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REGULARIZATION OF L2 NORMS OF
LAGRANGIAN DISTRIBUTIONS

BY

STEVEN IZEN

ABSTRACT. Let X be a compact smooth manifold, dimX = n. Let A

be a fixed Lagrangian submanifold of T*X. The space of Lagrangian dis-

tributions Ik(X, A) is contained in L2(X) if fc < —n/4. When k = n/4,

I~n/A(X, A) just misses L2(X). A new inner product (u,v)r is defined on

I~n/4(X, A)//_n/4_1(X, A) in terms of symbols. This inner product con-

tains "L2 information" in the following sense: Slight regularizations of the

Lagrangian distributions are taken, putting them in L2(X). The asymptotic

behavior of the L2 inner product is examined as the regularizations approach

the identity. Three different regularization schemes are presented and, in each

case, (u,v)r is found to regulate the growth of the ordinary L2 inner product.

0. Let X be a compact smooth manifold, dimJT = n. Let A C T*X\{0} be

a closed homogeneous Lagrangian submanifold and M a line bundle over A. We

denote by Sk(A, M) the space of smooth homogeneous sections of M, with degree

of homogeneity fc. By Sk(h) we mean the space of smooth degree fc homogeneous

functions on A. Oa (resp. fiA' ) will denote the line bundle of densities (resp. half-

densities) on A. When no confusion will arise, the subscript A will be omitted.

Ik(X, A) will denote the space of classical, order fc, Lagrangian distributions on

X associated with A. This implies that if m G Ik(X,A), then u is a generalized

half-density on X, and the wavefront set of u, denoted WF(tt), is contained in A.

The symbol of u is denoted o~(u) and is an element of Sfc+n/4(A, fi1/2 <g> L), where

L is the Maslov bundle of A.

If u E Ik(X, A), where fc + n/4 < 0, then u E L2 (X) by a theorem of Duistermaat

and Hörmander [DHo]. The purpose of this paper is to examine the critical case

fc + n/4 = 0, when u just misses L2(X), to see what "L2 information" can be

extracted. The critical case I~nl4(X, A) will be denoted ICT(X, A).

The L2 inner product breaks down for ICT(X, A), but we can make

ICT(X,A)/I^4~1(X,A)

into an inner product space in a natural way by taking integrals of the symbols of the

equivalence classes of distributions in ICI(X, A)/I~n/4~x(X, A). Since the symbol

map <7 factors through ICT(X, A)/I~n/4~1(X, A), when no confusion arises the dis-

tinction between an element of ICT(X,A) and its image in Icr(X,A)/I~n^4~l(X,A)

will not be made. Also, the term "distribution", unless otherwise indicated, refers

to a generalized half-density. The inner product on Icr(X, A)/I~n/i~l(X, A) will

be denoted ( , )r and will be called the regularized inner product.
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We demonstrate that this inner product contains "L2 information". The general

idea is the following: We start by slightly regularizing u,v E ICr(X, A), so as to put

them in L2 (X). Then the L2 inner product is taken of the regularizations us and

vs of u and v.

The asymptotic behavior of (us,vs) is examined as us —> u and va —» v. This

procedure is done three different ways, and each time (u,v)r is found to be the

coefficient of the leading term in an asymptotic expansion in the regularization

parameter s.

This leads us to believe that the information contained in (u,v)r is, in some

canonical sense, L2 information.

In §1, first the regularized inner product of u, v G /Cr(^i A) is defined in terms of

the symbols of u and v. Fortunately, the Maslov factors in the symbols conveniently

cancel out. Then the relationship between (u,v)r and (Fu,Fv)r is determined,

where F is an order-0 Fourier integral operator. The calculus of composition of

Lagrangian distributions is used in calculating the above relationship and is needed

again in a later section, so some results from the calculus are stated here.

In §2, (tí, v)r is exhibited as the coefficient of the singularity at s = 0 of the zeta

function Zp-iu^v(s) = (Ps/2u,Psl2v), where P E iS>~1(X) is positive, selfadjoint

and elliptic. Here, and for the rest of this paper, }ik(X) denotes the space of order

fc classical pseudodifferential operators on X.

The result is obtained by a variation of a technique called the "algorithm of

the '70s" by Fefferman [Fe]: The result is demonstrated first for the case A =

iV*{0} C T*Rn, the conormal bundle of the origin. The result is transferred to a

more general A (but with small microsupport) by certain Fourier integral operators

examined in §1. Then the global result is pieced together from the microlocal result

by a microlocal partition of unity.

The section finishes with a calculation of the constant term in the expansion

ZP-iuv about s = 0.

In §3, the asymptotic growth as A —> oo of (E\,u, v) is examined, where {E\} is

the spectral resolution of a positive, elliptic selfadjoint Q E 'íl(X). This is done by

examining the singularity at 0 of the Fourier transform of (dE\u/dX,u) using the

calculus of composition of Lagrangian distributions and then applying a Tauberian

argument to obtain that (E\u,v) ~ {u,v)n\ogX, as A —> oo. The results of §2

are strengthened, showing that ZP-i^u¡v(s) can be extended meromorphically to C

with poles only at the nonpositive integers and with the residue at zero = (u,v)r.

I would like to thank my advisor Victor Guillemin, for his help on this paper,

which is based on my Ph.D. Thesis [Iz].

1. Let F be a principal fiber bundle over a compact manifold B, with fiber R+.

The following sequence is exact:

0 -> TyR+ -» TyY dA TbB -* 0,

where it: Y —» B is the fiber projection. Therefore, for all y E Y, \TyY\ = \TbB\ ®

|R|, where 7r(y) = b.

