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NO £,-CONTRACTIVE METRICS FOR SYSTEMS

OF CONSERVATION LAWS'

BY

BLAKE TEMPLE

Abstract. Let

(*) ",+ /r(«)x = 0

be any 2x2 system of conservation laws satisfying certain generic assumptions on

F in a neighborhood Jf of «-space. We prove that for every nondegenerate metric D

on «-space there exists states ux and u2 in JÍ such that /f^, D(u(x, t), «,) dx is a

strictly increasing function of t in a neighborhood of t = 0, where u is the admissible

solution of (*) with initial data

|"i,     x < 0,

u2,    0 < x < 1,

«i,     x » 1.

This contrasts with the case of a scalar equation in which j™x D(u(x, t), v(x, t)) dx

is a decreasing function of f for all admissible solution pairs u and y when D is taken

to be the absolute value norm.

1. Introduction. Let

(1) ut + F(u)x = 0,       u = u(x,t),

be any 2x2 system of conservation laws which is strictly hyperbolic and genuinely

nonlinear (cf. [8]) in both characteristic fields in some open neighborhood Jf^ of a

state u0 g R2. Assume also that the shock and rarefaction curves do not coincide in

at least one characteristic family, say the first (cf. [14]). (By [14] this is equivalent to

assuming that each integral curve to the first eigenvector of dF is not a straight line

in any open subset of J/"Q; i.e., (r ■ V)r ¥= 0 in ^V0 is sufficient, where r is an

eigenvector field, \r\ = 1.) We prove that for such systems there does not exist a

metric D compatible with state space such that

/+ 00

D(u(x,t),v(x,t))dx
-oo

is a decreasing function of time for all physical weak solutions u and í; that agree off

a compact set.

More precisely we prove the stronger statement that there does not exist a metric

that is L1 -contractive relative to a constant state for a simple class of noninteracting

solutions. In particular, let dF denote the matrix derivative of £ with respect to u, let

Received by the editors August 25, 1983.

1980 Mathematics Subject Classification. Primary 35L65, 76N10.

1 Work done while author was a visiting member at the Courant Institute.

©1985 American Mathematical Society

0002-9947/85 $1.00 + $.25 per page

471



472 BLAKE TEMPLE

Xi = Xx(u) < X2(u) = X2 denote the eigenvalues of dF, and let

A = sup{|A2(") -X^v)\,u,v e -ATq].

Let

(«!     for -oo < x < 0,

u2    for 0 < x < e,

ux     for e < x < + oo.

The Riemann problems posed in (l)and (1') can be solved and are noninteracting for

times t < A_1e (cf. [8]). Let u(e, ux, u2; x, t) denote this solution, 0 < / < Ae. We

prove the following theorem.

Theorem 1. Let u be any weak solution of the form

u(x, t) = u(e, ux, u2, x, t).

Then there does not exist a metric D compatible with u-space such that

/oc D(u(x, t), ux) dx
-00

is a decreasing function of time for all uv u2 e Jf^, 0 < e ^ A, 0 < t < A_1e.

By a metric compatible with «-space we mean any symmetric function

(4) D:J^0XjV0->R

such that, for all u, v and w in ¿V0,

(5) (triangle inequality)        D(u, v) + D(v, w) > D(u, w)

and

(6) (compatibility)        C0_1|w — v\ < D(u, v) < C0\u — v\

for some uniform constant C0 > 0.

Because of the scale invariance of (1), the following corollary is a direct conse-

quence of Theorem 1 (see the Appendix).

Corollary 1. There does not exist a constant co and a metric D compatible with

u-space such that either of the following Gronwall-type inequalities holds for all weak

solutions

(7) u(x, t) = u(e, ult u2; x, t),

where ul, u2 e jV0, 0 ^ e < A a«<70 < t < A_1e:

— I     D(u(x, t), mJ dx < w 1     D(u(x, t),ux) dx,

y  / -oo /-oo

/     D(u(x,t),u1)dx ^e"'t     Diuix^),^) dx.
•'-oo -00

Moreover, because the class of functions given in (1) contains only noninteracting

solutions, we can also conclude from Theorem 1 that there does not exist a metric such

that (2) will decrease during each iteration of the random choice method of Glimm (cf.

