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ON ISOMETRIC EMBEDDINGS OF GRAPHS
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R. L. GRAHAM AND P. M. WINKLER

Abstract. If G is a finite connected graph with vertex set V and edge set E, a

standard way of defining a distance da on G is to define dG(x, y) to be the number

of edges in a shortest path joining x and y in V. If (M, dM) is an arbitrary metric

space, then an embedding X: V-> M is said to be isometric if dG(x, y) =

dM(\(x), X(y)) for all x, y e V. In this paper we will lay the foundation for a

theory of isometric embeddings of graphs into cartesian products of metric spaces.

Introduction. With a finite connected undirected graph1 G = (V, E) one can

associate a metric dG: V X V -» N (the set of nonnegative integers) by defining

dG(x, y) to be the number of edges in a shortest path between x and y for all

x, y g V, the vertex set of G. If (M, dM) is an arbitrary metric space we say that an

embedding A: V -* M is isometric1 if, for all x, j e I7,

(i) ¿«(MxUi^'rf^j).

We denote this by writing X: V -» A/.

A number of papers have appeared in the past few years which deal with various

properties of graphs that have isometric embeddings in certain metric and semimet-

ric3 spaces (e.g., see [Asl, As2, As3, ADel, ADe2, ADzl, ADz2, Avl, Av2, BGK,

Dew, Dezl, Dez2, Dj, F, GP1, GP2, Kl, K2, K3, Y]).

In this paper we will lay the foundation for a theory of isometric embedding of

graphs into cartesian products of metric spaces. Although our primary focus will be

on embeddings into products of graphs we should remark that many of the results

actually extend to products of more general metric and semimetric spaces.

Embedding into cartesian products. For a connected graph G = (V, E) define a

relation4 0 on E as follows: Ife= {x, y) e£ and e' = {x', y'} e E, then e 0 e' if

dc(x, x') + dc{y, /) * dG{x, y') + dc(x', y).

The relation 0 is easily seen to be well defined, reflexive and symmetric; let 6 be its

transitive closure, and let E¡, 1 < i < r, be the equivalence classes of 6. Thus,

E = UUE,
For each /', 1 < i < r, let G¡ denote the graph (V, E \ E¡) and let

C,(l), C,(2),... ,C,(w,) denote the connected components of Gt. Finally, form the
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1 In general, we follow the terminology of [BM],

2 In the literature this is also sometimes said to be "distance preserving".

3I.e., the triangle inequality may fail (in French, écart).

4 First introduced in [Dj].
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graphs G* = (V*, E*), 1 < i < r, by letting V* = {C,(l),...,C/(m/)} and taking

{C¡(j), C,(y')} to be an edge of G* iff some edge in £, joins a point in C,(y) to a

point in C,0'). For ü g C¡(j), denote by a,: K -> F¡* the natural contraction

» -» C,.(y) g I/*.

Next, define an embedding a: G —> n,r_,G*, which we will call the canonical

embedding of G, by a(v) = (a^v), a2(v),.. .,ar(v)).

Theorem 1. The canonical embedding a: G -* Y\ri=lG* is isometric.

Proof. Let x0 and xk be a pair of vertices of G with dG(x0, xk) = k. For brevity

we will henceforth usually denote dG(x, y) by xy. Let ({x0, xx} ,

{x,, x2,},..., {xk_l, xk}) be a minimal path between x0 and xA, and let P denote

the set of edges in this path. For each /, 1 < i < r, let p¡ = \P C\ E¡\. Thus,

^UPi = k.
Fact. If Q is any other path connecting x0 to xk, then \Q n J?,-| > /?, for all /.

Proof of Fact. For eachy, 1 <y < /:, define a function a, on F by a,(«) = uxj

- uxj_v Let /?(«) = EJ.iOÍh) and, for each i, 1 < i < r, set

¿>,(w) = £{o,.(w): {x,^,*,} G £,.}.

Then
r

Yi b¡(u) — b(u) = uxk — ux0.
si-1

If {«, v) G ¿s, then |mx0 - ux0| < 1 and \uxk - ujca| < 1. Hence, \b(u) - b(v)\ < 2.

