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ABSTRACT. A characteristic function T(D, w, f) of Shimizu and Ahlfors type

for a function / meromorphic in a Riemann surface R is defined, where D is a

regular subdomain of R containing a reference point w G R. Next we suppose

that R has the Green functions. Letting T(w,f) = Mthdir T{D,w,f), we

define / to be of uniformly bounded characteristic in R, f G UBC(i?) in

notation, if sup^g/j T(w, f) < oo. We shall propose, among other results, some

criteria for / to be in UBC(ii) in various terms, namely, Green's potentials,

harmonic majorants, and counting functions. They reveal that UBC(A) for

the unit disk A coincides precisely with that introduced in our former work.

Many known facts on UBC(A) are extended to UBC(fl) by various methods.

New proofs even for R = A are found. Some new facts, even for A, are added.

0. Introduction. We shall extend the notion of UBC and UBCo from the unit

disk A = {|z| < 1} (see [Yi and Y2]) to hyperbolic Riemann surfaces, prove some

results analogous to those in A, and add some facts, new, even for A. A hyperbolic

Riemann surface S is one possessing Green functions; thus, its universal covering

surface S°° must be conformally equivalent to A, so that S°° and A are identified.

Our study begins with how to define the Shimizu-Ahlfors characteristic function

T(D, w, f) on "good" subdomains D containing a point w of a Riemann surface R,

hyperbolic or not, on which / is meromorphic. Each point of R is identified with

its local-parametric image in the complex plane C = {|z| < oo}. By D we always

mean a relatively compact subdomain of R, whose boundary dD consists of a finite

number of mutually disjoint, analytic, simple and closed curves on R. If we refer

to a pair D and w E R we always assume that w E D. The radius r = r(D, w) > 0

of D is defined by

logr = \im(gD(z, w) + \og\z - w\)

as z —+ w within the parametric disk of center w, where go(z,w) is the Green

function of D with pole at w. We now set

dt,T(D,w,f) = n-1 /V1 \f f   f*(z)2dxdy
Jo U    J Dt

where Dt = {z E D;gD(z,w) > log(r/i)}, 0 < t < r, and

(Q1] f#(z]_i\f'(z)\/(l + \f(z)\2),        if /(*) 7^00,
(U   ] '    {Z)      \ (l/f)*(z), if/W = oo,
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is not a function on R, yet the second-order differential f*(z)2 dxdy, z = x + iy E

R, is well defined on R. The Green-potential expression

(0.2) T(D,w,f) = n-1 j j f#(z)2gD(z,w)dxdy,        w E R,

will be proved later. The nomenclature of T is justified because for R = {\z\ <

p}, D = {\z\ < r} with 0 < r < p < oo, and w = 0, we have the usual one because

gD(z,Q) = log|r/z|.

Henceforth we always assume that R is hyperbolic and we set

T(w, f) = T(R, w, f) = lim T(D, w, f) < oo.
Dî R

This means that given e > 0 we can find a compact set K, w E K c R, such that

|T - T(D)\ < e for all D D K, with the obvious change in case T — oo. Lebesgue's

convergence theorem applied to (0.2) yields

(0.3) T(w,f)=-K~1 j j f*(z)2g(z,w)dxdy,

where g = gR is the Green function on R; (0.2) can be regarded as the case R — D.

A meromorphic / on R is said to be of uniformly bounded characteristic, / G

UBC = UBC(i2) in notation, if the function T(w, f) is bounded on R, while,

/ G UBCo = UBCo(Ä) if limw^QRT(w, f) = 0, that is, for s > 0 there exists a

compact K c R such that T(w, f) < e in R\K.

In §1 we extend our study from the family M = M(R) of meromorphic functions

on R to Me = Me(R) consisting of multiple-valued meromorphic functions with

single-valued moduli on R. We can easily extend the definition of UBC (UBCo,

respectively) for / G M to UBCe = \JBCe(R) (UBCe0 = UBCe0(Ä), resp.) for

fEMe.
In §2, (0.3) for / G Me is proved. Thus, criteria are obtained in terms of

the Green potentials (Corollary 2.2). The families BMOAe = BMOAe(Ä) and

VMOAe = VMOAe(Ä) are defined for pole-free members of Me; these are exten-

sions of BMOA and VMOA in the disk. For the definition of BMOA(Ä) see [M];

note that BMOA(Ä) = M(R) n BMOAe(Ä). The formulae BMOAe C UBCe and
VMOAe C UBCeo are now obvious. An expression of T in terms of the limit

(D î R) of the mean of \ log(l + |/|2) on 3D and the limit of

N(D,w,f)=       Y       9D(w,b)
f{b)=oo,beD

will be of use to compare T with L. Sario's characteristic function Ts (see [SN]).

Sario's class MeB(R) coincides with that of / G Me for which T(w, f) is finite for

aw — w(f) G R.
§3 is devoted to the study of the least harmonic majorant <pA of

^=ilog(|/1|2 + |/2|2)    for/GMe,

where |/| = I/1I/I/2I, /i,/2 G Me, is an "admissible" decomposition. A new

expression T(w, f) = <pA(w) - <p(w), w G R, is of use to obtain criteria for f E Me

to be of UBCe and of UBCeo in terms of <pA - <ç- Some remarks refer to strong

parallels between BMOAe (VMOAe, resp.) and UBCe (UBCeo, resp.).
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In §4, criteria for / G M to be of UBC in terms of the supremum of the function

N(z) = lim£)|ñ N(D, w, l/(/ - z)), z G C* = C U {oo}, on the spherical circle of

center f(w) are obtained.