[3]).
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This result for systems contrasts with the case of a scalar conservation law for

which the integral (2) is decreasing when D is taken to be the usual absolute value

norm (cf. [6, 15]). In particular, Theorem 1 implies that such a result for systems will

fail when D is taken to be the absolute value norm in any variables which are

obtained by a regular transformation of the conserved variables.

We remark that the class of systems for which the shock and rarefaction curves do

not coincide in one family includes the equations of elasticity and gas dynamics, but

excludes certain equations that arise in chemical engineering (cf. [1, 4, 5, 7, 10, 13,

14]). Restricting to this class ensures that the system does not uncouple, in which

case an £rcontractive metric does exist by results on scalar equations.

We prove Theorem 1 by contradiction, i.e., we obtain a set of inequalities by

assuming that (3) decreases for certain solutions of form (7). These inequalities are

then shown to be inconsistent with our other assumptions.

2. Proof of the theorem. To prove Theorem 1, assume that D is an ^-contractive

metric for a 2 X 2 system (1) that satisfies our other assumptions. The four lemmas

to follow are used to obtain a contradiction, and thus a proof of Theorem 1.

We adopt the following notation. Let r¡ = /*,(«), i = 1,2, denote the eigenvectors

of the matrix dF(u) for corresponding eigenvalues A,(w), i = 1,2. Let £,(") denote

the integral curve of r¡(u) in ¿VQ, and for v g R¡(u), let £,(«, v) denote the set of

points on Rj(u) that lie strictly between u and v. Let Sx(u) denote the 1-shock curve

in jV0 associated with the left-hand state u. Such curves exist locally in ^T0, and for

v e S±(u), Xx(v) «i Xx(u) (cf. [8]). Our assumption that the shock and rarefaction

curves do not coincide in the first family states that Sx(u) <t Rx(u) for any u g jV0.

By taking jVg sufficiently small we can, without loss of generality, assume that (cf.

[M])>-0ns1(«)nÄ1(«)={«},

We now let u, U, v, v denote any states in jV0 related in the following way (see

Figure 1):

(9) d^S,(u),    {v}=Rl(u)DR2(v),    {U}=R2(u)nR1(v),

and such that all states on the various shock and integral curves of r, that connect

these points pairwise also lie in ^T0. In this case we say that u, «, v, v have the

configuration of Figure 1. For example, by our assumptions, in any neighborhood of

u g ~V0 there exist states w, v and v such that u, w, v, v have the configuration of

Figure 1.

v (X, t)-> u

t

(X2 t)

ù

R2(v,v)

Rdv,u)

Figure 1



474 BLAKE TEMPLE

U(x, t)        v    nuN.       MS    v

Figure 2

If u, Ü, v, v have the configuration of Figure 1, then by strict hyperbolicity and

genuine nonlinearity, Xx increases monotonically from v to u and from »to« along

7\j(t;, u) and R^v, w), respectively. Without loss of generality assume further that X2

increases monotonically from v to v and from « to u along R2(v, v) and R2(u, u),

respectively. (If A2 decreases on R2(v, v) and R2(u~, u), then the following argument

goes through with straightforward modifications. By our assumptions of strict

hyperbolicity and genuine nonlinearity, one of these two monotonicity assumptions

must occur for all u, U, v, and v in Jf0 if jVa is sufficiently small.) Let ¡x(X) (resp.

/1(A)) denote the parametrization of Rx(v, u) (resp. ]i(v, «)) with respect to Xv and

let v(X) (resp. i>(X)) denote the parametrization of R2(v, v) (resp. R2(U, u)) with

respect to A2. Finally, let s denote the speed of the 1-shock that connects u to v.

Lemma 1. The following inequalities hold for any states u, w, v, v which have the

configuration of Figure 1 :

(10a)     (Xl(U) [D(p(\), u) + D(/i(X), u)] d\-(\¿u) - X,(v))D(u, v) > 0,
•/A1(r)

A,(«)

X,(i-)

Proof. By the triangle inequality,

(11) D(n(X),u) +D(¡jl(X),v)> D(u,v)

for all p.(X) g R¡(v, u). Integrating (11) from X^v) to Xx(u) verifies (10a). State-

ment (10b) is derived similarly.

