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SEMIGROUPS IN LIE GROUPS,

SEMIALGEBRAS IN LIE ALGEBRAS

BY

JOACHIM HILGERT AND KARL H. HOFMANN

Abstract. Consider a subsemigroup of a Lie group containing the identity and

being ruled by one-parameter semigroups near the identity. We associate with it the

set W of its tangent vectors at the identity and obtain a subset of the Lie algebra L

of the group. The set W has the following properties: (i) W + W = W, (ii)

R + - W c W, (iii) W'= W, and, the crucial property, (iv) for all sufficiently small

elements x and y in W one has x * y = x + y + \[x, y] + ■ ■ ■ (Campbell-Haus-

dorff!) e W. We call a subset W of a finite-dimensional real Lie algebra L a Lie

semialgebra if it satisfies these conditions, and develop a theory of Lie semialgebras.

In particular, we show that a subset W satisfying (i)-(iii) is a Lie semialgebra if and

only if, for each point x of W and the (appropriately defined) tangent space Tx to W

in x, one has [x, Tx] c Tx. (The Lie semialgebra W of a subgroup is always a vector

space, and for vector spaces W we have Tx = W for all x in W, and thus the

condition reduces to the old property that W is a Lie algebra.) In the introduction

we fully discuss all Lie semialgebras of dimension not exceeding three. Our methods

include a full duality theory for closed convex wedges, basic Lie group theory, and

certain aspects of ordinary differential equations.

We are interested in subsemigroups of Lie groups. In particular, we propose Lie's

program to characterize infinitesimally generated (local) subsemigroups in terms of

their tangent vectors at the origin.

Semigroups in Lie groups have been observed in a variety of contexts. Loewner

[Lo] studied them in the context of partial differential equations, and investigated

their role in the geometry of pseudo-Riemannian manifolds. More recently, Roth-

krantz treated semigroups and hermitian symmetric spaces in a dissertation written

under the direction of van Est [Ro]. Lie semigroups occur in geometric control

theory as was explained in a survey article by Brockett [Br]. This topic was the object

of several papers in recent years, so, e.g., of papers by Hirschhorn [Hi], Jurdjevic and

Sussmann [JS].

Vinberg [Vi] and Ol'shanskii [OU, 012] characterized convex closed cones which

are invariant under the action of a semisimple Lie group. In particular, they

determined closed cones in a semisimple Lie algebra which are invariant under the

adjoint action. Every invariant cone in a Lie algebra is the precise tangent object of a

local semigroup in the corresponding Lie group. Their interest in this matter arose

from the representation theory of semisimple groups and their results overlap those
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of Rothkrantz's. Foundations for a Lie semigroup theory were attempted by Hille

and Philips [HP], and Langlands [La] and, more recently and more systematically,

Graham [Grl, Gr2] and Hofmann and Lawson [HL1-HL5].

We are still a long way from having a full and satisfactory theory, but the

characteristic problems and difficulties begin to emerge. We appear to have a

semigroup equivalent of Sophus Lie's Fundamental Theorem: The set of tangent

vectors at the origin at a local semigroup is a wedge, i.e. a closed convex set which is

closed under positive scalar multiplication and addition. This was observed early,

certainly by Loewner, but very probably by S. Lie himself. Much more recently it

was observed, independently, by Ol'shanskii [012] and Hofmann and Lawson [HL3]

that the following additional condition is satisfied by any wedge W arising as the

tangent object of a local semigroup:

(L) eadXW= W   for all X from the edge W n - W of the wedge W.

Conversely, Ol 'shankii has announced [012] without proof, that any wedge satisfying

condition (L) is the precise tangent object of the local semigroup it generates. For a

special class of wedges this was proved, independently, by Hofmann and Lawson

[HL3]. In full generality, the claim was recently verified by the authors [HH2].

In general, the exponential function is not locally surjective from an (L)-wedge

onto the local semigroup generated by it. This is the case if and only if the local

semigroup generated by the wedge is locally divisible; see [HL2, HL4]. It was known

that a wedge generates a semigroup with this property if and only if it is a so-called

Lie semialgebra:

Definition 0. A subset W of a Lie algebra L (of finite dimension over R) is called

a Lie-semialgebra if and only if the following conditions are satisfied:

(1) Wis a wedge (i.e. (i) W + W ç W, (ii) R +   W ç W, (iii) W = W).

(2) There is an open symmetric convex neighborhood B of 0 in L on which the

Campbell-Hausdorff series X*Y = X + Y + \[X, Y] + ■•• converges absolutely

for X,Y <= B, and which satisfies

(wn B)*(wn B) çz w.

We observe that if exp: L(G) -* G is the exponential function of a Lie group, then

exp(W/n B) is a local semigroup in G in which every element lies on a local

one-parameter semigroup, and all of these are so obtained.

As an example, we will presently describe all semialgebras of dimension three or

less. Any invariant cone, according to Vinberg and Ol 'shanskii, is a Lie semialgebra.

The Lie wedge of a closed divisible subsemigroup of a Lie group is a semialgebra

provided it has no invertible elements other than the identity (see [HL4]; this last

condition is possibly superfluous).

Doubtlessly, Lie semialgebras are an important concept in the study of Lie

semigroups. However, on the basis of their definition, they are not easily handled. In

particular, their definition not only depends on the Campbell-Hausdorff series, but

indeed on the existence of a fixed neighborhood B on which the Campbell-Haus-

dorff multiplication is defined. It is not clear at all from the definition that, for
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another larger Campbell-Hausdorff neighborhood B', the condition (W C\ B')*(W

n B') çz Wis still satisfied.

It is therefore highly desirable to have a characterization of semialgebras which is,

firstly, global in nature; secondly, which depends only on the Lie bracket and not on

the Campbell-Hausdorff series; and, finally, which reflects the rich geometric

structure of a wedge in a finite-dimensional vector space. The objective of this paper

is to provide such a characterization. Before we describe the main result, we recall a

few concepts on the geometry of a wedge. In the proof of the main theorem we will

have to study the geometry of a wedge in much greater detail.

If IF is a wedge in a finite-dimensional vector space L, then we say that a

hyperplane T of L is a tangent hyperplane of W if the following three conditions are

satisfied:

(a) dim(T C\W)>\.

(b) W is contained in one of the closed half-spaces bounded by T.

(c) If S is a hyperplane of L satisfying conditions (a) and (b) with S in plane of T,

then S = T.

One expresses these facts sometimes by saying that T is a unique support-hyper-

plane of W. By a classical theorem of Straszewicz [St] there are enough points

x e W such that there is a unique tangent hyperplane Tx of W through x in the

sense that W is the intersection of half-spaces bounded by tangent hyperplanes Tx.

We can now formulate our main theorem as follows:

Theorem A. Let W be a wedge in a finite-dimensional Lie algebra L such that

L = W — W. Then the following statements are equivalent:

(1) W is a Lie semialgebra in L.

(2) [x, Tx] ç Tx for all x e Wfor which Tx is a tangent hyperplane of W in L.

(3) For any neighborhood U of O in L such that X* Y = X + Y + \[X, Y) + ■■■

is defined for all X,Yœ U, we have (W n U)*(W D U) Q W.

It is known that, for any Lie semialgebra Win a finite-dimensional Lie algebra L,

the vector space W — IF is a Lie algebra [HL2]. Therefore the hypothesis L = W -

W does not restrict the generality of the theorem.

Let us test this theorem by deriving a number of consequences. On the basis of

Definition 0 it is not clear at all that the intersection of an arbitrary family of Lie

semialgebras is a Lie semialgebra. Now, however, it follows that the set of Lie

semialgebras in a Lie algebra is a complete lattice:

Corollary B. The collection of Lie semialgebras in a finite-dimensional Lie algebra

is closed under arbitrary intersection.

Proof. This is an immediate consequence of conditions (3) in Theorem A. Let U

be as in Theorem A(3). If {W/. j e J) is a family of Lie semialgebras and

IJe (]{(Wj n U): jej), then X*Ycz- H/ for all i e J by Theorem A(3), and

thus A-* y g Ç\[w- i e/}.    D
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We derive a result of Ol'shanskii and Vinberg [012].

Corollary C. Let W be an invariant wedge in a finite-dimensional Lie algebra, i.e.

a closed wedge satisfying ead XW = W for all XeL. Then W is a Lie semialgebra.