Choose a section s of Y, s: B —> Y. Let \dt\ be the standard density on R. Then

to each section v E \TY\ we can associate a section vf E \TB\ given by

vf(b)=v(b,s(b))®\dt\-x.
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Now suppose u E \TY\ is a homogeneous density, homogeneous of degree 0.

Then for any two sections Si,S2 of Y and b E B, u(b, si(b)) = u(b, 82(b)).

Thus we can canonically associate to u a density u# G \TB\, u# = uf for any

section s of Y, since uf will be independent of the section s chosen.

Definition, resy u = ¡Bu#.

Let X be a compact manifold with dimX = n. Let A be a closed homogeneous

Lagrangian submanifold of T*X\{0} and let A* = A/R+.

PROPOSITION l. 1. Let L be the Maslov bundle of A and a,b E S°(A, Ql'2®L).

Then ab E S°(A, fi) canonically.

PROOF. Choose a set {M3} of conic neighborhoods in T*X\{0} such that L is

constant above Aj = Mj O A for each j. Let {tj} be a trivialization of L above

{Aj}. For all j, r4 = 1. Above Aj, a' = T3a, b' — Tjb, where a', b' are the sections

belonging to S°(A, Q1^2) obtained when trivializing L with {tj}. Note that a' and

b' are by no means canonical. However, a'b' E S°(A, Q) is canonically defined since,

for each A G Aj,

(1.1) a'b'(X) = (Tja)(7j~b)(X) = |r/a6(A) = ab(X).

The canonical sections above the Ay's patch together to give a global section in

S°(A, fi) which is also canonically defined, since all the transition functions for ab

are identically one, independent of the trivialization chosen for L.

Let a : S°(A, Q1/2 ® L) x 5°(A, Q1/2 ® L) -> C, a(a, b) -► resA ab.

PROPOSITION 1.2. S°(A, fi1/,2(g>L) is an inner product space with inner product

a.

PROOF. The proof is clear.

The symbol map

a : Icr(X, A)//-"/4"x (X, A) -» S°(A, Ü1'2 ® L)

is an isomorphism, so we automatically get an inner product space structure on

ICI(X,A)/I~n/4-1(X,A). Let u,vE Icr(X,A)/rn/i~1(X,A).

DEFINITION. (u,v)R = (2-K)~na(c(u),u(v)) = (27r)~nresA<7(u)tT(u). The rea-

son for the dimensional constant (27r)-" will be apparent later.   Define ||u||ñ =

((u,u)Ry2.

It would be interesting and useful to know some of the functorial properties of

the inner product ( , )#. In order to develop these properties, it is necessary to use

the calculus of composition of Lagrangian distributions. We list some of the main

results here. (See [DGu] for the proofs.)

Let X, Y be compact manifolds, Y a closed Lagrangian submanifold of

T*(X x F)\{0}, and A a closed Lagrangian submanifold of T*F\{0}.

Definition. Y o A = {(x, £) g T*X\3(y, n) g A with (x, £, y, n) g r}.

In the following discussion it is assumed that:

(1) There are no points of the form (x, 0) G Y o A. That is, Y o A c T*X\{0}.

(2) There are no points of the form (x, £,y,0) E Y. That is, there are no zero

covectors in 7r(r), where n is the projection of Y on T*Y.
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LEMMA 1.1.   If n and the inclusion map i in the fiber product diagram

Y        <-      F

(1.2) *l I

T*Y      I-      A

intersect cleanly, then:

(1) F o A is an immersed Lagrangian submanifold of T* X\{0}, and

(2) the projection /?:F—»T—»ToAisa fiber mapping with compact fiber.

LEMMA  1.2.   There is an isomorphism

|A|l/2 q |p|l/2 a |p 0 A|l/2 0 |Ker/J| 0 |T*y|l/2_

However, T'Y is naturally a symplectic manifold, hence it has a canonical positive,

nonvanishing half-density uj1/2 .  Thus we get the natural isomorphism

|A|1/2®|r|1/25ï|roA|1/2<g>|Ker/3|.

Let a E IT]1/2 and r G IAI1/2. By the above isomorphism, a ® r ® w^1/2 is a

half-density on Y o A times a density in the fiber direction. Let v E Y o A.

DEFINITION. o-ot(v) = L-i,v)o-®t®u:~112. The integral is well defined since

ß~x(v) is compact, a o r G |T o A\1/2 is called the composition of a and r.

PROPOSITION 1.3. Suppose that a and r are homgeneous half-densities. Then

(tot is homogeneous with degree a o r = degree a + degree r — (dimF)/2 + e/2,

where e is the excess of diagram (1.2).

Let r be a Lagrangian submanifold of T*(X x F)\{0} with the usual symplectic

structure.

DEFINITION, r = {(x,£,y,v) E T*(X x Y)\{0}\(x,£,y,-n) E Y}. Note that

T' is Lagrangian on T*(X x y~)\{0}, where T*(X x y_)\{0} is T'(X x F)\{0}

with the twisted symplectic form p'ojr-x — tt*wt-y- Here p is the projection of

T"(XxF)\{0}ontoT*X.

THEOREM l. I. Let fc be a generalized half-density on XxY, and K the operator

with Schwartz kernel fc. Let Y,A be as above. If k E Im(X x Y;Y) then:

(1) K maps Is(Y, A) -> /™+-"+e/2(x, Y o A),

(2) if u G IS(Y, A), then a(ku) = (27r¿)_e/2cr(fc) oa(u), modulo Maslov factors.

The notation K E Im(X, Y; Y') denotes that K is the Fourier integral operator

associated with fc G Im(X x Y;Y). Theorem 1.1 enables us to get the functorial

properties we need.

