\Gt i

To prove this, observe that for y E G¡

v l/r

l(/k)v(s-v)-(A)W<W*)]IG\G,

\1/r

l/r

( S /G XG\n=-00 '/(-'n\C'n+l

<Ci    53  ((mn)£+1/'-'(m,)-£r
\n= — oo /

<G(m;)-£(m;)£+1/r'=G(m/)1/r',

by inequality (2). Also, it follows immediately from Holder's inequality that if

condition C(k, r) holds for some r G [1, oo) then C(k, f) holds for all f with 1 < f <

r.

THEOREM 1. (i) Let f E Loo(r) and assume that condition C(k,r) holds for

all k E Z, for some r with 1 < r < oo, and with constants C and £ independent of

k E Z. /// is a multiplier on L2,ao(G) for some oo with —l/r' < ao < l/r', then

f is a multiplier on Lpa(G) for all p,a such that 1 < p < oo and —\cxo\ < a <

(p-'i)KI-
(ii) If f E Loo(r) and if C(k, 1) holds for all k E Z and with C independent of

k G Z, then f is a multiplier on LP(G) for 1 < p < oo.

3. Preliminary results. For future reference we give here a lemma in which

some useful properties of the measures pa = va dp have been collected.

LEMMA l.   Let a > -1, x E G and k E Z.

(a)Ma(Gfc)«(mfc)-(1+a).

(b) lfa<0 and(x + Gk)* := (x + Gfc)\{0}, then

pa(x + Gk) < C(mk)-1 mi{va(y); y E (x + Gfc)*}.
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(c) pa(x + Gfc) < Cpa(x + Gfc+l).

(d) pa(Gk)<Cpa(Gk\Gk+i).

PROOF, (a) We clearly have

Pa(Gk) > pa(Gk\Gk+i) = (mk)-ap(Gk\Gk+i) > \(mk)-{1+a)

Also
p OO p

pa(Gk) =        va(t)dp = Y va(t)dp
JGk ■_lrJ G,\Gi+ij=kjGi\Gi + i

<Y(m^a(m3)~l <c(mk)-{l+a\

3=k

by inequality (1).

(b) If i + Gfc = Gfc then va(y) > (mk)-a for ail y G (Gk)*. In this case (b)

follows immediately from (a). If x + Gk j^ Gk, then x + Gk C G;\G;+i for some

/ < A; and, hence, va(y) = (m;)~a for ail y G x + Gk■ In this case we have

pa(x + Gk)= /        va(t)dp = (m;)-Q(mfc)_1 = (mkYava(y),
Jx+Gk

whenever y G x + Gk-

(c) If x G Gfc+i then x + Gk+i = Gk+i and x + Gk = Gk. Then (c) follows from

(a) and the order-boundedness of G. If x G Gk\Gk+i we have

pa(x + Gk+i) = (mk)-ap(x + Gk+i) > C(mk)-{l+a) > Cpa(Gk),

according to (a). Finally, if x E Gi\Gi+i for some / < k then x + Gk and x + Gfc+i

are both subsets of Gi\Gi+i and we have

pa(x + Gk) = (mi)-ap(x + Gfc) < C(ml)-ap(x + Gk+i) = Cpa(x + Gk+1).

This completes the proof of (c).

(d) According to (a) we have

pa(Gk) < C(mky{l+a) < 2Cpa(Gk\Gk+i).

The next lemma is a Calderón- Zygmund-type decomposition theorem for func-

tions in Li,Q(G). A local field version of this theorem for the unweighted case, i.e.,

o = 0, was proved by Phillips in [12]; see also [18, p. 148]. In [6] Igari proved a

result similar to our Lemma 2 for functions defined on, among others, R instead

of G. Since the proof of Lemma 2 is by and large the same as Igari's proof of

Lemma 4 in [6], we shall only give the definition of the components in which a

given 4> E Li)Q(G) is decomposed and the proof for one inequality, (10), which

corresponds to inequality (3.22) in [6].