Proof. Let x g W be such that Tx is a tangent hyperplane at W in x. Then Tx is

also a tangent hyperplane in all points tx with t > 0. If / is an arbitrary automor-

phism of W, then f(Tx) = Tf(x). If we take /= etadx, then /(jc) = x, and we

conclude that

(i)e'adxTx = Tx for all ?> 0.

Then

(ii) \(e,adx> - y) for all y e Tx and í > 0.

If we let / tend to 0 we obtain

(iii) (ad x)Tx ç Tx,

which is condition (3) of Theorem A.    D

A few comments illuminate the special attention we must pay to the fact that we

are dealing with semigroups rather than with groups. Firstly, it is essential that the

adjoint group acts as a group of automorphisms of the wedge W. Thus is would not

suffice to know that the relation eadxWç W is satisfied for all x g W. For an

endomorphism /of W it is not true in general that f(Tx) is again a tangent

hyperplane.

Secondly, we passed from information (ii) to information (iii) by differentiating.

This is possible because Tx is a vector space. The relation e'FW ç IF for a vector

space endomorphism F of L does not yield the relation FW ç W since the

differentiation process does not apply. It is instructive to realize very clearly where

the proof of (ii) breaks down in this present case.

Thirdly, Corollary C has no general converse as the example of sl(2, R) will show.

However, in any compact Lie algebra L, each semialgebra is invariant [HH3].

We draw further conclusions from the main theorem:

Corollary D. Let L be a finite-dimensional Lie algebra and W a closed half-space

with the hyperplane T as boundary. Then the following two conditions are equivalent:

(1 ) W is a Lie semialgebra.

(2) T is a Lie algebra.

Proof. Since Tis the boundary of a half-space, we have T = Tx for all x g T\ {0}.

Hence Theorem A(2) is equivalent to saying that T is a subalgebra.    D

We say that a wedge IF in a vector space L is polyhedral if it is the intersection of

finitely many half-spaces. Its finitely many tangent hyperplanes are called its

bounding hyperplanes. We then have the following generalization of Corollary D.

Corollary E. A polyhedral wedge W in a Lie algebra L with L = W - W is a Lie

semialgebra if and only if its finitely many bounding hyperplanes are subalgebras.

In order to prove this corollary, we use additional information which we will

provide in this paper. If T is a tangent hyperplane at a wedge W then W n T is a

subwedge of W, and E(T) = (W n T) - (W ' n T) is the subvector space generated
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by it. Now we complement the equivalent conditions (1), (2), (3) of Theorem A by a

fourth condition:

Theorem F. IfWis a wedge in a finite-dimensional Lie algebra L with L = W - W,

then W is a Lie semialgebra if and only if

(4) [E(T), T] Q Tfor any tangent hyperplane T of W.

If these conditions are satisfied, then E(T) is a Lie algebra.

The last assertion is a relatively elementary consequence of (4), as we will see. (4)

may be expressed by saying that T is an £(r)-module relative to the adjoint action

of L on itself. For a polyhedral wedge we have, of course, E(T) = T for all

bounding hyperplanes, which gives the proof of Corollary E. At the end of the paper

we give a construction of a class of examples which will show that, in general, the

tangent hyperplanes T of a Lie semialgebra W are not subalgebras.

For our intuition, nevertheless, an inspection of low-dimensional Lie algebras L is

helpful, and here we observe

Corollary G. If W is a wedge in a Lie algebra L with dim L < 3, then W is a Lie

semialgebra if and only if all tangent hyperplanes of W are subalgebras.

The proof of Corollary G follows directly from the following observation.

Lemma H. Let E be a subalgebra of a Lie algebra L and let T be a vector subspace of

L containing E such that [E, T] cz T. 7/dim T < dim E + 1, then Tis a subalgebra.

Proof. Suppose x g T\ E; then T = E + R ■ x and, thus, [T, T] = [E + R • x,

E + R -jc]c [E,E] + [E, x]Q [E,T]Q T.    D

This allows us to completely describe all Lie semialgebras of dimension < 3:

(a) L abelian. Every wedge trivially is a Lie semialgebra.

(b) L nilpotent. In the 3-dimensional Heisenberg algebra L any 2-dimensional

subalgebra contains the central commutator algebra [L, L]. Hence a wedge IF is a

Lie semialgebra if [L, L] ç W. (This remains true for nilpotent algebras of all

dimensions as Hofmann and Lawson [HL1] have shown, but the 3-dimensional case

was the hard portion of their proof.)

(c) L solvable. Here we have two separate cases to consider:

(i) Let An be a Lie algebra which is isomorphic to the Lie algebra of all matrices

of degree n + 1 of the form

tE„    X

. 0      0j'

X an «-component column, / g R. Then any wedge contained in An is a semialgebra

(see [HL1]). Now (a) L = A3 or (b) L = A2 © R. In case (b), let T be a two-dimen-

sional subalgebra of L. Then either T = R • a © R for some 0 =t a e A2 or T =

{(a, f(a)): a g A2) for some linear form /: A2 -* R. Then ([a, b], f[a, b]) =

[(a,f(a)), (b,f(b))] = ([a,b],0) shows that f([A2, A2]) = {0} and that every/

vanishing on [A2, A2] gives a subalgebra T. Now [L, L] = [A2, A2] © {0}. We

conclude that the semialgebras Win L are of the following type: (1) Wis trivial (i.e.
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contains [L, L]), (2) W = W2 © R with an arbitrary wedge W2 in A2, (3) W is

intersection of a wedge of type (1) with a wedge of type (2).

(ii) L is a Lie algebra which is isomorphic to the Lie algebra of complex 2 by 2

matrices of the form

ta    u

0     0
t g R, u g C,

with a fixed complex number oíR. Then [L, L], the set of matrices with t = 0, is

the only two-dimensional subalgebra of L. Hence the only 3-dimensional Lie

semialgebras in L are the two half-space semialgebras bounded by the plane [L, L],

and L.

(d) L (semi-)simple.

(i) L = so(3). This algebra has no 2-dimensional subalgebras, hence no Lie

semialgebras of dimension > 1.

(ii) L = sl(2, R). The two-dimensional subalgebras are precisely the tangent planes

of the double cone {x: k(x, x) = 0} with the Cartan-Killing form k. Any family of

half-spaces bounded by such planes will intersect in a Lie semialgebra, and every Lie

semialgebra is so obtained. This holds, in particular, for the two ice cream cones

E+,¿Z~, with E + U E~= [x: k(x, x) < 0}, but also for infinitely many polyhedral

cones with their bonding planes tangent to E + (say) and containing E+. None of

these semialgebras are tangent objects of global semigroups in Sl(2, R); but they do

belong to global semigroups in the universal covering group of Sl(2, R). There are

other polyhedral Lie semialgebras which generate global semigroups in Sl(2, R); e.g.,

the Lie semialgebra of all

a[i -¿1with a, b,c G R, b,c > 0.
c

It is the intersection of the two half-space semialgebras

: a, b, c g R and b > 0 [respectively, c > 0]a       b
c    -a

and it generates the semigroup of all Sl(2, R) matrices with nonnegative entries. The

semialgebras E+ and E ~ are the only invariant wedges in sl(2, R). The semialgebras

of sl(2, R) may be considered as completely known. (Details were discussed in

[HH1].)
The paper is organized as follows: In §1 we recall the analytic geometry of wedges

and their duality theory. It appears difficult to find a comprehensive source for all

the informations we need; we will therefore give a self-contained treatment and

make reference to sources only where they are easily accessible. §2 will then deal

with semialgebras of Lie algebras and will contain the proof of Theorems A and F.

This proof will rest substantially on the information contained in §1, on some

arguments involving Lie algebra arguments, and on some basic facts involving

ordinary differential equations. §3 describes Lie semialgebras occuring in compact

Lie algebras.

We will also apply the main result to answer in the affirmative a question posed in

[HL1,  p.  357].  We call a Lie algebra exponential,  if the Campbell-Hausdorff



lie groups 487

multiplication (x, y) <-* x + y + \[x, y]+ ■ ■ •, which is always defined for suffi-

ciently small x and y, allows an analytic extension to a multiplication * : L X L -> L.

Corollary I. If W is a Lie semialgebra in a finite-dimensional exponential Lie

algebra L, then W*W = W.