The projection it: A —> R is considered in §5, and the identity T(R,ir(6), f) =

T(A,6,f o 7t), é g A, for / G M(R) is proved. As applications we obtain: (1)

If / G UBC(S) and h: R -> S is an analytic map, then f ohE VBC(R). (2) If
h: R —> S is of type B/ in the sense of M. Heins [Hi], and if / o h G UBC(Ä),

then / G UBC(S). Finally, a contribution is made to the classification of Riemann

surfaces: Otjbc § Obmoa-

1. Families UBCe and UBCeo- The functions on R, which we shall actually

study, are, for the most part, the "generalized" meromorphic functions on R. Let

Me = Me(R) be the family of multiple-valued functions / = exp(u + iu*) on

R, where u is a single-valued function harmonic on R except for countably many

logarithmic singularities an clustering nowhere in R, such that u(z) — kn log \z — an\

is harmonic in the parameter disk of center an with the integral coefficient kn. The

multiple-valuedness of / arises from that of the conjugate function u* of u on R.

It is natural to regard the constant zero as a member of Me.

The modulus |/| of / G Me is single-valued throughout R, and each branch of

nonconstant / in the parametric disk of each point w G R is single-valued there,

and has the Laurent expansion

(1.1) cx(z - w)x + cx+i(z - w)x+1 + ■ ■ ■ ,

where A is an integer with c\ ^ 0; the branches differ by multiplicative constants

of moduli one. Therefore \c\\ is definite and

(1.2) |/(«)|.<|ca|    if|/M|¿oo.

We call w E R a zero of / of order A if |/(w)| = 0. Similarly, w G R is a pole (or,

co-point) of / of order —A if |/(w>)| = oo.

The family M = M(R) of single-valued members of Me consists of all the mero-

morphic functions on R. For a EC we call w E R an o-point of order A of / G M

if w; is a zero of order A of / — a.

It is now easy to extend T(D,w,f) and T(w,f) = T(R,w,f) to / G Me. Ac-

tually, \f'(z)\ for |/(z)| ^ oo, as well as f#(z) defined by (0.1), is definite, so that

the differentials \f'(z)\2 dxdy for pole-free / and f#(z)2 dxdy for arbitrary / are

defined on R. The definitions of UBCe = UBCe(fi) and UBCe0 = UBCe0(Ä) are

thus clear; just extend those of UBC = UBC(ñ) and UBC0 = UBC0(£) in the

introduction to f E Me.

2. The Shimizu-Ahlfors characteristic function. We begin with the

Green-potential expression (0.3) for / G Me.

THEOREM 2.1.   The identity

(2.1) T(w,f) = ir~1 J J f*(z)2g(z,w)dxdy    (< oo)

holds for each f E Me(R) and each w E R.

PROOF. It suffices to establish

(2.2) T(D,w,f) = v-1 j f f*(z)2gD(z,w)dxdy
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for each pair D,w. Set

Ct(Z)
iizEDt,

iîzE D\Dt

Then the identity

together with

/'./(i
ct(z)t   l dt = go(z,w),        zED,

T(D,w,f)
J   JD  [Jo

ct(z)rldt f*(z)2dxdy

proves (2.2).

REMARK.  Suppose that w is in the parametric disk Uwi of center w' E R, and

define r' > 0 by

logr' = \\m(gD(z,w) +log|z - w\),

where, this time z —* w within Vw>. The same proof as above then shows that

T(D,w,f) t: j j   f*(z)2dxdy dt,

where D[ = {zE D; gD(z, w) > log(r'/£)}, 0 < t < r'.

Two corollaries follow from Theorem 2.1.

COROLLARY 2.2.   For f E Me(R) the following are valid.

(I) / G UBCe(R) if and only if

(2.3) sup / / f*(z)2g(z,w)dxdy< oo.
weDJ  JR

(II) / G UBCeo(Ä) if and only if

(2.4) lim    f f f*(z)2g(z,w)dxdy = 0.
w^dRJ    JR

This corollary extends [Yi, Theorem 2.2, p. 352].

A pole-free / G Me(R) is said to be of bounded (vanishing, resp.) mean oscilla-

tion on R, f E BMOAe(ñ) (/ G VMOAe(Ä), resp.) in notation, if

sup  /   /   \f'(z)\2g(z, w) dxdy < oo
weRJ   Jr

lim
w^dR //."

(z)\2g(z,w)dxdy = 0, resp.

The family BMOA(Ä) = BMOAe(J?) f)M(R) is introduced by T. A. Metzger [M].
An immediate consequence of Corollary 2.2 is the following which extends [Yi,

Theorem 7.1, p. 364].

COROLLARY 2.3.   BMOAe(Ä) C UBCe(#) and VMOAe(R) C UBCe0(#).

Following Sario we shall define the proximity function ms(D, w, /), the counting

function Ns(D,w,f), and the characteristic function Ts(D,w,f) for / G Me and

w E D. They are extensions of M. Parreau's [P, p. 183 ff.] for / G M. The reader

is expected to be familiar with [SN, Chapter III] or with the papers [Si and 82]-
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Let log+ x = max(logx,0) for 0 < x < oo, and set

ms(D,W,f) = -(27rY1 [   log+ \f(z)\dgh(z,w),
JdD

where 3D is oriented positively with respect to D, and the star means the conjugate.

The comparison

(2.5) ms(D,w,J)<m(D,w,f)<\\og2 + ms(D,w,f)

of ms(D, w, f) with

m(D,w,f) = -i»"1 /    log(l + \f(z)\2)dgD(z,w)
JdD

will be of use; (2.5) is a consequence of

(2.6) log+i < ^log(l + x2) < ¿ log 2 + log+x    for 0 < x < oo.

