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AN UPPER BOUND FOR THE WAITING TIME FOR
NONLINEAR DEGENERATE PARABOLIC EQUATIONS

BY

MICHEL CHIPOT AND THOMAS SIDERIS1

ABSTRACT. An upper bound is obtained for the time when the support of the

solution of some nonlinear, degenerate parabolic equations begins to spread.

Solutions to many nonlinear degenerate diffusion equations which are compactly

supported initially, remain so at future times (see [4, 7, 8]). We obtain here an

upper bound for the time when the support begins to spread, the so-called waiting

time. In one space dimension such an upper bound was found by B. F. Knerr [7]

who derived a weak ordinary differential equation along the interface (the boundary

of the support) and used it to show that the waiting time depends on the size of

the initial data near the interface (see also [2, 4, 11, 12]).

We replace the equation along the interface with a first order differential in-

equality for a local average of the solution near a point on the interface. This

allows estimation of the waiting time in higher dimensions, while in one dimension

it reproduces previous results [4, 7].

In the particular case of the porous medium equation, similar results can also be

obtained from a new and sharp Harnack inequality due to D. G. Aronson and L.

A. Caffarelli [3]. N. D. Alikakos [1] has recently supplied a necessary and sufficient

condition for zero waiting time in higher dimensions which relies, in part, upon

this inequality. Nevertheless, even for the case of the porous medium equation, our

results are elementary and self-contained.

Finally, we would like to thank J. L. Vasquez for an informative conversation with

the second author and for suggesting that we seek a local version of our preliminary

results.

1. Preliminaries.  Let uq and g be nonnegative functions.

A function u(x,t) is said to be a weak solution of the nonlinear degenerate

parabolic equation ut = Ag(u), u(x,0) = uo(x) if, for some T > 0, u satisfies:

(i)    u is continuous on Rn x (0, T),

(ii)    u > 0,

(ni)    So JRn[wpt+g(u)A<p}dxdt +JRnuo(x)(p(x,0)dx = 0

V<p E H2(Rn x (0,T)) with compact support in R" x [0,T).
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Under appropriate restrictions on uq and g, there exists a unique solution of (P)

(see for example [5-11]). For our results we need only assume

(1) g(u)>C-um    for all u >0

(m and C are strictly positive constants, m > 1).

We wish to study how the support of u(-, t) spreads with time. More precisely,

if fi is an open set in R" such that u0(x) = 0 Vx E Rn\H let us denote the waiting

time for (P) associated with 0 to be

¿n = Sup{i > 0: u(x, t) = 0\/xE Rn\Q}.

We will derive an upper bound for ¿q which depends on the behavior of uo in

a neighborhood of a point in dU. This bound will be related to the life span for

solutions to nonlinear differential inequality.

First we prepare two technical lemmas.

Fix xq E R™ and e > 0. We define the H2 function

h(x) = [(e2-\x~xo\2)+}2,

where ( )+ denotes the positive part of a function and | | the usual Euclidean norm

in R".

Then we have

LEMMA 1. // ((n + l)/(n + 2))e2 < \x - x0\2, then Ah(x) > £-4m+2h(x)m for

any m > 1.

PROOF. It suffices to prove this for xo = 0 and

n + 1 2^11? 2 2
- -e¿ < \xr = r¿ < e¿.
n+2        -''

So, we compute

Ah(x) = h"(r) + —-h'(r)

= 4[(n + 2)r2 -ne2} > ie2

> e-4m+2h(x)m,

since e~2(e2 - r2) < 1.    ■

LEMMA 2. Let A,B,m > 1 be positive constants. If F(t) is a positive C1

function on (0, V) satisfying F(0) = 0 and

(2) F'(T)>AT2 + BT-^m-l)F(T)m,

then t* < C/Am~l ■ B, where the constant C depends only on m.

PROOF. We may assume t* > 0. First, from F'(t) > At2 we deduce that

(3) F(t) > y3,

since F(0) = 0. Choose 0 < v < ¿, u <m-\ and use (2) and (3); we obtain

F'(t) > BT-3(m-^F(T)l+l/ ■ F(r)m-1-"

> CAm-x-vB ■ t-3uF(t)1+u.
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Or, since F(t) > 0,

F-1-u(t)F'(t) > CA™'1-"Bt~3v.

Integrating over (at*, t*) for 0 < a < 1, we obtain

F(at* I'-\F(at*)~u - F(f)-"\ > CAm-l-uB(t*)l-3,/(\ - a1"3").