1. The analytic geometry of wedges.

The duality of wedges.

1.1. Definition. A subset W of topological vector space L over R is called a

wedge if it satisfies the following conditions, where we set R + = {r G R: 0 < r}:

(i)W + W cz W.    (ii) R+ W = W.    (iii) FF = FF.

The set H(W) = W n -W is called the edge of the wedge, and a wedge is called a

cone if its edge is singleton.

If L = Hom(L,R) denotes the topological dual of L, i.e. the vector space of all

continuous functionals (with the weak *-topology), then we set

W* = {« g L: (u,x) > 0 for all x g W),

W±= (w g L: (u,x) = 0 for all x g W)

for any subset W ç L. If W is a wedge, then W* is called the dual of W, and Wx is

called the anniliator of W.

It is immediate that the dual W* of a wedge W is again a wedge; it is therefore

also called the dual wedge. The annihilator of any subset is a vector space. If we give

L the weak *-topology, then (W*)* makes sense in the bidual of L. However, we

will always set

W** = {x G L: (ic,x) > 0 for all to g IF*}.

If L is locally convex, then we may identify L with a subspace of its bidual L   , in

which case W** = L n (W*)*. The Hahn-Banach Theorem immediately yields

1.2. Proposition. For a wedge W in locally convex space L we have W** = W.    D

We will henceforth always consider the vector spaces L and L in their dual pairing

and we will do the same for W and W*. For finite-dimensional vector spaces L

(which attract our principal interest), this duality is perfect, since L may be

identified with the dual of L in this case and IF** is equal to (IF*)*.

1.3. Proposition. Let {Wy. j g J} be a family of wedges in a locally convex space.

Then

®(CXWj:jeJ)y-ÇL{Wj*:jeJ}r,
(ii)(I.{WJ:j<Ej})* = n{WJ*:j^J}.

Proof. In view of K* = K* for K çz L, conclusion (ii) follows from (i) by

duality, we therefore prove (i): We set D = \\{Wj\ j g /}. Then D ç W, for all

i g J, whence W* ç D* for all i g / and thus (E{ W*: j g J })"£ D*. Conversely,

for each / g J we have W* ç Z{W*:j g /} and thus (YZ{W*:j g J})~* ç W**

= IF, for all/ e;, whence (I{ FF/:./e J})"* ç D and thus D* ç (E{FF/:; g/})"

in view of 1.2.    □
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We recall that FF - FF is the vector space generated by FF.

1.4. Proposition. Let W be a wedge in a locally convex space L. Then we have the

following conclusions:

(i) FF±= (FF- W)±= //(FF*),    (ii) H(W)± = (FF* - FF*)".

(iii)(FF*)±=//(FF).

Proof, (i) The relation FFX = (FF - W)±= ((W - FF)")-1 is clear. But w g FFx

iff (w, x) = 0 for all x G FF iff <w, x) > 0, and (-«, x) > 0 for all x e FF iff

w G FF* n -FF* = //(FF*).

(ii) By duality we have H(W) = (W* - FF*)X from (i), whence

H(W)±= (FF* - FF*)X^= (FF* - FF*)",

(iii) follows from (ii), in view of(FF*-FF*)-L=FF*±.    D

1.5. Proposition. Let W be a wedge in a locally convex space L.

(i) If M Q W, then M± nW* = -M* n W*.

(ii) // K is a wedge with A" ç FF, then

(K± OFF*)* = (FF- K)~   and   (K± nW*)1 =H(W - K)~).

Proof, (i) From the definitions we have A/x = M* d -A/*, and thus Mx n FF*

= -M* Pi M* n FF* = -M* n FF* since FF* Q M*.

(ii) From (i) we know (Kx n FF*)* = (-K* n FF*)*, and by Proposition 1.3(i)

this equals (-K** + FF**)"= (FF- K)~. By Proposition 1.4(i) the remainder fol-

lows.    D

Exposed faces. While in a general theory of convex bodies the concept of a face

(see e.g. [Ba]) plays a role, in the theory of convex cones we need it is a special type

of faces which are relevant, the so-called exposed faces. They are ideally adapted to

be treated in terms of duality. The definition of an exposed face is as follows:

1.6. Definition. A subset F of a wedge FF in a locally convex space L is called an

exposed face (cf. [Ba]) if and only if

(EXP)    F= (Fx C\W*y C\W.

The set of all exposed faces of FF is denoted EXP(FF).

Every exposed face is a face, but not conversely. Exposed faces can be char-

acterized in a variety of ways. The following characterization theorem will be

important for our purposes.

1.7. Theorem. For a subset F of a wedge W in a locally convex space L, the

following statements (l)-(4) are equivalent, and if dim L is finite, then (l)-(7) are

equivalent:

(1)Fg EXP(FF).
(2)F= (F- wyn w.
(3) There is a subset <¡> çz FF* with F = <j>± r\W.

(4) There is a <f> g EXP(FF*) with F = <t>x C\W.

(5) There is an element w g FF* with F = wx Pi FF.
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(6) There is an element x g F with F = (xx n FF*)X OFF.

(7) For each x in the interior ofFin F - F we have F = ( x x OFF*)"1 n FF.

Proof. (1) « (2). (F± n FF*)X n FF = (F - FF)"n(FF - F)~n W = (F - W)~

n FFby Proposition 1.5(h), sinceH((W - F)~) = (F - FF)~n(FF - F)~.

(1) => (3). Choose <t> = FL n FF*. (3) => (1). <í>x fï W is an exposed face iff <>-L

nFF=(^>-L nFF- FF)~n FF by (1) » (2). Trivially, we have the inclusion   ç

always. Thus we must show the converse containment. So let z = lim(x„ - y„) G FF

with x„ g <i>x n FFand y„ g FF. If w g 0 ç FF*, then

0 < <cj, z> = lim<w, x„ - y„) = lim(<o, -y„),

since (w, x„) =0 on account of ^eif1. But (w, -j„) < 0 since yne. W and

w g FF*. It follows that (u, z> = 0, i.e. z g <¡>± n FF.

(1) =* (4). We have F = (F1 n FF*)X n FF by Definition 1.6, but F± n FF* is an

exposed face of FF*, since ((Fx n FF*)X n FF)X n FF = Fx n FF* (by Definition

1.6).

(4) => (3) is trivial.

Thus (l)-(4) are equivalent. Clearly, (5) => (3) and (6) => (3).

Now suppose that dim L is finite.

(1) =» (5). If a is an inner point of Fx n FF* in (Fx n FF*) - (Fx n FF*), then

Fx n FF* is the exposed face generated by to in FF*, Then F± n FF* = Fm ç

(wxnFF)xnFF* since (wxnFF)xnFF* is an exposed face of FF* by the

equivalence of (1) and (3), since it clearly contains w. Taking annihilators we find

wx nFFc (tox nFF)xxç; ((wx nFF)x nFF*)xç (Fx nFF*)x, and thus wx n

FFç (Fx PiFF*)x CiW = F in view of Definition 1.6. Since u annihilates F, we

have trivially F çz tox n FF.

(1) => (7). If we let </> = Fx n FF * be the exposed face of FF* corresponding to F,

then by (1) => (5) and duality, for all inner points x of F in F - F, we have

<i> = xx n FF*. By Definition 1.6 we then have F = (xx n FF*)X n FF.

(7) => (6) is trivial.    D

1.8. Corollary. For a wedge W in a locally convex space L the two functions

F -> Fx n FF*: EXP(FF) -» EXP(FF*) a/k/ <f> -^ <i>x n FF: EXP(FF*) -» EXP(FF)

are mutually inverse containment reversing functions. In particular, the exposed faces of

W and those of W* are in bijective correspondence (which reverse containment).

Proof. It is clear that the functions are containment reversing. That they are

mutually inverse and well defined follows from Theorem 1.7 and its proof.   D

1.9. Proposition. Let W be a wedge in a locally convex space L and suppose

M çz W. Then (Mx n FF *)x Pi FF'is the smallest exposed face of W containing M.