For 0 < t < r, let n(t, f) be the number of the poles of /, counted with the

orders, in Dt. We define

Ns(D,w,f)= [rt-l\n(t,f)-n(0,f)}dt + n(0,f)\ogr,
Jo

where n(0,/) = \imt^+o n(t, f). Set N(D,w,f) = YlÇo(w,b), where the sum

is extended over all the poles b of / in D, each counted with its order. If / is

pole-free in D, then Ng = N = 0. A routine procedure [SN, p. 76] yields that

Ns(D,w,f) = N(D,w,f) in case |/(u>)l ^ oo. Therefore

N(D,w,f) - [ rln(t,f)dt
Jo

for all w E D because N(D,w,f) = oo if |/(w)| = oo. The characteristic function

for / is now defined by

Ts(D,w,f) = ms(D,w,f) + Ns(D,w,f).

For X = m,N,ms,Ns, and Ts, we set X(w,f) — \imD-\RX(D,w,f).

We shall compare Ts(w, f) with T(w, f) in Corollary 2.5 below.

THEOREM 2.4.   If \f(w)\¿ oo for f EMe(R), then

(2.7) T(w, f) = m(w, f) + N(w, /) - i log(l + |/M|2).

U \f(w)\ = oo, then

(2.8) T(w, f) = m(w, f) + Ns(w, f) - log |cA|,

where c\ is defined in (1.1).

REMARK. If / G Me(R) is bounded, |/| < K, then T(w, f) < \ log(l + K2) by
(2.7), so that /GUBCe(ñ).

COROLLARY 2.5.   If f E Me(R) is nonconstant, then

(2-9) |TK/)-Ts(W,/)|<ilog2+|log|cA||.

Read (2.9), in the specified case, as T(w, /) = oo if and only if Tg(w, f) = oo.

Fix w G R and let BCe = BCe(Ä) be the family of / G Me such that Ts(w, f) <

oo. As will be observed later in Remark (a) after Theorem 3.1, BCe does not

depend on w. Note that BCe(i?) = MeB(R) in [SN, p. 78]; we let BC(R) =

BCe(i?) D M(R). An immediate consequence is the following.
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COROLLARY  2.6.   UBCe(Ä) C BCe(Ä).

Hereafter, mainly in the proofs, we shall frequently use the following abbrevia-

tions:

(2.10) X(f)=X(D,w,f)    {oiX = m,N,T,ms,Ns,Ts.

Proof of Theorem 2.4. It suffices to prove

(2.7') T(/)=m(/) + iV(/)-ilog(l + |/H|2),    if l/HI ^¿oo;

(2.8') T(f) = m(f) + Ns(f)-log\cx\,    if l/HI = oo.

Suppose first that no pole of / lies on 3D, and let b be all the distinct poles of /

with orders k(b) in D. For sufficiently small e > 0, we let ~jw — {\z — w\ < e} and

lb = {\z - b\ < e}. Apply the Green formula to the function ip = (1/2) log(l + |/|2)

on the domain D£ = D\~fw\(Jbib- Since

A^ = (32/3x2 + 32/3y2)vj = 2/#2    in D£,

it follows that

(2.11) j j   gD{z,w)Arl>(z)dxdy

= -/     gD(z,W)d-^l\dz\+f     ̂ (zf^^ldzl,
JdDe 0V JdDe öv

where the normal derivatives 3/3v are considered in the direction of the inner

normal. As to the first integral in the right-hand side of (2.11), that on 3D is zero,

and those on 3^w and d-^i, tend to zero and 2irk(b)gD(b,w) as e —+ 0, respectively.

Furthermore, as to the second, that on 3D equals 2nm(f), and those on 3^w and

¿9-75 tend to — 2ttiP(w) and 0 as s —> 0, respectively. The resulting identity divided

by 2tt, together with go(b,w) = go(w,b), yields

(2.12) 7T-1 / / gD(z,w)f#(z)2 dxdy = m(f) - ^(w) +Yk(b)gD(w,b).
J Jd b

In view of (2.2) we immediately observe that (2.7') is true.

Suppose now that 3D contains at least one pole of /. For t, 0 < t < r, sufficiently

near r, we obtain (2.7') for Dt\3Dt instead of D. Observing that T,m, and hence

TV, all are continuous in t, one obtains (2.7') for D by letting t]r.

For the proof of (2.8') we quote Jensen's formula

(2.13) log|cA| = Ts(/)-Ts(l//),

valid for / without any assumption on |/(w)| (see [SN, (7), p. 77],).

Now, for / with |/H| = oo, we first note that (2.7') for 1// yields

(2.14) Ns(l/f) = N(l/f) = T(l/f) - m(l/f) = T(f) - m(l//).

On the other hand, (2.13) for the present /, together with log |/| = log+ |/| -

log+11//|, yields.

log|cA| = -(27T)-1 /    \og\f(z)\dgD(z,w) + Ns(f) - Ns(l/f),
JdD
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so that, by (2.14),

= -(2tt)-1 f   \og\f(z)\dgD(z,w) + Ns(f)-T(f) + m(Yf)
JdD

= Ns(f)-T(f)+m(f),

which completes the proof of (2.8').

PROOF OF COROLLARY 2.5. We again use (2.10). It suffices to prove

(2.15) |T(/)-Ts(/)|<ilog2 + |log|cA||,

which yields (2.9) on letting D ] R.   In the case |/H| ^ oo, it follows from

Ns(f) = N(f), the inequalities (2.5) and (2.6) for x = |/HI» and (2-7')i that

(2.16) |T(/)-Ts(/) + log+|/H||<ilog2.

As is observed in (1.2), |/H| < |cA|, so that (2.15) now follows from (2.16). In the

case l/HI = oo, we apply (2.16) to 1// instead of /, to obtain

\T(f) - Ts(l/f)\ = |T(1//) - TS(1//)| < I log2.

