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CUBES OF CONJUGACY CLASSES
COVERING THE INFINITE SYMMETRIC GROUP

BY

MANFRED DROSTE

ABSTRACT. Using combinatorial methods, we prove the following theorem on

the group S of all permutations of a countably-infmite set: Whenever p 6 S

has infinite support without being a fixed-point-free involution, then any s G S

is a product of three conjugates of p. Furthermore, we present uncountably

many new conjugacy classes C of S satisfying that any s G S is a product of

two elements of C. Similar results are shown for permutations of uncountable

sets.

1. Introduction. We will deal with the infinite symmetric group S of all

permutations of a countably-infinite set. Let us denote by [p] the conjugacy class

and by the support of p the underlying set without fixed points of p G S. The

following theorem was first shown by Bertram [4] and Moran [15] (cf. [9] for a

generalization to the uncountable case):

Whenever p G S has infinite support, any permutation s E S is a product of 4

conjugates ofp, i.e. S = [p]4. Moreover, the number 4 is minimal with this property.

Hence, in order to improve the bound 4 of the theorem above, the question arises

to classify all conjugacy classes O in 5 satisfying S = O3. In the literature, various

authors have dealt with this problem, cf. [2, 5, 7, 10, 14, 17]. In particular, if

p E S has infinite support, in [7] we showed that [p]3 always contains all elements

s E S with infinite support; moreover, if in addition either p has at least one infinite

orbit or p is an involution having at least one fixed point, we get S = [p]3 (Droste

and Göbel [9]; Moran [14]). On the other hand, it is known that S ^ [p]3 whenever

p G S is a fixed-point-free involution (see Moran [15] or Droste and Göbel [9]). It

is the aim of this paper to show:

THEOREM 1. Let p G S have infinite support without being a fixed-point-free

involution.  Then S = [p]3.

This affirms a conjecture in [7] and "almost confirms" another conjecture in

Bertram [4]. In our proof, we will use some recent and powerful results of an

interesting paper of G. Moran [17] as well as several other theorems of the literature,

and we will generalize Theorem 1 to a result for permutations of uncountable sets.

ft still remains an open problem to classify all conjugacy classes C in S satisfying

S = C2. In [7], we gave a description of the set [p]2 whenever p G S has at least one
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infinite orbit. Now we show

THEOREM 2. Let p G S have no infinite orbit, and let (+) be the following

property:

(+) p has infinitely many finite orbits of length > 3.

Then the following is true:

(a) // [p]2 = 5, then (+) holds.

(b) Assume that p has infinitely many fixed points and infinitely many orbits of

length 2.  Then:

(1) If (+) does not hold, then

[p]   = {s E S;s has infinitely many orbits}.

(2) //(+) holds, then[p}2 = S.

In particular, there are 2N° different conjugacy classes [p] in S with S = [p]2, where

p has no infinite orbit.

Here (a) and (b)(1) generalize results of Gray [12, Theorem 2.10] and Moran

[15, Corollary 2.4, 2.5] who considered the case where p G S is an involution, i.e.

has no orbits of length > 3. Under the additional assumption that p has only

finitely many fixed points, (a) follows also from Moran [16, Theorem 3] or from

[7, Theorem 4.5]. Part (b)(2) generalizes Bertram [4, Theorem 1] which states the

result under the assumption that p has infinitely many orbits of lengths 1, 2, 3,

respectively (and no others). Previously, this has been the only conjugacy class [p]

in S known satisfying S = [p]2, where p has no infinite orbit.

2. Notation and remarks. Let (jAi denote a disjoint union; No = NÙ {0},

Noo = NÙ{N0}; A ■ B = {a ■ b;a E A,b E B} îot subsets A,B Ç G, and [a] =
{x~l -a-x;x EG} = conjugacy class of a G G (any group). For a mapping / let f\A

denote its restriction to A and a? its value at a; so the composition of mappings is

from left to right.

S m denotes the symmetric group of all permutations of a set M, Am Ç S m the

alternating group if M is finite, id^ (or id, if there is no ambiguity) the identity

permutation of M, and S = Sx for some fixed countably-infmite set X, e.g. X = Z.