Proof. By Theorem 1.7, (MxnFF*)xnFFG EXP(FF) and it clearly contains

M. If/7 g EXP(FF)withA/ç F, then(Mx n FF*)X n FF ç (Fx nFF*)x n FF = F

(by Definition 1.6).    D

1.10. Definition. We say that (M± n FF*)X n FF is the exposed face generated by

M and denote it by EM. If M = {x}we write Ex instead of E, x,.
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1.11. Theorem. Let W be a wedge in a locally convex space and let M be an

arbitrary subset of W. Then the exposed face EM generated by M satisfies the following

condition:

(i)(A/x nFF*)* =(£¿n FF*)* = (FF- EM)~( = (W - M)~,if M isawedge).

In particular, if x is an arbitrary element of W, we have

(ii) (xx n FF*)* = (El n FF*)* = (FF - Ex)~= (FF - R + - x)~,

(iii) xx n FF* = El n FF* = (FF - Ex)* = (FF - R +  x)*.

Proof. By Proposition 1.5(h) we have

(a)(Zsxn FF*)* = (FF-£w)-,and

(b) (Mx n FF*) = (FF - My if M is a wedge.

Moreover, since Efo n FF*çMxnFF*we have

(c) (Mx n FF*)* ç (£x n FF*)*.

We will now show

(d) (W - EMyçz (A/x n FF*)*

and thereby conclude the proof. For this purpose, let z g (FF- EM)~. Then there

are elements xn g FF and yn g Em with z = lim(x„ - yn). But EM = (Mx n FF*)X

n FF by Proposition 1.9. Hence, if u is an arbitrary element of A/x n FF* we have

(w, yn) = 0. Thus (u, z) = lim(w, x„ - yn) = lim(co, x„>. But (w, x„) > 0 since

w g FF* and thus (u, z) > 0. This shows z g (Mx n FF*)* as asserted. Conclu-

sion (ii) is a special case of (i), and (iii) follows from (ii) by duality.    D

Tangent spaces. We now link the concept of tangents with the concepts considered

so far.

1.12. Definition. For a convex set S in a topological vector space L we define

L(S) = {x g L: there are elements x„ G S with X = lim nxn } .

Since clearly limx„ = 0, the set L(S) is empty if 0 G S~. The elements x g L(S)

are the tangent vectors at S in 0 (defined in a "one-sided fashion").

Tangent vectors may be defined in various equivalent ways. We need the follow-

ing alternative:

1.13. Lemma. If S is a convex set in a topological vector space L with 0 g S, then the

following conditions are equivalent for a vector x G L:

(l)xGL(S).

(2) x = lim mnxnfor an unbounded sequence of integers mn and a sequence x„ G S.

Proof. (1) ^> (2) is trivial.

(2) =» (1). Suppose that x = lim mnxn with mn and x„ as in (2). By omitting terms

from the sequence and reindexing, if necessary, we may assume that the mn are

increasing. If S is convex, then S is convex and, since 0 g S, then for all 0 < r < 1

and s G S, we have rs = (1 — r)0 + rs G S. If now mn < k < >nn+l, we conclude

that yk = (mn/k)xn g S. We observe that kyk = mnxn for all teN, and thus

x = lim kyk. Hence x g L(S). It is a simple exercise to show that L(S) = L(S) (see

e.g. [HL2, p. 149] for a similar proof). Hence x g L(S) as we had to show.    D
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It is not hard to see that, under the hypotheses of Lemma 1.13, the set L(S) is in

fact a wedge:

1.14. Remark. If S is a convex set in a topological vector space L with 0 g S, then

L(S) is a wedge.

Proof. If x, y g L(S), then x = lim nxn, y = lim nyn with xn, yn e S. Then

i(x„ + y„) e S since 5 is convex. Then x + y = lim2«(^(xn + _yn)); and if we set

Z2m  =  Z2m + l   =   \(Xm + ïm)   We   fÍnd   that   X  + -V  =  Um "Z«•   T_huS   L(5) + L(S) E

L(5). Moreover, if 0 < r < 1, then rx„ = (1 - r)0 + rxn g S since S, hence S, is

convex. But rx = lim n(rxn), whence rx G L(S~) = L(S). If r G R+ we write

r = (r - [/•]) + [r] and have (r - [r]) • x g L(,S) after what we just saw. But

[r] ■ x g L(5) since L(S) is additively closed. It follows that r ■ x = (r - [r]) ■ x +

[r] ■ x e L(S) + L(S) c L(S).   D

1.15. Definition. Let FF be a wedge in a topological vector space and x g FF.

The tangent space at FF in x is

Tx = H(L(W- x))    (=L(FF-x)n-L(FF-x)).

1.16. Theorem. Let W be a wedge in a locally convex space L, and x g W. Then:

(i) L(W - x) = (FF - R +  x)-= (FF - Ex)~.

(Ü)TX = H(W-Exy
(iii)xx nFF* = L(FF-x)*.

(iv)//(L(FF-x)*) = (W- FF)X=//(FF*).

Remark, xx n FF * is the exposed face in FF * corresponding to the exposed face

Ex generated by x in FF according to the correspondence in Corollary 1.8. From (i)

and (ii) it follows that this face is a cone if FF is generating, i.e. satisfies FF - FF = L.

Theorem 1.16 links the concept of tangents with that of faces and duality.

Proof, (i) We have y g L(FF - x) iff y = lim«(w„ - x) with wn g FF. But

n(wn - x) g FF - R + - x, and so>> G (FF - R + - x)~. Conversely, let

ye (FF- R + -x)".

Then y = lim(un - r„ ■ x) with v„ g FF and 0 «s r„. If the r„ are bounded, w.l.o.g.,

r = lim rn exists. Then y + r ■ x = lim vn g FF and thus j-g FF — R+ • x ç

L(W — x). If the rn are unbounded, w.l.o.g. assume that the rn increase and set wn =

0-/r„) ■ vn g FF. Then x = lim rn(wn - x) G L(FF - x) by Lemma 1.13. Thus (i) is

proved in view of Theorem 1.11.

(ii)

Tx = H(L(W-x))    (by Definition 1.15)

= H(W-Exy   (by(i)).

(iii) First we take an wgL(FF-x)* and show that wGxxnFF*. Since

+ x g L(W - x), we have (u, +x> > 0, and (w, x) = 0, i.e. « g xx . If y G FF,

then y-xG FF-xç L(FF - y), whence 0 < (w, y - x) = (ic, y). Thus w g

FF* and therefore w g xx n FF*.

Secondly, we consider an coGxxnFF* and show that wgL(FF-x)*. If

z G L(FF — x), then z = lim nzn with zn = xn — x, where xn G FF. Now (co, z> =

lim «(w, xn — x) = lim n(w, x > > 0, whence <o G L(FF - x)*.
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(iv) The equality (FF - FF)1 = //(FF*) follows from Proposition 1.4(i). Now

h(l(W- x)*) = H(x± nFF*)    (by(i))

= x-LnFF*n-FF*n-x-L = x-Ln//(FF*)

= xxn(FF- FF)±=(FF- FF)X,

since x G FF - FF.    D

1.17. Theorem. Let W be a wedge in a locally convex space and x G FF. Then:

(i)Txx n W* = x1 nw* = El n FF* = L(FF- x)*.

(ii) Tx = (r/ n w*y = (xx n FF*)X.

(iii) Tx n FF = /íx (í/¡e exposed face generated by x).

(iv) r/ = (xx n FF*) - (xx n FF*).

Proof, (i) The equality xx nFF* = L(W — x)* was established in Theorem

1.16(iii) and the equality xx n FF* = £/ n FF* in Theorem l.ll(iii). Since x g Fx

we have Txx çz xx and thus F/ n FF* çz xx n FF*. On the other hand,

xx n FF* ç xx n W* - xx n FF*

= L(FF-x)* - L(FF-x)*    (by Theorem 1.16(iii))

çz H(L(W - x))x    (by Proposition 1.4(i))

= Tx    (by Definition 1.15).

This proves (i), and in the process we have shown (iv), too.

(ii) From Tx = TXL±= (xx n W*)x (by (iv)), we have Tx = (xx n FF*)X , and

(by(i))7; = (7;xn ff*)x.

