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ON THE STRUCTURE OF ABELIAN/^-GROUPS
BY

PAUL HILL1

Abstract. A new kind of abelian p-gioup, called an A -group, is introduced. This

class contains the totally projective groups and Warfield's S-groups as special cases.

It also contains the V-groups recently classified by the author. These more general

groups are classified by cardinal (numerical) invariants which include, but are not

limited to, the Ulm-Kaplansky invariants. Thus the existing theory, as well as the

classification, of certain abelian ^-groups is once again generalized.

Having classified /(-groups (by means of a uniqueness and corresponding ex-

istence theorem) we can successfully study their structure and special properties.

Such a study is initiated in the last section of the paper.

1. Introduction. In this paper we determine the structure of a class of abelian

/»-groups more general than totally projective groups, 5-groups, and TV-groups, all of

which have been classified earlier [5, 18, 6]. To introduce this new class of groups, we

begin with the following definition. It is to be understood throughout that all groups

are abelian.

Definition. If ¡u is a limit ordinal, the class A^ consists of those /»-groups 7/ for

which there is a containing totally projective /»-group G of length not exceeding ¡i

that satisfies the following conditions.

(a) H is isotype in G.

(b)p\G/H) = (pxG, H)/HwheneverX < ¡ti.

(c) G/H is the direct sum of a totally projective group and a divisible group.

The members of the class A^ are called jti-elementary A -groups. An yl-group is a

direct sum of jti-elementary yl-groups for various limit ordinals ju. If G is a totally

projective /»-group of length fi, the pair (H,G) is called an yl^-pair whenever

conditions (a)-(c) are satisfied. Thus, if H is an ,4-group, then H = ¿Z © //,, where

(//,, G¡) is an A (/)-pair for distinct limit limit ordinals /i(i).

Incidentally, if the terminology needs an explanation (and we hope not), one can

interpret the letter "A" used here as an abbreviation for the word "accessible",

which will prove to be a rather descriptive term. Certainly we follow tradition in

using a single letter to represent this class of groups since their predecessors include

T-groups, S-groups, and TV-groups.
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We are able to show that the structure of an A-gwup is completely determined by

certain cardinal invariants including, but not limited to, the Ulm-Kaplansky in-

variants. The complete collection of invariants are called .4-invariants (primarily

because they suffice for A -groups). Observe that if we choose 7/ = G to form the

A^-pair: (H, G), we demonstrate that any totally projective group G is an A -group.

Moreover, it follows from [18] that any S-group is an A -group and corresponds to

the special case where Gi/Hi is divisible, for each /', in the representation 77 =

£ © //,, where (//,, G¡) is an ^^-pair (whereas Gi/Hi = 0 corresponds to a totally

projective). But the new class also contains groups that are not S-groups. In

particular, the TV-group constructed by Megibben in [11] (and referred to by

Warfield [18, p. 166] as an example of an isotype subgroup of a totally projective

group that is not an S-group) is an A -group. A general existence theorem proved

herein demonstrates the existence of many other A -groups.

Warfield's Problem 4 in [18] is the following. Is there a reasonable structure theory

for a larger class of groups which are isotype subgroups of totally projective groups?

The results of this paper establish a clear answer in the affirmative. Incidentally,

Warfield once indicated that he thought the answer to this question was "no".

Although this paper generalizes the main results of [18], our approach is somewhat

different from that of Warfield. In particular, we do not require cotorsion comple-

tions. Otherwise, the techniques employed here in generalizing the theory of S-groups

to a larger class of /»-groups are similar to those of [18]. In fact, both are based on

my original classification paper [5].

The reader who is familiar with Warfield's paper [18] knows the historical

development of the classification of abelian /»-groups, at least up through the

classification of S-groups. Major steps in this development include: (1) countable

groups (Ulm, 1933 [16]), (2) direct sums of countable groups (Kolettis, 1960 [10]), (3)

totally projective groups (Hill, 1967 [5]), and (4) S-groups (Warfield, 1975 [18]).

Other significant contributions to the classification problem include Zippin [20],

Nunke [13], Hill and Megibben [8], Parker and Walker [15], and Crawley and Hales

[1]; we do not claim to be exhaustive, but our intent is only to provide a reasonable

bibhography. Moreover, our interest here is restricted to /»-groups. For the classifica-

tion of (certain classes of) mixed groups, see [14, 17, 19], or other sources.

Finally, we mention that the tendency upon reaching each of the milestones

referenced above has been at first to perceive the situation as being as far as one can

go. This is evidenced, for example, by the fact that a quarter of a century elapsed

between Ulm's result for countable groups and Kolettis' extension to direct sums of

such groups. Also, recall that Warfield initially thought that Problem 4 had a

negative answer. My opinion is that no time soon will all /»-groups be satisfactorily

classified with numerical invariants, but it is inevitable that larger and larger classes

will be reached with and encompassed in such a classification theory.

2. The reduction to cofinality greater than w0.

Theorem 1. Let ju denote an arbitrary limit ordinal. The class A^ consists exclusively

of totally projective groups if and only iffi is cofinal with u0.
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Proof. If ju. is not cofinal with w0, it is well known that there exists totally

projective /»-groups G of length ¡u with proper subgroups 7/ that are isotype and

dense in the sense that (pxG, H) = G whenever X < ju. Moreover, it is known that

any such subgroup 7/ cannot be totally projective. However, such an H belongs to

the class A . In other words, there is an S-group belonging to Aß that is not totally

projective [18].

It remains to show that if cof(/¿) = <o0 then 7/ is totally projective for any ^-pair

(H, G). In order to prove that such an H is totally projective, let ^ be a collection of

nice subgroups of G that satisfy the third axiom of countability. Likewise let ^ be a

collection of nice subgroups of (G/H)p>i(G/H) that satisfy the third axiom of

countability. If TV is a subgroup of G, let TV denote the image of TV under the natural

map G -* (G/H)/p»(G/H).
As in earlier papers, we say that two subgroups A and B of G are compatible, in

which case we write A\\B, if for every pair (a, b) & A X B there exists c in A n B

such that hG(a + c) > hc(a + b). We want to consider those subgroups TV of G that

satisfy the following conditions:

(i) TV G <¡f.

(ii) TV g #\

(iii) N\\H.
Claim. If TV satisfies (i)-(iii) and C is any countable subgroup of G, there exists a

countable subgroup Kot G such that (TV, K) 2 (N,C) and such that the countable

extension TV' = (TV, K) of TV also satisfies conditions (i)—(iii).

