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GRADE SCHEMES AND GRADE FUNCTIONS
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STEPHEN McADAM

Abstract. In recent years, two concepts similar to /?-sequences have appeared,

essential sequences and asymptotic sequences. This work explores the general nature

of such sequences.

Introduction. In the last three years, two concepts similar to that of Ä-sequences

have appeared, asymptotic sequences and essential sequences. Motivated by these

examples, this paper will study the general nature of such sequences, which we will

refer to as grade sequences. We will generally restrict our attention to a fixed

Noetherian ring R and all of its locahzations. For any ideal Is in any localization Rs,

we will assign to Is a finite subset of A(IS) of spec Rs, the function A having certain

nice properties to be specified in the next section. Foremost among these nice

properties is the following. Suppose x1,...,x„ are in Is and xx £ A(ORs), and for

i = l,...,n - 1, xt+1 Í U [P e A((xx,...,x¡)Rs), and also suppose there is a

prime Ps g A((xx,...,xn)Rs) with Is c Ps. Now suppose yx,... ,ym in Is behaves

similarly. We will then insist that n = m. If so, A will be called a grade scheme on R,

and to A we will associate a so-called grade function / defined by f(Is) = n, n as

above. The most well-known instance of such an A and / is, of course, A(IS) =

Ass(Rs/Is), and f(Is) is the grade of Is. As we will use the term 'grade' more

generally, this famous special case will herein be called classical grade. In the next

section, we will also give essential grade and asymptotic grade as examples of what

we are studying. As mentioned earlier, we will usually just be looking at a grade

scheme or grade function on a fixed ring R, and we will often custom build a grade

function to exist on a given ring R. Certain grade functions, primarily classical,

essential, and asymptotic grade, as well as the height function, automatically exist on

all Noetherian rings, and we will refer to these as natural grade functions. The

two-fold purpose of this paper is to study grade functions in the abstract, as well as

to investigate which properties of the known natural grade functions are abstract

properties, as opposed to being specific to the example at hand.

In §1, we make precise our definitions, and give the various natural examples. An

important point made in our examples is that two different grade schemes can give

rise to the same grade function. We give some useful technical lemmas concerning
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that fact. §2 is the heart of the paper. It contains a characterization of grade

functions which is used repeatedly in the rest of the paper, both for proving results

and giving concrete examples. Starting with a grade function / on a Noetherian ring

R, we also give a method of constructing a grade scheme Af for /, called the

canonical grade scheme for /. This canonical grade scheme is easy to work with, and

plays a central role in what follows. In §3 we see how a grade function on R induces

grade functions on certain homomorphic images of R, and conversely how grade

functions on certain collections of homomorphic images of R induce a grade

function on R. §4 studies passing between R and certain extension rings of R,

notably faithfully flat extensions. In §5, we use the results of §§3 and 4 to attempt to

find a new natural grade function. We develop a concept which gives a grade

function on any local ring, and we suggest how it might be extended to all

Noetherian rings. Next, let / be any of classical, essential, or asymptotic grade on a

local ring (R, M). It is known that if I is an ideal and if a g M, then/(7, a) < /(/)

+ 1. In §6 we study arbitrary grade functions on (R, M) which have this property,

and show that if / is one such and f(M) = height M, then f(I) = height / for all

ideals /. We also study the abstract version of the unmixedness theorem, which

incorporates the known cases for classical, essential, and asymptotic grade. In §7, we

consider grade sequences over ideal, and given an easy proof of a strong generaliza-

tion of an inequality known to hold for essential and asymptotic cograde.

1. Definitions and examples. Throughout this paper, R will be a Noetherian ring

and S will be an arbitrarily multiplicatively closed subset of R with 0£S. Thus Rs

will represent an arbitrary localization of R. Is will denote a (proper) ideal of Rs

(here / is an ideal of R with I n S = 0). We will be interested in a function A(IS)

with A(IS) cz specRs. (More formally, we should say A is a function defined on the

set {IS\IS is some ideal in some localization Rs of R}. However, for the most part

we will eschew such formality.)

Definition. The function A mentioned above is called a proto-grade scheme on R

if (i) A(IS) is a finite nonempty subset of specRs, (ii) Ps G A(IS) imphes Is ç Ps

and (hi) if P g spec R and P n 5 = 0, then P g A(I) if and only if Ps g A(Is).

Definition. Let A be a proto-grade scheme. The sequence of elements xx,... ,xn

in Rs is called an avoiding sequence for A if (i) (xv... ,xn)Rs + Rs and (ii) for

i=l,...,n,x,$\J{P<EA((xx,...,x,__x)Rs) .

Remark. We will often give proofs which induct on the length of some sequence

of elements xx,...,xn. For these proofs, it will be convenient to agree that when

n = 0, the (empty) sequence is automatically an avoiding sequence for A, and the

ideal it generates is the zero ideal. In particular, in the previous definition, when

/ = 1 wehaveU{PG^(0)}.

Lemma 1.1. Let A be a proto-grade scheme on R.

(i) If Ps is a prime minimal over Is, then Ps G A(IS).

(ii) If xx,... ,xn is an avoiding sequence for A from Rs, then height(xj,... ,xn)Rs =

n.
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Proof, (i) As IP is a proper ideal of RP, by definition, A(IP) is nonempty. As

every prime in A(IP) must contain IP, we see that A(IP) = {PP}. Thus P G A(I),

and so Ps g A(Is).

(ii) This is easy by (i) and the principal ideal theorem.

Lemma 1.1 shows that if one builds an avoiding sequence for A by successively

adding elements on to the end, the process must stop. This motivates our next

definition.

Definition. Let A be a proto-grade scheme on R, and let the elements xx,... ,xn

in Is be an avoiding sequence for A. Suppose that for every x g /s, xx,. . .,xn, x is

not an avoiding sequence for A. Then xx,...,xn will be called a maximal avoiding

sequence for A in Is.

Definition. Let A be a proto-grade scheme on R. Suppose for any Is, all

maximal avoiding sequences for A in Is have the same length. Then A will be called

a grade scheme on R, and avoiding sequences for A will be called A-sequences.

Definition. Let A be a grade scheme on R. Let/(/s) be the length of a maximal

^-sequence in Is. The function / will be called the grade function of A. (It is only

defined on proper ideals.)

Definition. A function / defined on the set of ideals Is will be called a grade

function on R,it it is the grade function of some grade scheme on R.

Lemma 1.2. Let A be a grade scheme on R with grade function f.

(i) Ifls çz Js are ideals of Rs, f(Is) < /(/s)-

(ii) If xx,. ..,xn is an A-sequence in R, and if (xx,.. .,xn)Rs ¥= Rs, then xx,...,xn

is an A-sequence in Rs. (Here, we should refer to the images of xx,... ,xn in Rs, but

this is another formality we will ignore.)

(iii) // IS*RS, then /(/)</(4).

(iv) Let xx,...,xn be an A-sequence in R, and let (xx,...,xn)R c?e spec/?.

Then P g A((xx,.. . ,x„)R) if and only iff(PP) = n.

(v)/(7) = mm{f(PP)\l CZP& specJ?}.

(vi)f(Is) < height Is. In particular, for P g specR,f(PP) < height P.

(vh)f(ORs) = 0.

Proof, (i), (ii), and (hi) are straightforward. For (iv), if P g A((xx,. ..,xn)R),

then Pp g A((xx,... ,xn)RP) so tnat f(PP) = n, using (ii). Conversely, if f(PP) = n,

then by (ii) we see that xx,...,xn is a maximal ,4-sequence in PP. Thus PP g

A((xx,... ,xn)R p), so that P g A((xx,...,xn)R). For (v), if / ç P g spec«, then by

(i) and (iii),/(/) < f(P) < f(PP). Now let xx,... ,xn be a maximal ^-sequence in I.

By the prime avoidance lemma, we must have some P g A((xx,. . .,xn)R) with

I c P. By (iv),/(7) = n = f(PP). Now (vi) follows from Lemma 1.1(h), and implies

(vii).

We now give numerous examples. We will not prove every statement we make

about these examples, but will give enough references that the interested reader may

pursue matters. Here we define A(I), the definition extending to A(IS) in the

natural way.
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Example 1. AX(I) = Ass(R/I). The ^-sequences are Ä-sequences and the grade

function is classical grade.

Recall that for I an ideal, the sequence Ass(Ä/7"), n = 1,2,3,..., stabilizes for

large n. We denote that stable set by A*(I) (see [5, Chapter 1]).

Example 2. A2(I) = A*(I). Now in general, neither Ass(R/I) çz A*(I) nor

A*(I) çz Ass(R/I). That is AX(I) (£ AX(I) and A2(I) ct AX(I). However if I is

generated by an Ä-sequence, then AX(I) = A2(I) [1, Exercise 13, p. 103]. From this,

one easily sees that the ^-sequences and the grade function of A2 are identical to

those of Ax.

Ideals I and J are called projectively equivalent, denoted I — J, if for some

positive integers n and m we have I" = Jm, where the bar means take the integral

closure of the ideal.

Example 3. A3(I) = D A*(J) over all J - I. This example and the next are

discussed in [2 and 6]. The ^-sequences are called essential sequences, the grade

function is called essential grade.

Example 4. A4(I) = {P g specÄ|7 ç P, there isa^e Ass(RP)* with (PP)*

minimal over I(RP)* + q}. Here, (RP)* is the completion of Rp. In general,

A4(I) çz A3(I) (this following easily from [6, Corollary 2]), but A2(I) £ A4(I).

However, for I an ideal generated by an essential sequence, A3(I) = A4(I). Thus the

A4-sequences and the grade function for A4 are the same as for A3.

For I an ideal, and 7its integral closure, the sequence Ass(R/1"), n = 1,2,3,...,

stabilizes for large « to a set denoted A*(I) (see [5, Chapter 3]). It is known that

A*(I) çz A*(I), the inclusion often being proper.

Example 5. A5(I) = A*(I). The ^-sequences are called asymptotic sequences.

The grade function is called asymptotic grade (see [5, Chapter 5]).

Example 6. A6(I) = {P g specR\I çz P, there is a minimal prime q of (RP)*

with (PP)* minimal over I(RP)* + q}. In general A6(I) ç A5(I) [5, Proposition

3.18] but A5(I) c¿ A6(I). The grade function is again asymptotic grade.

Example 7. A7(I) = {P ^ speci?|.P is minimal over /}. The grade function is

easily seen to bef(I) = height I.

Remarks, (a) By Lemma l.l(i), An(I) çz A6(I). Clearly A6(I) çz A4(I), and [6,

Proposition 3.3.1] shows A3(I) ç A2(I). Thus if /„ is the grade function of example

n, then fx = f2 < /3 =/4 < f5 =/6 </7. In general, none of the inequalities are

equahties.

(b) Lemma 1.2(vi) shows /(/) < height/. If / is a natura! grade function (i.e.

existing on all Noetherian rings) we can ask for which rings will/(7) = height I for

all ideals /. Forfx = f2 the answer, of course, is Cohen-Macaulay rings. For/3 = f4 it

is locally unmixed rings (the local ring (R, M) is unmixed if depth q = dim R for all

q G Ass /?*). For f5 =/6 the answer is locally quasi-unmixed rings ((R, M) is

quasi-unmixed if depthq = dim R for all minimal primes q of R*). This is discussed

further in §6.