Let dimX = dim F = n. Let A c T*Y\{0} and Y C T*(X x F)\{0} be
closed homogeneous Lagrangian submanifolds. Let Y intersect A transversally. Let

H = Y o A. Suppose there are conic open sets N c T*X\{0} and M C T*F\{0}

and a symplectic map <f>: N —> M such that graphe C Y. Set Am = A n M and

HN = H O N (= Y o AM =r1(AM))- Let u E Icr(Y,AM), F E I°(X,Y;Y'), a =

a(u), c = a(Fu) and / = o-(F). By Theorem 1.1, we have that Fu G /Cr(^, Hn)-
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PROPOSITION 1.4. Fix F E I°(X,Y;Y'). Then for all uE ICI(Y,AM), \\Fu\\2R

— 11/11 llullñ; where \\f\\2 is defined below. Hence F, which is bounded as an op-
erator from L2(Y) to L2(X), is also bounded as an operator from Ici(Y,Am) to

ICI (X, Hn ) ■

PROOF. By Theorem 1.1, modulo Maslov factors c = / o a — f ® a® u~ll2,

where uj is the standard density on T*Y. So |c|2 = |/|2 ® |a|2 ® w_1. Here all the

Maslov factors have cancelled. The above identification is done pointwise. That is,

for all p E Hn,

\c\2(p) = |/|2(p, ¿(p)) ® \a\2(<p(p)) ® uj-Ym)-

Let us look at this even closer. Let xp = 4>\hn- Then <¡>n: Hn -> graphe, p —»

(p, 4>(p)) is a diffeomorphism, as is (¡>m '■ graph ip —> Am, and (p, <f>(p)) —► <t>(p), since

'0 = 4>m ° <t>N is a diffeomorphism. The idea is to transport densities above A to

densities above graph V> by 4>*M, and then transport those densities down to Hn by

<p*N. By Lemma 1.2 the density factors in all directions except the Hn direction

will cancel, leaving us with a density on Hn-

|/|2 is a density on Y which is homogeneous of degree n. If |/|2 is restricted

to graph?/; we get a density on Y above grapht/;. By this we mean that for all

7 G graphe, Y(^) is a density onT^Y. Hence, by Lemma 1.2, |/|2®0M|o|2®0MtJ_1

is a density on Hn above graphs, and |c|2 = (p*N(\f\2®(p*M\a\2®(f)Muj~l) is a density

on Hn. Therefore,

\c\2 = (¡>N\f\2 ®i>*\a\2 (d^oj-1

and

res„N\c\2=[    (\c\2)#=[    (cj>N\f\2®r\a\2®r^1)*
Jh* Jh*

L((<t>uYl\î\2®H2® *-')*■

By Lemma 1.2, above graph«/», |/|2 is the product of a density /i in the Hn direction

with a density /2 in the 7r(r) direction. Note that /i and /2 cannot be chosen

canonically, but the product /i ® ¡2 is, of course, independent of the choice made.

Let fN = <p*Nfi. fN is a density on HN. Let fM = (V>*)_1/;v = (^m)_1/i- Im

is a density on AM since ip gives an isomorphism of \HN\ with |Am|- Therefore,

(0m)_1|/|2 = /aí ® (0m)_1/2 is a canonically defined nonnegative density on

T*Y above Am because Y intersects A transversally. Since the above operations

preserve homgeneity, (<Am)_1I/|2 is still homogeneous of degree n. So, dividing by

the standard positive density u>, which is also homogeneous of degree n, leaves a

canonically defined nonnegative function on Am, which is homogeneous of degree

0. Denote this function by

I/T-OAm)-1!/!2®^1^
Hence,

M®(4>*m)    V2®W

|2ï#(1.3) resW]V|C|2= f   (l/l

Let ||/||2 = supAM l/l2. Then

restfjcf < U/H2 /    (|a|2)# = ||/||2resA
Jh*
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But res//|c|2 = res//N|c|2 since supp(|c|2) C Hn, and resA|a|2 = resAM|a|2 since

supp(|a|2) C Am- Thus,

resH|c]2 < ||/||2resA|a|2. »

Multiplying by (27r)_™ completes the proof.

PROPOSITION f .5.   Proposition 1.4 gives a sharp estimate.

PROOF. Suppose Proposition 1.4 is not sharp. Then there is a constant g,

0 < g < ll/ll2, such that for all u E ICI(Y, AM)

resH\c\2 < gresA|a|2.

Let £ = II/]]2 - g. By assumption e > 0. Let

£ = {AgAm||/|2(A)>(9 + c:/2)}.

E is nonempty since |/|2 is continuous. Choose uq E Ict(Y,Am) such that

supp(|ao|2) C E and res|oo|2 ^ 0, where oo = o(uo). Let cq = a(Fuo)- Then

(1.3) gives

resH|co|2 > (g + e/2) f   (\a0\2)* = (g + e/2)resA|a0|2.
Jh*

So gresA|ao|2 > res^co]2 > (g + e/2)resA|ao|2, which is a contradiction since both

resA|oo|2 and £ are positive. Thus Proposition 1.4 is sharp.

Without any additional information about F E I°(X,Y;Y'), the estimates of

(1.3) and Proposition 1.4 are the best that can be obtained. However, for a certain

class of F's, we can go a bit further.

DEFINITION. An operator F E I°(X,Y;Y') is said to be unitary on M, a conic

neighborhood in T*F\{0} if X = Y, and F*F - I is smoothing on M.

REMARK. The definition can easily be extended to any conic open set in

T*F\{0}.
If F is unitary on M in Proposition 1.4, then it follows from [Tr] that |/|2 = 1

on M. Therefore, (1.3) becomes

resH|c|2 =  /    (|a|2)# = resA|a|
JA#

Multiplying by (2tt)   n and taking square roots proves

PROPOSITION 1.6.   Let F in Proposition 1.4 be unitary on M.  Then \\Fu\\R -

\\u\\r-

COROLLARY  1.1.   Let u,v be as in Proposition 1.4.  Let F in Proposition 1.4

be unitary on M.  Then (Fu,Fv)R = (u,v)R.