For the moment, assume that the claim is valid. Since *€ and *& both satisfy the

third axiom of countability and (iii) is an inductive property, we conclude from this

that there is an ascending chain

0 = NoçzNxçz ■■■  çzNaçz ■■■  çzG       (a < a)

of subgroups Na of G satisfying conditions (i)-(iii) with the property that G =

U„<0TVa, Nß = öa<ßNa if ß is a limit less than a, and Na + l/Na is countable for each

a. It follows quickly that if we let Ma = Na(l H, then

0 = M0 cz Mï çz ■ • ■ çz Ma çz ■ ■ ■        (a < a)

is a chain of nice subgroups of //. Thus 7/ satisfies the third axiom of countability

[4], and the theorem is proved if we can validate the claim.

In order to verify the claim, it is enough to show only that there exists a countable

group B 2 C such that for each triple (n,c, h) g TV X C X 7/ there exists x g

(TV, B) n 7/ for which hG(n + c + x) > /iG(n + c + A). For if we can establish the

above, then upon setting C0= C and Cx = B and inductively replacing C, by C,+1,

we can obtain an ascending sequence of countable subgroups C0 C Cx £ • • • ç C„

c • • • with the property that if (n,cn, h) g TV X C„ X H there exists a: G (TV, Cn+ ,>

n 77 such that AG(n + c„ + x) > AG(« + c„ 4- h). If we let K = UC„, then for each

(n,k,h)e N X KX H there exists x g (TV, /C) n // such that Ac(n + A: + x) >

/ic(n + £ + /(), which shows that (TV, AT>||//. Since the subgroups C„, n > 1, can be

chosen so that C„ g ^ and C„e #, we can construct K = UC„ so that K g # and
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K G <g . Consequently, (TV, K) g <g and (TV, AT> g <g. Therefore, TV' = (N, K)

satisfies (i)-(ih). Thus the claim will be validated (and the theorem proved) if we can

merely show that for each countable subgroup C there is a countable subgroup

B 2 C such that, for each triple (n, c, h) g TV X C X //, there exists x g (TV, 5) n

7/ such that hc(n + c + x) > hc(n + c + h). We remark that it would be easy to

produce such a subgroup B if TV were also countable, so the uncountability of TV is

what makes the problem nontrivial. Nevertheless, we shall produce such a countable

subgroup B. List the elements of C (using the positive integers for indices) as

c1; c2,...,c¡,— First, we deal with each c, individually. To each c, we associate at

most a countable number of elements hik (or h¡ in case only a single element is

required) in 7/ as follows:

Case 1. c, = c, + 7/ + p,L(G/H) g TV. Choose w, g TV so that

c, + H + p^G/H) = m,,+ H + p^G/H).

Since ju. is cofinal with w0, there exists an ascending sequence ¡i(k) of ordinals less

than ju with sup{/*(&)} = |ti. Since p^k\G/H) = (p^G, H)/H for each Â: > 1,

there exists h¡ k G 77 such that

«i - c> + */.* G P**^

The countable collection of elements A, ¿ g 77 are associated with c,.

Case 2. c} G TV. Since TV is nice in (G/H)/p>L(G/H), there exist wy g TV so that

the element c, + m¡ is proper, that is, has maximal height in (G/H)/p'1(G/H)

among the elements of the coset cy + TV. Moreover, since c, £ TV, the height of

Cj + rñj in (G/H)/ptx(G/H) must be less than p, say A. Since

p\(G/H)/p*(G/H)) = (p\G/H))/p»(G/H)

and

p\G/H) = {pxG,H)/H,

it follows for some /iy G H that cy + m7 + Ay g />xG\ The single element hj G H is

associated with c,.

Define 5 = (C, Ay, hik), where /' and/ range over the appropriate subsets of the

positive integers and k > 1. In order to show that B has the desired property,

suppose (n, c, h) G TV X C X H and AG(« + c + A) = a. If a > ju, then n + c + h

= 0 since /»^G = 0. In this case we can take x = A, and we have AG(« + c + x) >

AG(« + c + A) with x g (TV, B> n 77, since A g (TV, C> ç (TV, 5). Therefore, we

may assume that a < ¡i. If c = c¡, where Case 1 holds for c, we know that ¡i(k) > a

if k is chosen sufficiently large. Whence

mi - c, + h,,k G P"G,

and, consequently, n + mi + h + h¡ k e paG. This implies that n + w, + x g /»"G

for some x g TV n H since TV||//. However, the latter implies, in turn, that

n + c,+(x-h,J^paG.

Since c = c, and x - A,^ g (TV, 5) n //, the desired result holds.
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If c = c¡ where Case 2 holds for c, the argument is similar but is based on the

relation

Cj + mj + hj g pxG

instead of m¡, — c,, + hi k e paG. In the present case, however, we need to observe

that X > a. But hc(n + c + h) = a certainly implies that c + N has height a, so

X > a. This completes the proof of the theorem.

3. A -groups and /I-invariants. Let 77 be an A -group, and let 77 = E © 77, and

G = E © G,, where (//,, G,) is an y4 (/)-pair for distinct limit ordinals ¡i(i) that are

not cofinal with w0. We define what we call the .4-numbers ( = A -invariants) of 77 as

follows. Actually we define a sequence of ordinal-to-cardinal functions F. Although

the values of these functions should be the .4-numbers, to simplify the terminology

and to follow tradition, we often refer to the functions F themselves as the

,4-numbers or A -invariants. As a preliminary step toward defining the functions F,

set

E,=     fi   P°((pXG,H)/H)/(p»G,H)/H

whenever ju, is a limit ordinal not cofinal with «0. Now, define F = F", in case

ju, = 0, or ju, is a limit ordinal not cofinal with <o0, by

[dim(/»a//[/»]//»a + 1//[/»])      if ju. = Oanda < oo,

Ffl(a) = |dim(/»«/ííl[/»]//»a + 1/íJ/>])     ifM# Oanda < co,

I dim(p"Ell[p]) if ju # 0 and a = oo.

We remark that there is no loss of generality in assuming, as we have done, that 77

and G are reduced. Hence, pxH = 0, where p°°A denotes the divisible part of a

/»-primary abelian group A, and there is no need to make a provision for a = oo in

case /i = 0. We also mention the obvious: F0(a) is just the ath Ulm-Kaplansky

invariant of //. Further, it is not difficult to show, for a limit ju,, that p" can be

deleted from the definition of E without altering its meaning. However, aside from

its symmetry, the above definition appears to make E smaller (a desirable feature)

while yet retaining a measure of how far 77 is from being nice at the ordinal ju. More

importantly, we will discover (in Lemma B) a more intrinsic characterization of E ,

which can (and later will) be used as an alternate definition.

Lemma A. Let 77 be an A-group, and let H = E © //, and G = E © G,, where

(//,., G,) ¿s an A {i)-pair for distinct limit ordinals n(i) that are not cofinal with w0. //

F^a) is as defined above and ¡i + 0, then FJ^a) = 0 unless p. = ¡i(i) for some i. In case

/t, = ¡i(i)for some i, then F (a) is the ath Ulm-Kaplansky invariant of p>i(Gi/Hi) when

a < oo, and Fß(co) is the rank of the divisible part of this group.

