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ANALYSIS ON ANALYTIC SPACES

AND NON-SELF-DUAL YANG-MILLS FIELDS

BY

N. P. BUCHDAHL

Abstract. This paper gives a cohomological description of the Witten-Isenberg-

Yasskin-Green generalization to the non-self-dual case of Ward's twistor construc-

tion for self-dual Yang-Mills fields. The groundwork for this description is presented

in Part I: with a brief introduction to analytic spaces and differential forms thereon,

it contains an investigation of the exactness of the holomorphic relative de Rham

complex on formal neighbourhoods of submanifolds, results giving sufficient condi-

tions for the invertibility of pull-back functors on categories of analytic objects, and

a discussion of the extension problem for analytic objects in the context of the

formalism earlier introduced. Part II deals with non-self-dual Yang-Mills fields: the

Yang-Mills field and current are identified in terms of the Griffiths obstructions to

extension, including a proof of Martin's result that "current = obstruction to third

order". All higher order obstructions are identified, there being at most N2 for a

bundle of rank N. An ansatz for producing explicit examples of non-self-dual fields

is obtained by using the correspondence. This ansatz generates SL(2, C) solutions

with topological charge 1 on S4.

Introduction. As the title suggests, the paper is divided into two parts, the first of

which lays the mathematical groundwork for the second. Part II, "Non-self-dual

Yang-Mills fields", is concerned with the generalization of Ward's twistor construc-

tion for self-dual Yang-Mills fields (Ward [28]) to the non-self-dual case, due

independently to Witten [30] and Isenberg, Yasskin and Green [19], and with the

subsequent cohomological formulation of this generalization by Manin [22].

In broad outline Ward's construction gives a one-to-one correspondence between

holomorphic vector bundles with self-dual connection on a complex 4-manifold X

and holomorphic vector bundles on an associated complex 3-manifold Y satisfying a

certain triviality condition. The term "self-dual" means that the curvature F of the

connection satisfies *F = F, where * is the Hodge »-operator of a metric on X; any

such connection automatically satisfies the Yang-Mills equations V*F = 0. With the

imposition of certain conditions on the bundle on Y, the bundle and connection on

X can be reduced to a G-bundle and connection on restriction to real submanifolds

for subgroups G of GL(A/, C): the Ward correspondence subsequently led to the

construction by Atiyah, Drinfeld, Hitchin and Manin [2] of all self-dual SU(«)

solutions of the Yang-Mills equations on S4, the so-called instantons. It is an

unsolved problem as to whether or not there exist strictly non-self-dual SU(2) or
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SU(3) solutions on S4. If they do exist, they can be nowhere "near" the instan tons

(Bourguignon and Lawson [4]).

Ward's construction is an example of a technique central to twistor theory which

might be called "the method of double fibrations", a transform procedure for

establishing correspondences between sets of analytic objects existing, respectively,

on X and Y ("object" meaning bundle, cohomology class, mapping, etc.). Underly-

ing this procedure is a holomorphic double fibration

W
«/ \/

X Y

where / and g are suitable holomorphic mappings and W is some intermediary

manifold. An object on Y is pulled-back to W by / and subsequently pushed down to

X by g, the operations of pulling-back and pushing down being achieved by some

prescribed mechanism. By virtue of this process the derived object on X should

possess some differential property—a section of a bundle satisfying a differential

equation, a bundle admitting a connection, a distribution being integrable, etc.—

reflecting the fact that the intermediary object on W from which it is derived is in

some sense constant along the fibres of/. Under certain circumstances, the transform

is invertible, and the correspondence thus established provides a way of studying the

objects on X possessing this differential property in terms of the objects on Y about

which one (ideally) has greater knowledge or which are at least free of differential

constraints. In this way twistor theory aims of describe physical objects such as

fields and particles on space-time in terms of complex analytic objects on a

completely different complex manifold.

This transform procedure first appeared in twistor theory in the form of contour

integral formulae for massless fields given by Penrose in [24], although the underly-

ing double fibration appears in that paper only implicitly. With the advent of a

cohomological interpretation of these formulae the double fibration was made

explicit: a complete description of the method transforming elements of certain

cohomology groups into solutions of the massless field equations—the so-called

Penrose transform—is given in Eastwood, Penrose and Wells [10]. The other stan-

dard example of the method applied in twistor theory is Ward's construction already

cited, but there are many others, the construction of solutions of the Bogomolny

equations (Ward [29]) to name but one. See also Eastwood [9] for further applica-

tions.

By replacing W and Y with different manifolds, Witten, Isenberg, Yasskin and

Green generalized Ward's correspondence by exhibiting a one-to-one correspon-

dence between a class of holomorphic vector bundles on (the new, now 5-dimen-

sional) Y and holomorphic vector bundles with connection on X, but now with no

restrictions on the curvature. Using explicit power series calculations, they showed

how to determine the field F from the bundle on Y and proved the important result

that the Yang-Mills current J = V*F is zero iff the bundle on Y has an extension to

the third formal neighbourhood of Y in another associated manifold. (These

calculations appear in [18].)



ANALYSIS ON ANALYTIC SPACES 433

In [22] Manin cast these results in an invariant form: by using the obstruction

theory of Griffiths [14], he identified the field and current in terms of certain

cohomology classes associated with the bundle on Y, although for his description of

the current as the obstruction to extending the bundle to third order, he was forced

to rely on the crucial result of Witten, Isenberg, Yasskin and Green which, as he

stated in his paper, was clearly a drawback. He subsequently overcame the problem

using "Doulbeault cohomology with nilpotents" [23]. Pool [26] used explicit power

series calculations to obtain the same results.

An alternative way to overcome such current problems is to generalize the method

itself; namely, to allow any or all of the spaces of the double fibration to be analytic

spaces rather than just complex manifolds. The method generalizes very naturally to

such spaces, and within this framework the complete Yang-Mills construction takes

a fairly transparent form. The machinery required for this generalization is devel-

oped in Part I: a brief introduction to analytic spaces is given in §1.1; and the notion

of differential forms on such objects is introduced in §1.2. §1.3 is concerned with the

relative de Rham complex on a particular type of analytic space, the aim of this

section being to generalize the classical (relative) de Rham theorem on manifolds to

these spaces, subsequently used to express conditions of "constancy along fibres". In

§1.4 sufficient conditions for inverting holomorphic pull-back functors (and hence

the generalized transform) are obtained. Part I concludes in §1.5 with a discussion of

the extension problem for analytic objects in terms of Griffiths obstructions and the

formalism of differential analysis on analytic spaces.

Part I is presented in considerably more generality than is required for the

applications of Part II. Apart from inherent mathematical interest, this is motivated

by the potential applications of the method to other areas of twistor theory or

mathematics, and this generality does not demand a great deal more work than

would othewise be required.

Part II commences with a brief account of the facts about complex flag manifolds

needed to apply the results of Part I to Yang-Mills theory, these being the particular

spaces used in the double fibration for the Witten-Isenberg-Yasskin-Green corre-

spondence. This correspondence is described explicitly in §2.2 together with the

accompanying transform for cohomology. §§2.3 and 2.4 are devoted, respectively, to

the identification of the Yang-Mills field and current in terms of the Griffiths

obstructions discussed in 1.5. In §2.5 all of the higher order obstructions are

identified. It is also shown that if the bundle on Y has rank N and extends to the

(N2 + 2)th formal neighbourhood, then it extends to all other neighbourhoods also.

The paper concludes in §2.6 with some examples and an ansatz derived from the

correspondence generating explicit (strictly) non-self-dual solutions. This ansatz

produces SL(2, C) solutions on S4 with topological charge (i.e. minus the second

Chern class) 1.

I have tried to make the paper relatively complete in order that it might be read by

mathematicians and mathematical physicists, particularly those not already familiar

with twistor theory. A knowledge of basic complex analysis in several variables, most

of which can be found in standard texts such as Hörmander [16], is assumed. Since
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the paper deals exclusively with complex analytic objects, the adjectives "holomor-

phic" and "analytic" have usually been suppressed: thus, "bundle", for example,

means "holomorphic bundle".

Portions of this paper were written over the past two years. A large part was

written while I was a student at the Mathematical Institute, Oxford, from 1979-1982;

I wish to thank the Royal Commission for the Exhibition of 1851 for finanical

support. I also wish to thank my supervisor, Dr. M. G. Eastwood, for his guidance

during that period. Most of the remaining research and some of the writing was

done at the Institut des Hautes Etudes Scientifiques from 1982-1983. I am very

grateful to IHES for its financial support during that time.

Part I: Analysis on analytic spaces

1.1. Analytic spaces. The central ideas of this article rest on the ability to

" transport" sheaves from one space to another via a mapping of some form, so the

two basic mechanisms by which this is achieved will first be recalled before

launching into a discussion of analytic spaces proper.

Let/: X -> F be a continuous mapping of topological spaces. If ^is a sheaf on Y,

the topological inverse image f~l£f is the sheaf on X defined by the presheaf

X^ Uopen -» T(f(U),y)

with the obvious restriction maps. It is characterized by the property that (f~x¿f)x

= y{(X) for all x g X. lisais a sheaf of groups (resp. rings), so is/"\S^; in particular,

f~lr£Y is the sheaf of germs of continuous functions on X which are constant along

the fibres of/. If yis a sheaf of ^y-modules, /_1yis a sheaf of /"V^-modules, and

f'1 preserves exact sequences. There is a canonical injection T(F, £f) —> T(X, f~x£f)

which is an isomorphism if the fibres of / are connected, and if if is a sheaf of

abelian    groups,    then    there   are   canonical   homomorphisms   HP(Y, Sf) —>

W(X, /-&).
Going the other way, if 3? is a sheaf of abelian groups on X, the q th direct image

sheaf f%3%is the sheaf of abelian groups on Y defined by the presheaf

y d i/open >-> Hq(f-\U), ®),

again with the obvious restriction maps. The sheaf f%3% will always be denoted by

/*^, as is customary./* is a functor from the category of sheaves of ^-modules to

the category of ^y-modules. There is a spectral sequence, called the Leray spectral

sequence,

EC-1* = Hp(Y,fi@) => Hp + i{X, @)

relating the cohomology of á?to that of its direct images (Godement [12]).

Having stated these definitions, we can now give the basic definitions and notions

of analytic spaces relevant to this article. Much of the following is from Fischer [11],

where further details may be found.

A C-ringed space Xis a pair ( | A^|, 0x) consisting of a topological space |A"| and a

sheaf 0X of local C-algebras on \X\ such that &x x/mx - C for each x e \X\, where

mx denotes the unique maximal ideal of the stalk 0Xx. A morphism f: X -> Y of

C-ringed spaces is a pair (|/|, /) consisting of a continuous map |/|: \X\ -» |T| and a
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homomorphism of sheaves of C-algebras/: &Y -» \f\*@x. By defining composition

of morphisms the obvious way, we see that C-ringed spaces form a category.

If U is an open subset of C" and / c &u is a coherent sheaf of ideals, the space

(supp Qv/I, Oy/I |supp0 /,) is a C-ringed space ("supp" meaning the point set where

the sheaf is nonzero) called a local model. An analytic space X is a C-ringed space

such that |A^| is Hausdorff and each x e \X\ has a neighbourhood \U\ c \X\ with

(\U\, @x\\u\) isomorphic (as a C-ringed space) to some local model. C-ringed space

morphisms between analytic spaces are called holomorphic mappings, and, as might

be expected, the set of holomorphic mappings X -» C is in 1-1 correspondence with

1X1*1,0*).
An analytic sheaf on an analytic space X is a sheaf of É\-modules on |A"|. An

analytic sheaf £f is coherent (resp. locally free) if each x e |A"| has a neighbourhood

\U\ c \X\ for which there is an exact sequence

0*1 pi -» n\ m -» ̂ 1 if i - °   (resP- ̂1 w = ^1 ici)-

An analytic space Uis an open subspace of Xif \U\ is an open subspace of \X\ and

^c = ®x\ \u\- A- space X is a c/oseJ subspace of y (denoted A" «-» K) if there is a

coherent sheaf of ideals I c &Y such that \X\ = supp &Y/I and Qx = <5Y/l\ m- In

this case X is said to be defined by /. If V and if are closed subspaces of Y defined

by /, J c 0 Y, their intersection V n W and ww'o« V U W are the closed subspaces of

y defined by I + J and I D J, respectively. Intersections and unions of open

subspaces are defined in the obvious way.

If /: X -» y is holomorphic and W *-* y is a closed subspace defined by J c 0 Y,

the sheaf of ideals generated by f~lJ c ®xis coherent, and the closed subspace of X

defined by it is the analytic inverse image f'xW of W. (Here, and sometimes in the

sequel, we abuse notation by writing/instead of |/|. Similarly, ^instead of \X\ may

be written—the meanings should always be clear from context.) In particular, for

y g Y,f~1(y) is the fibre of /over y. /is an embedding if there is a closed subspace

X' •-* Y and an isomorphism/': X -* X' such that/ = i ° /', where i: X' -* Y is the

inclusion mapping.

If X and Y are analytic spaces, their product X X Y is the analytic space

(lA'l X |y |, 0X ê>c0Y), which comes equipped with a pair of canonical holomorphic

mappings (called projections) ttx: X X Y -* X and w2: IX Y -* Y, defined in the

obvious way.

For an analytic space X, the analytic sheaf on X, whose stalk at x e X is the ideal

of nilpotent elements of @Xx, is coherent, and the closed subspace it defines is the

reduction Xted of X. X is reduced if X = Xied and nonsingular if each x e X has an

open neighbourhood isomorphic to an open subspace of C". A reduced analytic

space resembles a manifold with singularities, for example, {(x, y) e C2: xy = 0};

a nonsingular, paracomapact, analytic space is a complex manifold.