Now let p G Sm- An orbit of p is a minimal p-invariant subset of M. The length

of an orbit is its cardinality. We put:

p(n) = I {A; X orbit of length n of p}| (n E N^);

p = the function from Nœ into {c;0 < c < |M|} with p(n) (n G N^) as defined

above;

F(p) — {a G M; ap = a} = fixed point set of p;

|p| = |M\F(P)| = £2<n6N. »■?(»)•

Then p(l) = \F(p)\ and M\F(p) is the support of p. The following fact is well

known (e.g. [20, 11.3.1]) and will be used throughout this paper without mentioning

it again:

Whenver p, q E Sm, then [p] = [q] iffp = q-

Hence id = p ■ p-1 G [p]2 for any p G Sm-

A permutation p G S is called nicely even (Moran [15]), if p(n) is an even cardinal

for each n E Nœ (here No is considered even). The following subsets of S will be

important.
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Ai? = set of all nicely even permutations in S;

Ri = {s E S;s2 = id, |s| = No,s(l) = i} = conjugacy class of all involutions in

S with infinite support and i fixed points (0 < i < No).

For a finite set T with |T| = n > 3 we define the following conjugacy classes in

St-
Cr,k = {p E Sr',p(k) = l,p(l) = n — k} = class of all p G St with precisely one

nontrivial orbit which is of length k and n — k fixed points (2 < fc < n);

Ct = Ct,u,
Dt = {p E oY;p(2) = p(n — 2) = 1} = class of all p G St with precisely two

orbits, one of length 2 and the other of length n — 2 (here n > 5).

Finally, if M = \Ji^¡Ml, pt G Sm¿ and p G Sm satisfy p|m, = Pi (i G I), then we

also write p = 0lG/Pi- Clearly, in this case p(n) = X^e/P¿(n) f°r eacn n £ Nqo,

and if also qt G SMt (i G 7") and q = 0î€/ qx, then p • <? = 0lG/(pt • %).

3. Proof of Theorem 1. One of the main tools for the proofs of this paper is

the splitting-argument-technique which may be best described by an example. Let

s,p E S and suppose we wish to show that s is a product of two conjugates of p.

Assume that it is possible to decompose s = si © s2 such that the domains of si, 52

are infinite, and that, for instance and simplicity, p consists of precisely No orbits

of length m for some 2 < m E Nqo- Now if we can find permutations g¿,r¿ of the

domain of s%, each consisting only of No orbits of length m, such that s¿ = g¿ • r¿

(i = 1,2), then <7 = Qi © <?2 and r = ri © r2 G S each have precisely No orbits of

length m, hence are conjugate to p, and satisfy

s = si © s2 = (<7i ■ n) © ((j2 ■ r2) = g • r G [p]2,

establishing our goal. Let us now give the formal statement of the technique which

is a bit more general than the above example:

(3.0) THE SPLITTING-ARGUMENT-TECHNIQUE. Let 2 < n G N, M,Mi be

sets and ai,bij E Sm, for each i E I, j = l,...,n, such that a, E YY¡=i[°ij}

(i G I). Then a E J_J"'=1 [¿>j] whenever a,b3 G Sm satisfy ä(m) — ^^¡oT^m),

bj(m) = X^¿ej bij(m) for each m E N^ and j = 1.n.

PROOF. Assume a,bj G Sm (J = L-- ■,«) as stated. We split M = Uie/G,
a = 0j€/ c, such that ct = a\c, G Se, and cï = a¡ for each î G /. Let i G 7. By

1^1 = Em£N m ' c¿(TO) — EmeN TO ' <^(m) = 1^1 and assumption there are

Üij E Sc, with dij ='bij (j — 1,... ,n) and c2 = f]"=i (%■ Let d, = 0ie/ dX] E SM,
hence

dj(TO) = Y dîj(m) =^brÁm) = hÁm)
iei ¿6/

for each n E Nx and j = 1,..., n. Thus

For the convenience of the reader, we list several results of the literature which

we are going to use. First note that if a permutation p E S has at least one infinite

orbit, any element s E S is a product of three conjugates of p:
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LEMMA 3.1 (DROSTE AND GÖBEL [10], also (7, COROLLARY 3.3]). Let

pES satisfy p(N0) > 1.  Then S = [p]3.

The following two results show that whenever p G S has infinite support, both

any s G 5 with infinite support and also the identity-permutation are products of

three conjugates of p:

LEMMA 3.2 (|7, THEOREM 2]).   Lets,pES both have infinite support. Then

S E [p]3.

Lemma 3.3 (Moran [17, Proposition 6.6]). Let p e S have infinite
support.  Then id G [p]3.

The following recent result due to G. Moran states that if s,p G S have infinite

support and no orbits of length 2 or N0, but s or p has at least one fixed point,

then s is a product of two conjugates of p.

Lemma 3.4 (Moran [17, Proposition 5.1, Theorem 3]). Lets,pES
both have infinite support and satisfy s(2) = s(N0) = p(2) = p(N0) = 0. Ifs(l) > 1

or p(l) > 1, then s E [p]2.