It then follows from (2.13) that

|r(/) - r«(/) + log|cA| | < è log2,

whence (2.15).

3. An admissible and the canonical decompositions. For / G Me(R) we

call

(3.1) \í\ = \hlh\    onfi

an admissible decomposition if /fc G Me is pole-free (k — 1,2) and furthermore if

both have no common zero, or,

(3.2) |/i|2 + |/2|2>0    onfi.

This decomposition is not unique.

LEMMA 3.0. Each f G Me(R) has an admissible decomposition (3.1), where

one of fi and /2 is a member of M(R).

PROOF. If / is pole-free, then set /i = / and ¡2 = 1. If / has one pole at least,

then by H. Florack's theorem [F, Satz II, pp. 3-4], there exists a pole-free /2eM

such that 2 G fi is a zero of order fc of f<2 if and only if z is a pole of order fc of

/. We now obtain (3.1) on setting /i = ff^- We note that if / is zero-free, then

set /i = 1 and fi = 1//. If / has one zero at least, then there exists a pole-free

hi E M such that z E R is a zero of order fc of hi if and only if z is a zero of

order fc of /. We then obtain another admissible decomposition |/| = ¡hi/h^l for

hi = hi/f.
By a harmonic majorant of a subharmonic function v on R we mean a function

u harmonic and v < u on R. If v has a harmonic majorant on R, then it has the

least harmonic majorant vA = vR in the sense that vA is a harmonic majorant of v

and vA < u for each harmonic majorant u of v on R.

For an admissible decomposition (3.1) for / G Me(R) we denote

(3.3) ^=èlog(l/i|2 + l/2|2)    onfi.
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This is a finite-valued subharmonic function on R because (3.2) holds and

(3.4) Ap(z)dxdy = 2f*(z)2dxdy   onfi.

Therefore, for pi = \ log(|i<i|2 + |i7^|2) for another admissible decomposition |/| =

I^1/^21, <P — f\ is a harmonic function on R; thus p is unique modulo harmonic

functions on R.

THEOREM 3.1. Suppose that f E Me(R). Then f E BCe(R) if and only if p
has a harmonic majorant on R. If f E BCe(R), then

(3.5) T(w, f) = pR(w) - <p(w)    for each w E R,

so that the function pR — p> is independent of a choice of decomposition (3.1).

REMARKS, (a) It follows from Corollary 2.5, together with (3.5) that if / G

BCe(fi), then T$(w, /) < 00 for every w E R. Consequently, BCe does not depend

on a choice of w E R.

(b) If/ G BCe(fi), then (3.5) shows that T(z, f) isaC°° function of real variables

x, y, z = x + iy, together with

AT(z. f) dxdy = -2f*(z)2 dxdy

by (3.4). This answers the question raised in [Yi, Remark (b), p. 361]. Note that

[Yi, Theorem 5.1, p. 360] is a specified case of Theorem 3.1 for pole-free / G M (A).

As an immediate consequence we obtain

COROLLARY 3.2. Suppose that f E Me(R). Then f G UBCe(fi) if and only
if p has a harmonic majorant on R and p^ — p is bounded there. Further, f E

UBCeo (fi) if and only if p has a harmonic majorant on R and

lim  \pAR(w) - p(w)\ = 0.
tu—»OK

The inclusion formula UBCeo(R) C UBCe(R) is now obvious. The proof of [Yi,

Lemma 2.1, p. 352] is thus facilitated. In fact, this is an immediate consequence of

continuity of T(w, f) observed in Remark (b) above.

For clarity we propose

COROLLARY 3.3. For f E Me(R) to be in UBCe(fi) it is necessary and suffi-

cient that \ims\ipw^dRT(w, f) < 00.

More precisely, there exists a compact set K c R such that T(w, f) is bounded

in R\K.
As the third corollary of Theorem 3.1 we claim that a compact set of capacity

zero on R is removable for functions of UBC. A set E C R is said to be of capacity

zero if the intersection of E with the parameter disk at each point of E is of capacity

zero [T, p. 55] in C. If E is closed further, then E is totally disconnected, so that

R\E is connected. The following is never obvious and needs a proof.

COROLLARY 3.4. Let E be a compact set of capacity zero on R and suppose

that f E \JBC(R\E).  Then there exists F E UBC(fi) such that F = / in R\E.

REMARK. If / G UBC(R\E) is pole-free, then, is F pole-free? The answer is

"no". Just let f(z) = l/z, R = A, and E = {0}.
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PROOF OF THEOREM 3.1. Let w be the point in the definition of BCe(fi).

We use the device (2.10). Since

pD(w) = -(27T)-1 f    p(z)dgh(z,w),
JdD

it follows from (2.2) and (3.4), together with the Green formula, that

2ttT(/) = f [ (Ap(z))gD(z, w)dxdy = - [   p(z) dgD(z, w) - 2n<p{w),
J    Jd JdD

so that

(3.6) T(f) = pAD(w) - p(w).

Thus, limo|K Pd(w) < °° if and only if Tg(w, f) < oo, by (2.9). Now, if pR exists,

then (3.5) follows because the same calculation shows that (3.6) is true for each

wE R.