The usual definitions of vector bundles and sections thereof can be carried directly

across from manifold theory: namely, a (rank N holomorphic) vector bundle E on an

analytic space X is an analytic space E together with a holomorphic mapping p:

E -> X such that for each x e X, (a) p~x{x) has the structure of an N-dimensional
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complex vector space, and (b) there is an open neighbourhood U of x and an

isomorphism g: p~l(U) ->Í/XC" with <nl° g = p and tt2 ° g\ -i(x) linear. A (holo-

morphic) section s of E over a subspace Kc A" is a holomorphic mapping s: V —> E

such that p ° s = identity. If (EY, px) and (E2, p2) are bundles on X, a morphism

between them is a holomorphic map h: Ex -* E2 such that p2° h = px and h\ -i is

linear, so with composition of morphisms defined in the obvious way, the set of

vector bundles on X forms a category. A bundle E is trivial if it is isomorphic to

XX CN.

Just as for manifolds, the functor E >-» @(E):= sheaf of germs of holomorphic

sections of E defines an equivalence of the categories of vector bundles and locally

free sheaves on X, so a bundle is determined by a system of invertible holomorphic

matrices satisfying the cocycle conditions in exactly the same way as for manifolds.

The set of rank N vector bundles on X modulo the equivalence relation of bundle

isomorphism is thus in 1-1 correspondence with the pointed cohomology set

H\ X, GL( N, 0X)); two bundles are isomorphic iff their images in H\ X, GL( N, 0X))

coincide. Sometimes the distinction between a bundle and its image in this cohomol-

ogy set will be blurred in the sequel; that is, isomorphic bundles (and particularly

those which are canonically isomorphic) may be regarded as the same object.

Canonical isomorphisms will often be indicated by an equality, rather than isomor-

phism, symbol.

For a closed subspace X of an analytic space Y, defined by / c 0 Y, the closed

subspace X{n) of Y, defined by I"+1, is called the nth formal neighbourhood of X in

y. Thus (X(n))red = Xred, and there is a filtration

(l.i.i) x = x(0) -> x(1) «-» • • • -» x(n) -> • • • -> y

with XUl) <-> Xin+l) defined by /" + 1//" + 2 c 6\,„+„. (Here, and subsequently, the

restriction symbol \,x, is suppressed for any analytic sheaf supported on a closed

subspace.) If X and Y are both nonsingular, in + 1/j» + 2 js a locally free sheaf on X:

it is the sheaf of germs of sections of the (n + l)th symmetric tensor power of the

conormal bundle of X in Y. In these circumstances, 0xm has an obvious local

representation in terms of truncated power series.

This section concludes on the same subject with which it began, namely the

transport of sheaves under mappings.

If /: X -» y is a holomorphic mapping of analytic spaces and y is an analytic

sheaf on y,/_1yis not, in general, an analytic sheaf on X. In order to remain within

the analytic category, the analytic pull-back of Sf to X is the analytic sheaf f*Sf

:= <DX ®f-\0f~lSr*on. X. f* is a functor from the category of analytic sheaves on Y

to the category of analytic sheaves on X, and by right exactness of the tensor

product, it preserves coherence. It also preserves local freeness: if B is a bundle on Y,

f*0{B) =:0(f*B). Although/* is right exact, it is not, in general, an exact functor;

when it is, / is flat. Each projection on the product of two analytic spaces is flat

(Fischer [11]).

Pushing sheaves in the opposite direction, suppose that <% is an analytic sheaf on

X. Then the direct images f%& are all analytic sheaves on Y, but they are not
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necessarily coherent if i% is. However, Grauert's celebrated theorem on direct images

states that if 3ft is coherent and / is proper, then all the direct images are indeed

coherent. In addition, one also has the Projection Formula

f%{@® 0(f*B)) = {fl@) ® 6(B)

for any bundle B on Y, a fact frequently used in Part II. The functor f% does not

necessarily preserve local freeness, but if / is both flat and proper and Y is reduced,

then for a locally free sheaf ^on X such that Hq(f~1(y), £% ® 6f-\(Y)) is °f constant

dimension for y^ e Y, f%^is a locally free sheaf on Y, and the corresponding bundle

has fibre H%f~\y), @ <S> §f-i(y))dXy e y (Fischer [11]).

1.2. Differential forms on analytic spaces. Let U be an open subset of C ", / c Qu a

coherent sheaf of ideals, and X the local model defined by /. Denote by Oy ■ dl the

sheaf of &v -modules generated by germs of the form df, for fz e I, and z e U, and

set &x'-= ®\j/®u ' dl, which is called the sheaf of germs of holomorphic 1-forms on

X. The containment / • ß}, c Qv ■ dl gives rise to an exact sequence of sheaves of
d    .     ' , .

0^modules, / -» ß{y ® ®u/l -* ß* ~* 0> which implies that ß v is a coherent ana-

lytic sheaf on X. £lx is rarely locally free, however, this being the case iff X is

nonsingular (Fischer [11]).

If Y is another local model and /: X -* Y is holomorphic, there is an induced

homomorphism/*ß1y -» ß1^ of analytic sheaves on X denoted by df. If g: Y -» Z is

holomorphic, the usual functorial equalities d(g ° f) = df ° f*dg, d(id) = id hold

(where id denotes the identity morphism), and it follows that the definitions of ß1^

and df are independent of the embedding X -* U and, therefore, extend to arbitrary

analytic spaces X, Y.

For a product of spaces X, Y, there is a canonical isomorphism ß*x Y = ir*Q}x ©

w2*ßV-

Holomorphicp-iorms ß^ on an analytic space X are defined by tix:= A^ß^ (with

®x:= ®x)i and there is a well-defined differential d: ß£ -^ ß^+1 annihilating the

constants and satisfying the usual Leibnitz rule. The complex of C-modules ß^- is

called the holomorphic de Rham complex on X, but in general it is not a resolution of

C, even when XTed is nonsingular (Grauert and Kerner [13]) or when X is reduced

(Reiffen [27]).

If /: X -> y is holomorphic, the cokernel of df: /*ßV ""* ßV is denoted by ß|, and

ß/:= A^ß^ is called the sheaf of germs of holomorphic relative p-forms on X. The

induced differential ß/ -> ß/ + 1 (differentiation along the fibres of /) is denoted by

df, and the complex of/_1Cy-modules ß^ is called the holomorphic relative de Rham

complex on X. If X and Y are manifolds and / is of maximal rank everywhere, the

relative de Rham complex is a resolution of f~l@Y. The question of its exactness or

otherwise for other types of analytic spaces is considered in the next section.

With well-defined notions of differential forms and bundles on an analytic space,

we can carry straight over from manifold theory the definition of connections on

bundles: if E is a bundle on a space X, let tix(E) := ß£ ®e @(E). A (holomorphic)

connection V on £ is a C-linear map V : 0(E) -> &X(E) satisfying the Leibnitz rule
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V(fs) = df® s+fvs for / e T(U, 0X), s e F(U, 0(E)) and U c X open. Of

course, E need not admit a connection: if M(N, C) denotes complex N X N matrices

and M(N, Sf):= M(N,C) ®c Sf for a sheaf of C-modules £/> on *, define Z):

GL(A, 0X) -> Af(7V, ß1*) by Dg:= g-1 dg. Since Z)(g/i) = h~\Dg)h + Dh, the cor-

responding map on cohomology is given by

Hl(X,GL(N, 0X)) 3 £ -» £>£ e i/^X, Q^(End £))

(where End £:= Hom(£, £)). The class £>£ is precisely the obstruction to defining

a connection on E. (As forewarned in the last section), the bundle E here is being

identified with its equivalence class of isomorphic bundles. If E is determined by a

cocycle (g, ) with respect to some open covering {U¡}ieI of X, a connection on E as

defined above is precisely a choice of splitting of the cocycle

(£,,%,,) ezHm.},ßV(EndiO).

An isomorphism <¡>: E -> E' determines a connection on E' given by V'(s') =

4>V(</>~V), which in terms of cocycles is just D of the appropriate cochain added to

the splitting of (gy,dg,7). The map from cohomology with respect to an open

covering into the direct limit is always injective on H1 (for both abelian and

nonabelian cohomology), so DE e H1(X, ß^(End E)) really is the obstruction to

defining a connection on £.Hegarding isomorphic bundles as the same object means

that connections vl5 V2 on a (representative) bundle E must be regarded as

equivalent if there is an isomorphism <£: E -* E such that Vj = <i> ° V2 ° <i>_1; that is,

Vx and V2 are gauge equivalent.)

If Vi and V2 are connections on E1 and E2, respectively, there are induced

connections on El ® E2 and Hon^i^, £2) characterized by

V(sl (8 s2) = ( Viii) ® s2 + s1 ® V2s2

and

V2(*(ii))= V(<í>)(s1) + <Í>(V151)

for local sections s¡ of E¡ and <i> of Hon^i*^, E2). If vx and v2 are two connections

on E, their difference defines an C^-module homomorphism 0(E) -> &X(E), and

this homomorphism is realized as the section V(id) e r(X, ß^(End E)), where V is

the connection induced on End E by Vx and v2 together. H g: X -* Y is holomor-

phic and B is a bundle on Y, a connection on B induces a connection g*B

characterized by v(g*s) = dg° g*Vs for a local section j of E. Note that, as a

special case of this, a connection on B induces a connection 5| Y if X •-* Y is a closed

subspace.

If £ is a bundle on an analytic space X with connection V, a local section s of £ is

covariantly constant if Vs = 0. When morphisms are defined to be bundle morphisms

covariantly constant with respect to the induced connection (i.e., <j>: El —> £2 must

satisfy V2 ° <t> = <t> ° Vi), the collection of bundles with connection on an analytic

space forms a category.

In general, a bundle £ with connection V has no covariantly constant local

sections: there are induced C-linear maps V : ß£(£) -» ß£+1(i?X defined by

V(h ® s):= dh® s +(-l)ph A Vi
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for a/»-form h and sections, but the composition v2: 0(E) -* ß^(£) is not usually

zero. It is, however, an 0^-module homomorphism, and the section F = F( V ) g

T(X, ß^End £)) defined by V2 is called the curvature of V. There is an identity

V F = 0, called the Bianchi identity, where V denotes the induced connection on

End £. The curvature depends functorially on the bundle and connection in the

obvious way, i.e.,

F(v, ® V2) = F(V,) ® id + id® F(v2),

etc.

A connection V on £ is flat if F( V ) = 0. If X is a manifold and V is flat, then, by

the Frobenius theorem, (£, V) = (£', d), where £' g H\X,GL(N,C)). If X is

connected and x0 G X,

H^X^LiNX)) - Hom(w1(A', x0), GL(N,C))

(Gunning [15]), so if X is simply connected also, the bundle £ is canonically

trivialized by its covariantly constant sections. Stated precisely, in these circum-

stances, V:= {î e T(i, 0(E)): Vs = 0} is an N-dimensional complex vector space,

and the canonical map (Ox ®c V, d) -» (0(E), V ) is an isomorphism.

In complete analogy, if /: X -» y is a holomorphic mapping of analytic spaces

and £ is a bundle on X, a relative connection on £ is a C-linear map V,:

0(E) -> ß}(£) satisfying Vf(hs) = dfh ® s + hvfs for a function h and a section

s. These remarks and definitions concerning connections can now be repeated with

obvious modifications, replacing v by Vf and d by df throughout. It should be

additionally noted that the obstruction DfE to the existence of a relative connection

on £ coincides with the image of DE in Hl(X, ß*(End £)), and a connection on £

induces a relative connection on £. In the particular case when £ = f*B for some

bundle B on Y, the functorial identity D(f*B) = df ° f*DB implies DfE = 0

automatically. Indeed, in these circumstances there is a canonical relative connection

on £ denoted by df and characterized by df(f*s) = 0 for any local section í of B. df

is flat, so the sequence • • • -» ß/(/*5) -» ß/+1(/*Z?) -* • • • is a complex. Since

f'lO(B) is a locally free sheaf of/"^y-modules, this complex is a resolution of

f'10(B) when the relative de Rham complex is exact.

1.3. The relative de Rham complex on formal neighbourhoods. The local definition

of 1-forms in the previous section implies that for arbitrary X, Y, Qx = Q.\/0Y ■ dl

where I c 0Y defines X •-* Y and 0Y-dI has the same meaning as before. When I is

replaced by In + 1, the containments I"+1 ■ ßxy c 0Y • dl"+l c /" • ßL give rise to

epimorphisms QlY ® 0X^ -» ü\{a) and ß^i-o -» ßV ® 6\<„-n, the kernels of which

are coherent analytic sheaves on X. More generally, since ß£<n> = ßy/ßy_1 A dl,

there are exact sequences

(1.3.1) ß^1 ® /"+1//"+2 -> ßy ® ev> -> ßfr») -• o,

and

(1.3.2) ßy ® /y/" + 1 -» ß^„, -» Qpy ® e>x(„-1} -* 0.
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Let SÇc) denote the kernel of the map ß£(»+u -» ß£<-o, so, with the induced

differentials on Sx<„>, there is an exact sequence of complexes

(1.3.3) 0 -» SXin) -» ß^(»+D -» ß^-<») -> 0.

Note that Sjf,,,, is an anlytic sheaf on X(1), but not on X.

Now suppose X and Y are nonsingular. Then 0 -> I/I2 -» ß'y ® 6\ -» ß1^ -> 0 is

an exact sequence of locally free sheaves on X, and, therefore, its ^th exterior power

(1.3.4)

0 -> Iq/Iq+l -> Q\ ® Ii-l/Ii ->...-» ß«-1 ® ///2 -> ß« ® &x -> ß« -> 0

is exact for all q (hitherto (1.3.4) has only been complex). Using (1.3.1), (1.3.2) and

(1.3.4), it is straightforward to deduce that there is an exact sequence of analytic

sheaves on Xm,

(1.3.5) 0 -> Rxt»} -> S£<„ -» Äfc-, -» 0,

where

RpxM := kerßy® 0^.'"* ß£„„ = cokerßy"2® r+2/In+3 -> ßy"1 ® 7"+1//"+2.