The next lemma states that the products of two involutions of S without fixed

points are precisely the nicely even permutations.

Lemma 3.5 (Moran [15, p. 64]). r$ = ne.

The following two results are due to Moran [14], but in [14] no proof was given.

Therefore we include a proof here, leaving details to the reader. First we show that

all permutations s G S with finite support and an even total number of orbits of

lengths 3 or 5 can be written as a product of three involutions each without fixed

points.

LEMMA 3.6. Let s E S have finite support and satisfy 5(3) + s(5) = 2 • m for

some m E No-  Then s E Rq-

PROOF. Note that id G i?o- Hence, using a splitting-argument, it is easy to see

that we only have to consider the following special cases:

Case I. s has precisely one nontrivial orbit which is of length n E N, and either

(a) n = 4, (b) n = 2fc with 3 < fc G N, (c) n = 7, or (d) n = 2fc +1 with 4 < fc G N.

Case IL s has precisely two nontrivial orbits which are either (a) both of length

3 or both of length 5, or (b) of length 3 and of length 5, respectively.

We now show for each of these cases except 11(a) that there exists a q E Rq such

that s ■ q E NE; then s G Rq by Lemma 3.5. The following formulae establish this

claim. Recall that the composition of mappings is from left to right.

We have a ■ b = c in each of the following cases:

(la) a = (12 3 4),    b = (1 2)(3 4),    c = (1)(3)(2 4);

a = (1 2 3 ••■ 2fc-l 2fc),

(lb) b = (1 2)(3 2fc)(4 2fc - 1) • • • (fc + 1 fc + 2),

c = (l)(fc + 1)(2 2fc)(3 2fc - 1) • • • (fc fc + 2);
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o = (12 34 56 7)(8),    b = (1 3)(2 8)(4 5)(6 7),

c = (18 2)(3 5 7)(4)(6);

o = (1 234 5 ••• 2fc2fc + l)(2fc + 2),

(Id) b = (1 3)(2 2fc + 2)(4 5)(6 2fc + 1)(7 2fc) ■ • ■ (fc + 3 fc + 4),

c = (1 2fc + 2 2)(3 5 2fc + l)(4)(fc + 3)(6 2fc)(7 2fc - 1) ■ • ■ (fc + 2 fc + 4);

o = (l 2 3)(4)(5 6 7 89)(10),

(lib) 6=(1 2)(3 4)(5 6)(7 9)(8 10),

c = (1)(S)(4 3 2)(10 8 7)(6 9).

For (Ha) observe s G NE — Rq Ç R^ by Lemma 3.5. This finishes the proof.

As a consequence of the previous results we obtain that any s G S can be

written as a product of three involutions each with infinite support and i fixed

points, whenver i > 1.

Corollary 3.7 (Moran [14]). LetO<i< N0. Then S = Rf.

PROOF. By Lemmas 3.2 and 3.6, and a splitting-argument, it suffices to show

s G Rf for s G S with s(n) — 1, s(m) = 0 for m ^ n, and n G {3,5}. If n — 3,

observe (12 3) = ((1)(2 3)) • ((1 2)(3)j and Rt Ç Rf to obtain s G Rf C Rf. Now
let n = 5. Then s G Rf follows directly from

(12 3 4 5) = ((1 3)(2)(4 5)) • ((1 3)(2 4)(5)) • ((1 2)(3 4)(5))

and id G Rq-

The following lemma states that whenever p E S has only finite orbits of length

> 3 and s G S has precisely one nontrivial orbit which is finite, then s is a product

of three conjugates of p.

LEMMA 3.8. Let s,p E S and 2 < m E N satisfy s(m) = 1, s(n) = 0 if
n£ {l,m}, andp(l) =p(2) = p(N0) = 0.  Then sE [p]3.

PROOF.  We distinguish between two cases.

Cose I. Assume m = 2 and p(n) = 0 for all 4 < n G N.

Then we have p(3) = Nq. W.l.o.g. let No be the underlying set. The equation

(0 2) = a ■ b ■ c, where

a = (0 1 2)(5 4 3)(8 7 6)(11 10 9)(14 13 12)...,

b = (0 1 3)(2 4 6)(5 7 9)(8 10 12)(11 13 15)...,

c = (1 0 4)(3 2 7)(6 5 10)(9 8 13)(12 11 16)...,

immediately yields the required result.

Cose II. Assume either (+) m = 2 and p(n) ^ 0 for some n > 4, or (++) m > 3.

Step 1. We claim there exists a q E S with ij(l) = 1, q(2) = q(^o) = 0 and

oG[p]-[s].