LEMMA 2. Let —l<a<0,let<pE LiyCX(G), and let a > 0 be given. Then

there exist functions (</>j)o° such that

(i) <A = E^o^>
(ii) (pj E Li a(G) for each j > 0,

(ÍÍÍ)E~oHWlll,a<G||0||lia)
(iv) |0o(x)I < Ca for a.e. x E G,
(v) there exist disjoint sets Ij = Xj + Gm(j) such that supp(0j) C Ij for j E N,
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(vi)EJ°llMa(/i)<<T-1H<M|l,a,
(vii) ¡j (pj(x) dp = 0 for j G N.

PROOF.   It follows from Lemma 1(a) that pa(Gk) —* oo as k —» —oo.   Thus

there exists a fco G Z such that

(7) min{l,(2Go)-1}/ia(Go) > O^ka,

where Go is chosen so that pa(Gk) < Co(mfc)~(1+a' for all fc G Z; cf. Lemma 1(a).

Then for / < fco we have

(8) pa(Gi\Gi+i) > i(m;)-(1+Q' > |(mfc0)-(1+°)

>(2Go)-Va(Gfco)>cT-1||0||1,Q.

Now consider those cosets x + Gk0+i in Gk0 for which

(9) (p^x + Gkv+i))-1 f \<i>(t)\dpa>o-,

and for each / < fco consider those cosets x + G¡+i in G;\G;+i for which

(10) (pa(x + Gi+i))~1 f \<j>(t)\dpa><j.
Jx+Gl + 1

Call these cosets /ij. Then we have

0-pa(Il,j) <   /        \(p(t)\dpa < \\<j)\\l,a < CaHaihj),
Jh,3

with the last inequality following from (7) and (8) and Lemma 1(c). For the sets

x + Gfc0 + i in Gfc0 for which (9) does not hold we consider subsets that are cosets

of Gfc0+2; similarly for the sets x + Gi+i in G¡\G¡+i for which (10) does not hold

we consider subsets that are cosets of G;+2- From among these sets we select

those that satisfy an inequality analogous to (9) or (10). Call these sets l2,j-

Continuing this process we obtain a countable collection of disjoint sets, say (Ij)f

with Ij = Xj + Gm(j), and so that for each j E N we have

(11) CT < (Pa(Ij))-1   f   m)\dpa<Ccr.

Inequality (11) corresponds to (3.19) in [6]. We now prove the analogue of (3.22)

in [6] : for each j E N we have

(i2) (p(ij)Yl f m)\dp<c(pa(i3)r1 i m)\dpa.
ii, Ji3

We distinguish two cases.

(i) If Ij = Gn for some n E Z then, according to Lemma 1(a),

(p(Gn))-1 [   \<p(t)\dp<C(pa(Gn))-\mn)-a f   \<p(t)\dp
JGn JGn

<C(pa(Gn))-1 j   \<p(t)\va(t)dp,
JGn

because for t E Gn\{0} and a < 0 we have (mn)~a < va(t).
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(ii) If Ij = x + G„ for some n E Z and x E G\Gn then x + Gn E Gi\Gi+i for

some I < n. In this case we have

((Jt(Ij))-1 f \<t>(t)\dp=(pa(IJ))-í(ml)-a f \4>(t)\dp
h, Ji}

= (pa(IJ))-1   [   \4>(t)\Va(t)dp.
Jl,

This completes the proof of (12). We now define the functions (0j)o° as follows:

Á M - \ (P(h))~l L <P(t)dp       HxE I,, 3 > 1,
m)      U(i) Xx^D,,

where Da = (J^° Ij, and for j > 1 we set

^) = íí(x)_Mx)   lxVr
JK  '      ( 0 if z £ /j.

As we already mentioned, the proof that the functions ((pj)^ satisfy the conditions

of our lemma is virtually the same as the proof of Lemma 4 in [6] and will be

omitted.

4. Multipliers on Lp^a(G). The first proposition of this section is a duality

theorem for multipliers on LPiQ(G)-spaces.