The composition A^ío -» S£t»> -» Sfí)1 -» i?^/„î is the identity (so ¿/ induces a

canonical splitting S£<„) = Rxt»} ffi /?§■(»> as a sheaf of C-modules), and one im-

mediately obtains

Proposition A. In the above circumstances, H*(Hq(U, S"#»■>)) = Ofor all q and any

open U c X.    D

Since ß^. is a resolution of C by the holomorphic de Rham theorem, induction

applied to (1.3.3) gives

Corollary A. For a submanifold X of a manifold Y, Wx<ni is a resolution of C for

alln.    □

Now suppose V is another complex manifold and £: Y -* V, f: X —> V are both

surjective holomorphic mappings of maximal rank such that f=F\x. Then

y(n)._ F\x(n> is a surjective (indeed, flat) holomorphic mapping of X0,) onto V, and

all of the preceding analysis can be repeated with the formal substitutions ßr >-> Qfc,

Slxin) -> 0/<„>, d(on Y) -» dF,d (on X(n)) -» </,<»>, S&„, -» S/„> and /{£<„, -> #/<„,. In

other words, the above analysis can be repeated on f~x(v) «-» £_1(f) parametrized

by î; g F. Hence,

Proposition B. 7« r/¡e afowe circumstances ßw»i w a resolution of f~lOv for all n.

D

Continuing with this process of generalization, suppose now that Y is a submani-

fold of a manifold Z defined by J c Oz. \î K cz 07 denotes the coherent sheaf of

ideals defining A1 as a submanifold of Z, then J cz K and / = K/J cz Oz/J = 0Y.

Moreover, one has the exact sequence

0 -» J/J2 ® Ox -> K/K2 -> I/I2 -» 0

of conormal bundles on X.
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X now has two sets of formal neighbourhoods, namely those coming from each of

the embeddings X ■-> Y and X •-* Z. To distinguish them let Xl"] denote the «th

formal neighbourhood of X in Z, and X(n) its «th formal neighbourhood in Y, as

before. Since

r+1 = (K/J)"+1 = Kn+1/K"+1 n J = (K"+1 + J)/J c (9Z/J,

X(n) is defined by Kn + l + J as a closed subspace of Z. Thus X(n) is a closed

subspace of Xln] defined by J/Kn+1 n J cz 0xM. Now let Xin-m) denote the wth

formal neighbourhood of Ar(n) in X[n]; it is defined by

Jm + 1/Kn + 1 n Jm + 1 = (Jm + 1 + K" + 1)/K" + 1 c ¿V,,

so A'("-m) = X[n] n y(m). In this case the filtration (1.1.1) is finite:

(1.3.6) X(n) = X(nfi) «-» X("a) «-» • • • *-* X(n'n) = Xl"].

Note that K" + 1 DJ" + 1 = K"m ■ Jm + 1 îot m < w, so

(Jm + 1 + K" + 1)/K" + 1 = j"+i/K"-mJm+1 = J" + 1 ® e^-m-».

From (1.3.1) one has the exact sequence

if n + \    i     rm+1

(1.3.7) Q,7-x ®-:- -> ß| ® ö«(.,.) -» ß&„,m> -» 0,

which can be extended on the left to a complex

(1.3.8)
vn + k _i_   jm + k isn + k — \  _i_   rm + A-1

••• ->ar*®  * ,      ,, -^ßr*+1®-—,      ,  -+■•-.^- j^n + K + l  _i_   jm + k+\ ^ iy-n + k  _i_   jm+k

There is an exact sequence

n      Jr+l      ,„ Kq + Jr+1 Kq + Jr Jr

0   -»-   ®   Oy^-r-i)   -*   -;-   -»-   -*-   ®   0v.(,-r-l)   ~»   0.
jr+2 *" Kq+1+Jr+2 K"+l+Jr+1 Jr+1 *

It follows easily, by using induction on m together with the exactness of the exterior

powers of 0 -* J/J2 -> ß^ ® 0Y -* ß*y -» 0, that the sequence obtained by combin-

ing (1.3.7) and (1.3.8) is exact. This fact, together with some simple homological

algebra, enables one to deduce that the kernel Sx^.m> of the epimorphism ß£<„.m+i> —>

ß£<».m> fits into an exact sequence analogous to (1.3.5):

0 -» RYÜ ® 0x(„-m-» -» SXin.^ -* Ryfm) ® 0A-,„-„,-„ -» 0.

The same conclusions as for Proposition A follow, giving

Proposition C. In the above circumstances ß^lnm> is a resolution ofC for all n, m.

D

This proposition will not be subsequently used, but it was included for the sake of

completeness. The important result needed in Part II is the appropriate generaliza-

tion of Proposition B. The set-up for this is indicated by the following diagram:

(1.3.9)
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Here F: Z -» W is again surjective and of maximal rank, and Jv c 0 w defines V.

Thus J = F*JV and ßF| r = ßF|y.

The restriction of £ to Xin'm) defines a surjective holomorphic mapping /("m):

Ar(",m) -> V(m). The exact sequence (1.3.7) has as its relative analogue the exact

sequence

is « + 1    i     im+\

(1.3.10) ß^1 ®- -» ßF ® 15,,,», -» Qfi..., -» 0,
v ' r isn + 2    i    jm+\ r a j

and again there is an extension of this sequence to a complex

isn + k _i_   rffi + 1 j^n-t-£—1    j     rm-t-1

(1.3.11) ■ • ■ - Q£-* ®   *     ,-r -» «r*+1 ® --1—^--* ■■■■

The sheaf (AT9 + Jr)/(Kq+l + Jr) is the (locally free) analytic sheaf on X which is

the cokernel of the homomorphism Kq-r/Kq-r+l ® Jr/Jr+1 -» Kq/Kq+1. Some

straightforward multilinear algebra shows that the cohomology of the complex

ßr    *   ®->   ß f ®-»   fir ®   -
/C*+2 + .T F     K"+1 + Jr F Kq + Jr

is 0 if r < ¿jr and ß^ ® Jq/Jq+1 if r > q. Since one can assume without loss of

generality that m < «, it follows that the sequence obtained by combining (1.3.10)

and (1.3.11) is exact, and this leads easily to the identification of the kernel of

Q/U„+i) -» n/<..»i as a/,»-m-i, ® Jm+1/Jm+2. The induced differential on ß;(„-^-i, ®

jm+iyjm+2 is Just ^ on Q\{„_m_^F*J¡? + l/J? + 2), so induction on m and Proposi-

tion B together give

Proposition D. In the above circumstances the exact sequence of complexes

(1.3.12) 0 -» Q¿.-„ »®Jm + l/Jm + 2 -* 0^..-+« -» Q/(-.-) -» 0

Ï5 a resolution of the topological inverse image of

0 -» J? + 1/J? + 2 -> 0K<»,+., -» 0K<m, -» 0.

In fact, for any q ^ 0, Proposition D and induction together allow one to

conclude that there is an exact sequence of complexes

(1.3.13)     o -> a;,.—..,-., ®/m+1/ym+i'+1 -* ß;<„.»,+„ -> ß;<„.m> -> o

resolving the topological inverse of

0   -> J¡?+1/J¡? + q+l   ~>   0y(m + „ ~>   Oytm, ~>   0.

1.4. Inverting pull-back functors. So far, three main categories of analytic objects

on an analytic space have been encountered: cohomology with coefficients in a

coherent analytic sheaf, holomorphic vector bundles, and vector bundles with

(relative) connection. Each of these categories admits a nice pull-back functor

induced by a holomorphic mapping, and the general problem to be considered in

this (and the next) section is that of determining when such a functor is 1-1 and/or

surjective. In complete generality, there is, of course, little of practical value which

can be said about this problem, but, by restricting oneself to the relatively uncom-

plicated situation considered in the last section, useful results can be obtained. For
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this purpose all the various spaces, maps, and notations of §1.3 will be carried over

directly to this section.

For a bundle B(m) on V{m), a necessary condition for some element of

Hp(X(n'm\ 0(f(n-m)*B{m))) to be a pull-back from Vim) is that it lie in the image of

Hp(X("-m),f-10(Bim))) -» Hp(Xin-m\0(f("-m)*B(m)));

this condition is described by chasing the chosen element through the cohomology of

the resolution ß;„,„„(/("m)*ß(m)) of f~10(B(m)), a process not worth describing for

the illumination it provides. Getting from Hp(X(n'm), /-10(5(m))) down to

Hp(V'-m), 0(B^m))) is a purely topological problem, and sufficient conditions for

this inversion are given in

Proposition E. If, for any v g V,f~1(v) is connected and satisfies Hq(f~ï(v),C)

= Ofor q = 1,... ,N, the canonical map Hq(V, 0(B(m))) -» Hq(X, f'lO(B{m))) is an

isomorphism for q = 0,1,..., N and a monomorphism for q = N + 1.

Proof. The case m = 0 is proved in Buchdahl [5]. The general case follows

immediately by induction and the Five Lemma applied to the pair of long cohomol-

ogy sequences resulting from

0 -> 0(B) ®Jq+l/Jq+2 -> 0(5<*+1>) -* 0{B(q)) -» 0

and its topological inverse image, where i?(<?) := B<-m'>\ yU) for q < m.   D

The case of bundles is, in a sense, less complicated, since one is dealing only with

H1, rather than Hq, cohomology, albeit nonabehan. In contrast to the abelian

cohomology case, for bundles there is a succinct analytic description of the condition

that an object be a pull-back, and this is given in

Proposition F. Suppose the fibres of fare all connected and simply connected. Then

for every bundle £<" "'' on X(n-m) with flat relative connection V/(..-.>: 0(£("'m)) -*

ß|(...».)(£("''")), there is a bundle B(m) on V(m), which is unique up to isomorphism,

such that

(£<"'"1),V/(».m)) - (/<"•»•>•*<»>, ¿/(„,,,,).

Proof. The conclusion can be restated as saying that/* ker V/<».»o =:0(B(m)) is a

locally free analytic sheaf on V(m) such that the canonical map f("-m)"&(B(m)) ^

0(£(nm)) is an isomorphism.

The uniqueness statement follows from the connectivity of the fibres of/and from

Propositions D and E.

The proof of existence is by induction, first on « with m = 0, and subsequently on

m with « fixed. If U c F is sufficiently small, the inverse function theorem implies

that there exists a submanifold U' c/_1(£/) such that/^,: U' -* U is an isomor-

phism. V/On £ := E{0-0) induces a flat connection on £|,-i(u) for each «ei/, giving

a canonical trivialization of the bundle over this connected and simply-connected

manifold. A map s: f~l(U) -* £|y-i(t/) is thus uniquely determined by prescribing an

initial section of £ | v, and covariantly propagating along the fibres of /. Using the

Frobenius and Inverse Function theorems, we easily see that s is a holomorphic
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section of £, and therefore a basis of sections of E\v, extends to a basis of

covariantly-constant sections of £L-i({/). Thus, /*ker vf =:0(B) is a locally free

analytic sheaf on Fand, by construction, (f*B, df) — (£, vA

Now suppose « + 1 > m = 0. An inspection of the analysis preceding Proposition

B reveals that it remains perfectly valid if all the sheaves appearing in it are replaced

by their tensor products with 0(£(n + 1)) and the differentials are replaced by

differentials induced by Vyc+K. Thus, the conclusions of that analysis remain valid,

which implies that the restriction map ker V/<»+d-» ker V/(»> is an isomorphism.

Thus/* ker V/c+n = /* ker Vy<«> = 0(B) is locally free, and, again,

(/<" + 1>X¿/(„+1)) = (£C + 1\v/,,+„).

Finally, suppose n > m + 1 > 0. This time the analysis preceding Proposition D

can be tensored through by 0(£(n,m+1)) by replacing dffn.m*D by V/e.<»+i>. In

(1.3.12) ® 0(£<"-m+1>), the (flat) relative connection induced on

0(E("~m-l)) ®Jm + l/Jm+2

is the same as that induced by V/c^+u on

p(n-m-l)      (.        p(n,m+l)| \

and dp.—*, on fl*.-—« ® Jm + l/Jm + 2 = f<"-m-l)*J? + l/J? + 2. It follows that the

sequence

0 -» f~lO{B) ® J{?+1/jp+2 -> ker V/<.^+n -» f~l0(Bim)) -» 0

is exact, and, applying/* and using Proposition E, one obtains the exact sequence

0^0(5)® jp+1/J¡?+2 -> /*ker v/(— » -» 0(fi(m>) -» 0

of analytic sheaves on v(m+1\ This sequence, together with Nakayama's Lemma, is

sufficient to show that/* ker V/<».<"+i) is a locally free analytic sheaf on V(m), thereby

defining B(m + 1). By construction, the canonical map

(/<--m+1)*5<'"+1>,<//,..m+,)) -» (£<"'m+1>,v/<».-.+i>)

is an isomorphism. This completes the proof.    D

In the language of abstract nonsense, the assignment Blm) <-* (f<-n-m)*B(-m), i/w».-»))

defines a functor from the category of bundles on V{m) to the category of bundles on

Ar(",m) with flat relative connection. When / has connected fibres, the functor is

injective; when the fibres of/are both connected and simply connected, the functor

defines an equivalence of categories.

Finally, we have the case of connections, which is included here more for

completeness than for application in Part II.

If (£(nm), v(n,m)) is a bundle with connection in Xin,m), a necessary condition

that it be the pull-back of a bundle with connection on V(m) is that the curvature

p(«,m)= fív*"'"0) lie in the image of

#0(A-("'m>,/("'m)*ß2,<,,(End£("'m))) ^ H0(Xín-m),Q2xtn.m>(End E<"-m))).

If this is the case, then the relative connection yw«.«o induced by v'"'"1' is certainly

flat, so if / has connected and simply-connected fibres, Proposition F gives an
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(essentially unique) bundle B(m) on V(m) such that

(f("-m)'B(m\dr.m)) = (£("-m),Vr.».,),

and the problem is reduced to pushing v*"'"0 down to a connection on B(m).