If (+) holds, our claim follows from the equation (1234 ■■• n) ■ (2 1) =

(1)(2 3 4   ■ ■ •  n).   Now let us assume (++).    Then choose fc = m — 1 orbits
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{lj,...,7ij} (j = l,...,fc) of length > 3 of p.   The result follows from the ob-

servation that

((li 2i  • ■ • m)(l2 22 • ■ • n2) • • • (lfc 2k ■ ■ ■ nk)) ■(211,12- lfc)

= (10(2,   ■•• m 1222 ■•■ n2 13    •• lfc2fe •■• nk).

Step 2. If we choose g G 5 as in Step 1, we obtain q E [p]2 by Lemma 3.4 and

thus s G [p]3, finishing Case II.

Finally, we will need the fact that the squares of certain conjugacy classes (de-

fined in §2) in the finite symmetric group cover the alternating group.

Lemma 3.9 (Gleason [13, Proposition 4, p. 172]; cf. Bertram [3]).
Let T be a finite set with \T\ > 5.  Then At = CT.

LEMMA 3.10 (HSÜ Ch'ENG-HAO [6]). Let T be a finite set with \T\ = 2fc for
some fc G N with fc > 3.  Then Dt Ç At and At — DT.

We are now ready for the

PROOF OF THEOREM 1. Let p G S\R0 have infinite support and let s G S.

We want to show s G [p]3. Therefore we can assume p(No) = 0 by Lemma 3.1,

|s| < oo by Lemma 3.2, and s ^ id by Lemma 3.3. We distinguish between two

cases.

Case I. Assume J2n>3P(n) = No-

Applying Lemma 3.3~and a splitting-argument, we see that we only have to show

s G [p]3 in the special case p(l) = p(2) = 0. A further splitting-argument yields that

we only have to examine permutations s E S which have precisely one nontrivial

(finite) orbit. Now the result follows from Lemma 3.8.

Case II. Assume J2n>3P(n) < Vo-

llere we have p(2) = N0, since p has infinite support.  If s(3) + s(5) = 2m for

some m G No, we obtain s G [p]3 by Lemmas 3.6 and 3.3, and a splitting-argument.

Hence let s(3) + 5(5) be an odd number. Again using Lemma 3.6 and a splitting-

argument, we see that it suffices to consider the special case that s G S has precisely

one nontrivial orbit which is of length 3 or 5.   If p(n) = 0 for all n > 3, we get

p(l) > 1 by p ^ ño, thus s G [p]3 by Corollary 3.7. Therefore assume now p(n) ^ 0

for some n > 3.   We distinguish between three cases according to whether n > 5

and n is odd, n > 4 and n is even, or n = 3, respectively.

Subcase 1. Let n > 5 be odd.

Let T be a subset of the domain of s,p such that |T| = n and T contains the

nontrivial orbit of s. Then s\t G At and At = CT according to Lemma 3.9. Since

n > 5 is odd, we have Ct - At- Hence s|t G CT and thus, by Lemma 3.3 and a

splitting-argument, s E [p]3.

Subcase 2. Let n > 4 be even.

Put m = n + 2 and let T be a subset of the underlying set such that |T| = m

and T contains the nontrivial orbit of s. Then s|t G At and Dt Ç AT Q DT by

Lemma 3.10, thus sjx G DT Ç DT. Using a splitting-argument and Lemma 3.3,

we get s E [p]3.

Subcase 3. Let n = 3.

The nontrivial orbit of s has length either 3 or 5. Observe the identities (12 3) =

(1 2 3)-(3 2 1).(1 2 3) and (12 3 4 5)(6)(7) = ((1 2 4)(3 6)(5 7))-((4 2 1)(5 6)(3 7))-
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((1 2 3)(4 5)(6 7)). Together with Lemma 3.3, these equations yield s G [p]3. This

finishes Case II and hence the theorem is proved.

Finally, we generalize Theorem 1 to the case of arbitrarily infinite underlying

sets.

COROLLARY 3.11. Let M be any infinite set and s,p E S m such that p has

infinite support without being a fixed-point-free involution. Then \s\ < \p\ and

s E [p]3 are equivalent. Moreover, the number 3 is minimal with this property.

PROOF. Let s,p E S m as stated in the first sentence of the corollary. If s =

u ■ v ■ w with u,v,w E [p], we get |s| < \u\ + \v\ + \w\ = 3 • |p| = |p| by cardinal

arithmetic. Conversely, assume |s| < |p|. Then s E [p]3 follows via a splitting-

argument from (3.2) and (3.3) if |s| > No, and from Theorem 1 and (3.3) if |s| < N0.

The minimality part of the corollary is contained in Moran [15, Corollary 2.5] or

in [7, (4.5)].