Suppose (w, t>} g £ and {xj_l, Xj) £ £,. Then «*,_, + ux^ = uxj + vxJ_1 by the

definition of 6, and so üj{u) = aj(v). It follows that bs(u) = bs(v) for all s + i.

Since \b(u) - b(v)\ < 2we also have \b¡(u) - b¡(v)\ < 2.

Now, for eachy, 0 «s j < &, we have x0Xj = j and XjXk = k — j. Thus for ally with

1 < j ^ k, a (x0) = 1 and aj(xk) = -1. Therefore, for each /', 1 < / < r, we have

¿>,Oo) = Pi md bi{xk) = -/>,.
In following Ö Irorn xo to **> ^ must change from p¡ to -/>,-. However, b¡ can

change by at most 2 along each edge of Q and cannot change at all if the edge does

not belong to E¡. It follows that \Q n E¡\ > |/?, - (-p,)| • \ — p¡, and the Fact is

proved.

Note in particular, taking k = 1, that if {x0, x,} g £(, then every path from x0 to

Xj has at least one edge in E, and, consequently, x0 and x1 belong to different

connected components in G¡, i.e., they are not identified in G*.

It remains only to check that the distance a(x0)a(xk) between the images of x0

and xk in Vl"=1G* is k. But in G*, 1 < i < r, the distance between the corresponding

connected components C(x0) and C(xk) is just the minimum, taken over all paths Q

in G from x0 to xk, of |<2 n £,|. By the Fact this value is/7,, so that
r r

a(x0)a(xk) =   E«,(*o)«/(**) =   Y,Pi = k
i=l i-l

as required. This proves Theorem 1.    D

We will define r, the number of factors G* in the canonical embedding of G, to be

the isometric dimension of G, denoted by dim,(G) (cf. [Dew]).
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/
An isometric embedding G -» 11,1,//, will be termed irredundant if each H, has at

least two vertices and for all i, 1 < / < m, and for all h g H¡, h occurs as a

coordinate value of the image of some g g G. Note that any ß: G -* 11,1,//, can be

made irredundant by discarding unused vertices and factors.

Finally, let us call G irreducible if G -» 11,1,//, always implies G -* H¡ for some i.

i
Theorem 2. The canonical embedding a: G -» Y\ri=lG* is irredundant, has irreduci-

ble factors and has the largest possible number of factors among all irredundant

isometric embeddings of G.

i
Proof. Let ß: G -* YlJl,lHj, v -» (pl5.. .,vm) be an irredundant isometric embed-

ding of G. If e = {x, y] G E, let ß(e) be the unique j for which x, + y¡. Suppose

e' = {*',/} e £ and j8(e')*./'= £(<?)■ Then

xx' - yx' = XjXj - y^] = x}y¡ - y^¡ = xy' - yy',

so that

xx' + yy' = xy' + yx',

i.e., e and e' are not related by 0.

It follows that if e and e' are arbitrary edges of E with e 0 e', then ß(e) = ß(e').

This means that ß is constant on each equivalence class Er This implies that the

range of ß is limited to at most cardinality r = dim/(G), and the third claim of the

theorem follows. Note that m can assume any value between 1 and r by combining

canonical factors.

The fact that a is irredundant is clear. Suppose a factor G* is not irreducible.

Then G* has an irredundant isometric embedding y: G* -» Ù)=\Hj with k > 1,

from which we obtain an irredundant isometric embedding of G with FI,r= ,.,>,,, G*

X FI *_,//, having more than r factors. This contradiction concludes the proof of the

theorem.    □

The preceding remarks immediately imply the following result.

Theorem 3.  The only irredundant isometric embedding of G into a product of

dim ,(G) factors is the canonical embedding. Each factor H- of an irredundant isometric
i J

embedding G -* Y\JL1HJ embeds canonically into a product of G* 's.