We saw in the examples that two different grade schemes can have the same grade

function. As this will be important to us, we will explore it in the next two lemmas.



GRADE SCHEMES AND GRADE FUNCTIONS 567

First, however, we will make a remark which will often save us the trouble of

worrying about localizations of R.

Remark. If A is a grade scheme on R, its domain is the set of all ideals in all

localizations of jR. If Rs is a localization of R, then A can be restricted to all ideals

in all localizations of Rs, and the result is easily seen to be a grade scheme on Rs

(called A restricted to Rs). Similar statments hold for proto-grade schemes and grade

functions. In many instances we will need to prove results involving arbitrary Rs,

but since we will often have hypotheses which restrict to Rs, we will just deal with R

itself. This is a notational convenience which we will use frequently (usually tacitly).

The proof of (i) => (ii) of the next lemma and the proof of Lemma 1.4 are our first

applications of this remark.

Lemma 1.3. Let A and B be two grade schemes on R. The following are equivalent.

(i) The grade functions of A and B are equal.

(ii) x1,...,xn is an A-sequence if and only if it is a B-sequence.

Proof, (ii) => (i) is obvious. Assume now that (i) holds but (ii) fails, letting

xx,... ,xn be a minimal counterexample. Without loss, assume this is an A -sequence

but not a 5-sequence. Since xx,... ,x„_i is an /1-sequence, by minimality it is also a

¿^-sequence. Therefore we must have some P g B(xx,...,xn_x) with x„ G P. By

Lemma 1.2(iv), if /is the common grade function of A and B, then we have both

f(PP) = n — 1 and P g A(xx,. . .,xn_x). This contradicts that xx,.. .,xn is an A-

sequence.

Remark. The reader will note that in the preceding proof we introduced the

convention that if xlf...,x„is a sequence in R, A(xx,...,xn) will be used to denote

A((xx,... ,xn)R). When doubt exists as to which ring xx,...,xn comes from, we will

use the more formal notation.

According to Lemma 1.3, the next definition is unambiguous.

Definition. Let/be a grade function on R. Then xx,...,xn is an f-sequence if it is

an A -sequence for any grade scheme A on R whose grade function is/.

Lemma 1.4. Let A be a grade scheme on R whose grade function is f. Let B be a

proto-grade scheme on R. Then the following are equivalent.

(i) B is a grade scheme whose grade function is f.

(ii) If xx,...,xn is an f-sequence, then A(xx,...,xn) = B(xx,...,xn).

Proof, (i) => (ii). Assume (i) holds, and let xx,...,xn be an /-sequence. Thus it is

both an A -sequence and a 5-sequence. If P is a prime containing (xx,... ,xn), then

Lemma 1.2(iv) shows P g A(xx,.. .,xn) if and only if P g B(xx,. .. ,xn) (if and only

if f(PP) = »).
(h) => (i). Assuming (ii), we will show that xv... ,xn is an avoiding sequence for B

if and only if it is an A -sequence. The truth of (i) is then trivial. Since ^4(0) = 5(0)

(the case n = 0 of (ii)), our statement is true for xv Assume inductively that it is true

for sequences of length n — 1. Let xv...,xn be either an avoiding sequence for B or

an ^-sequence. The same can be said for xx,...,xn_x, which by induction is

therefore an /1-sequence. By (ii), A(xx,... ,xn_x) = B(xx,... ,x    A By the nature of
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xx,...,xn, we see that xn is not in any prime contained in A(x1,...,xn_1) =

B(xx,.. .,xn_x), and so xx,...,xn is both an avoiding sequence for B and an

A -sequence. This completes the proof.

Definition. If A and B are grade schemes on R, write A çz B if A(IS) çz B(IS)

for every ideal Is in every localization Rs. (Of course it is enough to have

A(I) çz B(I) for each ideal / of R.)

We next show that any grade function has a minimal grade scheme associated

with it.

Definition. By v(I) we will mean the smallest number of elements in a

generating set for the ideal I. (Note that/(/) < height / < v(I).)

Lemma 1.5. Let f be a grade function on R. Iff(I) = v(I), then I can be generated

by an f-sequence (necessarily of length f (I)).

Proof. This is similar to the proof of [1, Theorem 125].

Theorem 1.6. Let f be a grade function on R. Let Af(I) = {P g spec/?|/ çz P and

either P is minimal over I or f(PP) = f(IP) = v(IP)}. Define Af(Is) analogously.

Then Af is a grade scheme for f, and if A is any grade scheme for f, then AJ ç A.

Proof. Let A be any grade scheme for /. Suppose P G Af(I). If P is minimal

over /, then P g A(I). Otherwise, f(PP) = f(IP) = v(IP), and by Lemma 1.5, there

is an /-sequence xx,.. .,xn in RP with IP = (xx,. ..,xn)RP. Since f(PP) = f(IP) = n,

PP g A((xx,...,xn)RP) = A(IP), and so P G A(I). Therefore^ çz A.

We now see that AT (I) is finite, since it is contained in A(I). We easily see that

Af is a proto-grade scheme, and we will apply Lemma 1.4 to it and A. Letting

yx,... ,ym be an /-sequence, we already have Af(yx,... ,ym) çz A( yx,... ,ym). Con-

versely, if P g A(yx,... ,ym), then

f((yl,...,yjRp)=f(PP) = m> v((y1,...,ym)RP)>f((y1,...,ym)RP).

Equality holds throughout, showing P g Af(yx,... ,ym), and completing our proof.

Lemma 1.7. Let f be a grade function on R, and let I and J be ideals. Then

/(/n J) =/(//) = min{/(/),/(/)}.

Proof. /(/ n J) = f(IJ) by Lemma 1.2(v), since I n J and IJ have the same

radical. Now let IJ çz P ^ spec/? ■withf(IJ) = f(PP). Without loss, assume I çz P.

Then /(/) < f(PP)=/(//)< /(/), the last step since IJ ç /. Thus /(/) = f(IJ).

As f(IJ) </(/), we are done.

We close this section by noting that it A(I) = Ass(/?//), then A is not a grade

scheme, in general. [5, pp. 40-41] contains an example of a local ring in which two

different maximal avoiding sequences for A have different lengths.

2. Characterizing grade functions. We now turn to a more subtle fact about grade

functions. It will be a key property in our characterization of grade functions, for it

captures the requirement in a grade scheme, A(I) is finite.

Definition. Let Q g spec/?, and let U be an infinite subset of spec/? such that

every P g U properly contains Q. If for any infinite subset U' of U we have

ilffe U'} = Q, then (Q, U) is called a conforming pair.
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Lemma 2.1. Let I be an ideal of R, and let U0 be an infinite subset of spec /? such

that I çz P for all P G U0. Then there is a conforming pair (Q,U) with I çz Q and

Uçz U0.

Proof. Expand / to an ideal Q maximal with respect to being properly contained

in infinitely many primes of U0. It is straightforward to see that Q is prime. If

U = {Pg [/0| (2 c P}, it is straightforward to see that (Q, U) is a conforming pair.

Theorem 2.2. Let f be a grade function on R, and let (Q,U) be a conforming pair in

R. Suppose f(PP) < n for all P G U. Thenf(QQ) < n - 1.

Proof. If not, let xx,...,xn be elements in /? whose images in RQ form an

/-sequence in QQ. Let A be a grade scheme for/, and let

W={J{p^A(xx,...,xi_x)\xiczp},

the union over / = 1,... ,n. lip G W, we must have/; % Q since otherwise xx,... ,xn

would not be an/-sequence in QQ. As (Q, U) is a conforming pair, iîp g W, then at

most finitely many P g U can contain p. Since W is finite, by deleting finitely many

P from U we may assume that p %P whenever p g W and P G U. We now see that

the images of xx,... ,xn form an /-sequence in RP for all P g U. Since f(PP) < n, we

have P,, £/!((*!,...,*„)/?,,), so that Pe^.x,) for all Peí/. This is

impossible, since U is infinite.

Remark. Using [7, Example 2, pp. 202-205] it is not hard to produce a

Noetherian ring /? with a conforming pair (Q, U) such that little height Q = little

height P = 2 for all P g U. (Little height P is the length of the shortest saturated

chain of primes from P down to a minimal prime.) Thus Theorem 2.2 shows that, in

general, little height is not a grade function.

The next corollary combines three results which have appeared in three different

places.

Corollary 2.3. Let f be a grade function on R and let Q g spec /? with f(QQ) =

height Q. Let W = {P g specR\Q C P and height P/Q =1}. Then for all but

finitely many P G W, f(PP)= height P. In particular if Rq is Cohen-Macaulay

(respectively, unmixed) (respectively, quasi-unmixed) then the same is true of RPfor

all but finitely many P G W.

Proof. If false, then W contains an infinite subset U with f(PP) < height P for all

P g U. By [4, Theorem 1] height P = height Q + 1 for all but finitely many P g U,

and deleting those finitely many does no harm. Clearly (Q, U) is now a conforming

pair with/(PP) < height P = height Q + 1 = f(QQ) + 1 for all P g U. By Theorem

2.2, f(QQ) < f(QQ), a contradiction. The three special cases follow by letting / be,

respectively, classical, essential, and asymptotic grade.

We now come to our main result.

Theorem 2.4. Let f be a nonnegative integer valued function defined on the set

{Is | Is is a proper ideal in some localization Rsof /?}. Then f is a grade function if and

only if it satisfies the following three conditions.

(i)f(Is) = min{ f(PP))Is çz Ps g spec/?s}.
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(ii) f(PP) < height P for all P g specP.

(iii) If (Q,U) is a conforming pair in R, and if f(PP) < n for all P g U, then

f(QQ) <n-l.

Proof. One direction is by Lemma 1.2(v) and (vi) and Theorem 2.2. Thus assume

/ satisfies the given conditions. We seek a grade scheme Af whose grade function is /.

We define Af(Is) to be {Ps G spec RS\IS çz Ps and f(PP) = f(IP)}. Before proceed-

ing, we note that condition (i) implies that if Is çz Js are ideals, then/(/s) < f(Js)

andf(I) < f(Is)- We will use these inequalities repeatedly.

By condition (i), find a P g spec/? with / c P such that /(/) = f(PP). Then

f(I)<f(IP)<f(PP) = f(I), so that f(IP) = f(PP). Thus P g Af(I) which is
therefore nonempty. We also claim Af(I) is finite, since if not, by Lemma 2.1 we

could find a conforming pair (Q, U) with I Q Q and U çz Af(I). For all P g U, we

would have f(PP) = f(IP) By condition (i),/(/,,) < f(QQ). Thus f(PP) < f(QQ) for

all P G U, and condition (iii) gives f(QQ) < f(Qç>) - 1, a contradiction. Therefore

Af(I) is a finite nonempty set, and by the remark preceding Lemma 1.3, so is

AAIS). Also, it is clear from the definition that Ps G Af(Is) implies Is çz Ps, and if

P g spec /? with P n S = 0, then P e ^(/) if and only if Ps g Af(I¡¡). Therefore,

we have that Af is a proto-grade scheme on /?.