For a description of the set [p]3, when p G S is a fixed-point-free involution, see

Moran [14].

4. Squares of conjugacy classes. This section is devoted to the proof of

Theorem 2. Again we will make extensive use of splitting-arguments as in §3. First

we establish necessary conditions (Theorem 4.1) and sufficient conditions (Lemma

4.2) for certain permutations s,pi,p2 G S, where, in particular, s has only finitely

many orbits and hence at least one infinite orbit and pi,P2 each have no infinite

orbits, such that s is a product of two conjugates of pi and p2, respectively. The

following result generalizes Moran [15, Corollary 2.3(1)].

THEOREM 4.1. Let s,pi,p2 G S with s G [pi] • [p2] such that s has only finitely

many orbits and pi, p2 each have no infinite orbit and only finitely many orbits of

length > 3. Then pi,p2 each have only finitely many fixed points. Moreover, if s

has, say, i infinite orbits and kj = X^neN n ' Pj(n) U = 1'2), then fci,fc2 G No

and fci — fc2 = i mod 2. In particular, [pi] ■£ [p2] if i is odd.

PROOF. Let M = Üj = i(z x {J}) Û A, where A is a finite (possibly empty) set.

W.l.o.g. assume s,pi,p2 G Sm such that s = p\ ■ p2, Pi,p2 each have no infinite

orbit and only finitely many orbits of length > 3, the union of all finite orbits of s

equals A, and s acts on each Z x {j} like a shift, i.e. (m,j)s = (m + 1, j) for each

m EZ, j = 1,... ,i. Thus the infinite orbits of s are precisely the sets Z x {j}.

We introduce some abbreviations. For fc = 1,2, let Ak denote the smallest

Pfc-invariant subset of M containing A, Bk the union of all orbits of length 3 of

p/t, and Sk (Lfc) the set (union) of all orbits of length 2 of pk, respectively; thus

M = F(pk) ÙUkÙBk. Let C = Ax U A2 U B, U B2. Then C is finite.

First let j E {1,..., i}. Since s = px ■ P2, P2 has no infinite orbit, and s acts on

Z x {]} like a shift, it is impossible that for some iéZ, each y E Z with y > x

satisfies (y,j) E F(pi). Hence, since C is finite, there is bj E Z with (bj,j) E U\

and (x,j) ^ C for any x E Z with bj < x, in particular (x,j)Pk G M\A for

fc = 1,2. Let m = m(j) E {l,...,i}, aj E Z such that (bj,j)Pl = (a3,m), thus

{(aj, m), (bj,j)} E Si. If m = j, we may w.l.o.g. assume that aj < b3 (otherwise

rename these elements). This ensures (a3,m) ^ (bj + l,j). Hence by (a3,m)P2 =

(bj,j)PlP2 = (bj,j)s = (bj + l,j) i C we obtain {(a3,m), (b3 + l,j)} e S3. It follows



388 MANFRED DROSTE

that (bj + l,jY2 = (aj,m) = (a3 - l,m)s = (a3 - l,m)Pl^, thus (a3 - l,m)Pl =

(b3 + l,j) and, as before, {(aj — 1, m), (bj + 1, j)} E Si. By induction this shows

(+) {(a3- k,m(j)),(b3 + k,j)} E Si    and    {(a3 - k,m(j)),(b3 + k + l,j)} E S2

for ail fc G N0.

Now assume that for each j G {l,...,i}, the elements aj,b3 G Z, m(j) G

{l,...,i} are chosen as in the above paragraph. Then, by (+), the mapping

j (-» m(j) is an injection from {1,...,i'} into, hence onto, itself. It may hap-

pen that aj > &m(j) for some j G {1,... ,i} with j ^ rn(j). Then we replace bj

by 6' = 6j + nj and aj by a' = a3 — n3, where nj = a3■ — bm^3) + 1 G N. Then

a'3 < bm(j)-, and (+), with a3,b3 replaced by a'-,b', is obviously still satisfied. Hence

we may assume w.l.o.g. that aj < bm/j) for all j G {1,..., i}.

For each j E {1,...,i}, let Dj = {(x,m(j));x E Z,ay < x < i>m(j)} and ¿^ =

{(x,m(j));xE Z,a3 <x< bm(3)}. We put D = A(j\JJ = 1D3and E = AÙ\JJ = 1E3.