When « = «7 = 0, the injectivity of df implies that for any local section j of B

(= 2?(0)), V/*J is the image of a unique section of f*Q\,(B), which, by the restriction

on F(v), is covariantly constant with respect to d¡. Thus one obtains a map

f~10(B)-*f~1Q,ly(B) satisfying the appropriate Leibnitz rule, and since / has

connected fibres, this pushes down under/* to a (patently unique) connection on B

which induces V on £.

The general case is analogous: we must show that df("-m) is injective and the

complex Qri»,m) ®/("'m)*ß1(/(m) is a resolution of/^fi^co (even though ß^(m) is not

locally free). This is proved by showing that there is an exact sequence of complexes

o -> ß;«„-n„ ® jm+l/jm+1 -> ß;„„„ ® F*Q\y -» ß;„,m, ®/("-m)*ß1K<".) -> o,

which is obtained by using the same types of arguments as in §1.3. Details are

omitted, but one can state

Proposition G. Suppose f has connected fibres and B(m) is a bundle on F(m) such

thatf<n'm)'B(m) admits a connection v("'m). Then //F( v*"'"0) lies in the image of

H°(X<n-m\ /("-",)*Q^-)(End 5<m))) ^H°(X^'m\Q2x(„.m>(f^'m)'EndBim))),

there is a unique connection V(m) on B(m) inducing v("'m) onfu'-m)*Bim).   D

There are, of course, obvious generalizations of the proposition for the case of

relative connections.

1.5. The extension problem. In this section the question of the invertibility of an

analytic pull-back functor is further considered, but this time at the other end of the

spectrum of holomorphic mappings—namely, the pull-back functor induced by the

inclusion mapping of one space as a closed subspace of another. The generic term

for a problem of this type is the extension problem, which consists of determining

when a certain analytic object on a closed subspace X of an analytic space Y is the

restriction of a corresponding analytic object on Y, and to what extent any such

extension of the object is unique. The underlying assumption is that the analytic

cohomology of X is "known", whereas that of Y is not: another interpretation of the

problem is that of finding out the degree to which the analytic properties of Y are

determined by those of X.

The standard approach to the extension problem (Griffiths [14]) is to use the

filtration (1.1.1) of Y by the formal neighbourhoods of A'in Y, so that the problem is

broken up into a sequence of extension problems, each of which reduces to the

vanishing of a cohomology class on X (the obstructions to extension) or to the

vanishing of a cohomology group on X (the obstructions to uniqueness of extension).

In practice, the extension of an object to every formal neighbourhood does not

necessarily imply extension to Y, but this will not be considered here.



446 N. P. BUCHDAHL

If A is an analytic object on X with an extension A(n) to X(n) for some «, then the

obstruction to the extension of Ain) to X(n+1) is a cohomology class with coefficients

in some coherent analytic sheaf 3? on X, and it is denoted by con+l(A(n)). The set of

extensions of Ain) to A"-" + 1) (which is not empty iff un+l(A(n)) = 0) is denoted by

2n + 1(yf(n)). The obstructions to uniqueness will be manifested in the form of a

transitive action of another cohomology group on ~2n + l(Ain)): if un + 1(A0,)) g

Hp + l(X, 31), then the last group is H"(X, 3?). When this action is effective, the

unique element of HP(X, 3t) which takes A[" + 1) g 2n+1(AM) to A2" + 1) g

2n+i(A(n)) is denoted by A(2n+l) - A[n+1\

For the objects of central importance to this article—cohomology classes, bun-

dles, and connections—a more detailed account of the extension problem will now

be given.

If X «-» Y is defined by / c 0Y, then one has

(1.5.1) 0 -» /«+1//"+2 -» CV-» -» 0a"»> -» 0,

the fundamental sequence of analytic sheaves on Y supported on X. If £ is a bundle

on Y and E(n):= E\x<„), then the extension problem for an element <j>(n) of

Hp(X(n), 0(E(n))) is succinctly described by the exactness of the long cohomology

sequence induced by equation (1.5.1) ® 0(£(,!)): <o„ + 1(</>(n)) is the image of <^n) in

HP + 1(X, 0(E) ® I"+1/I"+2) under the connecting homomorphism;

Hp(X, 0(E) ® In + 1/I" + 2) acts transitively on ln + l(^n)) = preimage of <S>{n) in

Hp(X(n+1),0(E(n+l))); etc. Of course, there does exist a global obstruction in

Hp+1(Y, 0(E) ® In+1) to the extension of </>(n) to Y, and HP(Y, 0(E) ® I" + 1) acts

transitively on the set of such extensions, but one is not supposed to know anything

about cohomology on Y.

The case of bundles is essentially the same, except that (1.5.1) is replaced by its

nonabelian counterpart

0 -> M(N, In + l/I" + 2) -> GL(N, 0yi.+») -> GL(N, 0X<„,) -> 0

(the first map on the left is m •-» 1 + m), and the long exact cohomology sequence

by its nonabelian analogue (Eastwood [7]). If B is a bundle on X with an extension

B(n) to X(n\ then

un + AB(n)) G H2(X, 0(End B) ® I" + l/I" + 2),

Hl(X, 0(EndB)® I" + l/In + 2) acts transitively on 2n+1(5(n)), and this action is

effective if there exists 5(" + 1) g 2n+1(5(n)) such that

r(Y(" + 1),0(End5(n + 1>)) -* r(A"(B),0(EndA(n)))

is surjective. All these assertions are directly verified using Cech representatives of

the various entities involved—this being neither more nor less than the verification

of the exactness of the nonabelian cohomology sequence referred to above. Note that

even if the action of Hl(X, 0(End B) ® In + l/In + 2) on 2n+1(5(")) is not effective,

there is nevertheless a canonical choice for the "difference" between two extensions

B{"+1\ B[n + l) g 2„ + 1(5(n)): by applying Hom(^"+1), B[" + l)) to (1.5.1) and tak-

ing cohomology, the image of

id G r(A'("),0(End£(")))
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in HX(X, 0(End B) ® I"+1/I"+2) is the obstruction to extending id to a homomor-

phism (which is necessarily an isomorphism) £^"+1>^ £{"+1>. This element will

always be denoted by B[n+l) — B^"+1\ irrespective of the effectiveness, or otherwise,

of the action.

The case of (relative) connections is slightly more involved: if £ is a bundle on Y

such that £("':= E\xin) has a connection v(n), then since v(n) extends locally to a

connection on £ and the difference between any two such local extensions is a

section of 0(End E) ® 0Y- dl"+l, there is, as for abelian cohomology, a global

obstruction to the extension of V(n> to a connection on £ lying in

Hl(Y, 0(End E) ® 0y ■ dl" + l),

and H°(Y, 0(End £) ® 0Y ■ dln + 1) acts both transitively and effectively on the set

of such extensions. To extend v<n) to a connection on £("+1), the complete

obstruction thus lies in

jy^jr«, si<.,(EndJE«)),

and H°(Xm, Sxw,(End £(1))) acts both transitively and effectively on 2n+1( v(n>)

(recall that Sx^:= ker ß^.+n -> ß1^ and, here, 5^»)(End £<n)):= S}<„> ®

0(End£)). The image of the obstruction in H\Xin+1)), ß^+niEnd £<"+1))) is

precisely Z)£(n+1).

The fact that S^<„> is a coherent analytic sheaf on A^1*, but not on X, is not in

keeping with the spirit of the extension problem. To circumvent this the extension

problem for v(n) must be considered in two stages—namely, the kernels of each of

the two epimorphisms ßy ® 0X^ -* ß^i^ and ß^<»+i> -» ß:y ® 0x<n) are both coher-

ent analytic sheaves on X, and the staggered extension problem consists of first

trying to extend v(n) to a map V(n): 0(£<n+1)) -* ßV(£(n)) satisfying the ap-

propriate Leibnitz rule and, subsequently, extending any such v<n) to a genuine

connection on £(" + 1). The two obstructions, lying in Z/1 of the appropriate kernel,

are denoted by £>„ + 1( V(n)) and co„ + 1( V(n)), respectively.

Statements analogous to the above can clearly be made for the extension problem

for relative connections. The details need not be repeated.

Until now the spaces X and Y have been arbitrary, but with the assumption that

they are both nonsingular, relations between the extension problems for different

objects manifest themselves, and, in particular, the extension problem for bundles

with connections is considerably simplified: the kernels of the two epimorphisms

ß\, ® 0X(„> -» ß^(„)   and   ß^+n -» ßV ® 0^»)

are then

7«+i//n+2   and   R\w = coker/"+2//"+3 -> QL ® I"+l/I"+2,

respectively, these being the relevant coefficient sheaves for the two stages of the

extension problem for connections.
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Proposition H. Suppose X and Y are nonsingular and let (£, V) be a bundle with

connection on X with an extension (£'"\ V<M>) to X("\ Then:

(a) There exists an extension (£(" + 1), v'"1) of (E{"\ V<n)), and for any two such

extensions there exists a unique isomorphism between them which restricts to the

identity on (£<n>, V(n)).

(b) Under the connecting homomorphisms from the exact sequences

0 -» R2x^(End E) -> ß2y(End £<n)) -> ß^„,(End £(n)) -> 0

and

0 -> 0(End £) ® /" + 2//« + 3 ̂  ßiy(End E) ® /-.+i//n+2 ^ R^^End E) -+ 0,

we obtain

H°(X("\Q2xM(End £<"»)) 3 F(v(n>) -» wn+1(v(n)) g Z/^A-, ^„„(End £)),

//1(A',JR2v(B,(End£))3W„ + 1(v(',))

-> w„ + 2(£<" + 1)) g H2(X, 0(End) ® 7" + 2//" + 3).

(c) Suppose Vin + l), V2(" + 1) G 2„ + 1( v(w)). If E[n + 2\ £2(n + 2) G 2„ + 2(£<" + 1)) are

/«e extensions o/£(" + 1) determined by Vi" + 1), V2" + 1), respectively, as in (a), i«e«,

w/í« i«e sequences of (b),

#°(X, Ä^.,(End £)) 3 Vj("+1) - V2(" + 1)

-(F(Vl(" + 1))-F(v2(" + 1)))|^, g //°(Y'"»,ß2y(End £<">))

and

H°(X,R2x^(EndE)) 3 Vl" + 1)- V2"' + 1)

_ £(« + 2) _ £(«+2) e h\X, 0(End £) ® 7" + 2//', + 3).

(d) // V(n) iv /7a/, there exists (£(" + 1), v(" + 1>) g 2„ + 1(£<n), v(n)) swc« f/jar

V(" + 1) is flat, and for any two such extensions there is a unique isomorphism between

them restricting to the identity on (£<n), V(n>).

Proof, (a) One has the fundamental commutative diagram with exact rows

->     0

-*     0

ßV<-.>)    ->   o

D

,0*.>)      -     0

0                       ->                      7"+1//" + 2 ->                      ßly®0A-<»)                      -^                      ß^l»)

(1.5.2)                             Tid T¿                      T¿

0     ->     f+i/jn+2 _,         ^(n+i)         ^     ^<n)

and its nonabelian analogue

(1.5.3)

0   ~*   M\N,In"+2       "* m(a^,ßV® 0A-.-.)   -»    m(a^,

Î id î D                                               Î

0     -     M\^Ï2-)     -» GL(7V,0^,+i,)        -     GL(iV
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(where Dg = g'ldg as before, with D defined analogously). Tensoring through the

top row of (1.5.2) by 0(End<")) and taking cohomology, we see that commutativity

of (1.5.3) implies that the image of DE{n) under the connecting homomorphism is

precisely ío„ +!(£'"'), so the existence of v(n) implies 2„ + 1(£(n)) ¥= 0.

If £<"+1>g 2„+1(£(">), the obstruction ö„+1(V(B)) (= w„+1(V(n), £<n+1))) to

extending v(n> to a map v"0: 0(£("+1)) -» ß1y(£<")) lies in

Hl(X, 0(End£) ® In + l/I"+2).

The action of this group on2„+1(£(n))is translated into

¿B + 1(vw,f £(" + 1)) = <t> + ün+l(v<">, £<" + 1))

forcf>G Hl(X, 0(End£) ® 7" + 1//" + 2);

therefore there exists £<" + 1> e 2n + 1(£(n)), which admits an extension v(n) of v('!).

Given two connections V1(B), V2(n) on E(n) and extensions (£/"+1), v/n)) of

(£(»), V/B)), applying Hom(E¡n + 1\ £1<" + 1)) to (1.5.2), and altering the vertical

maps to those induced by V, on £/n+1>, one obtains a new commutative diagram

with exact rows. By commutativity,

£1(B+1) - £^"+1) = image of id = image of v¡n) - V2(,,)

under the connecting homomorphisms. In particular, if v/"'= V(")= V2n), it

follows that £1("+1) = £2:"+1). Indeed, the commutativity of the diagram implies that

there exists a unique isomorphism \p: £^" + 1) —> £1(" + 11 restricting to the identity on

£(n) and satisfying v^ = 0 (i.e., Vi ° ^ = ^ ° V2).

(b) Under the map induced by the inclusion Ä2^») -> ß^<»+i), wn + 1(v(n)) is

mapped to DE(n + 1). By commutativity of the diagram

0       -»       I»+2/jn+3       _> ß1y®0A.(n + 1) -*       ß1^,,,,,       ->       0

(1.5.4) Tid î î

0 -*        7" + 2//"+3        -►        ßly® jn+l/jn + 2        _» R2^n) _        q

and the first paragraph of the proof of (a), <oB + 1( v(n)) is mapped to w„+2(£<n+1))

by the connecting homomorphism.

The inclusion of R2xW in ßy ® 0X^ leads to another commutative diagram with

exact rows analogous to (1.5.2):

0     -+     R2xl„     ->     ß2, ® 0A.(n)     -> ß2.,,,, ->     0

(1.5.5) Tid Tj T

0     -*     R2^)     -* B^.+d -»     ßV ® 0^,,,     ->     0

(indeed, there are obvious analogues of (1.5.4) and (1.5.5) for forms of any degree).