Remark. It appears from these results that the category of connected graphs and

isometric embeddings behaves much like a variety in universal algebra, with subdi-

rect product representation. Relations containing 0 play the role of congruences and

the maps a,: G -* G* become homomorphisms. However, it is not clear at this point

that a graph and its metric can be interpreted as an algebra in such a way as to

justify the correspondence.

Corollary. G is irreducible if and only if G has a single O-equivalence class.

As an example we show a graph G in Figure 1(a) with the following properties: (i)

G is irreducible, i.e., d\m,{G) = 1. (ii) G' = G - {e} (shown in Figure 1(b)) has
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Figure 1

dim,(G') = 3. The partition of E into Ex, E2, and E3 is also shown, (iii) In Figure
/

1(c) we redraw G' in a more suggestive form, showing G' -> K2 X K2 X K3.

We remark in closing this section that if we consider the usual random graph

model, in which G = (V, E) has V = {1,2,...,«} and each pair {/', j) is chosen to

be an edge with (independent) probability 1/2, then the probability that a random

graph with n vertices is irreducible goes to 1 as n -» oo. In particular, it can be

shown by relatively standard probabilistic arguments that almost all graphs on n

vertices have the property that, for any two pairs {a, ß) and {a', ß'} of vertices,

there is another pair {x, y} such that the subgraph induced by these 6 points is that

shown in Figure 2. Thus,

ax + ßy = 2 < 4 = ay + ßx,

a'x + ßy' = 2 < 4 = a'y + ß'x,

so that if {a,ß} = e g E and {a',ß'} = e' e E, then e 0 {x, y), e'0{x, y) and,

consequently, e 0 e'. This implies that dim/(G) = 1 as required.

a x a'

?-?-?
i i

! !

¿-6-o
ß y ßl

Figure 2
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A generalization of the tree theorem. If T„ denotes a tree with n edges, the

following result was established in [GP1] (see also [GL]):

Theorem. For the distance matrix D{Tn) of Tn,

(2) del(D{Tn)) = {-!)" nT-\

independent of the structure of Tn.

The next result we give generalizes (2) and gives a geometrical explanation for the

factor 2"_1. Consider the set Q" of vertices of the (usual) unit n-cube in R",

Q"= {0,1}"= [a = (ai,...,an):ak = QoT 1,1 <*:<«}.

There is a natural metric dH on Q", called the Hamming metric, given by

n

dH((al,...,a„),(b1,...,bn))= £ \ak-bk\,
k = \

i.e., the distance between ä and b in Q" is just equal to the number of coordinate

positions in which they differ. Let us call a set S ç Q" full dimensional if the convex

hull of S has positive «-dimensional volume.

Theorem 4. If {ä0,.. .,an} is any full-dimensional set of n + 1 points ofQ", then

(3) det{dH(âi,aJ)) = (-l)"n-2'-1.

Proof. For a¿ = (aiV... 9ain) write aik = \ + \aik where a,-¿ = ± 1. Thus

n n

(4) <*«(«/. «,-) =    E  |fl/fc - fl^l = i  E  l«i* - «ytl

«

=    2    E    (1   -   «/*«yj   =   K"   -   «<  •   «/)•
A-l

where a, • a- denotes the inner product of the vectors ä, = (aa,... ,ain) and ä =

(a-l5... ,«,„). It follows from elementary linear algebra that for any square matrix

M = (m¡j), if / is the square matrix with all entries equal to 1, then

(5) det(Af + xJ) = det M + xdet(w,y - mXj - ma + mn).

Thus, from (4) we have

(6)

det(</„(«,., a,)) = det(H« - a, ■ 5y)) = (-2)-("+1)det(s,. • «y - n)

= (-2)^(    ^{detiâ, • äj) - ndet(ä, • S, - 50 ■ âj - â, • 50 + â0 ■ â0)}

= (-2)-("+1){det(«, • Ej) - «det((5, - «„)•(«, - «„))}.

The determinants which appear in (6) of the form det(x, • x ), called Gramians,

occur frequently in linear algebra. One of their particularly useful properties is the

following.