In order to complete our proof, we will prove the following two statements.

(a) If xx,... ,xn is an avoiding sequence for Af, and if P G Af(xx,.. .,xn), then

f(Pp) = n.
(b)ltf(I) = n, then any maximal avoiding sequence for Afin / has length n.

Obviously (b) imphes that Af is a grade scheme for /, as desired. To prove (b), we

will simultaneously treat (a) and (b) by inducting on n. For n = 0, suppose

P g Af(0). Then/(PP) = f(ORP). However, applying conditions (i) and (ii) to any

minimal prime of RP shows that f(ORP) = 0. so (a) holds when n = 0. As for (b).

suppose f(I) = 0. By condition (i), there is an / ç P g specP with f(PP) = 0 =

f(ORP), so that P G A ¡(O), clearly showing (b) holds.

Inductively assume both (a) and (b) hold for arbitrary 0 < m < n. We will show

they hold for n. For (a), let xx,...,xn be an avoiding sequence for Af, and let

P g Af(xx,... ,xn). If f(PP) < n, then f(P) < f(PP) < n, and (b) is inductively

violated. Thus f(PP)> n. As P g Af(xx,...,xn),f(PP) = f((xx,. ..,xn)RP). Let PP

be a prime minimal over (xx,.. .,xn)RP. Then f(PP) = f((xx,... ,xn)RP) < f(pP)

</(/>) < height p < n, using condition (ii) and the principal ideal theorem. Thus

f(PP) = n and (a) is inductively proved.

For (b), let /(/) = n and let xx,...,xk be an avoiding sequence for A, in /. If

k < n, then for any P g Af(xx,... ,xk), statement (a) shows f(PP) = k < n = /(/),

and so condition (i) shows I <£ P. Since Af(xx,...,xk) is finite, we can find an

xk + x g / withxx,...,xk, xk + x an avoiding sequence for Af.

Now \etyx,... ,y¡ be a maximal avoiding sequence for Af in /. We want I = n, and

by the preceding paragraph have / > n. By condition (i), there is an / çz P g specP

withf(PP) = f(I) = n. Since / > n we may consideryx,... ,yn, which is an avoiding

sequence for A,. To prevent statement (b) from being inductively violated, we must
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have f(yx,. ■. ,y„) > n. Therefore n < f((y\,- ■ ■ ,y„)RP) < f(Pp) = n. This shows

that f(PP) = f((yv ■ ■. ,y„)RP), so that P g Af(yx,... ,yn). Since I çz P, we now see

that yx,...,ynis a maximal avoiding sequence for Af in I. Thus / = n as desired. This

proves (b), and the theorem.

We examine the grade scheme constructed in Theorem 2.4 a bit more closely, first

naming it, and then showing some of its nice properties.

Definition. Let/be a grade function on /?. For Is an ideal in some localization

Rs of R, let Af(Is) = {Ps G specPs|/s çz Ps and f(IP) = f(PP)}. Af is called the

canonical grade scheme off.

Remark. It is easily seen that Af(I) = {P g specR\there is an ideal J with

J çz I çz P g AJ(J)}.

Lemma 2.5. Let A, be the canonical grade scheme of the grade function f on R. Let

I çz J çz P çz Q and K be ideals of R with P and Q prime.

(a) IfP G Af(I), then P G Af(J).

(b) If /(/) = f(Pp), then Q G Af(I) if and only if Q g Af(J), in which case

f(I)=f(QQ)-
(c) If f(I) = f(PP), then P is maximal in A^(I) if and only if P is maximal in

Af(J).
(d) The hypothesis f (I) = f(PP) in (b) and (c) hold if I is generated by an f-sequence

andP g Af(I).

(e) P g Af(IK) if and only if either (i) K £ P and P g Af(I) or (ii) K çz P and

P^Af(I)nAf(K).

Proof, (a) f(PP) > /(/,,) > f(IP) = f(PP), the equality since P g Af(I). Thus

equality holds throughout, and P G Af(J).

(b) If Q g Af(I), then Q g Af(J) by (a). If Q g Af(J), then f(QQ) = f(JQ) <
/(/,,) < f(PP) = /(/) < f(IQ) < f(QQ), which shows Q g Af(I) and also /(/) =

f(QQ).
(c) This follows easily from (a) and (b) since/(/) = f(PP) gives P g Af(I).

(d) This is easy.

(e) If (i) holds, then (IK)P = IP, and since P g Af(I) we have PP g Af(IP) =

Af((IK)p). Thus P g Af(IK). If (ii) holds, then f(IP) = f(PP) = f(KP). Lemma

1.6 now shows P g Af(IK). Conversely, suppose P g Af(IK). If K çt P, then

PP g /^((//sT),,) = Af(IP), so P g ^/(/). If K çz P, then since IK çz K çz P, part

(a) shows P g Af(K). Similarly P g ^(7).

We will now identify the canonical grade scheme Af when / is asymptotic grade.

We will use the following definition.

Definition. For P prime in a Noetherian ring R,

z(P) = minÍdepthq\q is a minimal prime in (RP)*j,

with (RP)* the completion ot RP.

Theorem 2.6. Let f be asymptotic grade on R. Let I çz P g spec R. Then P g A¡(I)

if and only if for each minimal prime q of (RP)*, height(I(RP)* + q/q) ^ z(P). In

particular, A,çz A6.
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Proof. By [5, Proposition 6.10] we have both f(PP) = z(P) and f(IP) =

min{hzi$\t(I(R P)* + q/q)\q is a minimal prime in(RP)*}. Noting that we always

have f(IP) < f(PP) and that equality holds exactly when P g Af(I), the first part of

the result is clear. Now suppose P g A ¡(I), and let q be a minimal prime in (RP)*

such that depths = z(P). By the preceding, height(/(PP)* + q/q) > depthq. As

the reverse inequality is obvious, we have equality. Thus (PP)* is minimal over

I(RP)* + q. By definition, this gives P g A6. Therefore^ çz A6.

In constructing Example A6, we used all minimal primes of (RP)*. We now show

that a single minimal prime of depth z(P) would suffice.

Theorem 2.7. For each prime P of R, let q(P) be a minimal prime in (RP)*, with

depthq(P) = z(P). Define A(IS) = {Ps G spec RS\IS Q Ps and (PP)* is minimal

over I(RP)* + q(P)}. Then A is a grade scheme for asymptotic grade on R. Also A

contains the canonical grade scheme for asymptotic grade.

Proof. Let/be asymptotic grade on R. If Ps g Af(Is), then Ps g A(IS) by the

argument used in proving Theorem 2.6, with q = q(P). Now A is easily seen to be a

proto-grade scheme (A(IS) being finite since it is contained in ^46(/s)). Let x1,...,x„

be an asymptotic sequence. We haveAf(xx,...,xn) ç A(xx,.. .,xn) ç A6(xx,.. .,xn)

= Aj(xx,... ,xn), the equality by Lemma 1.4. As equality holds throughout, Lemma

1.4 shows that A is a grade scheme for/.

Example. We wish to show that with / being asymptotic grade, in general

A6 % Af. In fact we will show A <£ Af with A as constructed in Theorem 2.7. This is

very easy. Let (R, M) be a complete local ring with exactly two minimal primes qx

and q2, both of depth 1. Let q(M) = qx. Since M is minimal over q2 + q(M),

M g A(q2). However, height(<72 + q2/q2) = 0 < 1 = z(M), and so Theorem 2.6

shows M G Af(q2).

Remark. The preceding two theorems and example concern asymptotic grade and

minimal primes of (RP)*. Analogous results hold for essential grade and prime

divisors oi(RP)*, using [6, Corollary 5.4].

Example. We now let / be classical grade and give examples showing that in

general Af is not contained in Ax or A2, and Ax and A2 are not contained in Af.

Let (R, M) be a 2-dimensional local domain which is not Cohen-Macaulay, and

let P be a height 1 prime. Since f(MM) = 1 = f(PM), M g Af(P). Clearly M £

AX(P). Thus Afç£ Ax.

Let R be a Cohen-Macaulay domain and let P be a prime such that for some n, P"

is not P-primary. Then for some P c Q g specP, Q G AX(P"). However f(QQ) =

height Q > height P = f(Pß), soßi Af(PN). Thus A1 £ Af.

Let (R, M) be a 2-dimensional local domain which is not Cohen-Macaulay, but

which is unmixed (i.e. every q g AssP* has depth t? = 2). For any ideal I # 0,

f(IM) = 1 = f(MM) so that M g Aj(I) for all / # 0. However since R is unmixed,

[5, Proposition 10.11] shows for some / =t 0, M G A2(I). Thus^ Çt A2.

Let (R, M) be a 2-dimensional normal domain, and let P be a nonprincipal height

1 prime. By [5, Corollary 4.7], M ^ A2(P). However, being 2-dimensional and
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normal, R is Cohen-Macaulay. Therefore, f(M) = 2 > 1 = f(PM), and soMi

Af(P). Thus A2 cLAf.

We now show that the canonical grade scheme of a grade function can often be

enlarged in a natural way.

Definition. Let/be a grade function on R. If q is an ideal of P, we will say that

q is f-modest if whenever q çz P g specP, we have/(PP) < height(P/^r).

Remarks, (i) If q is an ideal in the nilradical of R, then q is easily seen to be

/-modest for any grade function /.

(ii) If /is asymptotic grade and q is a minimal prime of R, then q is/-modest using

[5, Proposition 6.10].

(iii) If / is essential grade and q g Ass R, then q is /-modest using [6, Corollary

5.4].

(iv) If / is classical grade and q G Ass R, then q is /-modest by (iii) and the fact

that classical grade does not exceed essential grade.

(v) Let q be /-modest and let Q be a prime minimal over q. Then f(Qg) <

height Q/q = 0. So f(QQ) = 0 and Q g ^(0). (This does not characterize /-mod-

esty. In fact Q may not be/-modest.)

(vi) If every prime minimal over Q is /-modest, then q is /-modest (but not

conversely), as is easily seen.

Lemma 2.8. Let f be a grade function on R, and let q be an f-modest ideal of R. Let

xx,... ,xn be an f-sequence in R with (xx, ...,xn) + qi=R. Then

(a)f((xv...,xn) + q) = n,

(b)Af((xx,.. .,x„) + <?) = {P G Af(xx,... ,xn)\q çz P).

Proof, (a) Let P be minimal over (xx,... ,x„) + q. Then n < f((xx,... ,xn) + q)

< f(Pp) < height P/q < n, using /-modesty and the principal ideal theorem.

(b) One containment is by Lemma 2.5(a). Conversely, if P g Af((xx,.. .,xn) + q),

then f(PP) = /((*!,. . . ,xn)P + qP) = n = f((xx,. . . ,xn)P) showing P g

AAxx,... ,xn). Here we used part (a) applied in RP to get the second equality.

Theorem 2.9. Let f be a grade function on R. Let V be a finite set off-modest ideals

of R. Define Afv(Is) = Af(Is) U (UAf(Is + qs)) over all q G V with Is + qs # Rs.

Then A¡v is a grade scheme for f.