Using (3) again leads to

'A

at*)3        >CA m—l — v r}fj.*\l — 3i/B(t* '1-a l-3u\

or, equivalents, t* < C/Am-lB.    ■

2. The upper bound. We are now ready to state our result. Recall that fi is

an open set outside of which uo = 0. Fix xq £ Ü and let 8 denote the (positive)

distance of xq from fi. For any e > 0, let us define

C(uo;xo,e) /    uo(x)h(x)
Jqc

dx,

where h is as in Lemma 1 and fi£ = fi n B6(xo). (Here, BE(xo) = {|a: — xo| < e}.

If u is assumed to be a solution of (P) our main result is

THEOREM.   Ift*~¡ is the waiting time associated with fi, then

t*n<C- Inf
e4 + 2/(m-l)|ng

C(m0;zo,£)

n+ 1

n + 2
e2<82

where C depends only on m and the constant in (1). (| ■ | denotes Lebesgue measure.)

PROOF. We may assume that Íq > 0, so for 0 < r < i^ we define the test

function <p(x,t) = \(t — t)+\2h(x), where h is as in Lemma 1 (other choices are

possible!). Noting that u(x, i) = 0 outside of fi when t < Íq, we have from (P)(iii),

using the above test function,

(I

(4)

2 /    /   (t -t)h(x)u(x,t)dxdt
Jo  Jue

\    /   (t - t)2Ah(x)g(u(x,t))dxdt + C(u0;x0,e)T2.
Jo    /il.

Now, if we set

F(r) = ÍÍJo  Jn£
(t — t)2h(x)u(x, t) dx dt,

then F is C1 on (0,/s*2), and

F'(t) = 2/7"Jo Jnc
t)h(x)u(x,t)dxdt.

Note that, iî£ C {|x-x0|2 > ((n + l)/(n + 2))e2} since ((n+l)/(n + 2))s2 <82

So by (4), (5), (P)(ii), Lemma 1 and (1) we deduce

(6) F'(t) >C(u0;xo,£)T2 + C£-4m+2 i   j (T-t)2hm(x)um(x,t)dxdt.
Jo Jas
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An  application of Holder's  inequality  with  respect  to the measure dp

(t - t)2 dxdt on ü£ x (0, r) shows that

F(t)

(7)

'     /    h(x)u(x,
o /ne

r [
o Jne

t)dp

hm(x)um(x,t)dp
l/m

Jo Jnc
dp

(m—l)/m

Using the fact that

/   [   dp= [   f (T-t)2dxdt = \ü£\-T—
Jo Jne Jo Jn€ 3

we obtain from (7)

(8) /   /  (T-t)2hm(x)um(x,t)dxdt>
Jo /n£ r3ia

m — 1

F(t)

Combining (6) and (8) and then using Lemma 2 completes the proof.    ■

We remark that if the infimum in the statement of the theorem is zero, then

Íq = 0, so that the support of the solution u of (P) beings to spread immediately.

As an example of our result, let us examine the behavior of £q in the following

situation. Assume that for y E dû

uo(x) > a\x — yp + o(\x — ip)    on C,

where t is a small cone in fl with vertex y (see the figure) and a, 7 are positive

constants with 7 < 2/(m — 1). (When n — 1, t is taken to be an interval.)

Choose Xq such that |xo — y\ = dist(xo,Q) = 8 and set e = ((n + 2)/(n+l))1/28.

We then have

LC(uo\xo,e)> I uo(x)(e2 - \x - xo\2)2 dx
'tr\Bt(x0)

>ka84+'l+n + o(84+1+n),

where k (and constants hereafter) depend only on n and t.

Thus, we deduce (since |fie| < Cen)

£4 + 2/(m-l)in
<c-

¿4+2/(m-l)+n

C(uo;xo,e)     ~    a84+i+n + o(84+-<+n)'

If 7 < 2/(m — 1), then taking the infimum over 8 > 0, we see that Íq = 0. When

n = 1, this is a result of [7].

On the other hand, if 7 = 2/(m- 1) we obtain t*^ < C/am~l. In the case n = 1,

this upper bound was obtained in [4] (for the porous medium equation), but there

the constant is sharp.
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These examples show that, roughly speaking, the more dense the gas, directly

behind the interface, the sooner the interface will spread.

We could just as well have defined a local waiting time, i.e.,

t*nB = sup{t > 0: u(x, t) = 0, for x E (Rn\Q) n B},

where B is a ball centered on dQ. Our method also provides an upper bound for

¿Q B, since our test functions h are local.

We also point out that the results carry over to the case where the Laplacian is

replaced by a strongly elliptic operator in divergence form. (Lemma 1 holds with

minor changes.) Finally, we could allow the appropriate inequality in (P)(iii).
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