Tensoring through (1.5.5) by 0(End £<n + 1)) and changing d to V("\ we see that the

new diagram commutes, and it follows that wn+1(v<")) is the image of F(v(n))

under the connecting homomorphism. This completes the proof of (b).

(c) As we observed in the proof of (a),

ViC+D _ V2(« + d e ffo( A-(» + i)j ß^„+1,(End £(»+!)))
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is mapped to

E(n + 2) _ E(„ + 2) G fjl^   ^(End £) 9 jn + l/jn + 2}

under the connecting homomorphism from the top row of (1.5.4) ® 0(End £(n + 1)),

so the second statement of (c) follows by commutativity of this diagram.

If V denotes the connection on End £<" + 1> = Hom(£2(B+1), £1(n + 1)) induced by

Vi" + 1) and v2<n + 1), then, after tensoring through (1.5.5) by 0(End £("+1)) and

altering the vertical maps to those induced by V, the new diagram commutes. The

first statement of (c) then follows from the observation that

V2(id)= v(ViB+1)- V2<" + 1)) = F(v1(" + 1))-F(vi" + 1))

GJf70(x<" + 1>,ß2i<„+„(End£(" + 1))).

(d) If v(n> is flat, then by (b), 2„+1( v"0) * 0. By commutativity of (1.5.5) ®

0(£<" + 1)), there exists v(" + 1>G 2„ + 1(v(B)) such that the composition

0(£<" + 1)) -» 0¿,.+1,(£(»+1)) -» ß2(£<">)

is zero, i.e. F( V<"+1))|A-i». = 0. Hence, the composition

ß1A.."+..(£(" + 1)) -» ß^+J,(£("+1)) -» ß3y(£(,,))

is also zero, and by commutativity of the analogue of (1.5.5) ® 0(£("+1)) for forms

of the next higher degree, it follows immediately that F(V(" + 1)) vanishes. Thus

£(« + D admits a flat extension of V(M), and the uniqueness statement is proved in the

obvious way.   D

Thus, up to isomorphism, (E("\ V(n>) extends uniquely to all orders. This is, of

course, a reflection of the empty statement that an element of H1(X, GL(N, C))

extends to X(n) for all «.

With a purely formal change of notation and the insertion of the word "relative"

in front of "connection", Proposition H can be repeated for the case of relative

connections in the circumstances of Proposition B (i.e., £: Y -* V, f: X —> V

surjective of maximal rank with F\x = /). Indeed, this relative form of the proposi-

tion is the one used most, if not exclusively, in the applications in Part II.

The formalism of the extension problem can be used to give new proofs of (or at

least different interpretations of the proofs of) Propositions F and G on inverting

pull-back functors. The case of Proposition F is of particular relevance in this

context: with the notation and hypotheses of that proposition, it was shown that the

functor f<"-m)* defines an equivalence of the category of bundles B(m) on V(m) with

the category of bundles £("-m) with flat relative connection V/<».»o on X{"'m). Thus

the extension problem for a bundle B on V must be equivalent to the extension

problem for (/""*£, dfm) to A("'m) for any n > m.

To illustrate this, given (E{"\ v/(«>) on A('° with V/ci flat, construct B on Fwith

(f*B, df) — (£(n>, V/(»))| x, as in the proof of Proposition F. Then the relative form

of part (d) of Proposition H and induction give a unique isomorphism (f("rB, df<.,,>)

= (£<n), Vftn)) restricting to the initial isomorphism on X.
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As another example, suppose that B is a bundle on V with an extension B(m) to

V(m\ and set £<"■'">:= f(n,myB(m) Then m chasing Wm+1(5(m)) through the

cohomology of the resolution

0 -» f~10(End B) ® Ji7+1/Jv'+2 -» ß;<„—»(End E("-m-l)) ® Jm+1/Jm+2,

one encounters three consecutive "obstructions" to the vanishing of o>m + 1(B(m)). In

order, these are elements of

(1) H2(X, 0(End£("-m-1)) ® Jm + l/Jm + 2);

(2) H1(X, ß},n-m-i,(End£("^m-1)) ®Jm+l/Jm + 2)

[mod dfi.-»,-»Hl(X, 0(End £("-'"-1>) ® y"+1/y" + 2)] ;

(3) H°(X, ß/,n-n,-i,(End£("-m"1)) ®/m + 1/^"""2)

[mod dfin-m-x)H°( X, B}(,-m-i,(End fí"-"1"1)) <g> ym+1/ym+2)].

The first of these is wm+1(£("'m)), the second is the obstruction to extending df(„.m)

on E{"-m) to a relative connection on E(n-m + l) g 2„i+1(£(b,",)) [mod choice of

£(",m + 1)], and the third is (essentially) the curvature of any such V/<».»>+i> g

^m+ i(d/<"■"•>) [mod choice of vy<«.™+i>]. These last two assertions are easily verified

by chasing the appropriate parts of (1.3.12) ® 0(£("m+1)).

As a final comment before moving on, it is worth noting that differential forms on

analytic spaces can be used for extension problems other than just those considered

here. For example, if X and Y are as above, and g: X -> V is an arbitrary

holomorphic mapping to a manifold V with an extension g(n): X{n) -> V for some

«, then, after applying Hon^g'^'ß1,^, -) to the top row of (1.5.2) and taking

cohomology,

"„ + iU(n)) G Hl{x,Uom(g*ü\,, /" + 1//" + 2))

is the image of dg{n) under the connecting homomorphism, 2„+1(g(',)) is in 1-1

correspondence with the preimage of dg(n) in H°(X,Hom(g("rSl1y,,Çl1Y ® 0^<»>)),

and the transitive and effective action of //°(A,Hom(g*ß1(/., In + l/In + 2)) on

2n + 1(g(")) is simply reinterpreted as the exactness of the first part of the long

cohomology sequence.

Part II : Non-self-dual Yang-Mills fields

The various pieces of machinery required for generalizing the method of double

fibrations to analytic spaces have been established in Part I. Part II begins with a

discussion of the particular class of spaces used in the application of the generalized

method to Yang-Mills theory.

2.1. Flag manifolds. Let V be an «-dimensional complex vector space. For any

sequence of integers 0 < dx < ■ ■ ■ < ds < n, denote by ¥d d(V) the set of

í-tuples (Lv...,Ld), where L¿ is a ¿/¿-dimensional linear subspace of V with

Ld¡ c Ldi+i. The natural action of GL(K) on this set is transitive and endows it with

the structure of a complex manifold—i.e., the homogeneous space GL(F)/(isotropy

group of a point). Natural coordinate systems for the manifold are determined by a
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choice of basis for V. The generic term for such objects is flag manifolds; for 5 = 1,

¥d(V) is the Grassmannian of a'-planes in V, which, for d = 1, is the familiar P(V)

—projectivized V. A choice of hermitian inner product on V gives rise to a

description of F¿</,(^) as a quotient of unitary groups by closed subgroups,

so F,/, ,d.(^) is a compact complex manifold (of dimension d1(d2 — d1) +

d2(d,"-d2)+ ••• +ds(n-ds)).

For   any  ordered   subset   {ex,...,e,} c {dv...,ds},   there  is   a  "projection"

Fdl.¿/H -» Fe,.e,(H §iven by {Ldf->Ld) -» (Lei.---»-Le,) which is a surjec-

tive holomorphic mapping of maximal rank. The fibre of such a mapping is a finite

product of flag manifolds, and the mapping expresses ¥d ¿(F) as a locally trivial

holomorphic fibration over ¥e     e(V).

There are embeddings ¥di ' d(V) <-* ¥di(V) X ■■■ X ¥dfV), ¥d(V) -> ¥l(AdV)

(given by Ld -» NdLd) and F^F) X FX(F') ^¥X(V ® V) (given by (£l5 L[) -» Li

® Li), so all flag manifolds are algebraic.

For each ; there is a rank d¡ homogeneous vector bundle Ed on ¥d ¿(V), the

fibre of which at (Ld ,... ,Ld ) is the vector space Ld . Ed is a subbundle of Ed for

/ <j, and all are subbundles of the trivial bundle V on ¥d d(V). Using the

standard operations of linear algebra, we may construct many more such homoge-

neous vector bundles: direct sums, duals tensor products, quotients, etc. For

example, the tangent bundle of the Grassmannian ¥d(V) is canonically isomorphic

to Hom(Ed, V/Ed) = E% ® V/Ed. In [3] Bott gives a prescription for explicitly

calculating the global cohomology H*(¥d d(V), 0( — )) of all these bundles, the

most well-known application of which is Bott's Rule: on P(V), 0(<g>k Ex) is

conventionally denoted by 0(-k) and its dual by 0(k), and the result is

(OkV*, p = 0,k>0,

Hp(P(V),0(k)) = ldetV® 0~k-"V,    p-n-l,k<-n,

\ 0 otherwise.

(Here O denotes symmetric tensor product and det F:= A" V.)

Note that there is a canonical isomorphism ¥d ,¿(F) ^* ¥n_d n_d (V*) given

by (Ldi,.. .,Ld) >-> (Lj;,... ,Lj;), where Lj; = (V/Ld¡)* is the annihilator of Ld.

The case of dim V = 4 is the case of particular concern, and here there are a

number of conventional symbols used for the various objects defined in generality

above. First and foremost, the symbol T (for twistor space) is used in place of V. For

the various flag manifolds derived from T, the Grassmannian F2(r) is denoted by

M (for complexified, compactified Minkowski space), ¥Y(T) by P (projective twistor

space), F3(£) (= ¥X(T*)) by P*, ¥13(T) by A (ambitwistor space), and finally

Fj 2 3(£) by £. If a: F -» A and b: F -» M are the "projections", then the following

diagram indicates the general set-up which is the framework for Part II.

F     ■-»      MX A ■-» M X P X P*

(2.1.1) b ¡/ \ a        / proj i/ proj

M A ^ P X P*
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The notation for the basic homogeneous vector bundles is as follows:

0(-l,O) := 0(£j) and 0(0, -1) := 0((T/E2)*), the integers in brackets being essen-

tially the first Chern classes of these line bundles. Tensor products are denoted by

adding the pairs of integers together; duals, by changing the signs. For example,

0{p,q):= 0(®pE*)®0(®qT/E3).

The symbol S" (for primed spin bundle) denotes £2, and S denotes (T/E2)* (the

pull-back of £2 on F2(£*) under the isomorphism F2(£) -> F2(£*) is S). Finally,

0(det S') =:0[-l]' and 0(det S) =:0[-l], with 0[p}[q]' defined in the obvious way.

Note that det S = det S' ® det £*, so 0[-l] is isomorphic to 0[-l]', but not

canonically, and the distinction will therefore be retained.

The symbols used to denote the various homogeneous vector bundles have been

given without reference to a particular space. Where this is necessary, it is indicated

by a subscript; for example, 0F(p, q) = a*0A(p, q). Similarly, it is convenient to

denote the pull-backs to M X P X P* of any of the other standard globally-defined

sheaves by the same symbol; thus ß<^ ® 0F means 6*ß&, for example.

The notation for the various sheaves of ideals defining the inclusions of (2.1.1) will

be the same as in §1.3: / c 0MXA defines F "-> M X A, J cz 0MXPxP, defines

MxA~>MxPxP*,Kcz 0MxPxP, defines £ ■-» M X P X P*, and JA <-> 0Pxpt

defines.4 «-+ P X P*. The sheaves///2, K/K2, and JA/Jj are canonically identified

with sheaves of sections of certain homogeneous vector bundles. For example, if c:

A —> P* is the "projection", the fibre of c over L3 g P* is P(£3), and, therefore,

ß* = 0/4((£3/£1)* ® £x). The exact sequence 0 -> JA/Jj -* ß* ® 0F -+ ü\. -* 0

then identifies JA/J} with 0A((T/E3)* ® Ex) = 0A(-\, -1). Similarly,

J/J2 = 0F(-1,-1)    and   K/K2 = 0F(S)(-1,O) ® 0F(S')(O,-1).

The identification of the sheaves J/J2 and K/K2, used in conjunction with the

standard manipulations of tensor algebra, and Bott's Rule enable one to compute all

of the direct images in the following sections for any homogeneous vector bundle E

on £; b%E is a homogeneous vector bundle on M with fibre Hq(b~1(x), 0(E\h-i,x)))

at x G M. Because there is a large number of such calculations to be made, the

details will usually be suppressed, but the reader is reminded of the Projection

Formula

b%(b*B ® E) = B ® b%E

for any bundle B on Af, which is indispensable for these calculations.

The canonical isomorphism ß1^ = 0(S ® S') gives rise to identifications

Ü2M = 0(O2S)[-1]' ® 0(O2S')[-1],

ß^0(S®S')[-l][-l]',   and   ß^ = 0[-2][-2]'.

Denote by ß2 and ß2, respectively, the two direct summands in the splitting of Q,2M,

and define an endomorphism * of ß2^ so that *2 = +1 and ß2+ is the + eigenspace

of *. The reasoning for this rather suggestive notation is as follows: the identification

©2ß1w= 0(Q2S) ®0(O2S') e0[-l][-l]'
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means that 02ß^[l][l]' has a canonical global section, thus giving a conformai

metric on M. A Hodge »-operator on an even-dimensional manifold is always

conformally invariant on forms of the middle degree, and the splitting Q2M = ß +© ß2.

is just that induced by the conformai metric on M. For more details see Le Brun

[20].
Finally, the double fibration appearing on the left-hand side of (2.1.1) gives a

correspondence between the points of M and certain closed submanifolds of A and

also a correspondence between the points of A and certain closed submanifolds of

M. Specifically, if x g M is given by £2 c T, the restriction of a to b~x(x) — P(L2)

X P(T/L2) defines an embedding of this manifold in A, and the submanifold

a(b~l(x)) is denoted by Qx. Similarly, if y g A is given by (Lv £3) c T X T, the

restriction of b to a~l(y) = P(L3/Ll) embeds this manifold in M. The submanifold

b(a~1(y)), denoted by Ny, is called a null line (the reason being that it is a null

geodesic of the conformai metric on M referred to above).