PROOF OF COROLLARY 3.4. We may assume that / is nonconstant. First

of all, BC(fi) coincides with Parreau's class (AMq) in R [P, Definition 1, p. 180];

compare [P, Theoreme 19, a), p. 181] with [SN, Theorem 3B, (33), p. 83]. By

the case a = 0 in [P, Théorème 20, p. 182] there exists F E BC(fi) (F = fx in

Parreau's proof) with F = f in R\E. An admissible decomposition F = /1//2 of

F in R yields that of / in R\E also. Thus, for p of (3.3) for F,

<Pr-<P = (<Pr- <Pr\e) + (<Pr\e - f)    in R\E-

Since pR — p is continuous on R and since the second term in the right-hand side

is bounded in R\E, it suffices to show that pR — pR\E is bounded in R\E. To

prove this we remark that there exists a sequence of domains D = De U Ke in R

such that (a) Ke D E is compact, (b) 3Ke consists of piecewise analytic Jordan

curves, (c) DE = D\KE Î R\E as D } R. Then,

a        a Í ° on dD;
<Pd     Vde - j ^a _ p       on qKe^

so that

Vd - <Pde < max(^ - <p)    in DE.'E  -   KB

Letting D ] R we now obtain

<Pr ~ Pr\e < max(<Pñ - V)    in R\E,

where K is a compact set whose interior contains E.

REMARKS. We pose here for some references to BMOAe(R) and VMOAe(R).

(a) For / G Me(R) pole-free, we have

A(\f(z)\2) dxdy = i\f'(z)\2 dxdy,        z E R.

By the Green formula it is now easy to prove the following.

(ai) / is of Hardy class H2(R), that is, |/|2 has a harmonic majorant on R if

and only if for a point w E R,

IL\f'(z)\2g(z,w)dxdy < 00.
R
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(aii) / G BMOAe(fi) if and only if f E H2(R) and (|/|2)£ - |/|2 is bounded
there, while, f G VMOAe(fi) if and only if f E H2(R) and

lim  [(|/|2)„H- l/HI2] =0.
w—rdR

The BMOAe version of Corollary 3.3 is obvious.

(b) The analogue of Corollary 3.4 is valid.

If E E R is compact and of capacity zero, and if f E BMOA(fi\.E), then there

exists F E BMOA(fi) with F = f in R\E.
The proof is essentially the same as that of Corollary 3.4. The existence of a

single-valued F G H2(R) with F = f in R\E follows from a = 2 in [P, Théorème

20, p. 182].

Returning to f E BCe(R), / ^ 0, we now consider ms(w,f) and N(w,f); see

X(w,f) before Theorem 2.4. Then ms(w,f) is a nonnegative harmonic function

of w on R and N(w,f) = Y,9(w'b), the summation being extended over all the

poles b of / in R, each counted with its order, is harmonic in R minus the poles of

/. Set

F(w, f) = exp[-msH /) - im*s(w, /)],

ß(w,f) = exp[-N(w,f)-iN*(w,f)}

for w E R; both are bounded by one, and hence are in UBCe(fi) by the remark

after Theorem 2.4. In particular, ß is a Blaschke product if R = A.

The canonical decomposition, referred to in the title of the present section, is

obtained by Sario [SN, Theorem 3B, p. 83 and Corollary 7, p. 86], which, for the

clarity, we propose in the form of a lemma.

LEMMA 3.5.   For f E BCe(R), f ^ 0, we have

\ß(w,l/f)F(w,l/f)
(3-7) l/HI

ß(w,f)F(w,f)
at each w E R.

Note that 1// G BCe(R). The following is an extension of [Yi, Corollary 4.1,

p. 359].

THEOREM 3.6.   ///G UBCe(fi), /^0, thenF(w, l/f)/F(w,f) E UBCe(R).

It is known that the converse is false for fi = A; see [Yi, p. 359]. Further it is

known that UBC(A) is not closed for multiplication and summation [Yi, Theorem

4.2, p. 359].

Proof of Theorem 3.6. To prove first that

(3.8) ß(w,f)f(w)E\JBCe(R),

we set

ß(w)=ß(w,f),    h(w)=ß(w)f(w),        WER.

Then ß G BCe and h G BCe is pole-free. First we consider those w E R for which

l/HI ^ oo. It follows from (2.7) of Theorem 2.4 that

m(w, f) = T(w, f) + log \ß(w)\ + i log(l + I/O

= TK/) + ilog(|/?H|2 + |/iH|2).

2\
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Since
m(w,h) <m(w,ß)+m(w,f),    and

A = (\ß(W)\2 + \h(w)\2)/(l + \h(w)\2)<l,

it again follows from (2.7) that

T(w, h) = m(w, h)-\ log(l + \h(w)\2)

< m(w,ß) + m(w, f) - \ log(l + \h(w)\2)

<±\og2 + T(w,f) + ±\ogA

< i\og2+ T(w,f).

Therefore,

(3.9) T(w,h) < \ log 2 + sup T(c,f)
ceR

for w E R with l/HI t¿ oo. Since T(w,h) is continuous on R, and since the

poles of / are isolated, we observe that supTH h) for w E R does not exceed the

right-hand side of (3.9), which completes the proof of (3.8).

Now, 1/h G UBCe(fi) by (3.8). Apply (3.8) to 1/h instead of /. Since \ß(w, 1//)|
= \ß(w, l/h)\, we conclude that F(w,f)/F(w, 1//) G UBCe(fi) because

\F(w,f)/F(w,l/f)\ = \ß(w,l/h)(l/h(w))\.

Thus, F(w, l/f)/F(w, f) G UBCe(fi).

4.   Counting function.  For nonconstant / G M(R), w G D, and z E C* we

define

Ns(D,w,z,f) = Ns(D,w,l/(f-z))    and    N(D,w,z,f) = N(D,w,l/(f - z)).

Then N(D, w, z,f) = Yl 9d(w, c), where the sum is extended over all ^-points ç of

/ in D, each counted with its order. Further, set

Ns(w,z,f) = lim Ns(D,w,z,f)    and
D [ Ft

N(w, z, f) = lim N(D, w, z,f) = Y 9(w> f)»
D \ Ft

where the sum is extended over all 2-points ç of / in R, each counted with its order.