Thus D and £ are finite sets, and by (+) the set M\D = |jj=i((z x {m(J)})\Dj)

is a union of orbits of length 2 of pi.  This shows F(pi) Ç M\Ui Ç D and ki —

\M\Ui\ = \D\ mod2. Similarly, M\E = lj^=1((Z x {m(j')})\£¿) iß a union of

orbits of length 2 of p2, F(p2) Ç M\/72 C £, and fc2 = \M\U2\ = \E\ mod2. In
particular, pi and p2 each have only finitely many fixed points, since D and E are

finite, and fci,fc2 G N0. Since E\D = {(bj,j);j = l,...,t}, we have fci - fc2 =
i mod 2. So, if i is odd, fci ^ fc2 and thus pi 7^ P2 and [pi] ^ [p2|.

Next we prove a partial converse to Theorem 4.1.

LEMMA 4.2. For i = 1,2, let p¿ G S have infinitely many nontrivial finite,

but no infinite orbits such that pl(l) = Yln>3(n ~ 2) ■ P~2~(n) and T>2~(Y = 1+

^n>3(n - 2) • pl(n). Then s E [pi] • [p2] for each permutation s E S which has

precisely one (infinite) orbit.

PROOF. Let {F¿;i G N} ({f";¿ G N}) be an enumeration of the set of all

nontrivial orbits of pi (p2), respectively. Inductively, we now construct a family of

nonempty sets Ai,Bi,A2, B2, A3,... Ç No such that 0 G Ai and for each i E N

the following conditions hold:

(I) At, B{ are convex (here a subset S Ç No is called convex, if a, b E S, c E No,

a < c < b imply c G S),

(II) (maxA¿) + 1 = min.B¿, max£?¿ = min A¿+i,

(111)1^1 = 1^1-1,1^1 = 1^1-1.
It follows that, in particular, A%  < A3,  Bx  <  B3 if i < j, No  = U¿eN^» U

|jlGN£t, and (ÙieN^») n (Uí€nb¿) = {minA¿;¿ > 2} = {maxB<¡i G N}.
Example.

/l, A2 A3      A4 A5

-<—I-1-1-r—I-1-1-1-1-1-1-1-1-1-1-1-►
-4-3-2-1    0      1      .-1-•      .-. •     t-• Z

B\ B2 B3        B4

It now remains to show that there are q,r E Sz such that q-r = z (where z G S%

satisfies az = a + 1 for all o G Z) and, if we put Qi = Ai Ù {— i} (Ri — Bio {—i})
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for ail i E N, such that {Q¿; i G N} ({i^; i G N}) is the set of all nontrivial orbits

of g (r), respectively.

Indeed, if q, r E Sz are constructed in this way, by condition (III) it follows that

q(n) — pï(n), f(n) = p2~(n) if 2 < n G N and g(N0) = »"(No) = 0. Also, we get

F(q) = Z\(\jQt\= N0\ ( (J A, ) = J (BAdnaxB,))
VieN    y VieN    y      ¿6N

and, similarly, F(r) = {0} Ú(JíeN(A¿\(min A,)). Using (III), this shows

g(l) = Y(\^\ - 1) = E(lp'l - 2) = E(n - 2) 'K<») = P^1)'
t€N leN n>3

and similarly f(l) = 1 + X^n>3(n ~ 2) ■ Pi(") = P2"(l)- Hence g = p7, F = p2, and

[s] = [0] Ç [q] ■ [r] = [pi] • [P2] is established.

We now show how to define the required elements q,r E Sz (here we will not need

condition (III)). For each i E N, put (—i)q = min Aj, xq = x + l if x E A¿\(maxA¿),

and (maxAj)9 = —i, also, (-i)r = min.B¿, xr — x + 1 if x E £?¿\(max.Bj), and

(maxß,)r = -i. Finally, let o|q = id|<2 and r\R = id|ß, where

Q = Z\ ( (J {Ai U {-i})) = (J (ßA(max^))

and

Ä = Z\(|j(ßiU {-t})) = U(AA(minA,))Ù{0}.
VieN / i£N

Then it is obvious that q, r E Sz have the prescribed orbits, and it only remains

to show that q-r = z. If 2 < i E N, we have (-i)qr = (minA¿)r = (maxß,_i)r =

-(i - 1) = (-i)*. Also (-l)qr = (minAi)r = 0r = 0 = (-1)*. Now let a E N0.

There is an i G N such that a G (B¿\(niax.B¿))U A¿. If a G B,\(maxB¿), we get

aqr — aT — a + 1 = a2. If 0 G A¿\(maxA¿), we have a + 1 G A¿\(min A¿) Ç R and

thus o9 r = (a+ l)r = a+ l = az. Finally, if a = max A¿, we obtain

aqr - (-i)r = vamBi = (maxAt) + 1 = a+ 1 = az.

This proves q ■ r = z.