Proof. It is easily seen that Afv is a proto-grade scheme. We will use Lemma 1.4.

Let xx,...,xn be an /-sequence. We want Af(xx,...,xn) = Afv(xx,...,xn). One

inclusion is by definition of AfV, and the other is by Lemma 2.8(b).

Let / be asymptotic grade. We previously saw A,çz A6 çz A5. If V is the set of

minimal primes in R, we now give an example in which Afv c¿ A5.

Example. Let R be K[[X, Y, Z, W]] modulo (X)n(Y, Z). Let x, y, z, w be the

images of X, Y, Z, W, and let M be the maximal ideal of P. Let V = {(x),(y, z)}.

Now let I = (y,w). We claim that M g Afv(I). It will suffice to show that

M g Af(I + (x)). Note that

height(7 +(x)/(x)) = height(/ +(x) +(y, z)/(y, z)) = 2 = z(M).
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By Theorem 2.6, M G A ¡(I + (x)), so that M g Afv(I). We now claim that

M <£ A5(I) = A*(I). If it were, then by [5, Proposition 3.18] we would have either

M/(x) G Ä*(I + (x)/(x)) or M/(y, z) G Ä*(I + (y, z)/(y, z)). However, since

R/(x) and R/(y, z), being complete local domains, satisfy the altitude formula, [5,

Proposition 4.1] would give either 3 = height M/(x) = /(/ + (x)/(x)) < 2 (since

the analytic spread of an ideal does not exceed its minimal number of generators) or

2 = height M/(y, z) = /(/ + (y, z)/(y, z)) = 1. Thus M G A5(I), and so Afv £

A5.

Example. Let B be an arbitrary grade scheme for / and let K be a finite set of

/-modest ideals. In analogy to Ajv, we can try to define

Bv(ls) = B(ls)v(\JB(ls + qs))

over all q g F with Is + qs =*= Rs. However, in general the result will not be a grade

scheme for /. In fact, it may not be a grade scheme at all, as we now show, using an

example in which B differs from Af by very httle. Let (R,M) be K[X, Y, Z]

localized at (X, Y, Z). Let q = (X) andp = (X, Y). Theorem 2.4 makes it clear that

in order to define a grade function on R, it suffices to specify its values on PP for all

P g spec R, in such a way that conditions (ii) and (iii) of Theorem 2.4 are satisfied.

Thus we let f(PP) = height P, with the following exceptions: f(qq) = 0, f(M) = 2,

and f(PP) = 1 whenever P is a height 2 prime containing q. We see that q is

/-modest, and will let V = {0, q}. We now let B(IS) = Af(Is) in all cases except

B(p) which we take to be Af(p)\J {M} = {p, M). (Note that by condition (i) of

Theorem 2.4, f(p) =f(pp) = 1, and since/(M) = 2, M G Af(p).) Since f(p) = 1

< height p, p is not generated by an /-sequence. Since B and A¡ agree everywhere

but at p, Lemma 1.4 shows that B is a grade scheme for /. We now claim that Bv,

defined as above, is not a grade scheme. (It clearly is a proto-grade scheme.) We first

note that Bv(0) = B(0) U B(q) = ^(0) U Af(q) = {0,q}. Thus Y and Z are both

avoiding sequences for Bv. We will show that Y is maximal in M, but Z is not,

showing that Bvis not a grade scheme. Since BV(Y) = B(Y) U B((Y) + q) = B(Y)

U B(p), and since M g B(p), Y is a maximal avoiding sequence for Bv. On the

other hand BV(Z) = B(Z) U B((Z) + q) = Af(Z) U Af((Z, X)), which does not

contain M, since f(M) = 2 while/(Z) = 1 = f((Z, X)).

3. Factor rings. We mentioned that to define a grade function /, it suffices to

specify f(PP) for all P G specP in such a way that conditions (ii) and (iii) of

Theorem 2.4 hold. We use this (on R/q) in our next theorem.

Theorem 3.1. Let f be a grade function on R and let q be an f-modest ideal. For

P/q g spec(P/<7), let h(PP/qP) = f(PP). Then h defines a grade function on R/q. If

J/q is an ideal of R/q, then h(J/q)= f(J). Also P g Af(J) if and only if

P/q G Ah(J/q).

Proof. Since q is/-modest, h(PP/qP) = f(PP) < height(P/g). Thus condition (ii)

of Theorem 2.4 holds for h. As for condition (iii), let (Q/q, U) be a conforming pair

in R/q and suppose h(PP/qP) < n for all P/q g U. We want h(QQ/qQ) < n — 1.

Obviously (Q, {P\P/q G [/}) is a conforming pair in P, and for these P,f(PP) =

h(PP/qP) < n. Therefore f(QQ)< n - 1, and so h(QQ/qQ) < n - 1 as desired.
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Now h is seen to give a grade function on R/q defined via condition (i) of Theorem

2.4. If J/q is an ideal in R/q, then

h(J/q) = min{h(PP/qp)\j/q ç P/q g spec(R/q)}

= min{ f(PP)\J çz Pg specP} =f(J).

Finally, P g Af(J) if and only if f(PP) = f(JP) if and only if h(PP/qP) = h(JP/qP)

(by applying the preceding sentence in RP and RP/qP) if and only if P/<¡r G Ah(J/q).

Remark. Let B be a grade scheme for /, and for J/q in R/q let Bq(J/q) =

{P/q\P g P(/)}. If P = /4/5 Theorem 3.1 shows that Bq = Ah. However in general,

B will not be a grade scheme at all, as the example at the end of §2 works here as

well.

Corollary 3.2. Let f, q, and h be as in  Theorem 3.2. Let xx,...,xn be an

f-sequence with (xx,...,xn) + q + R. Then

(a) xx + q,... ,xn + q is an h-sequence.

(b)Ah(xx + q,...,xn + q)= {P/q\q ç P G Af(xv.. .,x„)}.

Proof. We induct on n simultaneously for (a) and (b). When n = 0, (a) is trivial.

For (b), suppose q çz P. Then P g Af(0) if and only if f(PP) = 0 if and only if

h(PP/qP) = 0 if and only if P/q g Ah(0).

Now suppose (a) and (b) both hold for n — 1. We will show they both hold for n.

Suppose this fails for (a). Then xx + q,... ,xn + q is not an /z-sequence, but by

induction, xx + q,... ,xn_x + q is. Thus for some P/q g Ah(xx + q,...,x„_x + q),

we must have xn + q g P/q. By (b), inductively, P G AAxlt.. .,xn_x). As xn g P,

we have contradicted that xx,...,xnis an/-sequence.

As for (b), since by (a) we already have that xx + q,... ,xn + q is an /¡-sequence, if

P/q g Ah(xx + q,...,xn + ¿¡r), then h(PP/qP) = n. Thusf(PP) = n. As xx,... ,xn is

an/-sequence in PP, we see that P G Af(xx, ...,xn). The reverse is similar.

We already noted that if q is in the nilradical of P, then q is /-modest for any

grade function /. We will show that for such q, Theorem 3.1 gives a bijection

between all grade functions on P and all grade functions on R/q.

Lemma 3.3. Let q be an ideal in the nilradical of R and let f be a grade function on R.

For any ideal I of R, f (I) = f (I + q) and Af(I) = Af(I + q).

Proof. For some / c P g specP, f(I)=f(PP). As q çz P, /(/)</(/ + q) <

f(Pp) = f(I), and equality holds throughout. Thus/(/) = /(/ + q). Also, P g Af(I)

if and only if f(PP) = f(IP) if and only if f(PP) = f(IP + qP) (since qP is in the

nilradical of RP) if and only if P g A AI + q).

Theorem 3.4. Let q be an ideal contained in the nilradical of R.

(a) The map f -* h (as in Theorem 3.1) is a bijection between the set of grade

functions on R and the set of grade functions on R/q.

(b) Iff -> h is as above, then P g Af(I) if and only ifP/q g Ah(I + q/q).
(c) /// -» h is as above, xx,...,xn is an f-sequence if and only if' xx + q,...,xn + q

is an h-sequence.

(d) The bijection in (a) takes asymptotic grade on R to asymptotic grade on R/q.
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Proof, (a) We will construct an inverse map for the map/ -» h. Suppose that k is

a grade function on R/q, and define / as follows. For P any prime in P, we define

l(PP) to equal k(PP/qP). We claim that / is a grade function on P. This is proved

using Theorem 2.4 and is similar to the proof of Theorem 3.1. Now start with k and

define / as above. Then let /= / and define h as in Theorem 3.1. We have

h(J/q) = f(J) = l(J) = k(J + q/q) = k(J/q) (since q çz J). That is, h = k. Con-
versely, start with/and h as in Theorem 3.1, let k = h and define / as above. We see

that /(/) = k(I + q/q) = h(I + q/q) = f(I + q)=f(I) by Lemma 3.3. That is,
/ = / and (a) is proved.

(b) Immediate from Lemma 3.3 and the final sentence of Theorem 3.1.

(c) One direction is by Corollary 3.2(a). Thus suppose that xx + q,..., xn + q is an

A-sequence, but that xx,...,xn is not an /-sequence. Then for some i = 1,2,...,n

there is aP g Af(xx,...,x¡_x) with*, g P. By (b), P/q g Ah(xx + q,... ,xt_x + q).

As x,: + q g P/q, we have a contradiction.

(d) In view of (c), we need only show that xv...,xn is an asymptotic sequence in

P if and only if xl + q,...,xn + q is an asymptotic sequence in R/q. For this,

note that P g A*(I) if and only if there is a minimal prime Q çz P with P/Q g

Ä*(I + Q/Q) [5, Proposition 3.18], from which it easily follows that P g Ä*(I) if

and only if P/q g A*(I + q/q). Using this, our statement about asymptotic se-

quences is straightforward.

We will now show that grade functions on certain collections of factor rings of R

induce a grade function on P. Then we will combine this with Theorem 3.1.

Theorem 3.5. Let V be a finite set of ideals of R, and suppose for any P g spec R

there is a q g V with q çz P. For each q G V, let f be a grade function on R/q. Define

f in the following way. For Is an ideal in some localization Rs of R, f'(Is) =

min{flj(Is + qs/qs)\q g V, Is + qs # Rs}- Then f is a grade function on R.

Proof. Note that the hypothesis on V assures that for any /s, there is a q g V

with Is + qs + Rs, so that f'(Is) is defined. We will show that/' satisfies Theorem

2.4. For condition (i), we need only to consider an ideal I in R itself. Say

/ çz P g spec P. Then

f'(PP) = min{ fq(PP/qP)\qŒ V,qçzP)

> min{ fq(l + q/q)\q^ V,q ç P) > f'(l).

We must now show f'(Pp) = f'(L) for some P. For some q G V, we have/'(7) =

fq(I + q/q\ and for some / + q/q ç P/q g spec R/q, fq(I + q/q) = fq(PP/qP).

Àsfq(Pp/qp) > f'(Pp) > f '(1), combining the above shows this is the P we seek.

Condition (ii) is easy, since f'(PP) = min{ fq(PP/qP)\q g V, q çz P) <

min{height P/q\q G V, q çz P) < height P.