Proof. Suppose n ¥= 0. Let /i denote any limit ordinal not cofinal with w0.

According to the definition of 7^(a), if a < oo,

F¿a)-dm(p%[p]/p"+%[p]).
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Since /íM = nx<íl,x + 0=,/»0((/'xG,/7>///)/(/»'1G,//>/// and since G = E 0 G,

with the length of G, not exceeding ¡i(i), it is clear that those summands G, with

ju(z') < ju, make no contributions to Eß (and therefore make no contribution to F^a)).

Moreover, if ju(z ) > fi and À + o = ju, then

P°((pXGt, Hi)/Hi)=p°p\Gi/H,)=p»(Gl/H,) = (p*Gt, //,)///,.

Thus, G, again makes no contribution to E , so Efl = 0 unless ju = ju.(/) for some i. If

/i = jti(/), then

E,=    0   P°{(PXG„ H)/H)/{p*Gt, H)/H, = p»(G,/H,).

A + 0 = jl¿

This completes the proof of Lemma A.

Lemma B. Assume the same notation and hypothesis as in Lemma A, and let ¡i be a

limit ordinal not cofinal with w0. Let H^ = H/p^H and let 77^ denote the completion of

77^ in the p^-topology (having pxH/p,1H, X < ju, as a base for the neighborhoods of

zero). Then E^ = H^/H^. In particular, the A-numbers of H are invariants of H.

Proof. Since G is totally projective and ju, is a limit ordinal not cofinal with w0,

G/p^G = E © Gl/pv-Gi is Hausdorff and complete in its/»^-topology. Since H/p^H

= E © Hi/p'iHi is isotype in G/p^G, the completion of H/p^H is simply its closure

in G/p^G. But from what has gone before, it follows that H/p^H is closed in G/p^G

unless ju = ju(z') for some /'. Moreover, in case ¡i = ¡i(i), we have Hfl/Hfi =

p>i(Gl/Hi) = Ep with Hp being the closure of //„ = H/p^H in G/p*G.

Theorem 2. Let H and 77' be A-groups, and let 77 = E © //,, 77' = E © ///,

G = £ © G¡, and G' = E © G¡, where (H,,G,) and (H/,Gf) are H)lU)-pairs for

distinct limit ordinals ju(z') not cofinal with w0. If H and 77' have the same A-numbers,

there exists an isomorphism from p'i(')(Gj/Hj) onto p,L<-')(G¡/H¡) for each i.

Proof. We know that E„(/) and E/(j) have the same Ulm-Kaplansky invariants

and their divisible parts are isomorphic. By Lemma A, E ,~ = p^')(Gj/Hi) and

E'(,) = PlíU)(G'i/H¡). Thus, the reduced parts of E^ and E¿ are totally projective.

Therefore, since they have the same Ulm-Kaplansky invariants, E and £'(/)must be

isomorphic, and the theorem is proved.

Lemma C. Suppose that (//,, G¡) and (//,', G/) are A^^-pairs for distinct ordinals

H(i). Further, suppose that <£,-: G¡/H¡>-» G¡/H¡' is an isomorphism between correspond-

ing quotients. Let G = E © G„ G' = E © G,', 77 = E © 77,, and //' = E © H{.

Finally, let <J> = £<f>, denote the natural isomorphism from G/H onto G '/H ' determined

by the <>,.. // g g G but g £ 77 and 4>(g + H) = g' + H', there exists h' e H' such

that hc,(g' + h') > AG(g). Moreover, ifhG/H(g + H) > hG(g), there exists A' G 77'

such that hc,(g' + A')> hc(g).

Proof. Since Ac(g) = min{ AG (g,)} if g = T.g¡, with g, g G,, it suffices to prove

the lemma for the z'th component. However, for this special case the lemma is almost

an immediate consequence of (//,, G,) and (77/, G/) being /4 (/)-pairs. Specifically, if
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AG (g,) = a then a < ja(z') provided that g, G G,\ //,. Therefore,

g,' + H' g pa(G,'/H,') = (p*G¡, 77,')///,'

and

g/ + 77,' g /»«+1(G//77,') = (/»<"+1G/, 77/)////

if g, + 77, g pa+1(Gi/Hi). This completes the proof of the Lemma.

4. Uniqueness theorem.

Theorem 3. If H and H' are A-groups with the same A-numbers, then 77 and H ' are

isomorphic.

Proof. For distinct ordinals X(i) not cofinal with u0 let (Ht, G,) and (77/, G/) be

y4X(()-pairs, where 77 = £ ffi //, and 77' = E © //,. There is no loss of generality in

assuming the index set is the same for both since, for example, we can add, if

necessary, /lX(/)-pairs of the type (0, G,) or (0, G/) without changing 7/ or 77'. Since

77 and //' have the same ,4-numbers, /»x<,)(G,/77,) = pHi)(G,'/H/) according to

Theorem 2. There is no loss of generality in assuming that G, = G,' and G¡/H¡ =

G¡/H{, for we can replace both G, and G[ by

G, ffi G; ffi £ 0 {G, ffi G/ © {(G,//7,)//»x<"(G,//7,.) ffi (G/////)//»a<'>(G///7/)} }.
«0

Thus, to simplify notation we shall make this assumption. Indeed, we may assume

(without loss of generality) that G, = G,' and G,/77, s G////,'. Let <#>,: G,///,>-»

G,//// be an isomorphism, and set § = ¿Z^v Since G, = G/, G = £ ffi G, = £ ffi G/

= G'. Moreover, </> is an isomorphism from G/77 onto G/H' that maps the z'th

component Gi/Hi onto the corresponding ith component G,///,'. Thus, Lemma C is

applicable here since its hypotheses are satisfied.

We claim that there is an automorphism of G that maps 77 onto H '. In the original

draft of this paper we included a detailed proof of this fact. However, since there are

now two other proofs that are available we have suppressed these details. Our

original proof was virtually the same as the proof of the uniqueness theorem for

TV-groups in [6] with the essential difference between the two proofs being reconciled

by Lemma C. Hence, we simply offer this reference as one proof. A second (and

much shorter) proof can be obtained as follows. Subsequent to the original proof, C.

Megibben and I have proved the following

Theorem (Hill and Megibben [9]). If H and H ' are isotype subgroups of a totally

projective group G, then H and 77' are isomorphic provided they have the same

Ulm-Kaplansky invariants and G/H and G/H' are isomorphic as valuated groups

endowed with the coset valuation.

The coset valuation of G/H is defined by

\g + H\ = sup{|g +A| + 1: A g 77}.

It can be quickly verified that the isomorphism </>,: GJH^ G,77/ defined above

preserves the coset valuation. Therefore, so does <j> = £<>., and the theorem that
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77 = 77 ' is a consequence, at this point of the argument, of the theorem cited by Hill

and Megibben.