Note that N(w,z,f) = G(w,z,f) in [SN, p. 90]. Apparently, N(w,z,f) = oo if

f(w) — z. Heins [H2] called / G M(R) a Lindelöfian map from R into C*, or /
is Lindelöfian and meromorphic, if N(w,z,f) < oo for each pair z E C*, w E R,

with f(w) ^ z. It is known that / G BC(fi) if and only if / is Lindelöfian and
meromorphic [SN, Theorem 6E, p. 92].

As usual we consider the chordal distance

X(a,b) = \a- b\/[(l + \a\2)(l + \b\2)Y'2,        a,b E C*,

with the obvious change for a — oo or b = oo. The length of a curve on C* measured

by d\(() = |dc|/(l + \c\2), Ç E C*, is the same as its Euclidean length, considered

as a curve on the Riemann sphere in the Euclidean space. Set

T(a,p) = {zEC*;X(z,a) = p},        a G C*, 0 < p < 1,

and set, for w E R, 0 < p < 1, and / G M(R),

C(w,p,f)=       sup      N(w,z,f).
z€r(f(w),p)

We begin with criteria for / G M(R) to be of BC(fi) in terms of C.
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THEOREM 4.1.   For f G M(R) the following are mutually equivalent.

(I)fEBC(R).
(II) There exists a pair w,p, with w E R, 0 < p < 1, such that C(w,p, f) < oo.

(III) For each pair w, p with w E R, 0 < p < 1, we have C(w, p, f) < oo.

A weaker condition than (II) implies (I). Actually, if N(w,z,f) < oo for a set

of z E C* of positive capacity (see §5 for the definition of "capacity" of a set on

C*), then / G BC(fi) by [P, Théorème 22, p. 190]; the set T(f(w),p) is of positive

capacity. A reason of proposing (II) is to compare it with (V) in

THEOREM 4.2.   For f E M(R) the following are mutually equivalent.

(IV) /GUBC(fi).
(V) There exists p, 0 < p < 1, such that sup^^. C(w,p, f) < oo.

(VI) For each p, 0 < p < 1, sup„,€ñ C(w, p, f) < oo.

Postponing the proofs of Theorems 4.1 and 4.2 we first note that the length of

T(a, p) is independent of a E C* and is

(4.1) /(p) = 27rp(l-p2)1/2, 0<p<l;

for example, the length of the equator T(0, l/\/2) = r(oo, l/\/2) is l(\/\/2) = tt.

Set

(4.2) c(p) = max[p-1(l-p2)1/2,p(l-p2)-1/2], 0 < p < 1.

THEOREM 4.3. The following estimates hold for f E M(R), 0 < p < 1, and
wE R.

(VII) c(p)2T(w, f) > /(p)"1 fr(fiw) p) N(w, z, f) dX(z) - (1/2) log2.

(VIII) c(p)-2T(w,f) <l(p)-ijr{f{w)p)N(w,z,f)dX(z) + (1/2) log2.

The estimates (VII) and (VIII) are motivated by the celebrated Cartan formula

[SN, (56), p. 89]:

Ts(i;,i(;,/) = log+|/H| + (27r)-1 / " Ns(D,w,eu, f)dt
Jo

for / G M(R), provided that f(w) ^ oo. A merit of (VII) and (VIII) might be that

the right-hand sides have no term like log+ |/H|; also no assumption on the value

f(w) is posed.
With the aid of (VIII) of Theorem 4.3, (II)=>(I) of Theorem 4.1 and (V)=KIV)

of Theorem 4.2 are immediately obtained.

PROOF OF THEOREM 4.3. We may suppose that / is nonconstant. We shall

use the following abbreviation like (2.10):

(4.3) Nf(z) = N(D,w,z,f).

Set

(4.4) 6 = p(l-p2Y1/2,

so that l(p) = 2n8(l + 62)-1 by (4.1) and c(p) = max(¿,f5_1) by (4.2). We consider

h G M(R) defined by

(4.5) h=(f-f(w))/(l + JW)f)    (= 1// if f(w) = oo).
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First we observe that

1-2-K

(4.6) (27T)-1 f * Nh(8eü) dt = l(p)~l f Nf(z) dX(z).
Jo Jr(f(w),P)

For the proof we note that the Möbius transformation

C = (z-f(w))/(l + f(w)z)

maps the circle T(f(w),p) one-to-one onto the circle {|c| = 8} and further,

\dc\ = (l + 62)dX(z)     iovzET(f(w),p).

Now, the left-hand side of (4.6), denoted by A, is expressed as

A = (2ir8)~1 Í      Nh(c)\dc\,
JM=s

which yields (4.6).

Next we claim that

(4.7) \T(h/6)-A\<i\og2.

Since h(w) = 0, it follows from (2.16) for h/8 instead of / that

(4.8) \T(h/8)-Ts(h/8)\< \\og2.

We now remember the identity

C-1-K

(4.9) (27T)-1 /     \og\b-8elt\dt = \og8 + \ogr\b/8\
Jo

for each b E C; see [N, p. 178] for the calculation. Jensen's formula [SN, (2), p.

76], applied to h — 8elt with h(w) — 8exi — 8ext, yields

(4.10) \og8 = -(2ir)-1 [   log\h(z)-8elt\dgD(z,w) + N(h)-Nh(8elt)
JdD

for each t E [0,27r). Calculating the integral means of both sides of (4.10) with

respect to dt in [0,27r), and observing (4.9), together with N(h) = N(h/8), we now

obtain

logé = log¿ + ms(h/8) + N(h/8) - A,

whence T$(h/8) = A. The estimate (4,7). follows then from (4.8).