PROOF. Polarize:

{Fu¡Fv)R . m. + n,)F« + ||F(« + .)fe _ llFu& _ iml

= ll° + ",|l°2+ll" + "K - II« - Ml = (»,«>«■

2. In this section the first regularization scheme is presented.    Let u,v  E

ICI(X,A).    Let P E  '&~1(X) be positive, selfadjoint and elliptic.    Since X is
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compact, for s > 0 we have Psl2 G ^ísl2(X), with <j(Psl2) '= [a(P)]sl2. Hence

ps/2ups/2v e /-n/4-«/2(x,A). For positive s let Zp-iitM)(s) be the L2 inner

product (Ps'2u, Ps/2v). The subscript P_1 is used instead of P so as to keep the

notation consistent with that of §3 when Zp-itUtV is extended to complex s. As

S —► 0+, Zp-i,„,„ will usually approach co. The main theorem of this section is

THEOREM 2.1.   Letu,v,P be as above.  Then

lim sZP-itUiV(s) = (u,v)R.

Note that the right-hand side is independent of the choice of the operator P.

This theorem will be proven in three steps. First it will be verified for X = R™

and A = iV*{0}, the conormal bundle to the origin.

Note that although in this case X is not compact, the definition of (u, v)R given

in §1 still makes sense because the integration is over A# = S"-1, which is com-

pact. For this case the theorem is just Parseval's formula and a switch to polar

coordinates.

The second step is to extend the result of Step 1 to distributions with small

microsupport in T*X\{0}. This is done by using the results of §1 to construct a

microlocally unitary Fourier integral operator which takes distributions with small

microsupport back to the conormal distributions of Step 1.

Finally, the global result is obtained by patching together with a microlocal

partition of unity.

PROOF. First consider the case where ui,u2 E 7Cr(R",N*{0}). Let x E Rn,
ÇE(RnY,

Uj = (2*)-n[   e<<*-«>oi(Ol^l1^l<fe|1/a,       J = 1,2,

where uj(£,) = uj, the Fourier transform of Uj.

Since we are on Rn, a,-(£) is also the total symbol of Uj, and therefore is an

asymptotic sum of half-densities of decreasing homogeneity. It will be more con-

venient to work with functions, so let bj(£) = Oj(0l^l_1/'2i where |d£| is the

standard density on (Rra)*. Let oJO = ct(uj) and bj0 = ajQ\d£,Y1^2- aj0 and ^io

are just the leading terms in the asymptotic expansions of aj and bj, respectively.

Let P be a constant coefficient, selfadjoint, positive elliptic operator belonging to

^-^R")- Let p(0\d£\1/2 denote the total symbol and p0(£)|d£|1/2 the principal

symbol of P. Then

P°/\ = (2tt)-" f   e^-V/2(0M£MI \dx\^2.
,/R"

By Parseval's formula

¿P-™ = (2rr)-" /   p'ÍOMOMOIdÉl-

Convert to polar coordinates. Let £ = ut, where w G Sn_1. Then

ZP-itUl,U2(s) = (2nYn /        /     ps(ojt)bi(ut)b2(ut)tn-l\dtdu\.
Js"-1 Jo
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Now 6i062o G S~n(N*{0}), and p§ G S~3(N*{0}). Hence as s -> O+

OO

s—Il
Zp-llUll112(s)~(27r)-"/ /     P5(W)6loM62o(a;)r,,-1|didW|

(2.1) =(2tt)-" /"       p0(W)&U*M|cM f°° t—1 dt
Jsn~l Ji

-  /       e»,     where cs(u;)=P0a(a;)6lo(ü;)5^H|du;|.

The lower order terms in the asymptotic expansion of Zp-i u  u (s) are finite as

s —> 0+, hence,

lim sZp-iittliU2(a) =   lim (27r)-n /       esl
s—0+ s->0+ Js"-1

w

= (>)-" /       6loiw)koMI<M
(2.2) 7s»-1

= (271)-"/      (al0Ma2»)*

= (27r)-nresyv{o}ai0ä20 = (wi,u2)p.

We claim (2.2) is also valid when P is a variable coefficient operator.

PROOF OF CLAIM.  We need the following

LEMMA 2.1.   Let uE Ik(X,A), Pe *(X), p0 = a(P) and a0 = a(u).  Then

(2.3) a(Pu) =p0|Aa0.

PROOF.  This is a consequence of equation (4.10) in Chapter 6 of [Tr|.

Apply Lemma 2.1 to the conormal case, A = Ar*{0}, X = R™. So

a(P°u) = ps0(x, OLv{o}«o(£) = Pg(0, 0«o(0-

Let P E ^~l(X) be positive, elliptic and selfadjoint as above except that now

variable coefficients are permitted. Then Ps>2Uj E /-"/4-s/2(Rn, Ar*{0}) and

define q3,s(i) by

«b-,.(0|d€l1/a = (ps/2uj)Y     i = 1,2.

The above lemma tells us that the leading term of q3■«(£) is pg   (0, £)&jb(0 =

<t(P»/2Uj)-

Apply Parseval's formula again:

JR"
Zp-i,Ul)U2(s)=:(27r)-n /    9i..,(0Ô2^(0l^l

oo
n-l|

= (27T)-n/ /        <?1,sM)g2^(üJÍ)ín"Ví^l
'S"1 Jo

~ (27r)-n / /    Po(0,w)6i0(w)62oMí"''-1|dídwl    for s near 0.
/s"->/l

This is just (2.1), so the claim follows.