5. Existence theorem. Although not called by that name, isolated examples of

.4-groups (even before the advent of TV-groups) can be found in the literature that are

not totally projective nor S-groups. One of the most notable cases is an example

studied by Megibben in [11]. We suspect, in fact, that Megibben came close at that

time to discovering the class of TV-groups, if not yf-groups, and their significance. As

we have mentioned before, TV-groups are a special case of A -groups. They were

classified in [6], where a general existence theorem, as well as a uniqueness theorem,

was established for them. Our purpose in this section is to establish the correspond-

ing existence theorem for /I-groups. Toward that effort we first take care of some

preliminaries. As we shall see, the situation is much more complicated for yl-groups.

Let / be an ordinal-to-cardinal function that eventually vanishes (for sufficiently

large ordinals). If one prefers, the function can be restricted to an initial segment of

the ordinals. We frequently adjoin oo to the ordinals and permit it to be in the

domain of/with/(oo) not required to be zero (although oo > a it a is an ordinal). If

a < ß < oo, define

f/(r)=   £ f(y).
a aay<ß

Note that we conventionally integrate (or sum if one prefers) over a half-open

interval. However, when it is desirable to integrate over a closed interval, we set

f+/(y)=   £ f(y) = (fßf(y))+f(ß);

in particular, /Q°° + f(y) = (/»/(y)) +/(oo).

The function / is said to be admissible if

/a + to /.oo

f(y) = f  f(y)

for every ordinal a; compare with [2, p. 70]. A standard example of an admissible

function / is the Ulm-Kaplansky function associated with a totally projective group

G, defined (for any G) by

/(Y) = dim(/»^G[/»]//»1'+1G[/»]).

If there is a need for a distinction, we call the one-point extension of / given by

/(oo) = /»°°G[/»] the extended Ulm-Kaplansky function of G, which is relevant only

when G is not reduced.

Throughout this section, it is understood that all functions considered, unless

otherwise specified, are ordinal-to-cardinal functions. The length of such a function/

is the smallest ordinal X for which /(y) = 0 whenever y > X and y =£ oo. For

example, the length of the extended Ulm-Kaplansky function of any /»-group G is
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the length of the reduced part of G. Another concept that will be used is the

following

Definition. If / and g are functions and / is of length /i > 0, we say that / totally

dominates g if

/«OO /«OO +

/  f(y)>        g{y)
J\ Jo

whenever X < ju.

Before we are prepared to prove the general existence theorem for .4-groups,

certain combinatorial results are needed. These are provided in the next two lemmas.

Since (o0 appears frequently in this section, we let co = co0. Likewise, cof(ju) denotes

the cofinality of a limit ordinal jti, and a cardinal is identified with the smallest

ordinal of the given cardinality.

Lemma D. Let f and gM, ju g J( , be nonzero admissible functions-, where J( is a

collection of limit ordinals not cofinal with co. If

/•OO /.OO +

(++) /    f(a)>   £   /       g„(«)

for each ordinal X (that satisfies ju > X for some ¡x g M ), there exist functions f,

ju g J(, that satisfy the following conditions:

(a)fßis admissible of length jti.

(b)/; totally dominates gM (that is, /{%(«) > j¿° +gll(a) when X < ¡i).

(c)f(a) = f(a) + IZ^jt f^a) for each a.

Proof. For each limit ordinal X, \stJtx = {p. cz Jt : ¡¡,> X). We define f , for all

ju. g J(, on the half-open interval [ X, X + to) as follows. If jit < À or. equivalently, if

ju Í Mx , then fß(a) = 0 for every a in [X, X + co); in particular, if J(x is vacuous

then /^(a) = 0 when a > X for each jti g J{ . We now deal with those jtt in Jtx .

Assume that J(x is nonempty. Two cases are distinguished: in both cases it is

understood always that ju g J(x and a g [X, X + co).

Case l.f(a) > \Jt\ \ for infinitely many a (between X and À + co). Define

/„(«)=//(")    tf/(«)>^l«o,
10 otherwise.

Since /x+"/(«) = J\+„f(<x) > cof(ju) when ju g J(x and since cof(ju) > S0, we

immediately see that Case 1 yields f^fa) = f(a) for infinitely many a; in other

words, the condition /(a) > \Jtx \ for infinitely many a is equivalent to the

condition/(a) > |^x |S0 for infinitely many a. Moreover, it is easy to deduce that

/   /,(«) = /   /(«)
J\+n J\ + n

whenever n < co.

Case 2. f(a) < \J(X \ for all but a finite number of a. Note that this precludes the

countability of J(x . Since f\+" f(a) > \Jtx \, for each n < co, it is clear that \JPX\

must be cofinal with to. Thus J(x is the union of a countable number of disjoint

infinite subsets S„ smaller than Jt\ ;  assume, without loss of generality, that
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\S¡\ < \si\ < ' ' ' < I^J < ' " ' • This partition of J(x is arbitrary (but fixed), and its

sole purpose is to contribute toward the definition of /^(a) on the interval

[X, X + u). Indeed, we define/^(a), for ju G S„, by

7(a)     if/(a)>|Sj,

\ 0 otherwise.

Observe that, as in Case 1,/^a) = f(a) for infinitely many a. Moreover, }x+k f^a)

= fx+k f(a) whenever k < co (because/(a) and/fa) disagree only if /ta) = 0, in

which case/(a) is relatively small).

The two cases no longer need distinguishing. It is a quick deduction that

/(«)=/(«) + £ /,(«)

for each a in the interval   [X, X + co). Since/^(a) = 0 if ju G Jt\ , certainly

condition (c) holds, first on the interval  [ X, X + co) and then on the whole domain

of/. For X < ju, the inequalities

/,(«)>/ /„(«) = / /(*) = /        /(«)
rt + « 'X + n ''X + n "'X + w

/»00 + ,-OQ +

> £ /      ;?,(«) > /      g„(«)
,>xyo ■'o

demonstrate that /^ totally dominates g Thus, condition (b) is satisfied. Similarly,

the comparison

•'X + n ^X + n •'X + n

verifies that /M is admissible. It is clear from its definition that f has length not

exceeding /x, but the above inequalities for X < ju, imply that the length of f is at

least ju. Therefore, condition (a) is satisfied and the lemma is proved.

Another result similar to the preceding lemma that will be useful in the proof of

the existence theorem is the following

Lemma E. For an arbitrary limit ordinal ju, let f be an admissible function of length ¡i.

Let m be a fixed cardinal not cofinal with co and suppose that f£ f(a) > m whenever

X < ju. 7/ju(t) (t < m) is a collection of not more than m limit ordinals less than ju,

then there exist functions /T (t < m) that satisfy the following conditions.

(1)/T is admissible of length ju(t).

(2) /xX + "/T(«) = /x+"/(«) whenever \ < ju(t).

(3)/T(a) = mfi(a) = Zp^fp(a)for a < ju(t).