PROPOSITION  1.   Let f E Loo(r),  1 < p < oo,  -1 < a < p - 1 and k E Z.

Assume that there exists a C > 0 so that for all <f> G S (G) we have

(13) \\Tk4>\\P,* < c\\4>\\p,a.

Let q = p' and ß — (1 — q)a. Then we have for all 4> E S(G) and with the same

constant C as in (13),

\\Tknq,ß   <  C\\4>\\a,ß-
Thus f is a multiplier on LPiQ(G) if and only if f is a multiplier on Lq,ß(G).

PROOF. Since S(G) is dense in Lp^a(G) we can define Tkg for all g E Lp¡a(G)

and so that (13) remains valid with </> replaced by g. For (j> E S(G) and with 6 = ß/q

we have

\\Tkcp\\q,0 = \\Tk<j>v6\\q = sup 11y Tk<p(x)vs(x)^(x)dp ;vj G S(G), U\\p = l|.

A straightforward computation shows that

/  Tk4>(x)v6(x)i>(x) dp = /  <j>(x)Tkg(x) dp,
Jg Jg

where g(x) = vs(x)ip(-x) E Lp¡a(G). Thus, Holder's inequality implies that

1/9   /   /■ \ 1/P

Tk(p(x)vs(x)ip(x) dp
G

( I   \ih(x)v8(x)\o dp\      (J \Tkg(x)v.6(x)\pdp

= ||<AlU|Tfci7||p,Q < C\\4>\\q,0\\g\\p,a = CU\\]q,ß\mp.

Therefore, we may conclude that

\\Tk<t>\\q,ß < C||0||,,0,

which completes the proof of Proposition 1.
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PROPOSITION 2. Let f E L00(r) and assume that f satisfies condition C(k,r)

for some fc G Z and with r G (l,oo). IfTk is of type (2,2) on ¿2,a(G) for some a

with -l/r' < a < 0 then Tk is of weak type (1,1) on LiiQ(G). Moreover, if C(k, 1)

holds then Tk is of weak type (1,1) on Li(G).

PROOF. Take any <fi G Li,Q(G). Fix a > 0 and apply the Calderón-Zygmund

decomposition, as given in Lemma 2, to (p. Using the notation of that lemma we

obtain

+ ip    with i\) = N   (j>j.

i=i

Then

{x G G; |Tfc<¿(x)| > a}

C {x G G;  |Tfc0o(x)| > a/2} U {x G G;  \Tkip{x)\ > a/2} := Ea U Fa.

For the set Ea we have

P*(Ea) = pa({x G G;4o--2|Tfc</»o(x)| > 1})

<4cT-2\\TkCpo\\2,a<Co--2Ho\\22,a-

Hence, it follows from Lemma 2(iii) and (iv) that

Pa(Ea) < Co-1   J  4>o(x)dpa < Ccr-'Uh,«.
Jg

Next we observe that

Pa(Fa) = P*(F<r H Da) + Pa(Fa\Da)

<pa(Da) + 2o--1 [       \Tkip(x)\dpa
JG\D0

<(j-1|]</)||1,Q+2a-1 /        \(fkY*iP(x)\dpa,
Jg\d„

by Lemma 2(vi). We now derive a suitable inequality for the last integral that we

shall denote by J. Lemma 2(v) and (vii) imply that

J=  / Y      (fkY(x-y)4>j(y)dp(y)  dpa(x)
JG\Da   J = 1Jl3

OO p p

<E/ /   \(fkY(x-y)-(fkY(x-xJ)\\<P3(y)\dp(y)dpa(x)
j = lJG\Da Jlj

OO p p

<Y      \^(V)\ \(fkY(x-y)-(}kY(x-x])\va(x)dp(x)dp(y)
j=lJl} JGVi

OO p p

<Y        \My + *i)\ \(fkY(x-y)-(fkY(x)\
'g\g„u»

■va(x + Xj) dp(x) dp(y).