(iii)

Txn FF= (x1 nFF*)"" nFF   (by (ii))

= Ex   (by Proposition 1.9).    D

By Theorem 1.17(iii), the tangent space Tx at FF in x allows us to construct the

exposed face Ex generated by x as Tx n FF. In the finite-dimensional case, every

exposed face F is principal, i.e. generated by one point. In general, every principal

exposed face is obtained via the tangent space in its generator in this fashion:

1.18. Theorem. Let W be a wedge in a locally convex space. Let F be an exposed

face of W and suppose that F is principal, i.e. F = Exfor an x G F. (If dim W is finite,

then all exposed faces are principal by Theorem 1.7 and Proposition 1.9.)

Then we have the following conclusions:

(i) F= Txnw.
(ü)Tx= (Fx nFF*)-1.

(iii) // Tv is any tangent space at W in y with Tv n W = F, then Ty = Tx.
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Proof, (i) follows from Theorem 1.17(iii).

(ii)

Tx= (xx nW*)"-    (byTheorem 1.17(h))

= (El nW*)X    (byTheorem 1.11)

= (Fx nw*)x .

(iii) The relation Tv n W = F implies (yx n FF*)X n FF = F (by 1.17(h)), and

thus

yx n FF* = ((yx n FF*)X n FF) n FF*    (by Corollary 1.8 and Proposition 1.9)

= Fx nFF*.

The same calculation yields xx n FF* = Fx n FF*. Thus

Tx = (xx (1W*)X    (by Theorem 1.17(h))

= (yx (1W*)      (by what we just saw)

= Tv.    D

The most important tangent spaces are those which are hyperplanes.

1.19. Definition. A tangent hyperplane F of a wedge FF is a hyperplane for which

there is a point x g FF with T = Tx. Any such point will be called a C^point, and

the set of all such points in FF will be written C1(W).

The following result characterizes tangent hyperplanes through duality.

1.20. Theorem. Let W be a wedge in a locally convex space L and let T be a support

hyperplane of W, i.e., T = w_1(0) = wx with w G FF*. Let <¡> = R + - w. Then the

following statements are equivalent:

(1)<Í>* = (W- (Til FF))'.

(2)<¡> G EXP(FF).
(3) // T' is a support hyperplane with T (1 W çz T'il FF, then T = T'. These

statements are implied by

(A) T is a tangent hyperplane.

//dim L is finite, then they are all equivalent.

Proof. (1) « (2). We have (2) iff

<t> = (<f>x nFF)"1 nFF'    (by Definition 1.6)

= (in FF)X nFF*    (since<i>x = cox= F).

This   is   equivalent   to   <>* = ((Til W)x nFF*)* = ((T (1 FF)X* + FF**)"  (by

Proposition 1.3). But

((rn ff)1* + ff**)~= (FF + (rn ff)11)^ (w+ ((tii w)-(tn ff))")"

= (W + (T<lW)-(T(l W))~= (FF-(Fn FF))".

Hence (2) is equivalent to (1).

(1) =» (3). Suppose that 7" satisfies 7" = w'x and in FF ç T' n W. Then

$* = (W - (T (1 W))-çz (FF- (T' n FF))" which is equal to ce,'* by the same

calculation which showed <f>' = (FF- (T (1 FF))-. Thus w' g <¡>**=4, = R + . w.

Hence T' = u'x = wx = T.
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(3) =» (2). We have (3) iff, for all co' g FF' with T (1 W çz co'x n W, we have

a' g 4>. This means (F il W)x il FF* = <¡>. Since F = <í>x , this is (2) by Definition

1.6. Now suppose (4). Then T = Tx for a suitable x g FF. Then <í> = Tx n FF* = Fx

n FF* = xx n FF* (by Theorem 1.17(i)). By Theorem 1.7 this implies 4> G EXP(FF),

i.e., (2). Now suppose that L is finite dimensional. Then, by Theorem 1.7, condition

(2) implies the existence of an x g FF with <f> = xx (1W*. Then T=$x =

( w x (1 W * )x = Tx by Theorem 1.17(h). Hence (2) implies (4) in this case.    D

We point out that occasionally one calls a hyperplane a tangent hyperplane of FF

iff it satisfies conditions (l)-(3) of Theorem 1.20. We have just seen that in the

finite-dimensional case this amounts to the same definition as ours in Definition

1.19.

Wedges in finite-dimensional vector spaces.

1.21. Definition. We call a wedge FF in a vector space L generating iff L = W —

W. By Proposition 1.4(i), a wedge is generating iff FF* is a cone.

1.22. Theorem. Let W be a generating wedge in a finite-dimensional vector space L.

Then:

(i) FF* = (E{R + - co: co g FF* and R + co g EXP(FF*)})- (Theorem of Strasze-

wicz ).

(ii) FF = D{ co*: co G FF* andR + - co g EXP(FF*)} = (1(5: S is a closed half-space

containing W whose boundary is a tangent hyperplane of W).

Proof, (i) is proved in [St] and (ii) follows from (i) by duality (see Proposition

1.3).    D

1.23. Lemma. If V çz W are wedges in a locally convex space L and X is in the

interior of V relative to W, then xxnF*=xxnFF*.

Proof. Trivially xxnFF*cxxnF*. We have to show the reverse inclusion.

Since (xx n FF*)* = (FF - R + x)~ and (xx (1 V*)* = (V - R + x)~ by Proposi-

tion 1.5(i), it suffices to show that FF çz V - R + -x. Let z g FF. Since F is a

neighborhood of x in FF, there is an r > 0 such that x + 7 • z g V. Then z g V — r

■ x çz V - R +  x.    D

The following is a technical lemma which will play a crucial role in the proof of

the main theorem.

1.24. Lemma. Let V çz W be generating wedges in a finite-dimensional vector space

and let x be in the interior of V relative to W. Suppose that co ¥= 0 is an extremal point

of xx n FF. Then there exists a sequence (co„, x„) g FF* X V satisfying the following

conditions:

(i)(con,x„)=0foralln.

(ii) R +   con G EX?(W)foralln.

(iii) co = limco,;.

(iv) Tx  = cox is a tangent hyperplane at W in xn.

(v) x„'g C\W) (cf. Definition 1.19).
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Proof. Since V is generating, then F * is a cone by Proposition 1.4(i). By Lemma

1.23, we have xxnF*=xxnFF*;by Theorem 1.7 this is an exposed face of V*.

We now show that co is an extremal point of V*:

Indeed let co = a + ß with a, ß G F*; then a = co - ß G ((xx (1 V*) - F*) n

V* çz ((xx n F*) n F*)"- V* = xx (1 V* by Theorem 1.7(2). Likewise, ß G xx

n F*. Since co is an extremal point ofxx nFF* = xx nF*, we have a,jSeR+-w

as was to be shown. It now follows from Theorem 1.22(i) that there is a sequence of

points co„ in V* with R* • co„ G EXP(F*) and with co = lim co„. By Theorem 1.20 for

each n there is an x„ g V such that co„x is the tangent hyperplane at F in x„. In

particular, (co„, x„) = 0 for all n.

The only thing which remains to show is that we may choose the co„, in fact, in

such a fashion that R + - co„ g EXP(FF*). Since L is finite dimensional, we may

assume that V is obtained from FF by intersection with finitely many closed

half-spaces , i.e. V = W g a* n • • • (1 a* for suitable elements ok g F*. (Other-

wise we could pass to a smaller wedge neighborhood of x with this property.) We

now claim that the x„ eventually miss all or1 ; otherwise there would be a k such that

(ok, x„> = 0 for infinitely many n. Thus ak cz xx n V* = R + - co„ infinitely often.

Then co = limco,, g R + - ok, i.e. co = 5 • ak for some s > 0. But (ok, x) = s~l(u, x)

= 0, and this would mean that x is the boundary of V which is not the case. By

omitting finitely many of the x„, if necessary, we may now assume that all x„ are in

the interior of V relative to FF. Then Lemma 1.23 shows xxn FF* = xxn F* =

R + co„. But then Tx¡ = (x„x il FF*)X = cox . Thus R + co„ G EXP(FF„) by Theorem

1.20. Note that (v) is immediate from (iv).    □

2. Semialgebras in Lie algebras.

Background results. For the record, we first repeat the basic definitions.

2.1. Definition. Let L be a Dynkin algebra, i.e. a Lie algebra over R which is

completely normable and has a continuous Lie multiplication.