(4)/(a) =/(a) + L7<mfT(a)M each a.

Proof. Define the function/T as follows:

I f(ct)     if a < ju(t) and/(a) > m,
/r(«)

10 otherwise.

Observe that if X < ¡x then /(a) > m for infinitely many a between X and X + œ

because

/        /(«)= /      /(«)> w
•'X + n •'X + n
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and m is not cofinal with co. This leads at once to fx+a fT(a) = fx+a /(a) whenever

X < ju(t). The verification of conditions (1), (3), and (4) is now straightforward, and

(2) is already settled.

Theorem 4. Let f and g , ju G ^ , be nonzero admissible functions, where Ji is a

collection of limit ordinals not cofinal with u. A necessary and sufficient condition for

the existence of an A-group with A-invariants

F0(a) =/(«),

¿V(«) = g„(«)    -/>G^,

Fv(a) = 0   ifvTíQandv<£JÍ,

is, for each X (less than some ju g M ), the inequality

(++) /x+"/(«) >£/"%(«)•

Proof. Sufficiency. Suppose ( + + ) holds. If J( is empty, all that is required is a

totally projective group 77 whose Ulm-Kaplansky function is /. We know such an H

exists [5 or 2]. If J( is nonempty, Lemma D reduces the proof to the case where M

contains a single element ju and / has length ju. Indeed we can write, according to

Lemma D, / = / + £,=_*■ f, where /^ is admissible of length /i and / totally

dominates g . As we have mentioned, there is certainly a totally projective group

whose Ulm-Kaplansky function if /. Thus, it suffices to prove the existence of an

A -group H with ^-invariants

*ö(«) -/>(«).       E)í(a) = gtl(a),       7v(a) = 0    if * # 0 and * #/t.

To simplify notation let/ = / and g = g^. Recall that/totally dominates g, that is,
/.U /-00 +

( + ) //(«)>/     *(«)•'x •'o

for each X < p.

Let the cofinahty of ju be a > co, and let ju(t), t < a, be a strictly increasing

sequence of ordinals with limit ju. Without loss of generality we may assume that

ju(t) is a limit ordinal of the form y + to for every t < a. In fact, we may assume

that ju(t) = X(t) + o), where X(t) itself is of the form y + co. Thus, choose ju(t) and

X(t) in this manner. For convenience and agreement in notation with a previous

lemma, set m = \a\ = |cof(ju)| and note that m > S¡. Denote by E the direct sum of

a totally projective group and a divisible group that has g for its extended

Ulm-Kaplansky function. If we consider the function/, then clearly, /£ f(a) > m

for any X < ju since/is admissible of length ju. Observe, in fact, that condition ( + )

imphes

/(«)=/ f(a)>m\E\
/\ X

in view of the inequality \E\ < X0/0°°+ g(a) for any (nonreduced) totally projective

group E with (extended) Ulm-Kaplansky function g. We now employ Lemma E and

write

/(«)=/(«)+ £  fT(a),
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where/T is an admissible function of length ju(t), jx +"/T(a) = /x +w/(a) whenever

X < h(t), and fT(a) = mfT(a) = £ps.T/p(a). By our previous conclusion, observe

that

/X + to ,      . f\ + to        ,      . .       .
fT(a)=f       f(a)>m\E\

/\ X

whenever X < ju(t).

Let B0 >-> 5 -» E be a pure-exact sequence where 5 is a direct sum of cyclic

groups and \B\ = \E\. Denote by CT the totally projective group of length ju(t) =

X(t) + u that has fT for its Ulm-Kaplansky function, and let CT' be the totally

projective group (of length at most ju(t) and at least X(t)) that satisfies/>X(T,CT' = B

and C///»X(T)CT' = CT/pMr)CT. With C/ so defined for each t < a, we inductively

define an ascending chain of totally projective groups Gr, for t < a, as follows. Let

G0 = B. If Ga has been defined for a < t < a so that GQ is a totally projective group

with pxGa = B for some X < X(a) (and more particularly /»A(a)Ga + 1 = B whenever

a < t), define GT+1 to be the pushout associated with B >-> GT and 5 >-» C/. Thus we

have the commutative diagram (with natural maps)

b    ~   c;

I I
GT     >*     GT+1

Alternately, we could say that GT+1 is the amalgamated sum of GT and C/. Observe

that/»X(T)GT+1 = B = /»X(T|C/ since

GT+1/5 = GT/5 ffi C;/B

and since /»X<T)GT ç 5 by the induction hypothesis. As expected, if t is a limit less

than a and if Ga has been defined for a < t, we let GT = UQ<TGa (where Ga Q Gß, if

a < j8, by virtue of the natural identification of G„ in Ga + l). By induction, it is

apparent that

GJB = £ e c;/b
Y< T

and that pxGT = B, where X = supy<T{X(y)} ^ X(t). Thus, we have constructed a

smooth (Gß = Ua<ßGa when ß is a limit), ascending chain of totally projective

groups GT, t < a, with pxGT = 5 where X = sup?<T{X(y)}, and GJB = £r<T ffi

Cz"/B. We can extend this chain one additional link and retain the same properties

simply by defining G0 = UT<0GT. Note, in particular, that p'iGa = B since ju =

suPt<<,{^(t)}. Indeed, if we set A = GJB0 then />M = B/B0 = E and

A/p^A = GJB = £T<0 ffi CJB. Therefore, A/p^A is the totally projective group

whose Ulm-Kaplansky function is ET<0/T', where

i/T(«)     ifa<X(r),
//(«)

\ 0 otherwise.

Obviously,// is the Ulm-Kaplansky function of CJB = CT'/pX(T)CT'. Observe that

gt+x/b= £ e c;/b = c;/b = cT//»X(T)cT
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because all are totally projective and have the same Ulm-Kaplansky invariants;

recall that mfT(cx) = fT(a) = £p<T/p(a).

Since ¡tíl}+„fT(a) > m\E\ and pX(T)CT is a direct sum of cyclic groups, there exists

an epimorphism

/<T>CT-»5=//(T)GT+1.

Let KT denote its kernel. Due to the total projectivity of CJKT = GT+1, the

isomorphism

px^(CJKT) = px^CJK^ B = /»X(T)GT+1

can be extended to an isomorphism between CT/KT and GT+1 (by virtue of Zippin's

theorem for totally projectives). Denote by eT the resulting epimorphism from CT to

eT:CT^CT/KT~»GT+1,

and let

<i>T: CT -* GT+1 -» GT+l/B0 ç A

be the composition of eT and the projection of GT+1 onto GT + 1/B0, which is a

subgroup of A. Observe that if X < ju and a g pxA = (pxGa, B0)/B0, then a = y +

B0 with y g pxG„ implies y g /»xGt + 1 if t is sufficiently large (namely, if y G GT+ ¡

and X(t) > X) because B = /»X<T)GT + 1 and Gr + 1/B is a direct summand of GJB.