We now consider the inner integrals in the above sum and denote them by KJ<a. It

follows from Holder's inequality that if r G (1, oo) then
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m(j)-l

Kj,a=  Y   I \(fkY(x-y)-(fkY(x)K(x + xJ)dp(x)
n = -oo •'Gn\Gn + i

m(j)-l   / \

<  Y     / \(fkY(x-y)-(fkY(x)\rdp(x)

/ (va(x + XjY dp(x)
JGn\Gn+i

m(j)-l   /    . \   1A

Y       / |(/fc)v(x-2/)-(/fc)v(x)|''^(x) (par,(x3+Gn)yir'

n=-OC     \JGn\Gn+l )

Applying inequality (5) and Lemma 1(b) we see that for y E Gmy\,

m(j)-l

K3,a<C   Y   (™n)£+1/r'(mmU)Y£((mnYl mf{tw(i);/G(xJ+Gri)*})1/'-'

n = — oo

m(j')-l

<C(mm(j)Ye   Y   (mnY'mf{va(t);t E (xj+ GmU)Y}
n— — oo

<GinfK(í);íG(iy + Gm(i)r}.

Substituting this inequality for Kj^a into the inequality derived earlier for J we see

that
oo

J <g' Y /      l'A?(y + xj)\v<*(y + xj)dM(y)
j=lJGmU)

OO ^,

E/ i^e<G_>/   \^(t)\dpa(t)
3 = 1 Jl'

OO

= cYHj\\uc,<cu\\Ua,
3 = 1

according to Lemma 2(iii).   Thus we may conclude that pa(Fa) < Gcr^H^lka,

and, consequently,

pa({x G G; \Tkc¡>(x)\ > a}) < Ccr-'UWi^,

that is, Tfc is of weak type (1,1) on Li)Q(G).

In case r = 1 and a = 0 we do not have to apply Holder's inequality and Lemma

1(b) to show that Kjß < C, since this follows immediately from inequality (6).

The remainder of the proof remains the same and we may conclude that Tfc is of

weak type (1,1) on Li(G).

PROOF OF THEOREM 1. First, we consider the case where 1 < r < oo.

Since each / G L^T) is a multiplier on L2(G) = L2,o(G) it follows from Stein's

interpolation theorem for weighted Lp-spaces [13, Theorem 2] and Proposition 1

that / is a multiplier on L2,a(G) for all a with -|an| < a < \ao\- Now consider p

and a with 1 < p < 2 and -|ao| < a < 0. Since each Tfc, fc G Z, is of type (2,2)

on ¿2,a(G), it follows from Proposition 2 that Tk is also of weak type (1,1) on
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Li,Q(G). Therefore, the Stein-Weiss interpolation theorem for weighted Lp-spaces

[14, Theorem (2.9)] implies that Tfc is of type (p, p) on Lp<a(G). In view of Remark

1, the assumption that the constants £ and C in inequality (5) are independent of

fc implies that / is a multiplier on Lp^a(G). Next, consider p,a with 1 < p < 2

and 0 < a < (p - l)|oo|- Choose po such that 1 < p0 < (p\ao\ - 2q)(|q0| - a)~l.

Then 1 < p0 < p < 2, so that each Tfc is of type (poiPo) on LPo(G). Also,

choose ai = (2a - po<x)(P — Po)-1; then 0 < at < |qo| and, hence, each Tfc is of

type (2,2) on L2,ai(G). Since 1/p = (1 - 6)/p0 + 0/2 and a/p = é>o>/2, where

6 = (2p—2po)(2p—ppo)~1, it follows from Stein's interpolation theorem for weighted

Lp-spaces that each Tfc is of type (p,p) on LPtOL(G). As before, we may conclude

that / is a multiplier on LPiCe(G). Finally, Proposition 1 enables us to extend this

conclusion to all p and a such that 1 < p < oo and — |cko| < a < (p — l)|oo|- If

C(k, 1) holds then the theorem follows immediately from Proposition 2 and the

Marcinkiewicz interpolation theorem.

We conclude this section by stating explicitly the most interesting case of The-

orem 1.