As for condition (iii), let (Q, U) be a conforming pair in R, with f'(PP) < n for all

P G U. Thus for each P g U, there is a q G V, q çz P, with fq(PP/qP) = f'(PP) < n.

As U is infinite while V is finite, we find that for some fixed q g V there are

infinitely many P G U for which q çz P and fq(PP/qP) < «- Deleting the other P's
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from U does no harm, as we still have a conforming pair. We now have q ç P for all

P g U, and so q Q Q. It is clear that (Q/q, {P/q\P G {/}) is a conforming pair in

R/q, and since fq(PP/qP) < « for all such P/q, we have/^Q^/^) < « — 1. Thus

f'(QQ) < /„(Qq/Iq) < « - 1, as desired.

Corollary 3.6. Le/ P, F,/ , and f be as in Theorem 3.5.

(a) //P g Af,(I), then for some q G Fw/'î/î 4 ç P, P/g g ^(Z + q/q).

(b) If for allq G F w/r/i q çz P we have P/q e Af(I + q/q), then P g Af,(I).

(c) 7/ 7 ¿5 generated by an f'-sequence, then P G Af,(I) if and only if for some

q g Vwith qÇ\P, P/q G Af(I + q/q).

(d) If xx,... ,xn is an f'-sequence, and if q G V with (xx,... ,xn) + q ¥= R, then

xx + q,...,x„ + qis anfq-sequence.

(e) If R is a local ring, then xx,...,xnis an f'-sequence if and only if xx + q,.. .,xn

+ q is an fq-sequence for each q G V.

Proof. For (a), let P g Af,(I), so that f'(PP) =f'(IP). By definition of/',

fVp) =f'(Pp) = fq(Pp/qP) > fq(Ip + qP/qP) > fVP) for some q g V with q ç
P. Therefore equality holds throughout, and (a) is true. For (b), it is easily seen that

we may assume P is local at P. Now the hypothesis shows fq(P/q) = fq(I + q/q)

for all q g V. The definition of /' now shows that/'(P) =/'(/) so that P g Af,(I).

To prove (c) and (d), we argue similarly to the proof of Corollary 3.2. As for (e), one

direction is by (d), while the other is any easy induction using (a).

Remark. The converse of Corollary 3.6(a) fails even when P is local. Let (R, M)

be 1-dimensional with V = {q, Q} being exactly the minimal primes of P. Let/ and

fQ be classical grade. Let I = q. Now fQ(M/Q) = 1 = fQ(I + Q/Q) so that M/Q

g AQ(I + Q/Q). However f'(M) = min{ fq(M/q), fQ(M/Q)} = 1 while/'(/) =
min{ fq(q/q), fQ(q + Q/Q)} = 0. Thus M <£ Af,(I). The next corollary corrects

this situation, at the cost of possibly going to a larger grade scheme. That is, if the Bq

in Corollary 3.7 all equal the canonical grade scheme A of / , then the B produced

wil have A,, ç B.

Corollary 3.7. Let R, V,fq and f be as in Theorem 3.5, and suppose that for each

q G V, Bq is a grade scheme for fq. Define B(IS) = {Ps g specPs|/s çz Ps, and for

some q g Vwith q çz P, Ps/qs G Bq(Is + qs/qs)}. Then B is a grade scheme for f '.

Proof. It is straightforward to verify that B is a proto-grade scheme. We will invoke

Lemma 1.4 applied to Af, and P. Thus let xx,...,xn be an /'-sequence. We must

show thatAf,(xx,.. .,xn) = B(xx,.. .,xn). Suppose P G Af,(xx,.. .,xn). By Corollary

3.6(a), for some q g V with q çz P, P/q g Af(xx + q,.. .,x„ + q). However

by (d) of that corollary, xx + q,...,x„ + q is an /^-sequence, so that P/q g

Bq(xx + q,...,x„ + q) by Lemma 1.4. By definition P g B(xx,. . .,xn), so that

Af,(xx,...,xn) ç B(x1,...,xn). The reverse containment is proved similarly, using

Corollary 3.6(c).

Theorem 3.8. Let V be a finite set of ideals of R such that every prime of R contains

some q G V.
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(a) Let f be a grade function on R such that every q g V is f-modest. For each q G V

define hq on R/q as in Theorem 3.1. Now letting f = h , define f ' as in Theorem 3.5.

Thenf'=f.
(b) For each q g V let f be a grade function on R/q, and define f ' as in Theorem

3.5. Then every q G V is f-modest. Now letting f ' = /', define h on R/q as in

Theorem 3.1. Then f„ > h„.
J q q

Proof, (a) For any ideal / of P, /'(/) = vnin{fq(I + q/q)\q g V, I + q * P}.

Since fq = hq, the characterization of hq in Theorem 3.1 gives

f'(l) = mm{f(I + q)\qe V,l + q*R).

We will show that /( / ) equals the same minimum. Clearly it is equal to or less than

that minimum. Now there is a prime P containing / with /(/) = f(PP). Since P

contains some q g V, /(/)</(/ + q) < f(Pp) = f(F), and equality holds

throughout.

(b) If q g V and ççPe specP, then/'(PP) < fq(PP/qP) < height P/q since fq

is a grade function. Thus q is/'-modest. Now for an ideal J/q in R/q, h (J/q) =

/(/)=/'(/) = min{/e(/+ ß/ß)|ße V, J + Q * R}. Letting Q = q shows

hq(J/q)^fq(J/q).

4. Extensions. Recall that rings R çz T satisfy lying over if for every P g specP,

there is ap g spec 71 with /? D R = P.

Lemma 4.1. Let the Noetherian rings R çz T satisfy lying over. Then for every

P g spec P, there is ap G spec T with p n P = P a«ú? height /? < height P.

Proof. Let S = R — P, and let û1,... ,an be a system of parameters in RP = P5

(so that height P = n). By lying over, we have (ax,.. .,a„)Ts ¥= Ts. If ps e spec Ts

with />s minimal over (a,,.. .,an)Ts, clearly p n P = P and height/? <n by the

principal ideal theorem.

Theorem 4.2. Let R çz T be Noetherian rings which satisfy lying over. Let g be a

grade function on T. For Is any ideal in any localization Rsof R, let f(Is) be defined to

be g(ITs). Then

(a) fis a grade function on R.

(b) IfP G Af(I), then there is a p G Ag(IT) with p n R = P.

(c) If I is generated by an f-sequence, then the converse of(b) also holds.

(d) Elements xx,... ,x„ in R are an f-sequence if and only if they are a g-sequence.

(e) Let B be any grade scheme for g. For Is any ideal in any localization Rs of R, let

C(IS) = {Ps G specPs|(/iere is a ps g B(ITs) with psn Rs = Ps}. Then C is a

grade scheme for f.

(f) // T is a faithfully flat extension of R and if g is any of classical, essential, or

asymptotic grade, f is the same.

(g) // T is an integral extension of R such that every minimal prime of T contracts to

a minimal prime of R, and if g is asymptotic grade, so is f.
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(h) If T is a finite module extension of R such that every p G Ass T has p n R G

Ass P, and if g is essential grade, so is f.

Proof, (a) First note that if I is an ideal of P and 5 is a multiplicatively closed

subset of P disjoint from /, our hypothesis easily shows that IT D S = 0. Thus

f(Is) = g(ITs) is defined. Furthermore, it is easily seen that for P g specP,

f(PP) = min{g(pp)\p G specT, p n P = P}. Using this, it is not hard to see that/

satisfies condition (i) of Theorem 2.4. It also satisfies condition (ii) of that theorem,

using Lemma 4.1. For condition (iii), let (Q, U) be a conforming pair in P, with

f(PP) < n for all P g U. We want f(QQ) < n - 1. For each P g U, the preceding

shows there is a p g specT with p O T = P and g(pp) = f(PP) < n. For each

Pet/, consider one such /> g spec 71, and let IF denote the set of those p. Clearly

QT ç p for all/j> g W, and so by Lemma 2.1 there is a conforming pair (q, W) of T

with QT çz q and IF' ç IF. As g(^) < n for all/7 G IF', we have that g(qq) < n -

1. By the preceding, in order to show that/(ßß) < n — 1, it will suffice to show that

q Pi P = Q. Clearly Q çz q n P. Conversely, # n P ç fl{ /? n R\p g IF'}. By con-

struction, { p Pi P|/? g IF'} is an infinite subset of t/, and so q C\ R çz Q as desired.

(b) Let P g Af(I). Then /(P,>) = /(//>)- As noted in the proof of (a), there is a

p g specT,pnR = P, with £(/>,) = /(PF). If 5 = P - P, then/(/,,) = g(ITs) <

g(ITp) < gi/g = /(P,) = f(IP). Equality holds throughout, showing/; G Ag(IT).

(c) and (d) We prove these simultaneously inducting on n. For n = 0, (d) is trivial.

For (c), say p g Ag(0) and p C\ R = P. Then g(/> ) = 0, and so f(PP) = 0, showing

P g ^(0). Now suppose (c) and (d) both hold for n - 1. Then the case n of (d)

follows easily from (b) and the cases n - 1 of (c) and (d). As for the case n of (c), say

p g Ag(xx,... ,xn), with p n P = P and x1(... ,jc„ an /-sequence. By the case « of

(d), these are also a g-sequence. Thus g(pp) = n, so that f(PP) < «. As jcj,. .. ,xn are

in Pp,f(Pp) = nandP ^ Af(xx,...,xn).

(e) Clearly C is a proto-grade scheme. Let xl,...,x„ be an /-sequence, so that by

part (d), it is also a g-sequence. P e C(xx,...,xn) if and only if there is a

p g B(xx,... ,xn) with p n P = P if and only if there is a /> g Ag(xx,... ,xn) with

p n P = P (using Lemma 1.4 applied to P and v4g) if and only if P g A,(xx, ... ,xn)

(by part (c)). Thus Lemma 1.4 applied to C and Af shows that C is a grade scheme

for/.

(f) With T a faithfully flat extension of P and / an ideal of P, it is well known that

classical grade I = classical grade IT. Also essential grade / = essential IT by [6,

Proposition 5.6.1]. That the same is true of asymptotic grade is shown in [10,

Corollary 5.2].

(g) This follows easily from [5, Proposition 3.22].

(h) This is given by [6, Proposition 5.6.2].

Let R çz T be a faithfully flat extension of Noetherian rings. Let p g spec T and

let P = p n R. It is easily seen that Tp is an extension of RP, and furthermore it

follows from [7, 19.2(2)] that RPQTp satisfies lying over. In the proof of the next

corollary we shall start with h being one of classical, essential, or asymptotic grade

on T (hence also on Tp) and we will apply Theorem 4.2 to RP ç Tp and g = h on T .
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A key step in that proof will be to show that the resulting grade function / on P P

also equals h. We do that now as a lemma.

Lemma 4.3. Let R çz T be a faithfully flat extension of Noetherian rings. Let

p g spec T and let P = p n P. Let h be any one of classical, essential or asymptotic

grade. Let f be the grade function on RP obtained by applying Theorem 4.2 to Rp çz T

starting with g = h on T . Then f = h on RP.