Finally for c = c(p), some computations yield c~1h# < (h/8)& < ch#. Since

T(h) = T(f), it follows that c~2T(f) < T(h/8) < c2T(f).
The estimates (VII) and (VIII) for R = D now follow from the above, together

with (4.6) and (4.7). Letting D 1 R we arrive at the requested conclusions.

For the remaining proofs of Theorems 4.1 and 4.2 we prove

LEMMA 4.4.   Let f E M(R), 0 < p < 1, w E R, and 1 <q<oo. Then

(IX) C(w, p, f) < qc(p)2T(w, f) + (9/2) log 2 + log[(g + l)/(q - 1)].

On setting q = 2, say, we see that (I)=>(III) of Theorem 4.1 and (IV)=>(VI)

of Theorem 4.2 follow from (IX). Since (m)=>(II) and (VI)=>(V) are trivial, this

completes the proofs of Theorems 4.1 and 4.2.
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PROOF OF LEMMA 4.4. Fix D, w E D. As is noted by O. Lehto [L] the

function Nf(z) (see (4.3)) oí z EC* is subharmonic in C*\{f(w)} and Nf has the

logarithmic singularity at f(w) in the sense that

Nf(z) + log \z - /H|        (Nf(z) - log |z| if f(w) = oo)

is subharmonic in C*\{-l//H}. Thus,

(4.11) A' =      sup      Nf(z) =      sup      Nf(z).
x(z,f(w))>p zer(f(w),P)

Our task is therefore to show that

(4.12) A' < qc(p)2T(f) + (q/2) log 2 + log[(9 + l)/(q - 1)].

Since T(w, f) > T(f) and since Nf | N(w, f) as D ] R, (IX) follows from (4.12).

We consider again h of (4.5) for which h(w) = 0. Then u(z) = Nn(l/z) =

Ni/h(z) is subharmonic in C and u(z) —log \z\ is subharmonic in C*\{0}. By (4.6)

and (VII) of Theorem 4.3 we obtain

(27T)-1 /     u(8-1eü)dt=(2irY1 u(8^e-lt)dt

(4.13) Jo 2x Jo

= (27T)-1 / * Nh(8eü) dt < c(p)2T(f) + I log2 = a,
Jo

where 8 is defined in (4.4).

Our aim is to prove that

(4.14) \z\ ^rS"1 =>u(z) <qa + \og\, A = (q + \)/(q - 1).

Then, the identities

A' =     sup    Nh(z) =    sup   u(z),
¿<|zj<oo |z|<<5-1

together with (4.14), show (4.12).

Let uA be the least harmonic majorant of u in the disk \z\ < 6~l, which can be

expressed by the Poisson formula,

uA(z) = (27T)-1 fj ^'-^(6-^) dt,        \z\ <8~\

Set A = A_1¿_1. Then, on the circle \z\ — A we have the estimate

* — 1   ,    c r2n

<(z) < J^rtsV*)-1 Jo    u(8~1ext)dt,

whence, by (4.13), we obtain

(4.15) max uA(z) < qa.
|z|=A

The maximum principle now yields

(4.16) \z\ < K=>u(z) <uA(z) <qa.

On the other hand, by the maximum principle for u(z) — log|z|, with (4.15), we

have
A < \z\ < oo => u(z) - log \z\ < sup (u(() - log |f |)

lfl=A

< qa — log A.
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Therefore,

A. < \z\ < 8"1 => u(z) < qa - log A + log<5-1
(4.17)

= qa + log A.

The estimate (4.14) now follows from (4.16) and (4.17).

5. Uniformization. For a projection map it: A —> R, there exists the group Q

of conformai homeomorphisms from A onto A, called the covering transformation

group, such that 7i o -y = -k for each 7 G Q. Thus, for / G M(R), the function / o 71

is ^-automorphic in the sense that (/ o 71) o 7 = / o n for all -7 G Q. We begin with

THEOREM 5.1.   For each f E M(R) and each 8 E A, we have

(5.1) T(R,n(8),f)=T(A,8,fon).

Set

ll/lluBC(ñ) = sup T(R,w,f)
w€R

for / G M(R). Besides the obvious consequence of Theorem 5.1 that / G BC(fi) if

and only if / o 7r G BC(A), we have

COROLLARY 5.2.   For f E M(R), the equality

(5-2) ||/||UBC(«) = ll/°7rlluBC(A)

holds. Thus, f E UBC(fi) if and only if fon E UBC(A).

A subset A of C* is said to be of positive capacity if A contains a closed subset

of C* of positive elliptic capacity [T, p. 90], or equivalently, A\{oo} contains a

bounded (in C) and closed set of positive capacity [T, p. 55].

COROLLARY 5.3. Suppose that for f E M(R), the exceptional set C*\f(R) is

of positive capacity.  Then f E UBC(fi).

Applying the known theorem [Y2, Theorem 1] to / o 7r we observe that f on E

UBC(A), whence / G UBC(fi).

COROLLARY 5.4. Suppose that a subdomain G ofC* has the projection n: A —►

G. Then, -k E UBC(A) if and only if C*\G is of positive capacity.

The "only if" part is a consequence of [N, Satz 1, p. 213] because -k e BC(A).

The "if" part is a consequence of Corollary 5.3.

PROOF OF THEOREM 5.1. We note that, by the construction of /1 and /2 in

Lemma 3.0, both are members of M. Thus,

/o7r = F1/F2,     ifc = /fc0 7T, fc = l,2,

yields a canonical decomposition of / o n in A. For p of (3.3) we set

(5.3) $ = pon = ilog(\Fi\2 + \F2\2).