Fact (see [Ga]). For a set of vectors xv... ,x„ in Rm, the Gramian det(x, • Je.) is

just the square of the («-dimensional) volume of the parallelepiped spanned by the
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In particular, since the n + 1 ak's in (6) all lie in R", then det(5 • 5.) «= 0. On the

other hand, the vectors Ek - a0 by hypothesis span an «-dimensional space. It is

clear that the parallelepiped they span has width 2 in each dimensional (since all

aik = ± 1), and consequently, has volume 2".

Thus, continuing (6), we obtain

det dH{ä„ Ej) = (-2)^"+ 1,(o - « -(2«)2) = (-1)"« • 2-1

and the theorem is proved.    D

Symmetric differences. It is often natural to interpret binary «-tuples as character-

istic functions on the set [«] = {1,...,«} so that each ä = (av...,a„) corresponds

to a subset S(a) ç [«] by k g S(ä) <=> ak = 1. With this association it is easy to see

that d„(ä,b) = \S(ä) a S(b)\, where XaY denotes the symmetric difference X\Y

U Y\Xoi Xand Y.

Let us say that a family of subsets in [«] is full dimensional if the corresponding

«-tuples are. We can restate Theorem 4 in these terms.

Theorem 5. Suppose { S0,..., S„} is a full-dimensional family of subsets of[n]. Then

(7) det(|S/ASj) = (-l)'V2''-1.

The advantage of this formulation is that it can be readily extended to the

following more general situation. Suppose jti is a discrete measure on 21"', i.e.,

H(k)>0, £g[«],

r(x)= E »»(*),   XQ[n].
xeX

Theorem 6. Suppose [S0,.. .,S„] is a full-dimensional family of subsets of[n]. Then

(8) deU>(S,a S,)) = (-l)"2-1Lii(*)riM(fc).
k k

The proof of (8), which we will not give here, depends upon an extension of the

following result:

Theorem [GHH]. // a connected graph G has blocks, i.e., maximal 2-connected

subgraphs, G,,..., Gr, then

(i)cof(G) = nUcof(G,),
(ii) det D(G) = Ei = 1det(Z)(G,))n,^cof(G,),

where coi(H) denotes the sum of the cofactors of the distance matrix D(H) of the

graph H.

Note that this result immediately implies (2) since any tree Tn with « edges has

exactly « blocks, each being a single edge K2 having det(D(K2)) = -1, coî(K2) = 2.

Of course, when ju is just the counting measure, i.e., ¡i(k) = I for all k G [«], then

(8) reduces to (7).

Embedding into «-cubes. The cartesian product K2 = Y\"=ÏK2 (where K2 denotes

the complete graph on two points) is usually called the «-cube in the graph theory
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literature. The induced metric dK„ on K2 is just the Hamming metric dH. The

problem of characterizing those G for which G -* K2  for some N was first settled

by Djokovic [Dj].

It follows from the preceding results that G -* K2 for some « iff

(i) G is bipartite.

(ii) For all e = {x, y) g E, if a, b, c g V such that ax < ay, bx < by, and ab =

ac + be, then ex < cy.

Since the distance matrix D(G) for any (connected) graph G is real and symmet-

ric, then D(G) has all real eigenvalues. Let «+ (G) and «_ (G) denote the number of

positive and negative eigenvalues, respectively, of D(G).

i
Theorem T.IfG-* K2 for some m, then

(9) dim/(G) = «_(G).

Proof. Suppose X: G -» K2 is an isometry, say X(v) = (Xiv)^. ..,X(v)m) for

D6 F(G). Since

</>, v') = d„(X(ü), M»')) =  E dH{\{v)k, \{v')k),
k=\

then if we define

Ak:= {í,g V:X(v)k = 0},       Bk:= (»6 F:X(i;)fc=l},

we have the basic decomposition

(io) E   ¿c(m>a= E.( E *,)( Z'xX

We can rewrite (10) as

ai)    e  ^(mIv^iêII e J-Ie^- e xX)

which expresses the quadratic form on the left-hand side as a sum of one positive

square and m negative squares. Thus, by Sylvester's "law of inertia",

(12) »+(<?)*< 1,       n_(G)<ro.

In fact, «+(G) = 1 since £>(G) has trace 0.