A Campbell-Hausdorff neighborhood (C-H neighborhood) is an open convex sym-

metric neighborhood of 0 in L such that for x, y g B the Baker-Campbell-Dynkin-

Hausdorff series X*Y = X + Y + \[X, Y] + •■• converges absolutely and defines

a partial multiplication * : B X B -» L. A Lie semialgebra W in L with respect to B is

a wedge in L (see Definition 1.1) satisfying (FF (1 B)*(W (1 B) c FF.

Quite generally, a Lie semialgebra FF is a wedge in some Dynkin algebra L in

which there is some C-H neighborhood B with respect to which FF is a Lie

semialgebra in L.

2.2. Remark. For any Lie semialgebra W in L the vector space (FF— FF)" is a

Dynkin algebra. If W is finite dimensional, then FF — W is a Lie algebra.

Proof. See [HL2, 3.19, p. 155].   D

In the next we shall use a power series which we formally introduce in the

following definition.

2.3. Definition. In the ring of power series in one variable X we set

1 °°        h
g( X) = 1 + -X +  ¿Z -r^bX2"   with the Bernoulli numbers b2n.

1        « = i \lnY-
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2.4. Lemma. In the ring of two noncommuting variables we have x * y = x +

g(ad x)ymod(y2), where (y2) is the closed ideal generated by y2.

Proof. See [Bo].   D

The following propositions are steps towards a proof of the main results.

2.5. Proposition. Let W be a Lie semialgebra in a Dynkin algebra L. Let x g FF

and let Ex = ( E/ (1 FF * )x n FF be the exposed face of W generated by x. Take

y g Ex(l B so that Ey = Ex. Then

(ï)g(ady)(W-Exyçz(W-Exy.

If Tx is the tangent space at W in x, then

(h) g(ad y)Tx çz Tx.

Proof, (i) We fix a C-H neighborhood B such that FF is a Lie semialgebra in L

with respect to B. First we show

g(ady)(W)çz(W- Exy.

Therefore, let w g FF. Consider t g ]0, e] with an e > 0 so that (0, e) • w çz B. We

know from Lemma 2.4 that y*t-w=y + tg(ad y)w + R(t) with lim,^0+ jR(t)

= 0. Since FF is a Lie semialgebra with respect to B, we have y * t ■ w g FF.

Now take co g £x n FF*. Then

0 < \(co,y*t- w) = 7<co, y) + (u,g(ady)w) + O(t)

with lim,^0+ O(t) = 0. Since co g £/ , we have (co, y) = 0. It follows that 0 <

(co, g(ad y)w), i.e., g(ad .v)FF ç (F/ (1 FF*)* = (FF - Ex)~ by Theorem 1.11, as

was asserted. Now let y be such that E  = Ex. Then

g(ad y)(W- Ex) - g(ad y)(W - Ey) = g(ad y)(W- R ■ y)

c g(ad y)W - g(ad y)(R ■ y) ç (FF - Ej- R ■ y = (W - £,).

Since g(ad y) is continuous, we conclude that g(ad y)(W — Ex)~çz (FF - Exy, as

was to be shown.

(ii) By Theorem 1.16(h) we have Tx = H((W — Ex)~). Since any vector space

automorphism preserving the wedge (FF - Ex)~ must preserve its edge, (i) implies

(ii).    D

For a better understanding of Proposition 2.5, the following reminder is in order:

2.6. Remark. // W is a finite-dimensional wedge in a topological vector space, then

the equation Ex = E holds for any elements x, y G W for which y is in the interior of

Ex in Ex - Ex.

Proof. See Theorem 1.7(7).   D

2.7. Lemma. Let W be a finite-dimensional wedge and B a neighborhood of 0 in a

Dynkin algebra. If

(i) g(ad x)Tx çz Txfor all x g FF n B, then

(ii) [Ex, Tx] çz Txfor ail x G FF.

Proof. Fix x g W and let y g B be in the interior of Ex in Ex — Ex. Then

g(ad y)Tx = g(ad y)Ty,    (by Remark 2.6 and Theorem 1.16(h))

QTy   (by(i))

= TX.
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Since the interior of Ex in Ex - Ex is dense in Ex, we conclude that

(iii) g(ad y)Txçz Tx for all x g FF and all y e Exf\ B.

Now we take any co g £/ (1 FF*. By (iii) we have g(ad ty)z G Tx for all te. ]0, e[, all

y G Ex and all z g Tx (with a sufficiently small e > 0 so that ]0, e[y çz B). Since

£x n W* = Tx n FF* by Theorem 1.17(i), for all t g ]0, e[ we have

0 = (co, 7g(ad ty)z) = 7(co, z> + \(oo, [y,z]) + O(t)

with lim,^0+ O(t) = 0. As co g Tx , we have (co, z) = 0 and, thus, upon passing to

the limit / -> 0 + , we conclude that (u,[y, z]> = 0. Thus [y, z] g (xx (1 W*)x =

Tx according to Theorem 1.17(h). This shows (ii).   D

In Remark 2.2, we observed that for a Lie semialgebra FF the vector space

(FF— FF)-is a Dynkin algebra. The following lemma shows that weaker hypotheses

on a wedge FF suffice for ( FF - FF)- to be a Dynkin algebra.

2.8. Lemma. Let W be a wedge in a Dynkin algebra L which satisfies the following

condition:

g (ad x ) ( FF ) çz ( W - Ex ) "   for all x g FF (1 B with some C-H neighborhood B.

Then (FF — FF)" is a Dynkin algebra.

Proof. It suffices to show that [FF, FF] ç WXX=(W- FF)". Thus we take

x, y G W and co g FFx . We assume x g B and consider all t G ]0,1]. We note

g(ad tx)y g (FF - EX)~Q (FF - FF)"= FFX x by hypothesis. Thus 0 = |(co, y) +

(co,[x, y]) + O(t) with lim(^0+ 0(t) = 0. But (co, y) = 0, since co g FFX. Once

again conclude (co, [x, y]) = 0, i.e. [x, y] g FFx x , which we had to show.   D

In the finite-dimensional situation, we can now prove a converse of Proposition

2.5:

2.9. Proposition. Let W be a finite-dimensional wedge in a Dynkin algebra L and

let B be an arbitrary C-H neighborhood of L. Suppose that the following condition is

satisfied:

g(aàx)(W)çz(W-Exy   for all x G FF (1 B * B.

Then W is a Lie semialgebra in L with respect to B. In fact, if W° is the interior of W

in W - FF, then (FF0 (1 B)*(W° (1 B) c FF.

Proof. By Lemma 2.8 we may assume L = W' — W; then FF has nonempty

interior W°. Let x, y g FF0 (1 B. We define a function u: [0,1] -» L by u(t) = x * ty.

Then u is differentiable and satisfies the following differential equation with initial

condition:

u'(t) = g(adu(t))y,       u(0) = x.

See [HL5, Proposition 4]. (The assertion can also be derived directly from Lemma

2.4.) Let U = {t g [0,1]: u(t) g FF0}. Since u(0) = x g FF°, the set U is an open

neighborhood of 0 in [0,1]. We claim U = [0,1]; then in particular x * y = u(l) g

FF0, which will prove the proposition. If the claim were false, let s = min[0,1]\ U.
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Then s > 0. We abbreviate u(s) with z and find

«'(j) =   lim -^— (u(s) - u(t)) g (R + - z - FF)".
t-»s- S        t

On the other hand, by our hypothesis, we have u'(s) = g(ad u(s))y g (FF - Eu(s))~

= (FF — R + - z)". in view of Theorem 1.11. Thus we derive u'(s) g //(FF — R + - z)~

= Tz by Theorem 1.16. According to our hypothesis, the vector space automorphism

g(ad z) preserves the wedge (FF— R + - z)", hence must also preserve its edge T.

Since T, is finite dimensional, g(ad z) will induce an automorphism of the edge. The

relations u'(s) = g(ad z)y and u'(s) g Tz then imply y = g(ad z)~lu'(s) g F. and

hence y g F, n FF0. However, since z is a boundary point of FF by the definition of

s and z = u(s) (according to which there is a sequence of numbers ?„ g [0, s[ with

«(?„) g FF0 and s = lim t„), we claim Fz n W° = 0 : Indeed, w G F. n FF0 would

imply the existence of a neighborhood F of w with F ç T, (1 Why the definition of

T. This would entail F, = L. But for a boundary point z of FF, this is impossible.

Having proved the claim, we have arrived at the desired contradiction.    D

We have used the fact that FF is finite dimensional in two places: Firstly in

securing the existence of inner points of FF in FF— FF=(FF— FF)"; secondly in

deriving from g(ad z)Tz çz T, the equality g(ad z)Tz = T,. The first conclusion could

probably be circumvented by using an appropriate version of inner point adjusted to

convexity theory; such concepts do exist. It is not clear how the second use of

finite-dimensionality could be circumvented with the present line of proof. However,

it seems likely that some variation of the proof might yield the result even in the

absence of finite-dimensionality of the wedge. Later developments below, however,

will use finite-dimensionality more seriously due the use of Theorem 1.22 and

Lemmas 1.23 and 1.24.