We shall show that

(5.4) *AA-* = (pAR-<p)oir;

that $^ exists if and only if pR exists is clear in the following context. The identity

(5.1) now follows from (3.5) with (5.4).
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For the proof of (5.4) it suffices to observe that $^ = $R o n. Since p < pR,

it follows that $ < pR o -k, whence $^ < pR o -k. To prove the inverse we remark

that $^ is £-automorphic by (5.3). Then the function ip on R well-defined by

ip(z) = $A(c)    for 2 G fi with 7r(c) = z, Ç G A,

is harmonic on R. Therefore, it follows from $^ > $ = p o ir that tp > p, whence

ip > Pr, so that $^ > pR o 7T in A.

We now extend [Y2, Theorem 3|. Let S be a hyperbolic Riemann surface with

the Green functions gs(z, w). An analytic mapping h: fi —> S is said to be of type

Bl (see [Hi]) if for each w E S, the function gs(h(z),w) — Y^9r(z^) of 2 G fi is

singular, that is, it does not dominate any strictly positive and bounded harmonic

function on R, where the summation is taken over all roots ç G fi of the equation

h = w, counted with their multiplicities.

THEOREM 5.5.   The following hold for f E M(S).
(I) If f E UBC(S), then for each analytic map h: R —► S, we have

(5-5) ||/o/l||uBC(fi) < II/IIubc(S),

so that fohEUBC(R).
(II) Ifh: R-* S is of type Bl, and if f o h G UBC(fi), then

(5-6) ||/ O h\\vBC(R) = II/IIubc(S),

so that /GUBC(S).

PROOF. Let irR: A —> R and 715: A —» S be the projection maps. Then a branch

of ir $l o hoir R is single-valued in A, which we denote simply, H — Kg1 o h o ttr.

Set F = /Otts, so that fohonR = FoH.lffe UBC(S), then F E UBC(A) with

(5-7) H-flluBC(A) = ||/||uBC(S)

by Corollary 5.2. On the other hand, it follows from [Y2, Theorem 3, (I)] that

(5.8) H^otflluBctA^II-FlluBCtA).

Corollary 5.2 again shows that

(5-9) ||í,°^l|uBC(A) = ll/°^lluBC(ñ),

so that (5.5) follows from (5.7), (5.8), and (5.9).

Now, if h is of type Bl, then H is of type Bl by [Hi, Corollary, p. 472] because

S is hyperbolic. Thus, iffohe UBC(fi), then by (5.9), FoHe UBC(A), so that,
by [Y2, Theorem 3, (II)] we have ||F o í/||ubc(A) = H-flluBC(A), which, together

with (5.7) and (5.9), yields (5.6).
• REMARKS, (a) Is it true that / G UBC0(R) if and only if / o tt g UBC0(A)?
This is open, as far as the author knows. The similar question for VMOA is also

open.

(b) Let N(R) denote the family of normal meromorphic functions on R; namely,

/ G N(R) if and only if there is a constant c > 0 such that f*(z) < caR(z), z E R,

where aR(z)\dz\ is the hyperbolic metric on R; note that o~&(z) = (1 — |2|2)-1. It

is easy to observe that / G N(R) if and only if / o 71 G N(A). It then follows from

the known inclusion formula UBC(A) C N(A) [Yi, Theorem 3.1] that UBC(fi) C

N(R).
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(c) By the remarks after the proof of Corollary 3.4, we can prove the analogue

of (5.1) for pole-free / G M(R) by the similar method. Namely,

// \f'(z)\2g(z,v(8))dxdy = J jj(f on)'(z)\2gA(z,8)dxdy.

Metzger [M] obtained this by analyzing the Green functions.

(d) Define the BMOA norm for pole-free / G M(R) by

||/||bmoa(í?) = sup /  /   \f'(z)\2g(z,w)dxdy.
wERJ    JR

The BMOA analogue of (5.2) is then ||/||bmoa(a) = 11/ °*"I|bmoa(A).
(e) A BMOA analogue of Theorem 5.5 is valid. Instead of [Y2, Theorem 3]

we use the corresponding one found by K. Stephenson [St, Theorem 3, p. 572, in

particular]. The results are:

///GBMOA(S), then

11/ ° ^llßMOA(n)  < ||/I|bMOA(S)

for each analytic map h: R —* S.

If h: R -* S is of type Bl, and if f oh E BMOA(fi), then \\f o /i||Bmoa(R) =
II/IIbmoa(S), so that f E BMOA(S).

(f) Metzger [M] introduced the family Obmoa of Riemann surfaces on which

BMOA consists only of constants. By an obvious reason we include Riemann sur-

faces of Oq in Obmoa- Let Oubc be the family of Riemann surfaces which are

either of Oq or admit no nonconstant UBC functions. We shall prove the strict

inclusion formula

Oubc § Obmoa-

Our work should be finding R E Obmoa\Oubc- Let E be a compact set of linear

measure zero, yet of positive capacity lying on the real axis. Then R = C*\E is

the desired. Since the function z is of UBC(fi) by Corollary 5.3, it follows that

R i Oubc- On the other hand, each / G BMOA(fi) is of class H2(R), that is, |/|2

has a harmonic majorant on R. It is familiar (see, for example, [Y3, p. 334]) that

/ can be extended holomorphically to C*, so that, / must be a constant. Thus

R E Obmoa-
(g) Let UBCA(A) be the set of all pole-free members of UBC(A). It is apparent

that BMOA(A) c UBCA(A). On observing [B, Corollary 2, p. 15], one might

suspect that BMOA(A) = UBCA(A). This is not the case. Let

f(z) = (l + z)/(l-z).

By Corollary 5.3, / G UBCA(A), yet / £ BMOA(A) because / is not Bloch in the

sense that (1 - |z|2)|/'(2)| is unbounded in A.
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