2.2. The Witten-Isenberg-Yasskin-Green correspondence. For an open subset U of

M, the category of Yang-Mills bundles ( EM, V ) on U is just the category of

holomorphic vector bundles with holomorphic connection on U. The field F of

(EM, V ) is the curvature F( V ) G T(U, ß^(End EM)) of the connection; it is said to

satisfy the (complex) Yang-Mills equations if V*F = 0 (v denotes the induced

connection on End EM as usual). The field is called self-dual (resp., anti-self-dual) if

*F = F (resp., *F = -F), in which case the Yang-Mills equations are automatically

satisfied by virtue of the Bianchi identity vF = 0. If F+ denotes the + component

of F in terms of the splitting ß^(End EM) = ß2(End EM) © ß2(End EM), then the

equations can also be written in the form vF±= 0, the field being self-dual if

F_= 0.

For an arbitrary Yang-Mills bundle ( EM, V ) on U, the section

J:= V*FGr(t/,ß3,(End£A/))

is nonzero, in general, and is called the current. Analogous to the Bianchi identity,

there is an identity VJ = 0.

Now let U' := b~l(U) and U" := a(U'), so the double fibration appearing on the

left-hand side of (2.1.1) restricts to a double fibration

U'
h / \ a

U U"

Here, a and b denote the restrictions to U' of the appropriate maps; we use this

convention when the underlying subset U c M is understood.

If (EM, V) is a Yang-Mills bundle on U, let £F:= b*EM, and let Va: 0(EF) -»

ü\(EF) be the induced relative connection. Since the fibres of a are one dimensional,

Va is necessarily flat. Thus, if a (= a\v.) has fibres which are all connected and

simply connected, Proposition F applies to give a (unique) bundle EA on U" such

that (a*EA, da) = (EF, va). The fibre of EA at y g U" is canonically isomorphic to

the vector space of covariantly constant sections of EM\N nu, which in turn is
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canonically isomorphic to the fibre of EM at x for any x g A^ n U. Thus, if x G U is

fixed, EA   is identified with EM x for any y g Qx, and, therefore, EA\Q is trivial.

To invert this construction, suppose that EA is a bundle on £/" with the property

that its restriction to Qx «-» Í7" is trivial for every x g U. Setting £F:= a*EA, we see

that this property means that

dim H°(b-l(x), 0(EF\b.1(x))) = rank EA

is independent of x g U, and, therefore, ft*0(£F) is a locally free analytic sheaf on

U, thereby defining a bundle EM with b*EM = EF.

Since ß* = 0F(1,1)[-1], [-1]', Bott's Rule gives

b^\ = 0M(S* ® S'*)[-l][-l]' = ß1,,,

and a connection v on EM is induced by da on £F via

Z>*0(£F)--b,Qa(EF)

Il il

0(£w)-—v— au**).

where the isomorphism on the right follows from the Projection Formula. By

construction the relative connection on £F induced by V on EM agrees with da, so it

follows that these two procedures are inverses of each other.

A bundle on U" with the property that its restriction to Qx is trivial for every

x g U will henceforth be called Q-trivial. The assignment EA ►-* ( EM, v ) defines a

functor from the category of Q-trivial bundles on U" to the category of Yang-Mills

bundles on U. This functor is compatible with the operations of tensor algebra and

restrictions to open subsets of U, it is injective when the intersection of U with every

null line in M is connected, and it is bijective when every such intersection is both

connected and simply connected.

The interpretation of the Yang-Mills field and current of (EM, V) in terms of EA

are the subjects of investigation in the next two sections. To close this section the

relationship between the analytic properties of EA and (EM, v ) will be considered in

the context of the generalized Penrose transform for cohomology resulting from the

construction given so far.

If B is any homogeneous vector bundle on A and q > 0, the relative connection da

on a*B induces a map b%0(a*B) -* b%ü\(a*B) which can be interpreted as a first

order linear differential operator acting between homogeneous vector bundles on M.

For example, if 0(B) = 0A(-3, -3), Bott's Rule gives ¿>*0F(-3, -3) = ß^ and

¿>*ß*(-3, -3) = ß^ (with all other direct images vanishing), the induced map being

d: ß3, -* Q4M. For 0(B) = 0^-2, -2), b\0F(-2, -2) = 0M[-1][-1]' and

¿>*ß^(-2, -2) = 0, so the induced operator is zero in this case. As a third example,

for 0(B) = ß3. ( := c*ßj„, where c: A -» P* is the projection), ¿^ß3. ® 0/1 - ß2,

¿>*ßi ® ßj» = Ü2M, and the induced operator is now d: ß + -> Sl3M. Any number of

other examples can easily be given (see e.g. Eastwood [6]), although the notation,

involving large tensor products of S and S', becomes unwieldy at times.
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If U c M is open, EA is a (^-trivial bundle on U", and (EM, V ) is the correspond-

ing Yang-Mills bundles on U, then the above can be repeated with B replaced by

EA ® B. By the Projection Formula,

b%0(a*EA ® B) = 0(EM) ® b%(a*B)

and

bltt\{a*EA ®B) = 0(EM) ® b%tt\(a*B),

where the induced operator is induced by v on EM together with the operator

b%0(a*B) -> b%ü\(a*B). For example,

K(EM) = ¿>20(£F)(-3,-3) - ¿2*ß1a(£F)(-3,-3) = K(EM)

isíusIV.^UEm)^ K(Em)-
A version of the Penrose transform [10] can now be put together: given B and EA

as above, the first part of the transform consists of the homomorphism

Hp(U", 0(EA ® B)) -+ Hp(U", a~10(EA ® B));

the second consists of expressing the latter group in terms of analytic cohomology on

U' by using the exact sequence

0 ^ a~10(EA ® £) -> 0(£F ® a*B) -* ti\(EF ® a*B) -+ 0;

the third consists of "evaluating" the groups H*(U',ti'a(EF® a*B)) in terms of

analytic cohomology on U using the Leray spectral sequence (usually highly degener-

ate) and expressing the maps between the groups on U in terms of the previously

identified differential operators. For example, with 0(B) = 0A(-3, -3), the complete

transform is

H2(U",0(EA)(-3,-3)) ^ H2(U',a-l0(EA)(-3,~3))

= ker//2(t/',0(£F)(-3,-3))      -      H2(U', Qla(EF)(-3, -3))

il II

H0(U,Q3M{EM)) - H°(U,Qtf(EM)).

By Proposition E the topmost arrow is injective if the intersection of U with every

null line in M is connected and simply connected; moreover, it is an isomorphism if

these intersections are noncompact. The transform for 0(B) = ß3,,

H1{U",Ü¡,(EA)) ^kcTV. H°{UMl(EM)) ^ H°(U,^M(EM)),

is injective if the intersection of U with every null line in M is connected and an

isomorphism if each such intersection is, moreover, simply connected.

It is sometimes convenient to place restrictions on the analytic cohomology of U

(e.g. that it be Stein) to obtain useful correspondences via the transform, which is no

great loss of generality if one is interested primarily in local solutions of differential

equations. However, the main concern of this paper is with the transform of bundles

for which such assumptions are not necessary, and the restrictions to be placed on U

here relate to the topology of its intersection with the null lines in M.
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2.3. The field. Let U, EA, EM, etc., be as in §2.2. In this section the Yang-Mills

field £ of ( EM, V ) is described in terms of EA using the discussion of the extension

problem given in §1.5. Namely, for x g U it will be shown that EA\Qm is trivial and

F(x) corresponds to the difference between EA \ „m and the trivial extension of EA \ „m

to Qx2\ where ß(n) is the «th formal neighbourhood of Qx *-» A. This description is

given in Manin [22].

Some essential cohomological calculations must first be dispensed with: suppose

x G U corresponds to L2 c T. Let Ix c 0A and Kx c 0PxP, denote the sheaves of

ideals defining Qx = P(L2) X P(T/L2) as a closed subspace of A and £ X £*,

respectively. Then

Kx/K2 = 0(£2)(-l,O) © 0(7/0(0,-1),

and there is the exact sequence of conormal bundles

(2.3.1) 0 - JA/J2 ® 0/Kx -» Kx/K2 - Ix/I2 -+ 0,

with./,/./2 ® 0/Kx = 0e/-l, -1). Using Bott's Rule we find that

Hp(Qx, 0(-l,-l)) = 0 = Hp(Qx, Kx/K2)    for all/7,

so//'(ox,/y/x2) = 0forah>.

The second symmetric power of (2.3.1) gives the exact sequence

0 - Kx/K2 ® JA/J2 - Kl/Kl - tl/ll - 0.

Again using Bott's Rule, we obtain

Hp(Qx,Kx/K2(-l,-l)) = 0    for all^,       Hp(Qx, K2X/K¡) = 0    for/» * 1,

and

^(ß,, tf2/*¿) - (O2 ¿2 ® det£2) ®(02(7/L2)* ® det(7/£2)*)

= ß2, ® 0/m,.

Thus,

/^(Ô*, tf/43) = H\QX, Kl/Kl) = ß2^ ® 0/m*.

Note that a*(2.3.1) is the analytic restriction to b~l(x) of the exact sequence

0 -+ J/J2 ® O/K -* K/K2 -* I/I2 -» 0 on £, so the preceding statements imply

bll/I2 = 0 for all/?, è»1/2//3 = 0 for/7 * 1, and b\K2/K3 = b\l2/P = ß2^.

Consider now the ß-trivial bundle EA. By hypothesis, ^L is trivial, so

Hl(Qx, 0(End £^) ® Ix/I2) = 0. Since this group acts transitively on 1X(EA\Q ), it

Follows that Ea\qW is the unique and, therefore, trivial extension of EA\Q to Q(x\

Since there is, in particular, the trivial extension of EA\„{¡) to Qx2\ the action of

H1(QX, 0(End EA) ® Ix/Ix) on 22(£4L<i)) is effective as well as transitive, so there

is a unique element of this vector space representing the difference between EA | Qa>

and the trivial extension of £jô<i> to Qi2). It will shortly be seen that this element

corresponds to the value of the field at x under the canonical isomorphism

H\Q2, 0(End EA) ® II/II) - 8*, (End EM) ® 0/mx.
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Let £<n) denote the «th formal neighbourhood of £ «-» M X A, and let a('°:

£(n) -> A, b(n): F(n) -» A/ be the restrictions to £("' of the projections. Let

£/'<") := (i/'( 0/r(„)|£/,) and, as in §2.2, let a(n) and b(n) denote the restrictions to U'(n)

of the appropriate maps when the underlying set U is understood.

The global analogue of the preceding analysis is as follows: let £F<n):= a(n)"EA

(with £F = £F,o) as before). Since H\U', 0(End £F) ® I/I2) = 0 and this group

acts transitively on ^(Ep), it follows that £f<d is the unique extension of £F to U'{1),

and, therefore, bw'EM = £F,„. In fact, since H°(U', 0(End £F) ® I/I2) also

vanishes, there is a unique extension of the isomorphism b*EM = a*EA to t/'(1).

Since

r(i/', 0(End b(2)'EM)) -» r(i/', 0(End £F«..))

is surjective, HX(U', 0(End £F) ® 72/73) acts effectively as well as transitively on

22(£F(d), so there is a unique element of this group representing the difference

between b(2)*EM and £F<2>, and the global problem is to show that this element

corresponds to the field F( v ) under the isomorphism

Hl{U', 0(End £F) ® 72//3) = H°{U, ß^(End EM)).

To see this, let va<»> denote the relative connection on b(n)"EM induced by V on

EM. Then by the relative version of Proposition H(a), there is a unique isomorphism

(ba)'EM, v„) — (£Fd), da) restricting to the identity on (EF,da). Since ß2 = 0,

(1.3.4) in this case reads

(2.3.2) 0 -» 72/73 -> QlM ® I/I2 -> a2, ® 0/7 -» 0

and R2a — Q2M ® O/I. The relative version of Proposition H(c) then states that

Vad» - ddiu g H°(U', ß£,(End EF)) is just

(F(va<,)-F(da(¡>))\u, = b*F(v)

and its image in Hl(U', 0(End £F) ® 72/73) under the connecting map from

(2.3.2) ® 0(End £F) is the difference between the two extensions of £F<i> to t/'<2)

determined by va«> and daa)\ this must be b(2)*EM — EFa> by the uniqueness

statement of H(a). This proves the assertion.

(Although the vanishing of b%I/I2 for all q does not appear to have been used

here and merely contributes the information that the connecting map of (2.3.2) ®

0(End £F) is an isomorphism, this fact has been implicitly used to construct the

connection on EM.)

Note that the map

0(£M) = e*0(£Fu,) - b\0{EF) ® 72/73 = Q2U(E„)

induced from

0 -► 0(£F) ® 72/73 -» 0(£F,2,) -» 0(£F,i,) ^ 0

isjust-v2:0(£A/)-ß2(£M).

Although the field does not correspond precisely to any global cohomology class

on U" in the sense of the transform described in §2.2, it is nevertheless derived from

one—namely,  -DEA G Hl(U",ü\(End EA)). If DEA is pulled back to U'm, its
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image in Hl(U', ßJ,<i)(End £Fo>)) must be zero since £f(d = bm'EM. From the exact

sequence 0 -» 72/73 -» SlA ® 0/72 -* B),<d -» 0 and the fact that ¿>*fi¿<i> = 0, it

follows that there is a unique class in Hl(U', 0(End EF) ® I2/P) mapped to

am*DEA and this, by the arguments of §1.5, is precisely EFm - b{2rEM. In fact, a

similar argument shows that F + g H°(U, ß^End EM)) corresponds in this sense to

-DCEA g H\U", ß*(End EA)), where c: A -> P* is the "projection". Of course, the

analogous result for F_ is also true.