We point out further that even for finite-dimensional FF we have not yet freed the

definition of a Lie semialgebra from the dependence of the existence of a particular

C-H neighborhood. In Proposition 2.9 the sets W and B are still linked.

The following is the crucial step to eliminate this link.

2.10. Lemma. Let W be a finite-dimensional wedge W in a Dynkin algebra L. Then

the following conditions are equivalent:

(1) [Ex, Tx] ç Txfor all x G FF for which Tx is a tangent hyperplane.

(2) g(ad x)Tx çz Txfor all x G Wfor which Tx is a tangent hyperplane.

(3) g(ad x)W çz (FF- Ex)~for all x G Wforwhich Tx is a tangent hyperplane.

(4) g(ad x)FF ç (FF - Ex)~ for all x g FF.

(5) [Ex, Tx] ç TJorallx g FF.

Proof. (1) => (2). By (1), Tx is invariant under ad x, and this implies (2).

(2) =* (3). By Theorem 1.16(h), Tx is the edge of the wedge (W - Ex)~. If Tx is a

tangent hyperplane, then the wedge (FF - Ex)~ is a half-space. If the vector space

automorphism g(ad x) preserves the hyperplane Tx, then it preserves or interchanges

the two closed half-spaces bounded by Tx. If Tx is a hyperplane, then so is Ttx = Tx

for 0 < t. If g(ad tx) interchanges the two half-spaces for one t > 0, then this holds
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for all t by continuity. But then \L = lim,_>0+ g(ad tx) would also interchange these

half-spaces which is not the case. Hence (3) follows.

(4) =» (5). Lemma 2.7.

(5) => (1) is trivial.

It remains to show that

(3) => (4). We assume (3) and the existence of an x G FF with g(ad x)W c¿

(W — Ex)~; if we derive a contradiction, we will have finished the proof. By

assumption we have a/e FF with g(ad x)y c¿ (FF — Exy. We may assume without

loss of generality that FF - W = L. Set K= (W - Ex)~, then a fortiori K - K = L.

Now we apply Theorem 1.22(h) and find a co g K* with R + - co g EXP(Ä*) such

that z = g(adx)y< £ co', i.e. (co, z) < 0. In particular, co is an extreme point of

K * = (FF — Ex)* = xx n FF* (cf. Theorem l.ll(iii)). This set is an exposed face of

FF* by Theorem 1.7. Hence co is also an extreme point of FF*. Now we choose a

cone V in W containing x in its interior w.r.t. FF such that

(i) for all v g F with \\v\\ = 1 (relative to a fixed norm on L) we have (co, g(ad v)y)

>(co, z> <0.

Now we apply the technical Lemma 1.24 and find a sequence (con, x„) g FF* X V

with (to„, x„) = 0 and co = limco„; moreover R + - co„ g EXP(FF*). We may now

assume that we normalize the x„ so that ||x„|| = 1. It is no loss of generality to

assume condition (4) for all x„ and to conclude that g(ad xn)y g (FF - Ex )~ for all

n. Since (R + - co„)* = (xx (1 FF*)* = (FF - Ex )~ by Theorem l.ll(ii) we may con-

clude that

(Ü) («„. g(ad xn)y) > 0 for all n.

The set { v g V: \ \ v \ \ = 1} is compact, because F is a cone and dim V < dim W < oo.

Hence there is a cluster point x' of the sequence x„. Then ||x'|| = 1 and x' g V,

whence (co, g(adx')v') < \{u>, z) < 0 by (i) above. On the other hand we then

have

(co, g(ad x')y) = \im(ion(k), g(ad xn(k))y) > 0

for a suitable sequence n(k) of natural numbers by (ii). This is the desired

contradiction.    D

We finally have all ingredients to prove the Main Theorem of this paper.

The principal result. In order to understand the notation of the Main Theorem we

refer to Definition 2.1 for the concepts "Lie semialgebra" and "C-H neighborhood",

to Definition 1.10 for Ex, to Definition 1.15, Theorem 1.16 and 1.17 for Tx and to

Definition 1.19 for C\W).

2.11. The Main Theorem. Let W be a finite-dimensional wedge in a Dynkin

algebra D and set L = W — FF; then the following conditions are equivalent:

(1) FF is a Lie semialgebra in D.

(2) For any C-H neighborhood B in D we have (W il B)*(W il B) çz W.

(3) [Ex, Tx] çz TJor all x G FF.

(3')[x, TX]Q TJor all x G FF.

(A)[Ex,Tx]çz TJor all x e C\W).

(4') [x, Tx] çz Txforallx g C^FF).
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For the applications it is convenient to have the equivalent conditions of Lemma

2.10 together. For the proof, however, we pass through various other conditions,

which we record in the following

2.12. Complement to the Main Theorem. The conditions (l)-(4) are also

equivalent to the following conditions:

(5)(resp.,(6))g(adx)Wçz (FF- R +  xyforallx g W (resp., for all x g C\W)).

(7) (resp., (8)) g(ad^)(FF- EJQ (FF- EJ for all y g Ex and all x g FF

(resp., all x G C\W)).

(9)(resp.,(\0))g(ady)Tx = TJor ally g Exandallx g W(resp.,allx g C\W)).

(U) (resp., (12)) g(ad x)Tx c TJor all x G FF (resp., all x G C^FF)).

Proof of 2.11 and 2.12. The proof is organized according to the following plan:

The following implications are trivial: (2) =* (1), (3) =» (3'), (4) =* (4'), (3) => (4),

(3') =* (11), (4') =* (12), (7) => (8), (9) - (11), (11) =* (12), (10) =* (12).
(1) => (3). See Proposition 2.5(h) and Lemma 2.7.

(4) => (5). See Lemma 2.10 (cf. Theorem 1.11(h)).

(5) =» (2). See Proposition 2.9 (cf. also Theorem 1.11(h)).

This concludes the outer circle.

(5) => (7). Apply Lemma 2.6 to conclude g(ad .y)(FF - Ex)~= g(ad x)(FF - Ev)~

for y in the interior of Ex in Ex - Ex. But g(ad y)(W - Ev)~çz (W - Ev)~ by (5)

(and Theorem 1.11(h)) and this last term is equal to (FF- Ex)~. A density and

continuity argument then yields (7).

(7) => (9). If the vector space automorphism g(ad y) leaves the wedge (FF - Ex)~

invariant, it must also preserve its edge Tx (see Theorem 1.16(h)).

(12) => (6). See Lemma 2.10 (cf. also Theorem 1.11(h)).

(6) => (5). See Lemma 2.10.

(8) =* (10). Same as (7) =* (9).    D

At last, the definition of a semialgebra (2.1) is finally made independent of a

Campbell-Hausdorff neighborhood of reference. In fact, we note that Theorem A of

the introduction is proved. In order to complete the proof of Theorem F of the

introduction we first observe a simple technical fact:
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2.13. Lemma. Let T be a vector subspace of a finite-dimensional Lie algebra L and

let LT be the set {x g T: [x, T] çz T). Then LT is a Lie algebra, and T is an

LT -submodule of L. Note that LTçz T.

Proof. Evidently LT is a vector subspace of T. Suppose that x, y g Lt. Then

[x, y] g [x, LT] ç [x, T] ç T. Moreover, for any / g F we have

[[x, y],t] = -[[y, t],x\ - [[t, x], y]    (by the Jacobi identity)

g [x,T] +[y,T] çz T+ Tçz T.

Thus [x, y] G LT. This proves the lemma.    D

2.14. Theorem. Let W be a Lie semialgebra in a finite-dimensional Lie algebra.

Then for all x g FF we have

(a) Ex is a Lie semialgebra, and

(b) Ex — Ex is a Lie algebra. In particular, Tx is an(Ex — Ex)-module.