Lemma 2. There exists a neighborhood J/~x of u0 and a constant Cx > 0, Jfx c jV0,

such that, ifu, w, v, v are states in jV~1 and have the configuration of Figure 1, then

(12) D(v,u) -D(v,u) < -Cxi« - 5|.

Proof. Consider first the following solution U defined for 0 < í < 1:

(13) U(x,0)=íU    íotx^Io^M-s],

\ v     otherwise.

Let

/oo D{u(x,t),v)dx.
-oo

Then

(15) A(l) = fl("' 7>(u(A), u) dX+(X2(v) - X,(v))D(v, v)
\(v)

+ (XliV)D(v(\),u)d\

(10b)     fX,Cu) [D(ii(X), u) + D(ji(X), v)] dX-iX^ïi) - X^U^Diu, v) > 0.
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V(x, t)

t= 1

Figure 3

(17)     fXl(U) D(ß(X), v) dX < (X.iu) - s)D(u, v)-(X2(v) - X,(v))D(v, v).

and

(16) I1(0) = (\1(u)-s)D(u,v).

But by our assumption, 7j(l) - 7t(0) < 0, so we have

Ai<«)

'X,(t.)

We now obtain a similar estimate for a complementary solution V defined for

0 < t < 1:

(18)

Let

(19)

v(x,o) = lv   t0TX<B [°>X2(V)-K(V)]>
I u    otherwise.

/oo D(V(x,t),u)dx,
-00

(20)

72(1) = {X2(v) - s)D(v, u) + fXl(v) D(v(X), u) dX + /"Al<U> 7>(M(A), u) dX
J\2(v) \(v)

and

(21)      72(0) = (A2(l;)-A1(l;))7)(l;,M)

= [(s - Xl(v))+(X2(v)-s)+(X2(v) - X2(v))]D(v, u).

Thus 72(1) - 72(0) < 0 implies

fM«>

(22)

ru)D(^(X),u)dX
J*i(v)

< (s - XY(v))D(v, u)+(X2(v) - s)[D(v, u) - D(v, u)]

Adding (17) to (22) gives

fA,(«)

(X2(v) - X2(v))D(v, u) - f 2(V) D(v(X), u) dX
•/a2<<~) >

ives

/*'      [7)(a(A), u) + 7)(u(A), v)} dX-(Xy(u) - Xx(v))D(u, v)\

(23) < (s - X2(v))[D(v, u) - D(v, «)] ~{X2(v) - X^v^Di'v, v)

+ f (M«) - X2(v))D(v, u) - (X2(V) D(p(X), u) dX).
\ J\2(c>) >

But by (10a) of Lemma 1, the left-hand side of (23) is positive, so we obtain

(24)

(X2(v)-s)[D(v,u)-D(v,u)] < -(A2(ô)-A1(î;))7)(t;,î;)

+ l(X2(v) - X2(v))D(v, u) - fA2<,,> D(v(X), u) dX]
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-    t=  1

W(x, t)        u

_ t = 0

Figure 4

Now since D is continuous (a consequence of the compatibility assumption), it is

uniformly continuous in a neighborhood of u0. Thus for ¿5 = v(X), X2(v) < A <

A2(i>), we can write

D{v,u) ^ D{v,u) -e(8),

where e(5)-»0+ as S -> 0 when we restrict the states u, ü, v, v to lie in a

neighborhood J/(8) of u0,

(25) JT(8)= {W: \w - u0\< 8}.

Therefore,

(26)

- fXl(V) D(v(X), u) dX < -(X2(o) - X2(v))D(u, v) + e{8)(X2(v) - X2(v))
J*2(")

and we can rewrite (24) as

/ , X-y(v)   —  XJv) . . ....
(27 D(v, u) - D(v, u) < -   2V  ;       1V   ' D{v, v) + C3e(8)v - v,

X2(v) -s

where we have used the fact that

(~>q\ n ^ A2(u) -\2(v) , .
(28) 0<—    ,_.-«S C3\v - v\,

X2(v) - s

a consequence of the assumptions of strict hyperbolicity and genuine nonlinearity.