COROLLARY 1. Let f E L^T). Assume C(k,r) holds for all k E Z and all

r > 1 and with £ and C independent of fc. // / is a multiplier on L2,a(G) for all

a with — 1 < a < 1, then f is a multiplier on Lp^a(G) for all p, a with 1 < p < oo

and —l<a<p—l.

5. Complimentary results. In view of the assumption in Theorem 1 that the

given function / G Loo(r) must be a multiplier on L2,a(G) for some value of a it

is clearly of interest to find conditions for / that imply this assumption. One such

result will be given in Proposition 3. However, we first prove a lemma that is the

analogue on G of a result of Hirschman for functions on R; see [3, Theorem 3a].

LEMMA 3.   (a) For a > 0 and x EG with i^Owe have

va(x)K j \1 - a(x)\2w_{i+a)(a)dX(a) := Ia(x).

(b) For a > 0 and 0 G L2(G) we have

UWla ~ il \HP) - HP - CT)\2W_{i + a)(0-) dX(p) dX(o).

PROOF, (a) Since x ^ 0, we have x G Gk\Gk+i for some fc G Z and va(x) =

(mk)~a- Also, for x G Gfc and a G Tfc we have a(x) = 1. Therefore,

oo      ¡.

Ia(x)=Y \l-a(x)\2w_(l+a)(a)dX
l=k ■'rl+i\ri

oo

<4^(mi)-(1+«)A(r;+1\ro
l=k

oo

<CY(miYn = C(mkYa,
l = k
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by (1). On the other hand we obviously have

Ia(x)> |l-cr(x)|2w;„(1+c,)(o-)dA
JFfc+i\rfc

= (mfc)-(1+Q) J^rk+l - ivk)(o)(2 - o-(x) -cT(xj)dX.

Since (£rnY(x) = mn£,Gn(x) for each n E Z we see that for x G Gk\Gk+i,

Ia(x) > (mkY(l+a)(2(mk+i - mk) +mk+ mk) > G(mfc)"Q,

which completes the proof of (a).

(b) Since for each a E T, (¡>(x)(l — o(x)) = (</> — Tatj>Y(x) a.e. on G, where

Ta(j)(p) = (¡>(p - a), Plancherel's equality implies that

j \4>(p) - ¿(P - °)\2 dX(p) = j \d>(x)(l - o-(x))\2 dp.

Thus, after an interchange in the order of integration, it follows from (a) that

/   /   \<t>(x)(l-tr(x))\2dpw_{i+a)(o-)dX
Jr Jg

= j   \cp(x)\2 J \l-a(x)\2w_{i+a)(a)dXdp

« / \cf>(x)\2va(x)dp = U\\la.
Jg

Therefore, (b) holds.

PROPOSITION 3. Let f E Loo(r) and assume that for all p,r E T such that

u>i(p) < Wi(t) we have

\f(p)-f(T)\<Cwi(p~T)(wi(T)Y1-

If — 1 < a < 1 and fc G Z then for all <f> E S(G) we have

\\Tk4>h,a < CU\\2,a,

with C independent of k, that is, f is a multiplier on L2,Q(G).

PROOF. For a = 0 the conclusion holds for each / G Loo(r). Assume 0 < a < 1.

Since for (¡> E S(G) and fc G Z we have Tk(p = (fkY*4> G L2(G), Lemma 3(b) implies

that

\\Tkd>h,a < c (|r |r \Uk)(p)4>(p) - ¡k(p - °mp - °)?

<C(Pl'2 + Q1'2),

P = jj \MP)\2 \*(P) - ¿(P - o)\2w^i+a)(a) dX(p) dX(a)

1 ¡1
w_(i+a)(o-)dX(p)dX(o)\

where
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and

Q = If WP - °)\2 IMP) - f«(P - <7)|2™-(i+o#) dX(p) dX(a)

= J \4>(r)\2 j \fk(p) - fk(r)\2wHi+a)(p - t) dX(p) dX(r).