Proof. We let Lx = {u g Tx: [u, Tx] çz Tx). Then ExçzLxçz Tx by Lemma 2.10

and Lx is a Lie algebra by Lemma 2.13. Now EXC W il Lx çz W (1 Tx = Ex by

Theorem 1.18(i). Thus Ex= W il Lx is the intersection of a Lie semialgebra with a

Lie algebra and is, therefore, a Lie semialgebra. This proves (a). But (b) is a

consequence of (a) (see [HL2]). The remainder is a direct consquence of Theorem

2.11(3).    D

2.15. Corollary. Let W be a Lie-semialgebra in a finite-dimensional Lie algebra.

Then every exposed face F of W is a Lie semialgebra and, as a consequence, F — F is a

Lie algebra.

Proof. This is an immediate consquence of Theorem 2.14, since every exposed

face F is of the form Ex for any point x in the ( F - F )-interior of F.    D

We note that Theorem F of the introduction is now proved in view of Theorem

2.11 and Corollary 2.15. We recall, however, that the definition of a tangent

hyperplane given in the introduction preceding Theorem A formally differs from

Definition 1.15. But Theorem 1.20 showed that the two definitions are, in fact,

equivalent.

We draw a conclusion for the Lie algebra on which the Campbell-Hausdorff

multiplication has an analytic extension to a global multiplication L X L -> L.

2.16. Definition. A Dynkin algebra L is called exponential if and only if there is

an analytic function * : L X L -* L such that for all sufficiently small xjeLwe

have x * y = x + y + >[x, y] + ■ • •. (If ||[x, y]\\ < ||x||||>>||, then ||x|| + ||>|| < log2

suffices for the absolute convergence of the Campbell-Hausdorff series.)

A Dynkin algebra L is exponential if and only if there is a Lie group G such that

L may be identified with the Lie algebra L(G) and exp: L(G) -» G is a diffeomor-

phism. Indeed, if L is exponential we take G = (L,*) and exp = 1L. Conversely, if

exp: L(G) -* G is a diffeomorphism we set x * y = exp-^expxexpy/. Certainly all

nilpotent Dynkin algebras are exponential, but there are also nonnilpotent solvable

exponential algebras (such as e.g. the algebras An of example (c)(ii) in the introduc-

tion).
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2.17. Theorem. Let L be a finite-dimensional exponential Lie algebra and let W be a

Lie semialgebra in L. Then W*W = W.

Proof. We will show that the proof of Proposition 2.9 applies for arbitrary

x, y G FF0. For this purpose it suffices to verify the following assertion:

(A) If x, y G L and t g R, then the fonction u: R -* L defined by u(t) = x * ty

satisfies

u'(t) = g(adu(t))y for ail r g R.

We prove assertion (A): We set u(x, y, t) = x * ty and define two analytical func-

tions v, w: LxL*R->L by v(x, y, t) = (du/dt)(x, y, t) and w(x, y, t) =

g(ad u(t))y = g(ad(x * ty))y. We define B = {x g L: \\x\\ < \ log2} with a norm

satisfying ||[x, y]\\ < ||x|| ||j>||. Then the Campbell-Hausdorff series x + y + \\x, y]

+ - ■ • converges absolutely on B X B, and its sum agrees with x * y. This implies

that the functions v and w agree on the open set B X B X ] -1,1[ of L X L X R.

Since they are analytic, v = w follows. This proves (A).

Now if FF is a semialgebra, by 2.12 we have g(ad x)(W) çz (FF - Ex)~ for all

x g FF. The proof of Proposition 2.9 applies for all x, y g FF0 after what we just

saw and shows that W° *W° çz FF0. By continuity, the assertion then follows from

FF=(FF0)-.    D

We have, in fact, shown a bit more:

2.18. Corollary (to the proof of Theorem 2.17). If W a Lie semialgebra in a

finite-dimensional exponential Lie algebra, then W° * W° c FF° for the interior W° of

WinW-W.   a

3. A construction. In the introduction we noted, in Corollary C, Ol'shanskii's

result that an invariant wedge must necessarily be a semialgebra (cf. also Vinberg

[Vi]). Ol'shanskii and Vinberg investigated invariant cones in semisimple Lie alge-

bras. It is useful for the construction of examples to note another class of examples

yielding invariant cones and, therefore Lie semialgebras. In particular, this class will

illustrate the fact that the tangent hyperplanes Tx of a Lie semialgebra need not

themselves be subalgebras. Since in the Lie algebras of low dimension, which

determine much of our intuition, these tangent hyperplanes are indeed subalgebras

as we observed in Corollary G of the introduction, this is perhaps a worthwhile

warning. In another paper we show that the class of invariant wedges we construct

here is essentially the only type of semialgebra which can occur in a compact Lie

algebra [HH3].

3.1. Definition. Let L be a Dynkin algebra and || || a norm compatible with its

structure. We say that this norm is invariant iff

(i)\\e*d*y\\ = \\y\\torallx,yeL.

If L happens to be, in addition, a real Hibert space with inner product ( | ), we say

that this inner product is invariant iff

(ii) ([x, y]\z) = (x\[y, z]) for all x, y, z G L.

3.2. Remark. 7/L is a Dynkin algebra which is also a real Hilbert space, and if\\ \\

denotes the norm associated with the inner product ( \ ), then \\ \\ is invariant iff

( | ) is invariant.
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Proof. By Definition 3.1(i), the norm || || is invariant iff

(iii) each eàd x, x g L, is an orthogonal transformation of L. This is the case iff the

function t -» (e'adxy\e'adyz): R -* R is constant for all x, y, z. Upon differenti-

ating and observing the product rule we note that this condition is equivalent to (ii).

D

The well-known fact that the Lie algebra of a compact Lie group is a direct sum

of its center and its semisimple commutator algebra and the fact that the Cartan-

Killing form on a Lie algebra is negative definite iff it is the Lie algebra of a

compact semisimple Lie group immediately yield the well-known observation.

3.3. Remark. The following statements are equivalent for a finite-dimensional Lie

algebra:

(1) L is the Lie algebra of a compact Lie group.

(2) L possesses an invariant inner product.   D

3.4. Definition. A Lie algebra is called compact if it satisfies the two equivalent

conditions of Remark 3.3.

3.5. Example. Let Lv. .. ,Ln be compact Lie algebras whose norms \\ \\k,k = \,...,n,

are derived from invariant inner products. Then the direct product Ll X ■ ■ ■ X Ln has

an invariant norm given by

||(x1)...,x„)||= max{||xj: k = 1,2,...,«}.    D

Trivially, on an abelian Lie algebra every norm is invariant. The following

construction now gives us a class of invariant cones:

3.6. Construction. Let L be a Dynkin algebra with an invariant norm || ||. Define

a cone Win L X R by

FF= {(x,r) g L X R: ||x|| < r).

Then FF is invariant and hence is a generating Lie semialgebra.

Proof. Since ead<-x,r)(y, s) = (e3dxy, s), invariance follows immmediately, by

Corollary C of the introduction, FF is then a Lie semialgebra. Since it has inner

points, it is generating.   D

3.7. Observation. Let w = (x, 1) in W with x = 1. Let Hx be that vector subspace

of L for which x + Hx is the tangent space in x at the unit ball of L. Then

Hx X {0} + R • w = R((HX + x) X {1}) is the tangent space Tw of W at w.

Proof. Exercise.   D

3.8. Observation. In the notation of Observation 3.7, the tangent space Tw is a Lie

algebra if and only if Hx is a subalgebra of L.

Proof is straightforward.   D

3.9. Example. Let Lbe a compact semisimple Lie algebra equipped with an invariant

inner product. Then no tangent space of the wedge W = {(x, r) g L X R: (x\x) < r2,

r > 0} is a subalgebra.

Proof. This is a consequence of the fact that all spaces Hx in this case are the

hyperplanes xx , and that a compact semisimple Lie algebra has no subalgebras of

codimension 1.    D
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The lowest dimension we can produce in this fashion is 4, arising from L = so(3).

The construction shows, in particular, that any compact Lie algebra with nontrivial

center always contains generating Lie semialgebras. In [HH3] we remark that a

compact Lie algebra cannot contain a generating Lie semialgebra.
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