Since £T preserves heights less than X(t) (computed in CT and GT + 1), there exists xT

in /»XCT such that eT(xT) = y and </>T(xT) = y- + B0 = a. Consequently, the mapping

£T<0<i»T maps />X(ET<0 ffi CT) onto /»\4 for each X < ju. This will prove to be an

important feature in obtaining an almost balanced resolution of A.

We now construct another map from CT into A. This time we start with an

epimorphism/>X<T)CT[/»] -» B[p]. Since

and /»X(T)CT is a direct sum of cyclic groups, the epimorphism/»X(T,CT[/»] -» #[/»] can

certainly be extended to a mapping (not necessarily epic) from/»X(T)CT into/»X(T)GT + 2.

Since the extended map still does not decrease heights (computed in CT and GT + 2), it

can be extended to a mapping from CT to GT+2; let ôT: CT -» GT + 2 with

^T(/-'A(T)Cr[/']) = ^[/']- Denote by wT the composition of ST and the projection of

GT + 2 onto GT + JB0. Thus, we have 7rT: Ct -» GT + 2 -» GT+2/B0 ç yl.

Some additional maps from totally projectives into A are still required in order for

us to obtain the desired resolution of A. Let 77T be a/»X(T)-high subgroup of GT+l/B0.

Since X(t) is cofinal with co and since 77T is isotype and/»X(T)-dense in GT+1//»X(T)GT+,,

it is totally projective [18, Theorem A]; in fact, 77T = GT + 1//»X(T>GT+1 (and therefore

has // for its Ulm-Kaplansky function). Let ir: HT ç GT+l/B0 ç A denote the

inclusion map of 77T into A. Define

C -   £   0 (CT ® CT ffi 77T)
t< a
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and let K be the kernel of the mapping ET<0(<i>T + trT + iT), which maps C onto A.

In fact, £</>T is epic. We want to show that (K, C) is an /Impair. Since CT and 7/T are

totally projective so is C, and the length of C is ju. Therefore, to demonstrate that

(K, C) is an ^4^-pair, it suffices to prove that K is almost balanced in C in the sense

that

(i)pxA = px(C/K) = (pxC, K)/K when X < ju, and

(ii) K is isotype in C.

Condition (i) is a direct consequence of the fact that ¿ZT<a<bT maps /»x(£T<a ffi CT)

onto pxA if X < ju. The proof that K is isotype in C is not quite as apparent. In order

to show that K is isotype in C, we use the following criterion. If C is a /»-group of

limit length ju and K is a subgroup of G, then ZT is isotype in G provided that

(P) px(C/K)[p]çz(pxC[p],K)/K

for each X < ju. It is easy to show by induction on a that this inclusion implies that

paC (1 K Q paK. Now, to show that condition (p) is, in fact, satisfied let a g pxA[p]

= px(C/K)[p], From previous considerations we know that a = v + B0, where

y g pxGT+l for a sufficiently large t. Since 77T is /»X(T)-high in GT+JB0, it follows

that

(GT+l/B0)[p] = HT[P] +PMr)(GT + JB0)[p].

Therefore, if X < X(t), we can write

y + B0 = hT+(b + B0),

where AT G pxHT[p] and b g jB = /»X(T)GT+1. Since /»¿> g B0 and B0 is pure, we can

choose b g /?[/»]. Consequently, there exists x g /»X(t)Ct[/»] such that 8T(x) = b and

itt(x) = b + B0. Thus, we have produced an element AT + x in pxC[p] that maps

onto the given element a in A (under the mapping ET<.a((J>T + wT + ir)). This

completes the proof that (K, C) is an ^4^-pair.

Let L be a totally projective group whose Ulm function is / and set 77 = K ffi L.

Since (//, C ffi L) is an ,4^-pair, 77 is certainly an ,4-group. To complete the proof of

the sufficiency of ( + + ), it remains only to show that H has the desired invariants,

namely,

F0(a) =/(«),       /;(«) = g(«),       7v(«) = 0    if,*0,ju.

The fact that (//, C ffi L) is an ^-pair implies that F„(a) = 0 unless v is zero or ju.

Moreover, it is immediate from our construction that

pIL((C®L)/H)=pv-(C/K)=p»-A = B/B0= E.

Since the Ulm-Kaplansky function of E is g, it must be that F^a) = g(a). Finally,

the ath Ulm-Kaplansky invariant of C is either zero or else/(a) = mf(a) due to the

properties of /T. Since K is isotype in C, it quickly follows that 77 = K ffi L has/for

its Ulm-Kaplansky function since L does. This completes the proof of the sufficiency

of(+ + ).

Necessity. Suppose now that 77 is an A -group. Then, by definition, 77 = E,6/ ffi //,,

where (//,, G,) is an A¡í(¡)-paÍT for distinct limit ordinals ju(z') not cofinal with co. As

usual, let the ^-invariants of 77 be denoted by F0(a) and /^(a), where ju g J(

= {/i(/'):/G/}.
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Set/(a) = F0(a) and g^a) = F^a), p^Jt. We need to show that the condition

(++) f+<7(«)> £f%(«)
is satisfied. Since the A -invariants are additive, it suffices to estabhsh ( + -f ) for a

ju-elementary ^4 -group 77. However, in this case (+ + ) simplifies and takes the form

for X < ju, where (//, G) is an .4^-pair. Furthermore, it is enough to show that

/jf/(a) > /o°+ 8,i(a) 's satisfied because/is admissible, since it is the Ulm-Kaplan-

sky function of 77. Recall that g^ is the extended Ulm-Kaplansky function of

E» = p^G/H). Let paH[p] = Sa ffi pa+1H[p] and set S = EX<Q</1 ffi Sa. Choose

T so that S ç TçzpxG[p] and (T, H)/H = /±J/»]; this is possible since H is

isotype in G and since E = p^(G/H) = C\x<l¡(pxG, H)/H. Consider S and T as

valúa ted vector spaces (whose values are heights computed in G) and observe that S

is dense in T, that is, if t ¥= 0 belongs to T then \t - s\ > \t\ for some s g S.

However, since G is totally projective the valuated vector space G[p] is contained in

a free space F. Therefore, we conclude that T is no larger (in cardinality) than S

since no subspace of a free space can have a smaller dense subspace. Hence,

f(a)=\S\=\T\>\E\\p]\> g (a)

for each X < ju, and the theorem is proved.

Remark. Since it is obviously necessary for the functions / = F0 and gM = F^ to be

admissible in order to quahfy as the A -invariants for an A -group 77, an equivalent

form of the existence theorem is the following. Let / and gM, ju g J(, be ordinal-to-

cardinal functions, where J( is a collection of limit ordinals not cofinal with co. A

necessary and sufficient condition for the existence of an A -group with ^-invariants

F0(a)=f(a),       F^a) = gfi(a)    if ju G Jf, F„(a) = 0    if v # 0 and v £ M,

is that/and g^, for each ju g J(, be admissible and (+ + ) be satisfied.