Now consider X compact and a general A C T*X\{0}. Let u, v G 7Cr(^, A) with

WF(u) and WF(v) contained in a small conic open neighborhood M of (xq, £o) G A.
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By a suitable choice of coordinates on M, we can regard M as a conic neigh-

borhood in T*R£\{0}, with AM = AilM defined by x = dH(Ç). Then the ho-
mogeneous canonical transformation \: T*R^\{0} —► T*Ry\{0}, x(x, £) = (x —

dH(£),£), maps AM into N*{0} C T*R£. Let C be the graph of

X in T*(R^ x Ry)\{0}. Next we construct a Fourier integral operator F E

70(R^-,Ry;C7') which is unitary on M. Let f(x,y,9) be the leading term of an

amplitude of F and let cf>(x, y, 6) be the corresponding phase function.

In addition to ensuring F is unitary on M, we can make F smoothing off a

slightly larger conic neighborhood M' D M.

By Theorem 1.1, Fu E ICr(Rn, N*{0}). Let Q,P E $_1(Rn) be elliptic, positive

and selfadjoint. From [Tr, Chapter 6], the leading terms of the amplitudes of the

compositions PF and FQ are, respectively,

f(x,y,6)p0(x,(j>x(x,y,6))

and

f(x,y,9)qo(y,-4>y(x,y,0)).

Thus, if we are given a Q as above, we can construct a positive, selfajoint, elliptic

P E V~1(X) such that PF — FQ is of degree —2 and smoothing outside of M' by

first choosing an operator P' with principal symbol po such that

p0(x, d>x(x, y, 6)) = qo(y, -<t>y(x, y, 6)).

Then we get a selfadjoint P by setting P = (P' + P'*)/2. P now has the required

properties. Consider the operators PSF and FQS. By construction PSF and FQS

have the same phase function as F, and the leading amplitude of P3F is

ps0(x, <j>x(x, y, 6))f(x, y, 6) = q^(x, -<py(x, y, 6))f(x, y, 6),

which is the leading amplitude of FQS. Thus

PSF - FQS E rs~YRnx, Ry; C),

and is smoothing off of M'. Let o(u) = a, a(v) — b. Then

lim  sZ0-luv(s)=   lim  s(Q^2u,Qs'2v)

=  lim s(FQs/2u,FQs/2v),    since F is unitary on M,
s—»0 +

=   lim+ s(Ps/2Fu,Ps/2Fv) = (2nYnresN.{o}a(Fu)cTjFvj

= (Fu,Fv)R = (u,v)R,    by Corollary 1.1.

This proves Theorem 2.1 for u, v with small wavefront sets.

The microlocal version of Theorem 2.1 will now be globalized. Let u,v E

Icr(X,A). Choose a microlocal partition of unity {<pj} on the conic open sets

{Mj} which cover A. Since X is compact, only a finite number, /, of open sets M3

are needed. For all j, <f>j E ^°(X) and WF'(^) C Mj. Let u3 = <j>jU,Vj — (f>3v

and let A il My = Ar Then Uj,Vj E ICT(X,Aj). Since Ylj=i <A; = Identity modulo

smoothing operators, we have u = ]T).=1 u3 and v = J2j=i vi modulo smooth half-

densities.  The {Afj}'s can be chosen small enough so that the microlocal version
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of the theorem applies to Mj U Mk for all pairs j, fc when Mj n Mk f^ 0. Of course,

if the intersection is empty, then Tes\a(uj)a(vk) = 0,

lim s(Ps,2u],Ps/2vk) = (2TTYnresKa(uj)a\
s^O

Vk),

lim sZP-iiUtV(s) =   lim s(Ps/2u,Ps/2v)
s—»0+ s—»0 +

i™+s(p°/2t^pa/2£A
\ j=l k=l       I

I

Y    lim  s(Pal2u1,P9'2vk)

l

^ (2-n)~nvGstia(uj)a(vk)

i,fc=i

¡

= (27r)-nresA ^ <j(uj)a(ufc)

j,fc=i

= (27r)_T1resAiT(u)cr(i;) = (u,v)R.

This completes the proof of Theorem 2.1. Thus (u, v)R represents the singular part

of Zp-i u „ as s —» 0+ and is giving a measure on how the integral uv diverges. If

the singular part of Zp-\uv is subtracted off, the resulting function will be finite

as s —► 0+.

Definition.

{u,v)r,p = ¿m  ((P°/2u,P°/2v) - &£±\ .

Similarly,

M|2ñP =   lim   (||Pa/2U||2
s—>0+

Unfortunately, {u, u)p,p is not independent of P, but the following relates (u, v)R,p0

to (u,v)R,Pl:

THEOREM 2.2.   Let u,veIct(X,A), ct(u) = a, a(v) = b. Let P0,Pi E ^~l(x)

be positive, selfadjoint and elliptic. Let q = a(Po)/o~(Pi).  Then

(u,v)R,p0 - {u,v)R,Pl = (27r)"nresA(log q)ab.

PROOF. Let Q = PoPf1- Then

QG*°(X)    and    <t(Q) = a(P0)/a(Pi) = q;

q is real since both P0 and P, are selfadjoint. Let T(s) = P^P^3 G *°(X).

Then cr(T(s)) = q" = esl°sq, s > 0. Since T is real analytic in s, we can write

T(s) = I + sR + 0(s2), where R is an operator *°(X) with a(R) = \ogq. Then

(P3/2u,P3/2v) = (P¿u,v) = (T(s)P?u,v)

= (P?u, v) + s(RP?u, v) + 0(s2).
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Therefore,

(Po/2u,P3/2v) - (P¡,2u,P¡l2v) = s(PY2u,PsY2R*v)+0(s2).