Also as consequences of these assumptions, we have

.    , X2(v) - XJv)(29) 2;    -,   lV  ' > Q > 0

and

(30) C5_1IM — w| > |ö — y| > C5|w — u\,

where C¡ are uniform in^T0. Moreover, by the compatibility assumption,

(31) D(v,v)>Cö1\v-v\,

so substituting (20)-(31) into (27) yields

(32) D(v,u) - D(v,u) < -ÇjCjQ-1!« - u\ + C3C5"1e(Ô)|w - u\.

Thus there is a8l > 0 and a constant Cl > 0 such that

(33) Z>(ü,m)-£>(«;, m) < -CJh - w|

whenever m, t;, m, û have the configuration of Figure 1 and also lie in ^(8^ = Jfx.

This completes the proof of Lemma 2.
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t= 1

X(x, t)
V

Figure 5

Lemma 3. There exists a neighborhood Jf2 of u0 and a constant C2 > 0, jV2 c Jfa,

such that, if u,u~, v and v are states in jV2 and have the configuration of Figure 1, then

(34) D(u,v)-D(u,v) ^-C2\U-u\.

Proof. As in the proof of Lemma 2, consider first the following solution W

defined for 0 < t < 1 :

(35) W(x,Q)=ld     torx^&s-X^v)],

I u    otherwise.

Let

/oo D(W(x,t),u)dx.
-00

Then

(37) 73(1)= [Xiru)D(m\),u)dX
JX1(v)

+ (A2(M) - K(îi))D(û, u) + fXAu) D(HX), u) dX,

(38) I3(0) = (s-X1(v))D(v,u).

By our assumption 73(1) - 73(0) < 0, so

rXi(«)
(39)     fXl(u) D(ji(X), u) dX-(s- X,(v))D(v, u) < -(X2(u) - A1(ö))7)(ü, u).

We now obtain a similar estimate for a complementary solution X defined for

0 < / < 1:

(40) X(x,0)=lU    forxŒ[0,X2(u)-s],

I v    otherwise.

Let

(41) lAt)= D(X(x,t),v)dx.

(42) I4(l)=(X>ru)D(¡i(X),v)dX

Then

•/\,(5)

+ (A2(5) - X^Ü^Diü, v) + fX2(u) D(HX), v) dX,
•%<«)

(43)     I^ = (X2M-s)D(u,v)

= [(X^U) - s) +(X2(u) - Xr(û)) +(X2(u) - X2(U))]D(u,v).
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Thus 74(1) - 74(0) < 0 implies

fX,ru) 7)(/Z(A), v) dX-(X,(ü) - s)D(u, v)
Ai(D)

(44) *S (X2(w) - A1(m))[D(m, v) - D(U, v))

+ f (X2(k) - X2(u))D(u, v) - fXliU) D(v(X), v) dX).
y •/x2(«) I

Adding (39) to (44) and dividing by X2(U) - XY(ü) gives

(45)

x (-\\(-\{fxim d^v> ")dx+rru) d^x^ ^dx
X2(u) -X^m) (J\l(B) \(d)

-(X1(S)-X1(S))7)(M,i;)}

< D(u,v) - D(U,v) -D(u,u)

+ x   (V X (-A(U») -Uü))D(u,-v) - fX2tU) D(HX),v) dX).
X2(u) - Xx(u) { J\l(u) j

The left-hand side of (45) is positive by (10b) of Lemma 1, so we obtain

(46)
1

D(u, v) - D(u, v) < -D(u, w) +
X2(w) -X^u)

X2(«)
(X2(«) - X2(u))D(u, v) - J 2[U) D(v(X), v)dX\.x<

JX2fü)

But by uniform continuity, D(v(X), v) = D(u, v) + e(8), so the last term in (46) can

be estimated as 0(l)e(8)\u - U\ as in the proof of Lemma 2. This term is dominated

by -D(u, w) in (46) for 8 sufficiently small, so the proof of Lemma 3 is complete.

Lemma 4. There exists a constant C > 0 such that, if u, ü, v, v are states in

Jf= C\2=0Jfi and have the configuration of Figure 1, then

(47) D(u,v) -D(v,u) < -C\u- u\.