Proof. Let S = R - P and let q g spec T with q çz p and q minimal over PT. Let

Ti = rs> T2 = Tp and T3 = Tq. Note that Tl+X is a localization of T„ i = 1,2. Let/

be the grade function on Rp obtained by applying Theorem 4.2 to RP çz T¡, starting

with g = h on T¡, i = 1,2,3. Now Rp çz Tx is a faithfully flat extension, and so

Theorem 4.2(f) shows that/j = h. Also [7, 19.2(2)] shows that RP çz T3 is a faithfully

flat extension, and so we also have f3 = h. To prove our lemma, we will show

/i ^/2^/3> giving /2 = h as desired. Let Xj,...,*,, be an /j-sequence in RP.

Theorem 4.2(d) applied to RP çz Tx shows that xx,...,xn is an A-sequence in Tx. As

T2 is a localization of Tx, xx,...,xn is also an /¡-sequence in T2. Theorem 4.2(d)

applied to RP ç T2 now shows that jcj,...,*,, is an /¿-sequence in RP. Thus any

/rsequence is also an /¿-sequence, and so clearly fx < f2. The proof that f2 < /3 is

identical.

Corollary 4.4. Let R çz T be a faithfully flat extension of Noetherian rings. Let h

be any of classical, essential, or asymptotic grade. Then if I is an ideal of R and

I çz P g specP, the following are equivalent.

(a)P^Ah(I).

(b) There is a p g Ah(IT) with p n R = P.

(c) If p G spec Tis minimal over PT, then p G Ah(IT).

Proof, (a) => (c). Let the prime p be minimal over PT. By [7, 19.2(2)], Tp is a

faithfully flat extension of RP. If in Theorem 4.2 applied to RP çz Tp, we start with

g = h on Tp, then the resulting / on RP is also h as is shown by part (f) of that

theorem. Now if P g Ah(I), then PP g Ah(IP) = Af(IP), and so Theorem 4.2(a)

shows that some prime in Ag(ITP) = Ah(ITp) lies over PP. However pp is the only

prime of T lying over PP, and so we must have/? g Ah(IT). Thus (a) => (c).

(c) => (b) is trivial from [6,18.11].

(b) => (a) Let p g Ah(IT) with p n P = P. We can apply Theorem 4.2 to

P/> Ç 7^, starting with g = h on 7^. If/is the resulting grade function on RP, then

/ = h by Lemma 4.3. We now have /;(/,,) < h(PP) = f(PP) = g(PPTP) = ¿(P7;) <

¿(p,) = h(ITp) (since /> g /lA(/r)) = g(IPTp) = /(/,) = h(Ip). As equality must

hold throughout, P ^ Ah(I).

Remark. Corollary 4.4 remains true if Ah is replaced by Ax, A4, or A5. For Ax, use

[7, 18.11]. For A4 use [6, Proposition 3.7]. For A5 use [9, Theorems 8.5 and 8.8]. (It

may well also hold for A2, A3, and A6, but we have not checked.)

Example. Corollary 4.4 shows that the converse of Theorem 4.2(b) holds it R çz T

is faithfully flat and g is one of classical, essential, or asymptotic grade. We now

show that the converse fails for arbitrary g, even if P Q T is faithfully flat. Let
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(R, M) be a 2-dimensional local domain with P a height 1 prime. Let T = R[X], X

an indeterminate. Define g by specifying g(pp) = height p for all p g spec T except,

for/? = MT, let g(pp)=l and, for p = (P, *), let g(pp)= 0. With/as in Theorem

4.2, it is easily seen that MT G Ag(PT) but M G Af(P).

We now look at integral extensions and will show that A4 and A5 are better

behaved than the canonical grade schemes for essential and asymptotic grade. We

first note that if / is an ideal in R and if the Noetherian ring T is an integral

extension of R such that every minimal prime of T contracts to a minimal prime of

P, then P g A5(I) if and only if there is a p g A5(IT) with p n P = Ps [5,

Proposition 3.22], Similarly, if P is a finite module extension of P and every prime in

Ass T contracts to a prime in AssP, then P e A4(I) if and only if there is a

p g A4(IT) with /> n P = 7 [6, Proposition 3.9]. We will now give an example

showing that neither of these holds for A¡, with / asymptotic grade and essential

grade, respectively. (Of course one direction does hold, by Theorem 4.2(b).)

Example. Let Pbe K[X, Y] localized at the complement of (X, Y) U (X, Y + 1).

Thus T has exactly two maximal ideals A^ and N2. Now R = K + (Nx n N2) is a

local ring, its maximal ideal being M = Nx n N2. Also T is a finite P-module.

Furthermore on R and T, essential and asymptotic grades are equal, both being just

height. We will call this/. Let p be a height 1 prime of T not in Nv Let / = p n Nx,

an ideal of both T and P. Since ITNi = Nx, Nx g Af(IT). However M = Nx n P G

Af(I), since/(M) = 2 while/(/) = 1.

Theorem 4.5. Let f be a grade function on R, and let X be an indeterminate. If P is

a prime of R[X] with P n P = p, then define g(PP) as follows. If P = pR[X], let

g(Pp) = f(Pp)- IfP * PR[X], let g(Pp) = f(Pp) + 1. Then
(a) g determines a grade function on R[X] (via condition (i) of Theorem 2.4).

(b) /// is an ideal in R, then P G Ag(IR[X]) if and only if P = (P n R)R[X] and

P n p e Af(I).

(c) If ax,...,an are elements in R, they are an f-sequence if and only if they are a

g-sequence. Also if 1 is an ideal of R, then f (I) = g(IR[X]).

(d) If fis either classical or asymptotic grade on R, then g is the same on R[X].

Proof, (a) We must show that g satisfies conditions (ii) and (hi) of Theorem 2.4.

Condition (ii) is easy, since it holds for / and since with P and p as in the statement

of this theorem, height P = height p it P = pR[X] while height P = height p + 1 if

P # pR[X]. For condition (iii), we let (Q, U) be a conforming pair in R[X], and

assume g(PP) < n for all P g U. We need g(Qg) < n — 1, and will proceed in cases.

Case 1. There is some/7 g spec P such that infinitely many Peí/ satisfy P D P = p.

Then we easily see that Q = pR[X]. Choose P g U with P n P = p and P # pR[X].

Then n > g(P/>) = f(pp) + 1. As g(ße) = f(pp) ^ n - 1, we are done. Case 2. If

Case 1 fails, then it does no harm to delete from U the finitely many P satisfying

P n P = Q n P. We now partition t/ into L^ = {P g t/|P = (P n P^fX]} and

i/2 = { P g Î/|P *= (P n P)P[.Y]}. One of Ux or í/2 must be infinite. Subcase 2a. i/j

is infinite. Recalling our deletions from U, we easily see that (Q n P, {P n P|P g

t/j}) is a conforming pair in P. Furthermore, if q = Q n P, we see that ß = <7P[^],

since any polynomial in ß has all of its coefficients in (P n R)R[X] for all P g í/,.
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With P ^ Ux,n^g(PP)=f(pp) (with/7 = P n R), and our conforming pair shows

that f(qq) < n - 1. Thus g(QQ) = f(qq) < n - 1. Subcase 2b. t/2 is infinite. Now

we see that (?,{Pn P|P g L72}) is a conforming pair. If P g {/2 and p = P C\ R,

then g^) < « gives f(pp) = g(PP) - 1 < n - 1, and so we get /(^) < n - 2.

Since g(ße) < f(qq) + 1, we again have g(ße) < « - 1. This completes the proof

of part (a).

(b) Let P g Ag(IR[X]) and let p = P n P. We have g(PP) = g(/P[X]^) =

minlgißc)!^!^]^ çgpe specPfÄ"],,}. Taking the particular case ß = pR[X],

we get g(Pp) < g(QQ) = f(Pp). Since /> = P n P, the definition of g now shows

that P = /'PIA']. It remains to show that p g Af(I). We have g(/P[X]P) = g(P,,)

= f(pp); call this number «. Letting f(Ip) = w, we want n = m, and clearly have

n ^ m since /^ ç /^. Now there is some Ipçz qpez specRp with f(qq) = /(/,,) = m.

With ß = qR[X], we have /P[ A]/, ç Qp, and so « = g(IR[X]P) < g(0o) = /(9,)

= m. Thus n = m. This proves half of (b). The other half is similar to the last part of

the above.

(c) This is easy using (b).

(d) We will assume that / is asymptotic grade, the case of classical grade being

similar. By [5, Proposition 3.21], if / is an ideal of P then Ä*(IR[X}) = {pR[X]\p

G A* (I)}. Thus it ax,.. .,an are elements of P, they are an asymptotic sequence in P

if and only if they are an asymptotic sequence in P[X]. We want g = f on R[X]. It

is enough to show/(PP) = g(PP) for any P g specP[A"]. If p = P n P, clearly we

may assume that P is local at p. Let ax,...,an be a maximal asymptotic sequence in

p. Thus f(p)= n and so g(PP) = n if P = />P[A"], while g(P^) = n + 1 if P *

pR[X). We must show the same dichotomy applies to f(PP). If P = pR[X], we have

already noted that since/) g A*(ax,...,an), P g Ä*((ax,... ,an)R[X]) and so f(PP)

= «. Now suppose P^/iPfA"]. Then there is a monic polynomial h(X) with

P = (/jPtX], h(X)). Our previous statements show that ax,...,an, h(X) is an

asymptotic sequence in P, so that f(PP) > n + 1. Now letting P' = pR[X], since

P' g Â*((ax,...,an)R[X]), /(P;) = n. By [5, Proposition 5.17] applied to R[X]P

and P'p, and since PP is the only prime larger than P'P, we see that f(PP) = f(PP) + 1

= n + 1.

Corollary 4.6. Let X be an indeterminate over R, and let f be either classical or

asymptotic grade. Let I be an ideal ofR. Then Af(IR[X\) = { pR[X]\p g Af(I)}.

Proof. This follows immediately from parts (b) and (d) of Theorem 4.5.

Remark. Theorem 4.5(d) and Corollary 4.6 probably hold for essential grade as

well. To mimic the above proofs, we would need for / an ideal of R and A = A3

(alternatively A = A4) that A(IR[X]) = {pR[X]\p g A(I)}. This is probably true

for one of (both of?) A3otA4, but we have not checked.

Question. Let R çz T be a faithfully flat extension of Noetherian rings and let /

be a grade function on P. For P g spec T with p = P n P, define g(PP) = f(pp) +

height(P/pT). Does g determine a grade function on T?

Remark. Let P çz T be an integral extension of Noetherian rings, and let / be a

grade function on P. For P g spec T with P n P = />, let g(PP) = f(pp). It is easily

seen that g satisfies condition (iii) of Theorem 2.4. However it may not satisfy
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condition (ii) (since possibly height P < height/?), and therefore g may not de-

termine a grade function on T. If every minimal prime of T contracts to a minimal

prime of R, and if /is asymptotic grade on R, then g will be a grade function [5,

Proposition 5.14], but need not be asymptotic grade. If

h(PP) = min{ f(pp),height p),

then h always defines a grade function on T.