If the field vanishes identically and the fibres of a are connected, then by

Proposition G the flat connection on £F pushes down to a connection on EA which is

necessarily flat. This is nothing more than the obvious statement that the construc-

tion gives a map H\U", GL(N, C)) -» Hl(U, GL(N, C)) which is injective when the

fibres of a are connected and bijective when they are, moreover, simply connected.

2.4. The current. Let A(n) be the «th formal neighbourhood of A in P X P*, and

let U" := (U", 04(„>|(y„). In this section using the formalism developed in Part I, the

main results of Manin and Witten, Isenberg, Yasskin, and Green are presented.

These results are: if the intersection of U with every null line in M is connected and

simply connected, then (a) EA extends (nonuniquely) to t/"(1), (b) there is a unique

such extension EAm admitting a further (unique) extension to a bundle EAm on f/"(2),

and (c) the obstruction (¿3(EAm) to extending EAm to C/"(3) corresponds to the

Yang-Mills current J under the transform for cohomology (2.2.1):

H2 lu".0(EnàEA)®^\      ->      [ker v : H0(U,Ü3M (End EM))      -     H°(U,Q4M(End EM))]

^(EAm) -> -ij

The notation used here is that of §1.3: £["J is the «th formal neighbourhood of £

in M X P X P*, and £<"•m) is the with formal neighbourhood of F(n) in £[nl—recall

that F(n,m) is defined by K" + 1 + Jm + i c 0MXPXP. as a closed subspace of Af X P

X P*. Further, a("-m): £<"'"» -> A(m) and Z>("-m): F(n'm) -> M denote the restrictions

to F("'m) of the projections, and the usual convention that these symbols also denote

their restrictions to {/'("-m) := (V, 0F(».».)|[/,) applies. We assume throughout that the

intersection of U with every null line in M is connected and simply connected.

By Proposition F the extension problem for EA to i/"(n) is equivalent to the

extension problem for (£F<ni, da{«i) to Í/'1"1. By working entirely on U' and its

formal neighbourhoods, the cohomological calculations are less complicated, and the

ability to treat the extension problem for the bundle and the flat relative connection

separately turns out to be a useful simplification. A judicious choice of path up

through the formal neighbourhoods of £ "solves" the extension problem for the

bundle in an economical way, and the "solution" of the extension problem for the

relative connection can be read off from the exact sequences (1.3.12) and (1.3.13). In

this context (1.3.13), with q = « and m = 0, is particularly useful and, in the current
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notation, is

(2.4.1) o -» ß>-i,(-i,-i) -> o;w -» o;« -» o,

which is a resolution of the topological inverse image of 0 -» JA/JA+1 -* <SAW -» 0A
-» 0.

Consider, first, extensions to í/'[1):

H^U', 0(End £F)(-1, -1)) = 0 = Hl(U', 0(End EF) ® K/K2),

and, therefore, b[l]*EM:= EFm is the unique extension to U'[1] of both £F and £Fm.

From (2.4.1) ®0(End £Fin),

Wl(¿fl<i>) g Hl(U', ßu(End £F)(-1, -1)),

a group which does not necessarily vanish, since it is isomorphic to

Hl(U, 0(End EM)[-l][-l]'). However, it will shortly be seen that dam has at least

one extension to £Fm and, granted this, ^,x(daw) is in one-to-one correspondence

with

H°(U', ßa(End £F)(-1, -1)) * H°(U, 0(End EM)[-1][-1]').

Since ß2 = 0, each such extension is flat, so by Proposition F there is a unique

extension of EA to £/"(1) for each choice of extension of dam.

Note that da: 0(£f<d) -» QlM(EF) extends uniquely to a map va: 0(£Fm) -»

ß^(£F), so this must be the same as the map induced by V on EM.

Consider now the extensions of £Fm to U'[2]: since £Fm = bm"EM, £Fni certainly

extends. The surjectivity of H°(U', 0(End bl2]*EM)) ̂ H°(U', 0(End £F[11)) implies

that the action of Hl(U', 0(End £F) ® K2/K2) on 22(£Fni) is both transitive and

effective, and, since

Hl(U', 0(End £F) ® K2/K3) -+ Hl{U', 0(End £F) ® 72/73)

is an isomorphism, it follows that there is a unique extension £Fm of £Fm to f/'[2]

satisfying £F|2| 1^,(2, = £Fa).

By direct calculation, b%^lpm(-\, -1) = 0 for all p and q, so from (2.4.1)®

0(End £F[2i) it follows that dam extends to a unique and flat relative connection vfli2i

on £F[2i. This validates the claim concerning the extension of daw, and, by Proposi-

tion F again, one now obtains a unique extension £^2) of EA to U"(2) satisfying

(al2]*£/4,2,,i/[2|) = (£F[2i,Va.2,).

Note that the field F also corresponds to b[2]*EM - Epm under the isomorphism

Hl(U', 0(End £F) ® K2/K3) A Hl(U', 0(End £F) ® 72/73)

= H°(U,Q2M(EndEM)).

Finally, the case of extensions to U'l3]: this case is more difficult because

£F[2] ¥= b[2]*EM, in general, and the direct images are accordingly harder to deal with.

The extension problem itself is simply that of extending £Fcu>:= a^^'E^v and

da(3.2) to t/'[3]; the difficult part is showing that w3(£F<3.2)) (= a*os3(EAa))) does

indeed correspond to the current J.
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The problem for the relative connection is easily "solved": since

Hp(U', ß*(End £F)(-3, -3)) = 0 for p,q = 0,1, any extension £Fm of Efm to U'[3]

is unique and, from (1.3.12) ® 0(End £Fm), daax, extends to a unique and flat

relative connection on EFm.

To reduce the problem to diagram-chasing on U'm rather than U'l2], the first step

is to extend EFm to U'[3K If one could obtain such an extension £Fm, then

£F«3.2, - E/ni,,*» g Hl(U', 0(End EF) ® K3/K4 + J3),

and the image of this class under the connecting homomorphism from

(2.4.2) 0 -* J3/J4 ® 0/K -* K3/K4 -► K3/K4 + J3 -* 0

is precisely w3(£F<3.2>) g H2(U', 0(End £F) ® J3/J4).

To see that £F[2i does extend to t/'[3', one takes direct images of (2.4.2): the direct

images of the first two sheaves are easily calculated using Bott's Rule. The direct

images of K3/K4 + J3 are best evaluated using the complex

(2.4.3) 0 -^ K3/K4 + J3^ Q}M ® K2/K3 -* ß2, ® K/K2 -+ ß3, ® O/K -+ 0.

As noted in §1.3, the cohomology of this complex is 0 except at ß1^ ® K2/K3, at

which term the cohomology is ßa ® J2/J3 = 0F(-1, -1)[-1][-1]'. Since

b%0F(-l,-l) = 0 for all q, (2.4.3) can be regarded as exact when taking direct

images, thus leading to the identification of b%K3/K4 + J3 as 0 for q # 1, and

b\K3/K4 + J3 = ker A: ß^ ® ß2, ^ ß3,

(where A is the map induced by ß1^ ® Q2M 3 / ® g -> / a g g ü3m).

The direct image of (2.4.2) is the following exact sequence on Af :

0     -> Ü^/K4 -*      b\K^/K4 + ß      ->     b\ß/J4 ® &/K

Il il 11

(2.4.4) 0(S'® G>3S)[-1]' kerA:^®^ 'M

0(SG> 03S')[-1] Í2

The   right-hand   dashed   arrow   is   the   map   induced   by   ß^ ®ßj^3/®g'-»

— Yif A *g g Ü3M, so this sequence is split globally on M by the composition

,   inc     , _.  -12 id ® *    , -

ß3/-ß1w®ß2/       -       ß1w®ß^/.

All other direct images of the sheaves in (2.4.2) vanish, so

H2(U', 0(End £F) ® K3/K4) -+ H2(U', 0(End EF) ® K3/K4 + J3)

is injective, and, since w3(£Fi2i) is sent to zero by this map, it follows that

co3(£F[2]) = 0 as claimed.

Let £F[3i be any extension of £fpi to U'l3]; then, since b[3]"EM is also an extension

of £F[ii to U'[3i, one has the (unique) class b[3]*EM — EFm in

Hl{U', 0(End £Fm) ® K2/K4).
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(£[3] is the first formal neighbourhood of £m in M X P X P*.) The image of

b[3]'EM - Epm in Hl(U', 0(End £Fm) ® K2/K4 + J3) is the sum of

b(3'2)'EM - £F(,.2, g H\U', 0(End £Fm) ® K2/K4 + J3)

and

£F<3.2, - Eftnluoa G H\U', 0(End EF) ® K3/K4 + J3).

On tensoring through the diagram

0     ->      Q\,9K/K3     ->     tt1M®0/K3     ->     ÜlM®0/K     ->     0

T î î

0     ->     K2/K4 + J3     -»      0/K4 + J3      -» 0/K2 ->     0

by Hom(£F(3.2), bi3,2)*EM) and altering the vertical maps to those induced by dav& on

£F(3.2) and V on EM, one sees that the image of b(3-2)*EM — EFo.2¡ in

H\U', 8i,(End £Fm) ® K/K3)

is zero, since the image of the identity endormorphism of £Fw in H°(U', ß^End £F))

is zero.

Consider now the diagram

0     ->     K3/K4 + J3     ->     Q}M®K/K3     -> A' ->     0

(2.4.5) î î T

0     ^ Tí3//:4 -> K2/K4 ->     7í2/7:3     ->     0

where A' is defined by the upper row, and the right-hand vertical arrow is the

induced map. Tensoring through by Hom(£Fm, bll]*EM) and altering the vertical

maps to those induced by dam on £Fm and V on EM, one has the following:

b[2]'EM - EFm ^Hl(U', 0(End £F) ® K2/K3)

pulls back to

b[3]'EM - £F,3, G Hl{U, 0(End £F,„) ® K2/K4);

the image of the latter class in Hl(U', ß'M(End £Fiu) ® K/K3) is the sum of the

images of b°-2)'EM - Efo.d and £Fo.2i - £F[3i|F<3.2), the former of which has just been

shown to vanish; finally, the image of EFo,v — £fpi| Fa2> in

772(f7', 0(End£F)®73//4)

under the connecting homomorphism from (2.4.2) ® 0(End £F) is w3(£F(3.2>) =

a*u3(EAm).

From its definition, 61* X = Ü3M, with all other direct images vanishing. Hence, the

rows of (2.4.5) remain exact on application of the functor b\, and the resulting

diagram induces a connecting map

[\erb\K2/K3 ^b\x]      -+      [cokerb\K3/K4 -» b\K3/K4 + J3]

II

II (I b\j3/J4 ® 0/K

(I
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Using the identifications of the induced maps in (2.4.4), the dashed arrow here is

just -jïd*: [kerJ: fi2^ -> Q,3M] -» ß3^; therefore, the image of u3(EAm) in

H°(U, ß^End EM)) is - -fe V*F = - ^J; this completes the proof.

The introduction of EFm is to some extent redundant in that w3(£F<3.2)) is the

image of

£F(3.2, - ¿>(3'2)*£w g Hl(U', (End Epm) ® K2/K4 + J3)

under the connecting homomorphism from

o -* j3/j4 ® o/K -» a:2/a:4 -> a:2/a:4 + j3 -» o,

but the problem of identifying the relevant induced maps on M is more complicated

without this. Note also that £F<3.2> — £Fi3] | F<3.2> is also the obstruction to extending

dam on Epm to a map 0(£Fi3i) -» Q\f(EFm).

2.5. Higher order obstructions. With the same notation, conventions, and objects

of the previous section, suppose that EA has been extended to a bundle EA^ for

some « > 2. The purpose of this section is to outline the identification of the class in

H°(U, 0(O"-lS® 0"-15")(End£M)[-l][-l]')

corresponding to

6>B+1(i» g H2{U", 0(End EA)®JA"+1/Jr2)

under the transform for cohomology.

First, some preliminary observations: the transform gives

Hl(U", 0(End EA) ® JJ!+1/JJ¡+2) = 0    (for « > 1),

so any extension of EAw to f/"<"+1' ¿s unique if it exists. When « > 3,

blJ" + 1/Jn + 2 ® 0/K -» blKn+l/Kn + 2

is injective, so, in contrast with the case n = 2, £^(»1 extends iff £F[-] := a'"1*^«,,)

extends to Í7'[" + 11 (if w„+1(£fm) = 0, there is a unique extension of £Ft»i to i/'[" + 11

admitting a (flat) extension of da{r,\). For purposes of identifying the obstruction,

however, this observation turns out to be not particularly useful, and a different

approach is required.

This approach repeats the complete transform procedure, but with diagram (2.1.1)

replaced by

With this picture the derived correspondence is between ^-trivial bundles on A(n)

and bundles on F12] which admit "half-flat" relative connections along the fibres of

£/2° -» P—these terms will be made precise shortly. In what follows, each unproved

assertion can be proved in precisely the same way as the analogous statement in

§§2.3 or 2.4.
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If £("} denotes the «th formal neighbourhood of £ in £ X £23, then, by

Proposition F, the extension problem for EAi„) to {/"("+1) is equivalent to that for

(a{n]*EA,„>, da{n)) to i/'("+1). Just as with£Fi2i, £F(„>:= a{"}*£/4(n) always extends to

i/'{"+1}, and un+l(EAM) is now manifested as the obstruction w„+1(ö?a(»i) to

extending da{*) to a map Vai»i: 0(£F(»+i¡) -» Bj,(£F(»)) (modulo choice of £F<»+i) g

2„+1(£F,.,)).

The bundle £F<») admits a unique and flat relative connection ve{»i and thus

pushes down to t/'/"', where U[:= e(U'). Alternatively, e*(£F(n)) = :0(£Fc>) is

locally free and e("'*£Fi(») = £F{»}. As with the construction of EM, £F<„> has some

extra structure induced by daw—this time it is a map

V/(»-.,: 0(EFiS) - ß1M(£F«ri1),    where/*"»: £/"2> -* P.