By combining the existence and uniqueness theorems, we obtain a complete

classification of A -groups.

Theorem 5. The class of A-groups are in 1-1 correspondence, via their A-invariants,

with the class of sequences of admissible functions {F^}, ju = 0 or a limit ordinal not

cofinal with u, that satisfy condition (+ + ) upon setting f = F0 and gß = F^ if ju =£ 0.

77ic? given correspondence preserves finite and infinite sums.

6. The structure and properties of A -groups. In this section we formulate some of

the most important properties of A -groups. In cases where these results are im-

mediate consequences of the complete classification of yl-groups provided by Theo-

rem 5, proofs are either omitted entirely or only short proofs are included. However,

because of their significance to the theory, we label these results (including direct

corollaries) as theorems.

Our first result shows how to identify among ,4-groups the well-known special

types simply by looking at the invariants.
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Theorem 6. Let 77 be an A-group with A-invariants F^a), ju > 0. Then H is totally

projective if and only if F^a) = 0 when ju > 0 for all a (including a = oo). Moreover,

77 is an S-group if and only if F^(a) = 0 when ju > 0 for all a different from oo.

Finally, H is an N-group if and only ifF^a) = 0 unless ¡i = 0 or ¡i = co: and a = 0.

The next result implies, among other things, that every A -group 7/ has a totally

projective summand T such that all the isotype subgroups of 77 containing T

(including T and 77) have exactly the same Ulm-Kaplansky invariants.

Theorem 1. If H is an A-group, then 77 = T ffi K, where K is an A-group and T is

totally projective and has the same Ulm-Kaplansky invariants as 77.

Proof. Apply Lemma D and Theorem 5.

Recall that an ^4-group 77 is a ju-elementary ^4-group if Fv(a) = 0, for every a,

unless v = 0 or v = ju. If, in addition, F (co) = 0, we say that 77 is an adjusted

ju-elementary A -group.

Theorem 8. Any A-group 77 can be written as H = T ffi S ffi A, where T is totally

projective and where S = £ ffi Sß and A = E ffi A are direct sums of fi-elementary

S-groups and adjusted [i-elementary A-groups, respectively.

Proof. Let 77 be an A -group with ^4-invariants F (a), ju = 0 or a limit ordinal not

cofinal with co. It is understood that ju ranges over the appropriate ordinals. Set

f(a) = F0(a) and g^a) = F (a) if ju =£ 0. By Lemma D we can decompose the

function / as / = /+ E^n/ji so that / is admissible of length ju and totally

dominates g^ in the sense that /jf/^a) > /0°°+ g^(a) when X < ju. Clearly, we can

further decompose the function f as f = fs + fA into admissible functions fS)l

and/4 p so that, when X < ju,

/ /*,„(«) > *„(<»)    and     i fAJa)>  I   g^a).

According to the existence theorem, there are A -groups T, S , and A^ that have the

following prescribed ^-invariants:

T:F0(a)=f(a)    (/;(«) = 0 if p * O),

. .   .       (0 if a ^ oo,
S,-F0(a) = fs¡fí(a);    F» = ^(a))     ■da=00

(F„(a) = Oif v # Oand^ # ju),

^     c/  ï     /■    f   ^      ri   \     í 8Áa)     if a # oo,
A^. F0(a) = fA)i(a);    F (a) =      *

10 if a = oo

(7;(a) = Oif p * Oandp # ju).

Obviously, A is an adjusted ju-elementary A -group, while Sß can be decomposed into

^-elementary S-groups (with ju-fixed) if it is not already. Since the A -group T ffi

^■n*o^fL ffi £M*o © ^M has the same .4-invariants as 77, the theorem follows.

It perhaps should be noted in passing that 77 is an adjusted ju-elementary A -group

if and only if H is an isotype subgroup of a totally projective group G of length ju
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such that G/77 is a reduced totally projective and px(G/H) = (pxG, H)/H when

X < ju. In particular, an TV-group is always an adjusted ju-elementary yl-group with

¡x = uv

The next theorem generalizes the same result for totally projective groups (Nunke

[13]) and S-groups (Warfield [18]).

Theorem 9. Let H be an arbitrary reduced p-group and a an arbitrary ordinal. The

H is an A-group if and only if both paH and H/paH are A-groups.

Proof. The "only if" part is easy. First, it reduces quickly to the case where 77 is a

jit-elementary A -group. Thus suppose that (77, G) is an /1^-pair for some limit ordinal

ju not cofinal with co. If a < ju, it is routine to verify that (/»"//, p"G) is an ^4x-pair,

where /x = a + X. Thus paH is an A -group since paH = 0 if a > ju. Likewise, if

a < ju, (//, paG)/paG is balanced in G/paG and the quotient is totally projective.

Hence, ////»"// = (77, paG)/paG is totally projective if a < ¡i, and in any event

77//» "77 is an A -group.

To prove the converse, we first observe that H is an A -group if p"H is for a

positive integer n. Suppose that/»"// is an A -group. Let/»"// = £ ffi K¡, where K¡ is

a ju(z')-elementary A -group for each i. We can lift the decomposition of p"H =

E ffi Kt to a decomposition of 77 (see, for example, Theorem 11 in [8]). Therefore, let

77 = £ ffi 77,, where /»"//, = K,. If (K„ T¡) is an ^,,-pair, then (77, G,) is also an

v4 (/)-pair for a suitable totally projective group G, with p"G¡ = T¡. Hence, 77 =

£ ffi 77, must be an ^4-group if/»"// is an ^4-group.

Now, suppose a is arbitrary and both paH and H/p"H are ^-groups. Let

a = ß + n, where ß is a limit and n < co. From what has preceded, we conclude that

pßH and H/pßH are ^4-groups. Our objective, of course, is to prove that 77 is an

A -group, and we shall do this based on the fact that pßH and H/pßH are for a limit

ordinal ß. We may assume without loss of generality that pßH ¥= 0. It is rather

immediate that 77 is at least an isotype subgroup of a totally projective group, for if

pßH is isotype in pßG the identity map on pßH can be extended to a mapping from

H to G since H/pßH is weakly/»^-projective [7, Theorem 2.2]. Under our hypothesis

we may assume that G, as well as pßG, is totally projective. Clearly, if we combine

such a map from H to G with H -» H/pßH >•» G', we can obtain the desired

embedding of 77 in a totally projective group G ffi G'. A benefit of this is that we

now know that the Ulm-Kaplansky function of 7/ is admissible [18, Theorem 4.7].

Letting/G denote the Ulm-Kaplansky function of an arbitrary group G and letting

pßH = H(ß), we define the function f^ß) by the rule

10 ifa<ß,

f™)ia)=\fmß)(y)    ¡ia-.ß + y.