5. Another grade function. We start with an easy consequence of Theorems 3.5 and

4.2, mentioning two known special cases. We then introduce a third special case

which we feel deserves attention, but about which we know very little.

Proposition 5.1. Let (R, M) be a local ring with completion R*. Let V be a finite

set of ideals of P* such that every prime ideal of R* contains some q g V. For each

q G V, letfq be a grade function on R*/q. For Is any ideal in any localization RsofR,

definef(Is) to be min{ fq(IR* + qs/qs)\q <=V,Is + qs* R*}. Then

(a) fis a grade function on R.

(b) If V = { q G spec P * | q is minimal} and if each fq is the height function, then f is

asymptotic grade.

(c) IfV= Ass P* and if each f is the height function, then fis essential grade.

Proof. To prove (a), combine Theorems 3.5 and 4.2. For (b) and (c), use [5,

Proposition 5.10 and 6, Corollary 5.4] respectively.

Let (P, M) be a local ring with completion P*. Let V = Ass P*, and for every

q G V, let / be the classical grade function on R*/q. Define / as in Proposition

5.1(a). Thus / is a grade function on P. This section reveals our ignorance, and is

devoted to questions concerning/.

Question. Is there a natural grade function, defined on any Noetherian ring R,

which coincides with/whenever P is local?

A possible candidate for a grade function answering the previous question is given

by the next question.

Question. For Is any ideal in any localization Rs of a Noetherian ring P, define

g(Is) to be min{classical grade(PP)*/q\Is çz Ps g specPs, and q g Ass(P/,)*}. Is

g a grade function? If R is local, will g equal the above/?

The preceding question is motivated by a comparison of [5, Proposition 5.6] to [5,

Proposition 6.10], as well as by comparing [6, Proposition 4.3] to [6, Corollary 5.4].

Recall now that Ax and A2 were defined in our earlier examples.

Question. For Is any ideal in any localization Rs of P, let B(IS) = {Ps g

specPs|/s Q Ps, and there is a q G Ass(RP)* with

(Pp)*/q<EAx((l(Rp)* + q)/q)}.

If R is local, is B a grade scheme for our/? Is it a grade scheme at all? What if P is

arbitary? What if in the definition of B we replace Ax by A21

Remark. We do not know if the B of the preceding question is a grade scheme.

However combining Corollary 3.7 and Theorem 4.2(e) shows that for a local ring

(R, M) with completion P*, we can construct a grade scheme C for the above/in
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the following way. Let C(I) = {P g specP|there is ap g specP* with/? n R = P,

and a q g Ass P* with q çz p, such that p/q G AX(IR* + q/q)} and let C(IS) be

defined appropriately. (Of course A2 would do as well as Ax.)

6. Modulation.

Definition. Let/be a grade function on a local ring (P, M). If for every ideal /

and element a g M,f(I, a) < /(/) + 1, then we say /is modulated.

Definition. The grade function / on P is locally modulated if / restricted to P P is

modulated for every P g spec P.

Remarks, (a) It is easy to produce examples in which / restricted to RM is

modulated for all maximal ideals M, but for which /is not locally modulated.

(b) Let / be any of classical, essential, or asymptotic grade. Then / is locally

modulated, [1, Theorem 127; 6, Proposition 5.8 and 5, Proposition 5.16].

Theorem 6.1. Let f be a grade function on P. The following are equivalent.

(a) / is locally modulated.

(b) IfP^Q are primes of R a«i/height(ß/P) = 1, thenf(QQ) ̂ f(PP) + l.

Proof, (a) => (b) Suppose (a) holds, and P c ß are as in (b). Pick a g QQ - PQ.

As QQ is the only prime of Pß containing (PQ, a), we have that/(Pe, a) = f(QQ).

Now (a) implies f(QQ) </(Pg) + 1- As the only primes containing PQ are PQ and

QQ, we have/(Pö) = min{ f (PP), f(QQ)}. Whichever is the minimum, we see that

(b) holds.

(b) => (a) Suppose (b) holds. To prove (a), we may assume that R is local. Let / be

an ideal and a be a nonunit. For some / çz p G spec R,f (I) = f(pp). If a g p, then

/(/, a) < f(pp) = /(/) and we are done. If a G p, let q be a prime minimal over

(p, a). Then height q/p = 1, and by (b), f(qq) < f(pp) + 1. As (/, a) çz q, f(I, a)

< f(qq) < f(pp) + 1 = /(/) + 1, and we are done.

Corollary 6.2. Let f be a locally modulated grade function on R, and let

P0 c Px c • • • c Pn be a saturated chain of primes in R with P0 a minimal prime.

Then there is a saturated chain of primes P0 = p0 c ■ • • c pn_x c Pn with f( pj ) = i

= height Pi for i = 1,... ,n — 1.

Proof. Since P0 is minimal,/(P0 ) = 0. If n = 1, we are done. If n > 1, then let

IF = {/? g specP|P0 c p c P2 is saturated}. By [8, Proposition 2.2], IF is infinite.

As/is locally modulated, f(pp) < 1 for all/? g IF. Let W0 = {p g W\f(pp) = 0}.

If IF0 is infinite, then (P0, IF0) is a conforming pair, forcing/(P0p ) < 0. This cannot

be. Thus all but finitely many p g IF have f(pp)= 1. By [4, Theorem 1] all but

finitely many p g W also have height p = 1. We thus replace PL by some px & W

withf(px  ) = 1 = height px. The other/?,, /' = 1,2,_n - 1, are similarly found.

Let/be a grade function on P. In Theorem 4.5 we saw a way of extending/to a

grade function g on R[X]. If g is locally modulated on R[X], it is trivial to see that/

is locally modulated on P. For nice rings, the converse also holds, as we will see in

Theorem 6.3. (For instance any locally quasi-unmixed ring satisfies the hypothesis of

Theorem 6.3, and so fits our present use of 'nice'. Most Noetherian rings found in
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classical situations are locally quasi-unmixed.) However, for nonnice rings the

converse may fail.

Example. By [7, Example 2, pp. 203-205] there is a 2-dimensional local domain

(R, M) such that R[X] has primes 0 c /? c q with /? n P = 0 but /? =£ 0 and

q n R = M but q ¥= MR[X], and with height(<///?) = 1. Let/be the height function

on P which is locally modulated. Now g is the height function on R[X], but is not

locally modulated since height q = 3 > height p + 1. Our next result shows that this

is the only sort of way that g can escape being locally modulated if/is.

Theorem 6.3. Let X be an indeterminate over P. Suppose whenever p c q are

primes in R[X] with /?*=(/? n R)R[X] and q # (q n R)R[X], // height q/p = 1

then height q n R/p n R = 1. Furthermore, let f be a locally modulated grade func-

tion on R, and let g be the grade function on R[X] defined in Theorem 4.5. Then g is

locally modulated on R[X].

Proof. Let /? c q be primes of P[X] with height(q/p) = 1. By Theorem 6.1 we

need f(qq) < f(pp) + 1- We proceed in various ways, using P = p n P and Q = q

n P.

Case 1: p # PR[X] and q ¥= QR[X]. Then by hypothesis, height(ß/P) = 1, and

since / is modulated, f(QQ) < f(PP) + 1. By definition of g, g(q ) = f(QQ) + 1 <

f(Pp) + 2 = g(pp) + 1.
Case 2: p = PR[X] and 4 = ßP[A-]. Clearly height(ß/P) =1, and g(qq) =

f(QQXf(Pp) + l=g(qq) + l.
Case 3:p* PR[X] and q = QR[X]. By [4, Theorem 6] there is a prime P' of P

with P c P' c ß saturated. Since/is modulated, we have/(ßß) < f(PP) + 2. Thus

g(lq) = /(ßg) < /(^/>) + 2 = g( pp) + 1. The only remaining case is easy.

Remark. The converse of Theorem 6.3 fails. That is, g being locally modulated

does not imply that R[X] has the stated property. We again take the ring mentioned

in the example prior to Theorem 6.3, but this time we define / by specifying

f(PP) = height P for all P g specP - {M}, while/(M) = 0. The g produced on

R[X] is easily seen to be locally modulated. However we already have primes/? c q

in R[X] with /?#(/? n R)R[X], q # (q n R)R[X], height(q/p) = 1, but with

height((çr n R)/(p n P)) > 1.

Lemma 6.4. Let f be a grade function on R, and let I be an ideal of R. There is a

maximal ideal M of R such that I çz M andf(I) = f(IM).

Proof. By Lemma 1.2(v), there is an / ç P g spec P with f (I) = f(PP). Let M be

a maximal ideal containing P. Now/(/M) > f(I) = f(PP)> f(PM) > f(IM), and so

equally holds throughout.

Recall that a Noetherian ring P satisfies the first chain condition if every maximal

chain of primes (i.e. every saturated chain of primes between a minimal prime and a

maximal prime) has length equal to dim P.

Theorem 6.5. Let f be a grade function on R. The following are equivalent.

(a) / restricted to RMis modulated andf(M) = height M for all maximal ideals M.

(b) f(I) = height / for all ideals I and RM satisfies the first chain condition for all

maximal ideals M.
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Proof, (a) => (b) Let (a) hold, and suppose for some /,/(/) =£ height /. We will

derive a contradiction. We have /(/) < height/, and by Lemma 6.4, for some

maximal M containing /, f(IM) =/(/) < height / < height IM. We may assume

that P is local at M. We may also assume that / is maximal with respect to having

f(I) < height /. Let x1,...,xn be a maximal /-sequence in /. Then there is some

/ çz P G Af(xx,...,xn). Now height P > height/ >/(/) = n =/(P), and by the

maximality of /, / = P is prime. Since, by assumption, f(M) = height M, I =£ M.

Pick a g M — /. As / is modulated on P, the maximality of / gives height(/, a) =

/(/, a) </(/) + 1 < height /+ 1. Thus height(/, a) = height /, and since / is

prime, a g /. This is our contradiction.

We must show that (a) implies RM satisfies the first chain condition for each

maximal ideal M. Again we may assume P is local at M. Let p0 c px c • ■ • c pm_ x

c M be a maximal chain of primes. We need height M = m. By [4, Theorem 5] we

may assume that height pm_x = m — 1. Let P = pm_v Now P c M is saturated and

m - 1 = height P = /(P) (by the first part of this proof). Pick b g M - P. As / is

modulated,/(P, /?) < f(P) + 1 = m. Since PcMis saturated, M is the only prime

containing (P, /?), and som> f(P, b) = f(M) = height M. Since our original chain

of primes shows height M > w, we are done.

(b) => (a) Assuming (b), we must show that for any maximal ideal M, f restricted

to RM is modulated. If P g spec P, (b) implies height P = f(P) < /(PP) < height P.

That is, f(Pp) = height P. From this it easily follows that / restricted to RM is just

the height function on RM. Therefore we may assume that P is local at M. Let / be

an ideal and a g M Since P satisfies the first chain condition,/(/, a) = height(7, a)

^ height /+ 1 =/(/) + 1, so that/is modulated.

Remarks, (i) It is easily seen that condition (b) in Theorem 6.5 implies that / is

locally modulated, since condition (b) localizes.