Taking limits as s —> 0+ gives

{u,v)RiPo - (u,v)R<Pl = {u,R*v)R = (27r)"nresA(log(j)a6.

3. Let Q be a positive, elliptic, selfadjoint operator in ^1(X), where as before,

X is compact and dim X = n. Then the spectrum of Q is positive and discrete.

Denote the symbol of Q by q(x, £). Let u, v E I(X, A), o(u) = a, a(v) = b.

Consider the family of spectral projections {E\} of Q.  We have / = J0°° dE\.

The Schwartz kernel of E\ is ^a esPec(Q),A <A ej(x)ej(y)i where e3(x) is the nor-

malized eigenfunction associated with the eigenvalue Xj of Q. Note that Qs =

f0°° Xs dE\, with Schwartz kernel J^x espec(Q) ^jej(x)ej(y)- Let uj = {^, e^}, the

coefficient of e, in the expansion of u about the orthonormal set {e3}. Let

gu,vW=      J2      UjVj = (Exu,v).
AjGspec(Q)

\fu,vE L2(x), then limA^oo 9u,vW = (u, v).

THEOREM 3.1. Letu,v E Icv(X,A). Then as X -> oo, gu<v (A) - (u,v)R log A +

C + 0(X~1).

PROOF. By an easy polarization argument similar to the one in the proof of

Corollary 1.1, it suffices to prove Theorem 3.1 for the case when u = v.

Define gu = gu<u. Let p E CQX>{R), p(0) = 1, with suppp C (—£,£), where

£ < \Ti\ and Ti is the smallest nonzero period of the Hamiltonian flow $( of the

Hamiltonian vector field Hq. Let p be the inverse Fourier transform of p. Choose

p so that ß > 0 on R and p > 1 on [0,1]. For the construction of a suitable p see

[Gul].

Claim 3.1. Suppose

(3.1) p * ^ = \\u\\2RX-1 + 0(X~2)    asA^oo.
cLÀ

Then gu = \\u\\2R\ogX + C + OfA"1).
PROOF.  We can integrate (3.1) to obtain

p*gu = \\u\\2R log A + C + 0(X~l)

as A —> oo. We will show that p* gu — gu = 0(X~l). From (3.1) we have that

#.£-££<a-,.>*.>*.-u*+w-«).

But p < 1 on [0,1] and dgu/dX > 0, since gu is increasing. Hence

where d is some constant larger than \\u\\R. Integrating gives

gu(X) - gu(X - 1) < d/X.
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This immediately gives a crude estimate for gu(X):

9u(X) = 0(A)    as A —> oo.

In the following discussion, assume A > 1. p * gu — gu can be written as the sum of

the three integrals

/   rO /.A/2 /.«A

/     +/      +/     ) [9u(* - p) - gu(X)]p(p) dp.
\J-oo       JO J\/2J

Suppose first p > A/2. Then

0 < gu(X) - gu(X - p) < 9u(A) = 0(A)    as A -> oo.

Therefore, if h = ¡™2[gu(X - p) - gu(X)}ß(p) dp, then

\h\<9uW
roo

/     P(p) dp
Jx/2

0(X-")    for all AT G R

since p(p) is a Schwartz function.

Suppose next that p < 0. Then

0 < gu(X - m) - gu(X) < gu(X + [-p] + 1) - gu(X),

where [p] is the greatest integer < p and

ffu(A + [-p] + 1) - 9u(A) = ]T gu(X + n + 1) - gu(X + n)
n=0

1-^1 i rX + [-p} + l
<dY-- <d X-xdX,

since the sum is a lower Riemann sum for the integral.

Therefore,

f° d   f°
h= ¡9u(X - p) - gu(X)]fi(p) dp < - /      \p - l|p(p) dp

J — oo J — OO

so I2 = 0(X~l). Finally, if 0 < p < A/2, then

0 < ffu(A) - gu(X -p)< gu(X) - gu(X - [p]) + [gu(X - [p]) - gu(X - [p] - 1)]

M
= gu(X - [p]) - gu(X ~{p}-l) + Y^ ?«(A - n + 1) - 9«(A " n)

n=l

M
d , r1        1 d , f

n = l

d „ A 2d     2dp      2d.,       ,
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since 0 < u/X < 1/2.   So if h = ¡0    [f7u(A - p) - gu(X)]p(p) dp, then |/3| <

(2d/A)| f0A/2(l + p)ß(p)dp\ so h = OÍA"1). Hence \fi*g-g\< \h\ + \h\ + \h\ =
0(A_1), proving the claim.

Now all that remains to complete the proof of Theorem 3.1 is to show that (3.1)

holds.

We will get the growth of p * dgu/dX by examining the singularities of its Fourier

transform in A. For technical reasons gu will be identified with the generalized

half-density gu\dXl/2\, where (dX)1^2 is the standard half-density on R. We have

dgu IdEx       \
p*^x=p*\-dxu'u)-

Therefore,

M^U'U)) =pydYu'u)-

The Schwartz kernel of dE\/dX is

Y      e-^e.ixYjJy).
Aj6spec(Q)

Denote by F(t,x,y) the distribution dE\/dX. Let hu = (Fu,u).

We will calculate the singularities of phu using the calculus of composition of

Lagrangian distributions.

It is shown in [DGu] that F E I~l/4{R x X, X; C), where C is the homogeneous

canonical relation {(í,t), (x, £), (j/,n) G T*(RxXxX)\{0}\T + q(x, () =0, (x, £) =

$'(2/,")}, where $' is the flow of the Hamiltonian vector field Hq. Therefore

pF E I~ll4(R x X, X; C), where C = {(t, r), (x, 0, (y, v) e C\ \t\ < e}.