Note that ///(/s) is not itself an Ulm-Kaplansky function, but rather a shift of the

Ulm-Kaplansky function fH(ßY Since ß is a limit, fH = fH/pßH + fp'ßH. Denote the

nonzero A -invariants of H/pßH as follows:

^o = fH/pi>H,       Fß = g»   torO* pczJt.
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Observe that no ju g M can exceed ß (since H/pßH has length ß). Likewise, denote

the nonzero v4-invariants of H(ß) = pßH as follows:

Fo=///(/3).   Fll = gß+Ii       toi ß < ß + n<aj('.

Note that J( and J( ' are disjoint. Hereafter in this proof it is understood that ju

ranges over J( U J( '. If X < ß,
/•X + ùj r°° z*00

/    f„(«)>] /„(«) = / W«)
•'x ■'/s •'o

since/„ is admissible. Therefore, if X is less than some ju,

/X + io        .    . /-X + u .    . y00 _,     /-00 +

fH(")> J      /»/„'»(«)+/   fmß)(«)>  L I      *,(«)■
" * ° /i>X   o

Consequently, there exists an /I-group A" whose .4-invariants are closely related to 77,

namely,

Recall that

/f/^"(«)     itpeje,

(F/iw(a) ifJu = iS+ v^jk'.

Thus,/»^ATand/»^77 are^4-groups with the same invariants, and therefore/»^ = pßH.

Likewise, K/pßK = H/pßH. Finally, K = 77 by virtue of a recent result of Hill and

Megibben [9] that implies that an A -group is totally Zippin, which means (by

definition) that an isomorphism pßH>-» pßK can be extended to an isomorphism

//>-» K provided the quotients H/pßH and K/pßK are isomorphic and totally

Zippin. Thus, H is an ,4-group since K is an ^4-group and the theorem is proved.

The existence theorem is evidence enough that .4-groups exist in abundance.

However, we include the following examples to illustrate how naturally they occur.

Example 1. let Ü = ux and let G be a totally projective group of length ß2. Let M

be Megibben's example in [11, p. 109] identified in the d.s.c. group paG. If 77 is

maximal in G with respect to H (1 paG = M, then 77 is an A -group that is not an

S-group. Note that H/paH is an S-group.

Example 2. Let W be an S-group of length ti that is not totally projective and let

T be totally projective of length greater than ß. If W is isotype and /»a-dense in the

d.s.c. group G, then the/»"-pure exact sequence TOR(W, T) v* TOR(G, T) -» E ffi

T reveals that TOR^, T) is an A -group (but not an S-group).

The following result is particularly striking since it was only in 1964 that a

subgroup of a d.s.c. was first exhibited [12] that did not itself decompose into a d.s.c.

Shortly after, it was shown that no isotype subgroup of a d.s.c. of countable length

could fail to decompose into countable groups. Moreover, all isotype subgroups of

d.s.c.'s that are S-groups must decompose into groups of cardinality at most Sx.

Theorem 10. There exist arbitrarily large A-groups that are, in fact, isotype

subgroups of d.s.c.'s that cannot be written as the direct sum of smaller groups. (Hence

they are quasi-indecomposable.)
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Proof. Let W > Sj be a cardinal and let a be the first ordinal of cardinality X. Set

ju = toj and define

/(«) = /S    K«<M,
\ 0     otherwise (if a is uncountable).

Define

(   ) = /**    if« < °.
*/*v   '     \ 0     otherwise (if a exceeds a ).

Note that g^ has length a + 1, not a. Obviously, / and g^ are admissible and/totally

dominates gß since

/./i /.00 +

/ /(«) = X = /      g(1(«).•'x •'o

Therefore, there is a ju-elementary A -group 77 that has for its A -invariants F0(a) =

f(a) and 7^(a) = g^a). Since ju = u^ there is a d.s.c. group G such that (77, G) is

an A „-pair. The proof of the existence theorem reveals that 77 has cardinality S. To

demonstrate that 77 cannot be decomposed as a direct sum of smaller groups,

assume that it can. Suppose that 77 = £ ffi H„ where \H¡\ < N for each i. Conse-

quently, g^ must decompose as gM = Eg^,, where gM , is admissible and j™ g^^a) <

177, | < S. But this is absurd, since for at least one i we must have g^,,(o-) =£ 0, which

implies that f^g^a) > N since g   . is admissible.

Our final result shows that there is no class of reduced /»-groups that is closed with

respect to direct sums properly containing the class of A -groups whose members are

determined by their ,4-invariants. Here, in the more general setting, we define E^

= (H/p»H)/(H/Pm).

Theorem 11. Let <g be a class of reduced p-groups closed with respect to direct sums

(and such that membership is independent of notation). Suppose that the A-invariants

determine the structure of all the members of %. If <g contains the A-groups then it is

exactly the class of A-groups.

Proof. Suppose that E belongs to ft . Since £ ffi 77 and 77 have the same

,4-invariants for some A -group 77 and since both belong to ^, it is evident that

E ffi 77 = 77 and E is a direct summand of an A -group. Thus we know already that

the only members of # that are not A -groups, if any, must be summands of

A -groups. We shall demonstrate, however, that summands of A -groups belonging to

'g are, in fact, A -groups. This will be accomplished if we can show that a summand

of an A -group has the same invariants as some ^4-group.

Let H be an A -group and let H = K ffi L. We prove that the A -invariants of K

agree with the A -invariants of some A -group by induction on the length a of K. This

is certainly the case if a is countable, so assume that a is uncountable. By employing

Theorem 9, we may assume that a = ß + a for each limit ordinal ß < a. For

otherwise/»^ and K/pßK have the same invariants as A -groups by the induction

hypothesis, and therefore so does K. Observe that E^(H) = E^(K) ffi E^L) and, of

course, fH = fK + fL. Since fK is admissible and fß+ufK(a) > Sy+" /*(«) when
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ß < y, we may assume without loss of generality (for some fixed cardinal m) that

f     fK(a) = m= fK(a)
Jß Jy

whenever ß and y are limit ordinals less that a. Again, since fK is admissible, it is

clear that m > \a\. By the same argument used in the proof of the necessity of

condition ( + + ) in the proof of the existence theorem, we can obtain the inequality

iyK(^)>K(K)[Pi\

for each X < ju. Therefore, if X < ¡x,

•'O

where g^ = F* is the extended Ulm-Kaplansky function of E^ K ). Since g does not

exist (or is zero) when ju > a, and since m > \a\, the preceding inequality yields

(++) jX + "fK(a)>m>   £/°0+gM(a).

A X<fi   °

Therefore, according to the existing theorem, K has the same A -invariants as some

A -group, and the theorem is proved.

There remains at least one significant open question about A -groups. Are they

closed with respect to direct summands? We suspect (and there is some historical

basis for this opinion) that the summand question is relatively difficult. At least its

solution has not yet fallen to our particular attack.
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