Now, on one hand,

(13) rank(D(G)) = «_(G) + n + (G) = «_(G) + 1 < m + 1.

On the other hand, since G is connected, there must exist v0, v,,... ,vm g F(G) such

that the set {A(i;0), Xiv^,... ,X(vm)} is full dimensional in K2. Thus the submatrix

(dc(t;,, Vj)) = (dH(X(Vi), X(Vj))) is nonsingular (by Theorem 4), and so rank(D(G))

> m + 1. Consequently, rank(D(G)) = m + 1, and «_(G) = m = dim,(G) which

proves the theorem.   D

We note that it follows from these considerations, for example, that if G —> A"™,

then det(D(G)) # 0 iff G is a tree.
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Concluding remarks. The problem of embedding graphs isometrically into other

graphs is a special case of the more general topic of embedding (finite) metric spaces

isometrically into other metric (or semimetric) space. This topic has an extensive

literature, some of which can be found in [ADzl, ADz2, Av3, K2, K3]. Of course,

many of these more general results impinge on our studies. For example, it follows

from these considerations that if G -» K™ (or indeed, if G -» Hm for any graph H

with at most four vertices), then «+(G) = 1. The reason for this is as follows.

Let us say that an « by « distance matrix D = (d¡j) is of negative type if

(14) Xl + ■ ■ ■ + x„ = 0,       xk g R =» Y.dIJx,xJ < 0.

Similarly, call D hypermetric if

(15) x1 + ■ ■ • + x„ = 1,       xk g Z => Y,dijx¡xj < 0-
ij

Although (14) and (15) are similar, (15) is actually much stronger (see [K3]). Not

only does it imply (14) but also that the space actually satisfies the triangle

inequality (and many stronger related ones), something that (14) does not do. It is

not hard to show that

D is of negative type => n + (D) = 1.

On the other hand, Winkler [Win] has recently found a graph G for which «+(G) = 1

but D(G) is not of negative type.

It turns out that the properties of /j-embeddability, hypermetricity and negative

type are preserved under taking products, factors and isometric subsets. Thus

K2 is of negative type (easy to check) => K™ is of negative type

=> G —> K™ is of negative type =» « + (G) = 1.

/
In fact, it can be shown that G —> K™ for some m iff the relation 0 is transitive, i.e.,

0 = 0.

An interesting observation (due to H. J. Landau [L]) is the following. Suppose X is

a semimetric space with distance matrix D. Let Dik) denote the distance matrix

corresponding to the product space Xk. As just remarked, if X is of negative type,

then so is Xk and, consequently, n+(D(k)) = 1 for any k. It turns out that the

converse holds. In fact, it can be shown [L] that if «+(D(2)) = 1, then this already

implies that X must be of negative type.

It was suggested at one time by Deza [Dez2] that hypermetricity might be a

sufficient condition for isometric embeddability into /, (i.e., Rm with d(x, y) =

E,|x, — _y,|). This was shown not to be the case by Assouad [Asl] and also by Avis

[Av3], who proved that the graph K7 - P3 is hypermetric but not isometrically

embeddable into lv However, it is true [Dezl, Kl] that hypermetricity is a necessary

condition for /,-embeddability. In the same spirit it is easy to show that the graph

^5 — ̂ 3 is of negative type but not hypermetric (see [ADz2]).
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Finally, we arrive at the graph Ki2, which is exceptional in several respects. Since

n+(K32) = 2, K32 is not of negative type and therefore not isometrically embedda-

ble into any K2 or even R". In fact, it is not even a subgraph of K2.

At present no necessary and sufficient conditions are known for a graph to be

/j-embeddable, hypermetric or of negative type. It would seem fruitful to study the

characteristic polynomials of the associated distance matrices of various spaces

rather than just the signs of the eigenvalues. This has been initiated for trees in

[EGG and GL]. It seems likely that our understanding of this whole general area

would increase substantially if the corresponding results were known for graphs

more general than trees, e.g., for G -> K2.

Acknowledgements. The authors wish to acknowledge the valuable discussions
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