Proof. This follows immediately from Lemmas 2 and 3.

Proof of Theorem 1. We use Lemma 4 to obtain a contradiction. Let u0, ux, v0, vx

in Jf have the configuration of Figure 1 in the order u, «, v, v. Assume that |w0 — u0|

is sufficiently small so that there is a point it g Jfn R2(u0) on the same side of u0

as uv such that

(48) l«o-»l>(<VC)|«o-»ol

(see (6) for definition of the constants C,C0). Let {v} = R2(v0) O R^ü). By

choosing \uQ — v0\ sufficiently small, we can assume that the closure of the region

bounded by the curves Ri(v0, u0), Ri(v, It), R2(v0, v), R2(u0, ü) lies in Jf. Now

construct the sequence of points { u¡, v: } in Jf such that

(49) {o,}=S1(ui_l)nR2(v,_l),

{«,.} =R,(vi)nR2(ui_l).
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Thus for each /', u¡_x, u¡, o¡_v v¡ have the configuration of Figure 1. Moreover, by

our assumption that the shock and rarefaction curves diverge in the first family, we

can assume (by taking |«0 - v0\ sufficiently small if necessary) that there is an

integer N > 0 such that u¡ g R2(u¡_x, ü) for i < N, and

(50) ù G R2(u0, uN).

Now we can apply Lemma 4 as follows:

(51) D(u„ v,) - ö(",_i> v,_,) < -C\u, - «,._,!,

so, summing from 1 to N,

N

(52) £ D(u„ vt) - D(u¡_x, v,_i) = D(uN, vN) - D(u0, vQ)
i=i

N c
<-C¿ I",-- "¿-il< -C-tt|w0- fol

, = i ^

or

(53) ¿»(u^,^) < £>(«0,í;0) - C0|w0- v0\

< C0\u0 - v0\ - C0\u0 - v0\ < 0.

Thus uN = vN by the compatibility assumption. But this is a contradiction, since

uN g R2(u0) and vN g 7?2(t;0), and R2(u0) Pi 7v2(u0) CiJf0 = 0 by the assump-

tion of strict hyperbolicity. This completes the proof of Theorem 1.

It is interesting to note that the only use of the triangle inequality is in Lemma 1.

Moreover, (10a) follows without the triangle inequality by using the fact that smooth

solutions can be run backwards, and thus (2) must be constant in time for smooth

solutions, in order for Theorem 1 to fail. Similar methods do not seem to apply to

estimate (lib).

Note also that we need not assume that D is symmetric, since if (2) decreases for

D not symmetric, then (2) decreases for D(u, v) = D(u, v) + D(v, u), where D is

symmetric.
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Appendix. We show that Corollary 1 follows directly from Theorem 1. Let D be

any metric compatible with «-space. Assume that u and v are weak solutions of (1)

that agree off a compact set in x at t = 0, such that

/OO yOO
D(u(x, T), v(x, T)) dx - /   Z>(h(jc,0), v(x,0)) dx = d > 0

-00 -00

for some T > 0. Let Uc(x, t) = u(cx, ct), Vc(x, t) = v(cx, ct) and define

/oo
D(Uc(x,t),Vc(x,t))dx.

-OO

Then

(A3) It(t/c) = h(t)/c.
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Moreover, (Al) reads

(A4) I1(T)-I1(0) = d>Q,

and so by (A3)

(A5) Ic(T/c) - 7,(0) = (l/c)[71(£) - 7,(0)] = d/c.

Thus

(A6) Ic(T/c) = 7C(0) + d/c = (l/c)[71(0) + d\.

Now let m be a solution of form (7), let v(x, t) = uY and assume there exists co > 0

such that (8) holds for all such u. Then since Uc(x, t) is also of form (7) with a

rescaled value of e, we must have

(A7) Ic(T/c) < e°T"le(0)

for all c > 1, and by (A6)

(A8) }[/t(0) + d] < e"T*lM = e"T*\lM

or

(A9) d^ (eaT/c - 1)7^0).

But for c sufficiently large, (A9) fails, thus proving the corollary.
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