Since the map rr: C -> T*A\{0},

(t,T),(x,£),(y,n) -> (y,n)

is surjective, the following fiber product diagram is transversal:

(2n+l) C       <-      G        (n+1)

TTl I

(2n) T*X      I-     A (n)

The numbers in parentheses are the dimensions of the spaces. G is the fiber product

of C' and A,

G = {(t,T),(x,0,(y,v) &C'\(y,ri) E A},

C'oA = {(t, t), (x, 0 E T*(R x X)\{0}|r + q(x, 0 = 0,

(x, C) = *'(y,ri),(y,ri) E A, \t\ < e} .

By Theorem 1.1,

pFu E /~™/4-i/4(R xX. ct0 A)_

Now we wish to evaluate (pFu, u) = fx pFuv, = 7r» A.*(pFuMü), where A : RxX —*

R x X x X is the diagonal map, and 7r: R x X X R is projection. Since 7r,A* is

a Fourier integral operator, we would like to treat 7r*A*(pPu M ü) in the calculus
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of Lagrangian distributions. Unfortunately, pFu M u is not Lagrangian because of

the presence of edge terms in its wavefront set. That is,

WF(pFu xu)E ((C o Ä) x A) U (0Rxx x Ä) U ((C o A) x 0X),

where Or.xx, Ox are the zero sections of T*(R x X), T*X, respectively, and A =

{(x, i) E T*X\(x, -£) e A}. From [DGu], we have tt,A* G I°(R, R x X x X; D),

where D = {(t,r), (t,r), (x, £), (x, -£) E T*(R x R x X x X)\{0}}. But D o

(Orxx x A) is empty, as is Do ((C1 o A) x Ox)- Therefore, tt* A* is smoothing on the

edge singularities, so pFu M v, can be treated as if it were Lagrangian distribution

7"n/2"1/4(R x X x X; (C o A) x A), with symbol a(pFu) ®er(w), when calculating

7T«A*(pPu M u). Form the fiber product diagram:

(2n + 2) D *- G2 (n)

! Í
(in + 2)    r(RxIxX)     «-     (C'oA)xl    (2n + 1)

G2 = {(t,r), (t,r), (x, 0, (x, -0 G T*(R x R x X x X)\{0}|

(x, 0 G A, (x, 0 = $'(y, n), (y, r?) G A, |i| < e, r + g(x, £) = 0}

= {(0, r), (0, r), (i, 0, (l, -010, 0 G A, r + «,(*, 0 = 0}.

Therefore, D o (C' o A) = {(0, t)\t < 0} = A* {0}. The condition on t comes from

r + q(x, Ç) = 0 and the positivity of Q (and hence q). This diagram is clean with

excess n — 1. By Lemma 1.1, the projection map G2 —> A* {0} is a fiber map with

fiber A/R+ = A*. Therefore, by Theorem 1.1, phu E i""3/4(R, A* {0}) and

o~(phu) = (a(pFu) x (t(u)) ° g =   I     a(pFu) ® o(u) ® g ® <*>!
Ja#

'1/2

'A#

where g = a(n,A*) = -k\ \dt AdrAdx Ad^1/2, Ti : D -* T*(R x X)\{0},

((¿,r),(i,r)(x,0,(x,-0)  ->((t,T),(x,0)

and wi is the canonical density on T*(R x X x A)\{0} At t = 0, cr(pF) =

f = K2(\dt\1'2 ® \dxAdt\\^2). 7T2: C" -> R x T*X\{0} is the diffeomorphism

((t, t), (x, 0, (y, V)) -» (i, x, 0-  At Í = 0, tr(pFu) = <r(pF) o CT(U) = / ® a(x, 0 ®
—1/2

w2      • w2 is the canonical density on T*A\{0}.

Hence, a(pFu) ® a(u)  = f ® a(x, 0 ® w^ '    ® a(y,—r]), where (x, 0  G  A,

(y,-r)) G A.

Therefore,

/    |a(x,0|2®/®Wi1/2®sOw21/2
J \#

since all of the other density factors cancel. Note also that Maslov factors do not

enter because the Maslov bundles of both C and D have canonical trivializations,

and the Maslov factors on A are cancelled canonically in the product |ct(u)|2.
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So

p* ^(A) = (2tt)-« (p* ^(-A))~ = (2nYn(phuY

= (2TTYna(phu)(-X) + 0(X-2)    asA^oo,

because the total symbol of a distribution in I(R, A*{0}) is just its Fourier trans-

form. Therefore

-    ^/n_ /(27r)-"(dA1/2/A)resA|a|2+0(A-2)dA1/2,        A > 0,

P* dX(Á)~\0(X-2)dX1/2, A<0.

Cancelling the half-density dX1^2 then gives

(3.2) p^[X) = \\u\\2RX-^0(X'2)    as A-oo,

completing the proof of Theorem 3.1.

Corollary 3.1.

P*^f(X) = (u,v)RX~i+0(X-2).

PROOF. Use a polarization argument on (3.2) like that in Corollary 1.1.

REMARK 3.1. p * dgu/dX actually has a full asymptotic expansion Yli=i a;^ \

with ai = (27r)~nresA|a|2, which comes from the asymptotic expansion of the total

symbol of phu.

Let Q, u, v, Uj, Vj, p be as above. Extend the definition zeta function Zq^u,v(s) =

(Q~s/2u, Q~sl2v) to now include complex s. From §2, we have that, as s —> 0+

along R+,

ZQ,u,v(s) = ^^ + (U, t,)Ä,Q-, + 0(s).