The following three results deal with finite symmetric groups. The first lemma,

due to Bertram, gives a sufficient condition for 3 < fc G N and an even permutation

s of a finite set such that s can be written as a product of two permutations, each

having only one nontrivial orbit which is of length fc.

Lemma 4.3 (Bertram [3, Theorem 2]). Let T be a finite set and fc g N
with 3 < fc < |T|, and s E At- Let j — X^2<n*(n) be the number of nontrivial

orbits of s. If \ ■ (\s\ + j) < fc, then s G (Cr.fc)2.

This lemma will be used for the proof of the subsequent result.

LEMMA 4.4. Lei fc, n G N with n < k and fc > 3, and T a set with m elements,

where m G N is the least multiple of n (2n) with m > fc if n is odd (even), respec-

tively. Assume s E St has only orbits of length n. If n is odd or if fc ̂  2n+ 1, then

s E (Ct,Ic)2-  If n is even and k — 2n + 1, there are q,r E St with s = q ■ r such
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that g and r each have one orbit of length fc, one orbit of length 2, and m — fc — 2

fixed points.

PROOF. First assume that either n is odd or fc ̂  2n+1. W.l.o.g. assume n ^ 1.

Let j = m/n. Then |s| = m, s has j orbits of length n, and s G At- By Lemma

4.3, it suffices to show that m + j < 2k. If n is odd, we have m < k + n - 1 and

n + j < k + 1, hence m + j < k + n - 1 + j < 2k. Now let n be even. If fc < 2n,

we get 7=2 and m + j = 2(n + 1) < 2fc. If 2n + 2 < fc < 4n, clearly j = 4 and

m + j = An + 4 < 2fc. Finally let 2(i - l)n + 1 < fc < 2m for some 3 < i E N.

Then j = 2i, and it suffices to show that m + j = 2in + 2i < i(i - \)n + 2. But

this inequality is equivalent to i — 1 < (i — 2)n which is true. Hence m + j < 2fc in

any case.

Now assume that n is even and fc = 2n + 1. Then m = 4n. We put

T = {l,2,...,4n}
and

s = (1 2 • • • n)(n + 1 n + 2 ■■■ 2n)(2n + 1 2n + 2 • • • 3n)(3n + 1 3n + 2 • • ■ in).

If n = 2, let
g = (l 235 7)(6 8)(4)

and

r= (8543 1)(6 7)(2).

If n > 4, let

g = (12 •■• nn+ln + 2 ■•• 2n-12n+13n+ l)(2n + 2 in)

■ (2n)(2n + 3)(2n + 4) • ■ ■ (3n)(3n + 2)(3n + 3) • • ■ (in - 1),

and

r = (3n + 2 3n + 3 • • • in 2n + 3 2n + 4 • ■ • 3n 2n + 1 2n n + 1 1)

• (2n + 2 3n + 1)(2)(3) • • • (n)(n + 2)(n + 3) • • • (2n - 1).

Then, in any case, q,r E St satisfy the required conditions.

We will also need the following lemma on finite symmetric groups.

LEMMA 4.5. Let k,n E N with 3 < fc < n ond T a set with n elements. Let

s E St have precisely one orbit (of length n). Then there are q,r E St such that

s = q -r, q has only orbits of lengths 1 or 2, and r has precisely one orbit of length

k and possibly orbits of lengths 1 or 2, but no others.

PROOF. W.l.o.g. let T = {l,2,...,n}ands = (12 •■• n). If fc = n, let q = idT,

r = s. If n - fc = 2j with j E N, put

q = (1)(2) ■ • • (fc - l)(fc n)(k + 1 n - 1) • • • (fc + j - 1 n - j + l)(fc + j)

and

r = (12 ••• fc)(fc + l n)(fc + 2 n- l)---(fc+j n - j + 1).

If n - fc = 2j + 1 with j E N0, let

q = (1)(2) • • • (fc - l)(fc n)(k + 1 n - 1) • • • (fc + j n - j)

and

r = (12 ■•• fc)(fc+ 1 n)(fc + 2 n- l)---(k + j n-j + l)(n-j).

Then q,r E St satisfy the required conditions.
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The next result describes products of two conjugate involutions with infinitely

many fixed points:

LEMMA 4.6 (MORAN [15, COROLLARY 2.4]). Let M be any infinite set and

p G Sm an involution with infinitely many fixed points and support of cardinality

\M\. Then, for any s E Sm, s E [p]2 if and only if s has infinitely many orbits. In

particular, S m = [p]2 iff M is uncountable.

As a conclusion of the previous results, we have

LEMMA 4.7. LetpE S have no infinite orbit, but infinitely many fixed points

and infinitely many orbits of length 2. Then s G [p]2 for any permutation s E S

with infinitely many orbits.