It follows immediately from Lemma 3(b) that

P< C\\f WlUWla-
We now consider the inner integral in Q which we shall denote by J(t). If t G

rn+i\rn for some n G Z with n > k then /fc(r) = 0 because supp(/fc) C Tfc. Thus

in this case we have

J(r)<\\f\\lf   w_{i+a)(p-T)dX(p).
Jrk

Furthermore, for p E Tfc and r G r„+i\rn with n > fc we have p — r G rn+i\rn;

hence

J(r) < ll/HL(m„)-(1+a)A(rfc) < ||/||^(m„)-(1+QU(rn)

< C(mnYa = Cw-„(t).

On the other hand, if r G rn+i\r„ with n < fc then

J(t)=[      +[ \fk(p)-fk(T)\2w_{i+a)(p-T)dX(p):=R + S.

Since for p E Tn+i and t G rn+i\r„ we have wi(p) < wi(t), the assumption of

our proposition implies that

R<C(mn)~2 wi-a(p-T)dX(p) = C(mn)~2 wi-a(a)dX(a)
Jrn+1 Jrn+i

<C(mnY2(mnY-aX(Tn+i),

since wi-a(a) < (mn)l~a for a G rn+i\{0} and a < 1. Thus

R < C(mn)-a = Cw-a(r).

Furthermore, for 5 we have

OO p

^ < 4||/||^   V    / w_(i+a)(p-T)dX(p)

UU p

2/r    .rl=n+lJr' + i\ri

<4||/||200   E (rniY{1+a)X(Tl+i)<C(mnYa=Cw-a(T)-
l=n+l

Thus, we have shown that J(r) < G«;_Q(r). Substituting this in Q we see that

Q<GJT W)\2w-a(r) dX(r) = C\\4>\\l_a < C\\4>\\lQ,

by the Hausdorff-Young inequality for weighted Lp-spaces on G, which was proved

in [11, Theorem 2]. Combining the inequalities obtained for P and Q we may

conclude that Proposition 3 holds for 0 < a < 1. The extension to values of a with

— 1 < a < 0 follows from Proposition 1.
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In the final proposition of this paper we describe certain classes of functions / G

Loo(r) with the property that the corresponding functions (/fc)v satisfy condition

C(k,r). The fact that condition C(k, 1) is somewhat more general than condition

C(k,r) for r > 1 (cf. Remark 2) is reflected in the fact that for r = 1 we obtain a

somewhat larger class of functions than for r > 1. For all r G [1, oo) the classes of

functions are generalized Lipschitz spaces on T. These spaces were first defined in

[10]; we repeat their definition here.

DEFINITION 2. Let q G R, 1 < p < oo and 0 < q < oo. A function /: Y -> C

belongs to the generalized Lipschitz space A.(a,p,q;Y) if

/    oo \'/«

ll/llA(a,p,,;r) := ||/||P +      E   W(mYa(Fl+i - F¡) * /||p < oo,
\l = -oo /

with the usual modification if q = oo.

For some basic properties of these generalized Lipschitz spaces, see [8 or 10].

In particular, in [8] the equivalence of several norms on these Lipschitz spaces is

proved when a > 0, and one of these norms clearly shows the Lipschitz character

of the A-spaces; see also [18, p. 80, Theorem (2.2)] for the case G = (K, +), the

additive group of a local field.

For /: T —> C and j E Z we define f3 by

P = fj+i - fj = /fr\,+,\ry
PROPOSITION 4. (i) Let f G Loo(r) and 1 < s < 2, and assume that there exist

£ > 0 and C > 0 so that each f3 E A(l/s + £, s, oo; Y) with

(14) ||/lA(i/s+£,s,oo;r) < GK)-£.

Then the inequality in condition C(k, r) holds for all k E Z and r with 1 < r < s'.

(ii) Let f E Loc(Y) and 1 < s < 2, and assume that there exist £ > 0 and G > 0

so that each f3 E A(l/s + e, s, s'; Y) with

(15) \\fJh(i/s+e,s,s>;r) < C(m3Ys.