We will now rederive this by an alternate method using the above results. In fact,

we will prove the somewhat stronger

THEOREM 3.2. Zq¡UíV(s) is holomorphic for re(s) > 0 and can be extended

meromorphically to the whole complex plane with only simple poles at the nonneg-

ative integers. Excluding neighborhoods of the poles, Zq¡u^v(s) has at worst polyno-

mial growth in the half-planes re(s) > so for all so G R. At s = 0, the residue is

(u,v)r-

Proof.

Çu,v(X) =       2J      UjVj = / Yl      UjVj6(X ~ Xj)dX,
A,,€spec(Q) J-°° AjGspec(Q)

Aj<A

r\

P * 9u,v = P* Y      uJv]8(X - Xj)
J —OO   \    ,__/,-.,

L

A

\j&pec(Q)

A

Y UjVjt>{\-Xj)d\,
00 A,espec(Q)

^9u,v

p*~dT^      ^     UjVjP{X-Xj).
\jGspec(Q)
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Denote by E the sum J2x espec(Q) u0Vj6(X - X3). Then p * dgu,v/dX = p * E =

(u,v)R/X + 0(X~2) as A -» oo, by Corollary 3.1.

Let £i < Xi, Xi the first eigenvalue of Q. Let x(A) S 0°°(R), x(A) = 0 if A < £i,
X(A) = 1 if A > Ai and Xs(A) = x(A)A-s. Then

Zq,u,v(s)=      Y      XJSujV]■ = (S,Xs)-

Aj6spec(Q)

The theorem is now a consequence to the following two lemmas.

Lemma 3.1.

<E,xs)-(p*E,x.s) = ((l-p)Ê,x>

is entire in s and has at most polynomial growth on any half-space re(s) > so-

PROOF. See [DGu, Corollary 2.2].

LEMMA 3.2.   (p* E,Xs) is holomorphic for Re(s) > 0 and extends meromor-

phically to C with only simple poles at s = 0,-1,-2,_   It is bounded in the

half-planes re(s) > so provided we avoid neighborhoods of the poles. The residue at

s = 0 is (u,v)R.

PROOF. The argument here is essentially the same as the one given in the proof

of Corollary 2.2 in [DGu]. Suppose /(A) = 0(X'1-k). Then (/,x*> is bounded

and holomorphic for re(s) > sq, So > —fc. But

/oo A"1-fex(A)A-sdA
-OO

s + k y_oo dA s + fc

where 'i(s) = J^° X~k~3(d\/dX)dX is entire in s, and is bounded for Re(s) > sq

since dx/dX has compact support. Also, \l>(— fc) = 1. Hence each term in the

asymptotic expansion of p * E leads to a pole in (p * E, xs), the residue of which is

just the term's coefficient.

REMARK. Note that the constant term in the Laurent series of Zq,U:„(s) about

0 is (u,v)RiQ-i.

Lemma 3.1 tells us that Zq^u<v(s) — (E,Xs) has the same poles and residues as

(p * E,xs), and gives us the stated growth of Zq,u^v on the half-spaces Re(s) > so-

We now present the third regularization scheme.

Let Q E 4'1(A) be elliptic and selfadjoint as above, and let u, v E I(X,A).

Consider the heat operator e~tCi, t > 0. For t = 0, etQ reduces to the identity.

Define the function 6qiUi„(í) for t > 0:

®Q,u,v(t) = {e~tQu,v) =      Y      e~tXiUjVj-

Aj€spec(Q)

If u,v E L2(X) then limt_^0+ 8q,«,u(í) = {u,v). If u, v E Icr(X,A), then Qq,u,v

will usually approach oo as í —> 0+. However, the growth is controlled by {u,v)R:
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Theorem 3.3. 6qu„(í) = -(u,v)R\ogt + {u,v)RQ-i +o(t£), 0 < t < 1, as

Í-0+.

Theorem 3.3 shows that heat operator regularization of (u,v) is equivalent to

the zeta function regularization. In fact, Zq,u,v and @q,u,v contain essentially the

same information, since Qq,u,v is just the inverse Mellin transform of Zq^u^v:

LEMMA 3.3.   Let c> 0.  Then

(3.3) ®Q,u,v(t) = J-. I t-sZQ^v(s)Y(s)ds.
¿Kl jRe(s)=c

PROOF. From [DGu] we have

-t\j _

2m le(s) = c

So obviously,

e

—. f rsX-sY(s)ds.
m JRe(s) = c

tX'UjVj = —. f t  3XjsUjVjY(s)ds.
¿m /Re(s) = c

Summing over Xj E spec(Q) for c > 0 gives the desired formula.

PROOF OF THEOREM 3.3. We have that Y(s) exponentially decays in any

vertical strip, as long as we avoid neighborhoods of the poles. This, combined with

the polynomial growth of Zq^u^v, tells us F(s)Zq(s) decays in any vertical strip

of Re(s) > —1 if we avoid a neighborhood of the origin. Therefore, we can shift

the contour of integration in (3.3) to re(s) = — e, 0 < e — 1, provided we take the

contribution from the pole at zero into account. So,

@Q,u,v(t) = h + l2,

h ^ él   Ue(s) = -erSZQ^^r^d^
J    0<e<\

h= f   t-sZQtU,v(s)Y(s)ds,
JCo

where Co is a small counterclockwise loop about 5 = 0. Clearly, Ii = 0(te) as

Í-0+.
By the Cauchy-integral formula,

I2 = -(u,v)R\ogt+ (u,v)r,q-i    for t > 0

since the residue of ZçtUtV(s) at s = 0 is {u,v)R, and the residue of Y(s) at zero is

1. Therefore, &Q,u,v(t) = -(u,v)\ogt + (u,v)RtQ-i +0(te). But the condition on

£ is open, so we have

@Q,u,v(t) = (U,v)\0gt+ (u,v)R¡Q-i  +0(t£).
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