PROOF. If s has at least one infinite orbit, s E [p]2 follows from a splitting-

argument using Lemmas 4.2 and 4.6. Hence asume s(N0) = 0 from now on. If p is

an involution, then p G Rk0 and s G [p]2 by Lemma 4.6. So let X^n>3 P(n) ^ 0 now.

By a splitting-argument, we may assume that p has precisely one orbit of length

> 3, say, of length fc > 3. Clearly now we may distinguish between the following

two (nonexclusive) cases.

Case I. Assume that s has infinitely many orbits of length < fc.

There is n G N with n < fc and s(n) — No- Let T be a union of finitely many

orbits of s of length n such that |T| is the least multiple of n (2n) with |T| > k if

n is odd (even), respectively. By Lemma 4.4, there are q,r E St each consisting

of precisely one orbit of length fc and possibly of orbits of lengths 1 or 2, but no

others, such that s\t = q • r. Together with a splitting-argument and Lemma 4.6,

this implies s E [p]2.

Case II. Assume that s has at least two orbits, say, A and B, each of length > fc.

By Lemma 4.5, there are gi,ri G Sa, g2,?"2 G Sß such that s\a — gi ■ ri,

s\b = g2 • i~2, qi,T2 each have only orbits of lengths 1 or 2, and ri,ç2 each have

precisely one orbit of length fc and possibly orbits of lengths 1 or 2, but no others.

Then q = gi © g2, r = ri © r2 G SAùb satisfy s\A[jB = q-r, q(k) = f(k) = 1, and

q(m) = f(m) = 0 whenever m ^ {l,2,fc}. Together with a splitting-argument and

Lemma 4.6, this shows s E [p]2.

Now we are ready for the

PROOF OF THEOREM 2. (a) Assume (+) does not hold. If s G S has precisely

one (infinite) orbit, s ^ [p]2 by Theorem 4.1, showing S ^ [p]2.

(b)(1) By Lemma 4.7, it remains to show that s £ [p]2 if s G S has only finitely

many orbits. Indeed, if we had s G [p]2 for such a permutation s, p would have only

finitely many fixed points by Theorem 4.1, contradicting our assumption on p.

(b)(2) By Lemma 4.7, it remains to show that s G [p]2 if s G S has only finitely

many orbits. But this follows by a splitting-argument from Lemma 4.2 and the

well-known fact (see, e.g. [20, 10.1.17]) that every permutation is a product of two

involutions.

As a consequence of Theorem 2(a) and a result in [7], we obtain the following

condition for permutations p E S without infinite orbits which is necessary for

S ^{p}2 to hold:
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COROLLARY 4.8. Let p E S satisfy p(N0) = 0 and S = [p]2. Then either

p(l) = p(2) = Yln>3P(n) = No, or there are k,l,m G N tw'i/i k < l < m, m = k + l,

l > 2, ond p(i) = No /o»- each i G {fc, Z, m}.

PROOF. Since [p]2 contains, in particular, a transposition, by [7, Theorem 4.5]

there are fc, l, m G N with fc < I < m,m = k + l, and p(i) = No for each i E {fc, /, m}.

So either Z > 2, or fc = / = 1, m — 2, and ^n>3 p(n) — No by Theorem 2(a).

As an immediate consequence of this result and Theorem 2(b), we obtain

COROLLARY 4.9. Let p E S satisfy p(N0) = 0 and p(m) — No for at most one

m G N with m > 2.  Then S = [p\2 if and only ifp(l) — p(2) = J2n>3P(n) = ^o-

Finally, we note a consequence for permutations of uncountably-infinite sets.

This result uses and generalizes Moran [15, Corollary 2.4] (cf. Lemma 4.6).

COROLLARY 4.10. Let M be any uncountable set and N a cardinal with No <

N < |M|. Let p E S m have N fixed points, \M\ orbits of length 2, and at most N

orbits of length > 3.  Then S m = [p]2-

PROOF. Note that any permutation of M has infinitely many orbits, since M is

uncountable. So the result follows from a splitting-argument using Lemmas 4.6 and

4.7 provided that p(No) = 0. Then this result obtained so far for permutations of

M without infinite orbits and [7, Theorem 1(b)] imply the assertion of the corollary

in case that p has at least one infinite orbit.

Finally we just remark that the Baer-Schreier-Ulam-Theorem [1, 19] on the

Jordan-Holder decomposition series of S and Ore's theorem [18] that every p E S

is a commutator immediately follow from our results, cf. Droste and Göbel [9, §4].

For further group-theoretical applications of results of this type see [7-11, 17].
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