Then the inequality in condition C(k, 1) holds for all fc G Z.

PROOF, (i) Fix fc G Z. Choose /,n E Z with n < I and let y G G;. First assume

k < I. Since supp(/fc) c Tfc, (/fc)v is constant on the cosets of Gfc and, hence, on

the cosets of G;. Therefore, if x G G and y G G( we have (fk)v(x - y) = (fk)v(x),

so that for all r E (1, oo)

/(,):= (/&
>Gn\Gn+l

i

inequality imply that

\(fkY(x-y)-(fkY(x)\rdp(x)\     =0.

If fc > / then we set fk = fi + Efc=/ Î3 ■ The foregoing argument and Minkowski's

«y)< Ei/       \(rY(x-y)\rdp(x)
k-i / \ i/'

E
3=1

+ E(7 \(PY(x)\rdp(x))
J=l   \JGn\Gn+i J
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Since for y E Gi and n < I we have x — y E Gn\Gn+i if and only if x G G„ \G„+i,

we see that I(y) < 2Ej=/(/Gn\G„+1 l(/i)V(a:)rÉWa:))1/r- We now aPP!y Holder's

inequality, the Hausdorff-Young inequality and (14), in this order, and we obtain,

whenever 1 < r < s' < oo,

fc-l   / / \ r/3'   / \ l-r/s'^

i(y)<^Y     / \(PY(x)\s'dp)     If dp
J=l  \\JGn\G„+l J \JGn\Gn+l

< 2 Y (\\{Fn+i - Fn) * fTa(mnr{1-r/a,))1A

3 = 1

fc-l
< c E((^)(1/s+£)rK)"£r(^)r/s'"1)1/r

3=1

OO

< G(mn)1+£-1/'-^K)-e < G(m„)e+1/'-'(m/)-Ê,

3=1

by inequality (1). This completes the proof of (i).

(ii) Fix fc, / G Z and let y G G¡ and

J(y)--= I    \(fkY(x-y)-(fkY(x)\dp(x).
Jg\g¡

Like in the proof of part (i), if fc < / then J(y) = 0. Also, if fc > / then, compare

again the proof of part (i):

fc—i

J(y)<2YÍ      \(PY(x)\dp
J=l JG\Gt

fc-l   (   /    . \  !/"'   /   „ \ !/s'

^2E j [jGG \(PY(x)vi/s+e(x)\s'dp\        (jGG \v.(i/s+e)\"dp

fc—1   (  /   I — 1 \ *'5

= 2E    E /"      i(/j')v(x)r'W(1/a+e)8-(x)d/x
3=1   [\i^coJ0*\Oi+i J

'      E   / v_(1+£3)(x)c//i

fc-l   i   /     oo \ i/3'

^2E    E K)-(1/3+£)s'ii(^+i-^)*/jiin
j=l   I   \i = — oo /

/ Í-1 \x/3'

•      £ (m^^K)"1

\l—— oo s

fc —1 oo

< CY \\fJh(i/s+e,a,s-,r)(rni)e < C(m,)e ft)-' = G,

which proves that condition C(fc, 1) holds.
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Combining Proposition 4 with Theorem 1 we obtain the following corollary. In

case G = (K,+), and s = 2 in part (ii), this result agrees with the multiplier

theorem proved by Taibleson for functions on a local field; cf. [18, p. 238].

COROLLARY 2. (i) Let f E Loc(Y) and 1 < s < 2. Assume there exist £ > 0

and C > 0 so that for all j E Z the functions f3 satisfy inequality (14). // / is a

multiplier on L2,ao(G) for some Qo with — 1/s < Qo < 1/s, then f is a multiplier

on Lp,a(G) for allp,a with 1 < p < oo and -|qo| < a < (p - l)|o:o|-

(ii) Let f E Loo(r) and 1 < s < 2. Assume there exist £ > 0 and C > 0 so that

for all j G Z the functions f3 satisfy inequality (15). Then f is a multiplier on

LP(G) for 1 < p < oo.
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