(ii) We previously noted that if/is any of classical, essential, or asymptotic grade,

then / is locally modulated. Thus if on some ring P, f(M) = height M for all

maximal ideals M, it follows that/(/) = height / for all ideals /.

We now look at unmixedness. The classical unmixedness theorem states that if R

is a Cohen-Macaulay ring and / = (jc15. .. ,xm) with m = height /, and n > 1 is an

integer, then P G Ass(P//") = AX(I") implies height P = height /. We will show

that if the grade function f on R satisfies the equivalent conditions of Theorem 6.5,

then with / as above and A any grade scheme for /, P g A(I) implies height P =

height /. As for powers of /, we show that P g Af(I") implies height P = height /,

and that this also works for our natural grade schemes Ax through A6.

Theorem 6.6 Let f be a grade function on R and suppose for each maximal ideal M

of R,f(M) = height M and f is modulated on RM. Let A be any grade scheme for f,

and let I = (xx,... ,xm) with m = height /. Also let n > 1 be an integer.

(a) IfP g A(I), then height P = height /.

(b) If A çz Af and ifP g A(I"), then height P = height /.

(c) /// is classical grade and either P e AX(I") or P <b A2(I"), then height P =

height /.
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(d) /// is essential grade and either P g A3(I") or P G A4(I"), then height P =

height /.

(e) If f is asymptotic grade and either P G A5(I") or P g Ab(I"), then height P =

height /.

Proof, (a) Since condition (a) of Theorem 6.5 holds, so does condition (b). Thus/

is just the height function (on all localizations of P by the previous remark). We

consider the case A = Af. If P g Af(I) then height P = f(PP) = f(IP) = height /,,

= height /, the last equality following from the hypothesis on /. Thus (a) holds when

A = Af. For arbitrary A, if P G A(I) then since the hypotheses localize, we may

assume that P is local at P and satisfies the first chain condition (Theorem 6.5(b)).

Since / = (xx,... ,xm) with m = height /, it is not hard to see that height^,... ,x¡)

= / for all / = l,...,m, and so by the first part of this proof, A¡(xx,... ,x¡) consists

of the primes minimal over (xx,...,xt). Therefore we see that xx,...,xm is an

/-sequence. Using Lemma 1.4, P G A(I) = Af(I) and so height P = height / by the

preceding.

(b) Since/is just height, Af(J) consists of the primes minimal over/ for any ideal

J. Thus AçzAj implies A = Af, and also Af(I") = Af(I). Therefore P G A(I")

implies P g A ¡(I) and so height P = height /.

(c) In part (a) we saw that xx,... ,xm is an /-sequence. By [1, Exercise 13, p. 103],

AX(I") = AX(I). Thus P G AX(I") implies height P = height / by part (a). Now for

any ideal J, it is easily seen that A2(J") = A2(J), and so the same argument works

forA2.

(d) For any ideal J it is easily seen that A3(J") = A3(J) and A4(J") = A4(J).

Thus argue as in (c).

(e) For any ideal J, A5(J") = A5(J) and A6(J") = A6(J). The latter is easy. The

former uses [5, Propositions 3.18 and 4.1]. Now argue as in (c).

Finally, a difficult question.

Question. Let P and R' be two Noetherian rings such that spec P and spec P' are

isomorphic as partially ordered sets under inclusion. Then a grade function f on R

can be transferred to P' by letting/'(Pp) = f(PP), where P' g specP' is the image

of P g spec P under the isomorphism. Suppose that / is a locally modulated grade

function on P. Is there an P' with specP' « specP such that the transferred grade

function/' on P' equals classical grade (or essential or asymptotic grade) on P'?

7. Sequences over ideals.

Definition. Let A be a grade scheme on P, and let / be an ideal of P. Define an

A-sequence over I to be a sequence xx,...,xn of elements of P such that

(I, xx,... ,xn) # P and for each / = 1,... ,n, x¿ G A(I, xx,.. .,xt_x).

In [5, Chapter VI] this concept is considered for As, while [3 and 11] look at it for

A3 and A4. (To the best of our knowledge it has not been studied for Ax, A2 or Ab.)

We note that since A4 ç A3 an ^-sequence over / will be an /l4-sequence over /, but

the converse fails despite the fact that A3 and A4 are both grade schemes for essential
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grade. Thus we must specify the grade scheme, not just the grade function. Also it is

not hard to find a grade scheme on a local ring and an ideal / having two maximal

A -sequences over / of different length. (A3,A4 and A5 escape this flaw.)

In this section we will look at A -sequences over / when A is a grade scheme for/

and AjQ A. We give a very easy proof of a generalization of the following known

facts. If /is essential (respectively, asymptotic) grade, A is A3 (respectively, A5) and /

is an ideal in a local ring withxj,... ,xn andyl-sequenceover/, then« </(Af ) -/(/)

[3, Theorem 6.5] (respectively, [5, Proposition 6.9]). We then consider ^-sequences

over / when/is locally modulated.

Lemma 7.1. Let f be a grade function on P. Let A be any grade scheme for f with

AfÇZA. Let I be an ideal and let xx,...,xn be an A-sequence over I. Then

f(I,xx,...,xn)>f(I) + n.

Proof. Since x2,...,xn is an ^-sequence over (/, xx), it will suffice to let n = 1.

Clearly /(/, xx) >/(/). If equality holds, then for some (/, xx) ç P g specP,

f(Pp) = f(T xx) = /(/). However, this shows that P g Af(I) çz A(I), contradicting

that xx is an ,4-sequence over /.

Since Af Q A4 çz A3 for/ = essential grade, and A¡ Q A6 ç As for/ = asymptotic

grade, our next theorem incorporates the known results mentioned above.

Theorem 7.2. Let f be a grade function on a local ring (R, M) and let A be any

grade scheme for f with Afçz A. If xl,...,xnis an A -sequence over I, then n < /( M )

Proof./(M) > /(/, xx,...,xn) > /(/) + n by Lemma 7.1.

Lemma 7.3. Let f be a modulated grade function on a local ring(R, M), and let A be

any grade scheme for f with AfÇzA. Let I be an ideal and let xx,...,xn be an

A-sequence over I. Then f (I, xx,.. .,xn) = /(/) + n.

Proof. Lemma 7.1 gives one inequality and modulation gives the other.

Remark. Lemma 7.3 requires that P be local, even if /is locally modulated.

Theorem 7.4. Let f be modulated on a local ring (R, M). Let I be an ideal, and let

xx,..., xn be a maximal Af -sequence over I. Then n = f(M) - /(/).

Proof. By maximality, M G Af(I, xv...,x„). Thus f(M) = /(/, xx,.. .,xn) =

f(I) + n, using Lemma 7.3.

The next corollary is similar to [5, Proposition 6.14 and 3, Theorem 6.2].

Corollary 7.5. Let f be a locally modulated grade function on a local ring (R, M).

Let A be any grade scheme for f with Af ç A. Let I be an ideal and let xx,... ,xn be an

A-sequence over I. Then n < min{little depth P\I çz P g spec P andf(I) = f(PP)}-

Proof. We have n </(M)-/(/) by Theorem 7.2. If P is as above, then

n </(Af) - f(Pp). Suppose little depth P = m. Then Theorem 6.1 easily shows

f(M) < f(Pp) + m, and son ^ m.
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Corollary 7.6. Let f be a locally modulated grade function on R. Let I be an ideal

and let xx,...,xn be an A f-sequence over I. Let /çPe spec P with /(/) = f(PP). If

(P, xx,.. .,xn) # P, then xx,...,xnis an A f-sequence over P.

Proof. We induct on n, the case n = 0 being trivial. Thus suppose we already

have that xx,... ,xn_x is an A f-sequence over P. If our result fails, then for some

ß G AÁP, x1,...,x„_1) we have xn g ß. It is clear that in RQ, xx,...,xn and

xx,... ,xn_x are ^-sequences over Iq and Pq respectively, the latter being maximal.

By Theorem 7.4, f(QQ)-f(PQ) = n - 1 and/(ße) - f(IQ) > n. Therefore f(PQ)
> f(IQ). However, by hypothesis, f(PP) = /(/) < f(IQ) < f(PQ) < f(PP), an obvi-

ous contradiction.

Example. The preceding fails for arbitrary P g Af(I). Let (P, M) be a 3-dimen-

sional local domain. Let ß and P be height 2 primes and let I = P n Q. Define / by

specifying f(pp) = height/? for all /? g specP - {Q, M}, while f(QQ)= 1 and

f(M) = 2. Thus/is locally modulated. Clearly Af(I) = {Q,P}. Pick x g M - (Q

U P) so that x is an A¡-sequence over /. However x is not an Af-sequence over P

since/(A/) = f(P) implies M G Af(P).

Proposition 7.7. Let f be a locally modulated grade function on P. Let I be an ideal

and let xx,...,xn be an A f-sequence over I.  Suppose Q is a prime containing

(I, xx,... ,xn). The following are equivalent.

(i)Q^Af(I,xx,...,x„).

(n)f(QQ)=f(Ie) + n.
(iii) There is a P g Af(I) with P çz Q,f(PP) = f(IQ) and Q G Af(P, xx,.. .,xn).

Proof, (i) => (ii). If (i) holds, then in RQ, xx,... ,xn is a maximal ^-sequence over

Iq, and so Theorem 7.4 gives (ii).

(ii) => (iii). Suppose (ii) holds. There is some IQcz PQcz specP^ with f(IQ) =

f(Pp). Clearly P g Af(I). By Corollary 7.6 applied in RQ, xx,...,xn is an Af-

sequence over Pq. By Lemma 7.3, f((P, xx,...,xn)RQ) = f(PQ) + n. Since f(PP) =

f(IQ)^f(PQ)^f(Pp), we have f(PQ) = f(IQ). Thus f((P, xx,...,xn)RQ)= f(IQ)

+ " =/(ßc?)by (Ü)- This shows ô G Af(P,xx,...,xn).

(iii) => (i). If (iii) holds, then

/(ßß) =f((P,x1,...,x„)RQ) </(Pe) +n    (by local modulation)

< f(Pp) + n = f(lQ) + n < /((/, xx,... ,xn)RQ)    (by Lemma 7.1)

£/(ßß).

Equality holds throughout, and so ß g Af(I, xx,... ,xn).

Corollary 7.8. Let f be a locally modulated grade function on P. Let I be an ideal.

Suppose xx,... ,xn is an A ¡-sequence over P for every P G AÂI). Then xx,... ,xn is an

A f-sequence over I.

Proof. We induct on n. Suppose we already know xx,... ,xn_x is an ^-sequence

over /. If our result fails, then for some ß G Af(\, xx,... ,xn_x) we have xn g ß. By

Proposition 7.7, for some P g Af(I), Q g Af(P, xx,... ,xn_1). Since xn g ß we

have contradicted that x1,...,xn is anyL-sequenceover P.
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Remark. Comparing Corollary 7.6 (and the example following it) to Corollary 7.8

shows that it might be of interest to study the set of ideals / for which Af(I) = {P

G specP|/ ç P and /(/) = f(PP)}. We will resist the temptation to do so here,

except to point out that / has this property if and only if f(PP) = /(/) for every

minimal prime divisor P of /, as is easily seen.
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