Since da{n) is flat, V/<»-d is half-flat in the sense that the composition 0(£F<n)) ->

ß^i^»-») -» ß2(£Fc-2>) is zero. (ß2. arises from the fact that e*ß2 ® 0F{„} = ß2

® 0F<»>; this is, of course, the wrong half of the curvature to vanish to induce a flat

relative connection on £F .)

If 7j c 0PxM defines £12 ^-> P X M, and g: £12 -» M is the projection, then

gw*EM = Epm, and g(2)*£w - £F2>2 corresponds to F+ under the isomorphism

77°(t/, ß2 (End EM)) ^ HX{U', 0(End EFJ ® 72/713).

The homomorphism

0{EM) = g*0(£F<v) - gi^O ® 72/713 = ß2 (EM)

is -F+: 0(EM) -» ß2(£w), and F_ is (essentially) the curvature of V/<«.

The obstruction to extending EAw now turns up as the obstruction

ton(v/,»-i»)G771((7i,£2(n-1,(End£Fi2))

to extending vy<»-i) to a genuine relative connection on £F<.o. Indeed, given such an

extension v/(n), it determines (by Proposition H(a)) an extension (£F<n+i), V7(»)), and

the pull-back of this object to i/'(" + 1) gives (£F<«+i>, Vf<»>). By Proposition H(b),

un( V/i.-n) is the image of F( v^i» -«) under the connecting homomorphism from

0 -> £^-i,(End £Fi2) -* ß«(End £F<r.>) -» ß^-..(End £F<r») -» 0.

For « > 2, the sequence

o - gu;.-. - giaj, ® /rví - giaj, ® 7r2/7r1

is exact, and the image of <o„( V/c-d) in Tí^í/', ß^(End £Fi2) ® I"~l/I") coincides

with that of F( V/<»-i>) under the connecting homomorphism from

(2.5.1)

0 -> ß^End £Fi2) ® ir1/!" - ß«(End £F<ri,) -» ß^End Em-*) - 0.

Since V/o-D is half-flat, ß2^can be replaced by ß2, so this image, in fact, lies in the

kernel of

Hl(U[, ß2 (End EF) ® ir'/ir2) - H1{U{, ß3/(End EF  ) ® ¡r2/!"'1).
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which is isomorphic to

H°(U,0(O"~lS® 0"~lS')(End EM)[-l][-l]').

To identify the connecting map from (2.5.1), use the diagram

(2.5.2)

o   -»   a1M®71n-2/A""1   -»   aif®0//1B-1   -»   a\,®0/ir2   -»   o

Î T T

0      -» 71"-1/71" -» 0//i" -» O/I?'1 -*     0.

Tensoring through by 0(£F<n d) and altering the vertical map to those induced by

Vw»-i>, it follows by induction that the map

g*0(£F,r2,) - g*0(£Fi2) ® ir'/i-

can be viewed as

0(EM) 3 g*0(£Fi<r.,) 3 s -» _F+. VV ••• VJ

«-3

g 0(©-$ ® e-3S')(EM)[-l]' c ß2 (EM) ® o»-3oi,.

(The symmetrized derivatives above are only defined on sections s of EM with

F + - VV ••• Vi = 0.)

« - 4

Hence, by replacing EF^-u by its endormorphism bundle, it follows that w„( V/«» u)

and, thus, o3„+1(EA<»)) correspond to the section

(VV •••  VF_)-£+- F + - VV ••■  VF_

G H°(U, 0(O"-lS ® ©""^(End EM)[-l][-l]').

If EA has rank N and extends to t/"(Ar +2), then it extends to all orders. To prove

this, observe that g*0(£F<*+i)) -» g*0(£F<„)) is an isomorphism in a neighbourhood

of a generic point of U for « > N. For if it is not an isomorphism for « = 1, 2,... ,N,

then g*0(£F(n+i)) = 0 for all « > N by virtue of the decreasing rank of these direct

images (which are all free in a neighbourhood of a generic point). If g*0(£F(?+i)) —>

g*0(£Fc>) ^ 0 is an isomorphism for some n between 1 and N, then V on EM

restricts to a connection on E'M := g*£F<*+n via

g*0(£Fi«r.,) - g*ß1M(£F,.,1,2) - 0j,(£Ár),

and, moreover, the restricted connection is anti-self-dual. EA is now expressed as an

extension 0 -» E'A -* EA -» QA -» 0, where 0^ denotes the quotient. The homomor-

phism EA -* EA extends to ¡J"(n + l), and, therefore, so does QA, thus giving the

desired result by induction on N. Indeed, g*£Fi(;,> = E'M for all m sufficiently large.

(For N = 1, g*0(£Fi,2,) = 0 or F + = 0.)

If one now replaces EA by End EA, it follows that

g*ß^(End £Fi(r.,) -» g*ß2/(End £F«r2,)
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is an isomorphism for n > N2 + 2, but this estimate is improved to « > N2 + 1 by

factoring out the trivial line subbundle of the endormorphism bundle generated by

the identity. The result now follows from (2.5.1) and the arguments leading to the

identification of un + l(EAw).

2.6. Examples and concluding remarks. Let U c M be an open set whose intersec-

tion with every null line in M is connected and simply connected. In order to

construct examples of Yang-Mills bundles on U with zero current, the first step,

using the Witten-Isenberg-Yasskin-Green correspondence, is to construct Q-trivial

bundles on U" c A. This in itself is not an easy problem, but it is by no means

insurmountable.

The simplest case to deal with is that of rank 1, where the condition of {/triviality

is equivalent to the vanishing of the first Chern class if H2(U, 2) = 0. Then if LA is a

(/-trivial line bundle on U", LA = exp <¡>A for some <¡>A G Hl(U", 0A). If U is, for

example, Stein, the transform for cohomology gives

H\U", 0A) = T{U, VM)/dT(U, 0M),

and a 1-form <$>M corresponding to <j>A under this isomorphism is the same as a

connection 1-form on LM, the trivial line bundle on U. (More precisely, V on LM is

given by Vs = ds — <}>Ms.) If H2(U, Z) + 0 or U is not Stein, such <pM may exist only

locally, but whatever the case, the field is ~d$M and the current is -d*d<j>M. The

class <j>A extends uniquely to U"(2), and u3(<j>AQt) G H2(U", 0A(-3, -3)) corresponds

to Yïd*d§M under the transform for cohomology. Thus, if the current vanishes,

LA = L+® L_ for some (uniquely determined) self-dual and anti-self-dual line

bundles L +.

The only {/trivial line bundle on all of A is trivial since Hl(A, 0*) = H2(A,Z) =

Z © 2. In fact, it is not hard to show that the only {/trivial bundles of arbitrary

rank on all of A are trivial.

For two g-trivial bundles E'A, E'A on U", an element

<¡>A^Hí{U",0(Hom(EA,EA')))

defines a third {/trivial bundle EA as an extension 0 —> E'A —> EA -* E'A -> 0. If U is

Stein, for example, the transform for cohomology gives

771(i/",0(Hom( EA,EA')))

= T{U, ßUHomfe E'¿)))/VT(U, 0(Hom(E'M, E'¿))),

where V is the induced connection on Hom(£^, E'ú). The local connection forms

for V on EM are of the form

[A"m     -4>m\

\o   A'My

where A'M and A"M are connection forms for E'M and E'¿¡, respectively, and <j>M G

T(U, Q\f(Hom(E'M, E'ú))) represents 4>A (a choice of <¡>M corresponds to a choice of

splitting EM~ E'M® E'ú). The field is

(F"     -V*M\

I 0 F    /
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and the current is

/J"     -(v*V<f> - *F A 4,M)\

10 J' /'

The section V*V4>W - *F A §M corresponds to

12ío3(^,2,) g H2(U", 0(Hom(£;, £;))),

so EA extends to C/"(3) iff EA, E'A and <¡>A do (this can also be deduced directly from

diagram-chasing on U").

Nontrivial examples of such <¡>A extending to f/"(3) are hard to find, even when EA

and E'A are line bundles. There are, of course, many examples coming from the set of

bundles on the product ( := subset of P X P* corresponding to U) generated by the

self-dual and anti-self-dual bundles and closed under the operations of tensor

product and extensions. Indeed, it appears likely that every rank A^ {/trivial bundle

extending to U',(-N +2) belongs to this set. This is certainly the case tor N = 1 and 2.

To give an example of a (2-trivial bundle extending to i/"(3), but not to all orders,

the simplest case to try after line bundles is that of bundles of rank two. Here it is

natural to consider extensions 0 -» Ll -» EA -» L2 -> 0, where Lx and L2 are line

bundles. Since EA extends to t/"<3) only if det EA does, one can suppose that

Ll = £* = L(p, q) for some line bundle L with first Chern class zero. For simplic-

ity, one can suppose that L is in fact trivial. The condition of (/triviality on EA

requires that p or q be zero in order that EA \ Q have zero second Chern class, so one

is left with extensions of the form 0 -» O(p,0) -> 0(EA) -* O(-p,0) -» 0 (say).

Extensions of this form correspond to elements of Hl(U", 0A(2p,O)), and in order

for EA L to be holomorphically trivial, it is necessary that p be < 0.

For p < -1, every element of Hl(U", 0A(2p, 0)) extends (uniquely) to the product,

thus giving a bundle with self-dual curvature. For p = -1, the transform for

cohomology gives H\U", 0A(-2,O)) = H°(U, 0M[-1]'); if XA G H\U", 0^-2,0))

and X G H°(U, 0M[-l]') is the corresponding section, then EA\Q is trivial iff

X(x) =*= 0. Moreover, ux(XA) corresponds to \UX under the isomorphism

H\U", 0A(-3, -1)) = H°(U, 0M[-l][-2]') (D is the conformally invariant wave op-

erator). If w^A^) = 0, then XA extends to the product and the bundle EA is again

self-dual. This leaves the case wx(XA) # 0, which turns out to be quite fruitful.

Suppose XA g Hl(U", 0A(-2,O)) corresponds to X g H°(U, 0M[-l]') with UX *

0. If X'A is any other element of H\U", 0A(-2,O)), EA = EA iff x = cX' for some

nonzero constant c. From the definition of EA, EM = S'*, and to give an explicit

description of the field and current, it is most convenient to resort to spinor indices;

an explanation of this notation can be found in [10].

In terms of the standard local trivializations of 5 and S', the connection 1-forms

are 8¿',X'l^7B,cX, where A', B' are indices for End S"* and C, C are indices for

QlM = 0ca. The field is

F_=-\o-*c„D.wX-xUX   and   F + = -XV& V D)b-X~\

so the connection is self-dual iff D X = 0 (which has been ruled out) and anti-self-

dual iff, locally, X~l = A + Bax" + Cxax" for some constants A, Ba,  C (a =
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0,1,2, 3). These anti-self-dual solutions are the (complex) instan tons with topological

charge (i.e., minus second Chern class) 1. The current J is -S(Ac,iD,)B,X2Vo(X~3OX),

so the Yang-Mills equations v*F = 0 are satisfied iff X satisfies the so-called

^-equation, UX = XX3, where X g C. This equation is familiar to physicists, and

there are many known solutions; indeed, this construction has been known to

physicists for some time as the <f>4-Ansatz. (See Actor [1] for a more detailed

description.) The commutator F_F + - F + F_ corresponding to u4(EAm) vanishes iff

the field is self-dual or anti-self-dual.

The connection is SU(2) on restriction to the real submanifold U n S4 iff

cX\S4nuis real for some constant c # 0. A large class of solutions of the 04-equation

has been found by twistor methods by using the embedding of M in P(A2£)

(Hughston and Hurd [17]). Specifically, let Xß, ju = 0,1,... ,5, be homogeneous

coordinates for P(A2 T) such that M is realized as the quadric p X^X" = 0, where

pM„ = diag(-l, 1,1,1,1,1) = p""; S4 •-* M is then {A'1 g M: A" = X»}. If R^ is

symmetric and satisfies R^R^p" = const p^, the section (R^X^X")-^2 of 0(-l)

is a solution of the <£4-equation on restriction to M. Of those solutions which are real

on S4, the singular sets are all of the form Sk <-+ S4 for k = -1, 0, 1, 2, 3. The

corresponding solutions of the Yang-Mills equations are strictly non-self-dual for

k > 0, and the k = -1 (nonsingular) solutions are the anti-self-dual 1-instantons

mentioned earlier. The k = 0 solutions appear to be the so-called merons (Actor [1]).

All k > 0 solutions have infinite action.

Although the ansatz has yet to produce any nonsingular strictly non-self-dual

SU(2) solutions of the Yang-Mills equations on S4, the above solutions of the

<f>4-equation do include nonsingular complex solutions on S4, thus generating explicit

SL(2, C) solutions of the Yang-Mills equations on S4 with topological charge 1.

This paper concludes with a few brief remarks concerning certain current work

which, to some extent, motivated the generality presented in Part I.

The generalization of the Ward correspondence to the non-self-dual case prompts

one to ask if there is an analogous generalization of Penrose's "nonlinear graviton"

construction [25], which locally produces all self-dual solutions of the Einstein

vacuum equations. Le Brun [20] has pursued research in this direction and has

succeeded in constructing the analogue of A for a general complex spacetime with

conformai metric; in [21] he carries this work further by constructing the analogue of

A(l), and he has tentative candidates for the higher order neighbourhoods (private

communications). In [8] Eastwood describes an approach to the constructions of

"/4<")" for « > 1 which gives results similar to those of Le Brun—namely, the

existence of an "A(2)" and the finding of (as yet unidentified) obstructions to the

existence of a " third formal neighbourhood".

From the twistor point of view, one should hope that an analogue of A^3) can

indeed be found in order that electromagnetic and other Yang-Mills fields on the

spacetime can be described in terms of cohomology on the associated complex

manifold, with curvature conditions on the spacetime corresponding to obstructions

to constructing "formal neighbourhoods". There is much scope for further investiga-

tion.
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