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SOME REMARKS ON THE INTRINSIC MEASURES OF EISENMAN

BY

IAN GRAHAM1 AND H. WU2

Abstract. This paper studies the intrinsic measures on complex manifolds first

introduced by Eisenman in analogy with the intrinsic distances of Kobayashi. Some

standard conjectures, together with several new ones, are considered and partial or

complete answers are provided. Most of the counterexamples come from a closer

examination of unbounded domains in complex euclidean space. In particular, a

large class of unbounded hyperbolic domains are exhibited. Those unbounded

domains of finite euclidean volume are also singled out for discussion.

1. Introduction. In his Berkeley thesis of 1969, D. A. Eisenman introduced on each

complex manifold M of dimension n a ^-dimensional measure (1 < k < n) which

depends only on the complex structure of M (see [E]). The construction of these

measures was modelled on the construction of the Kobayashi metric [K4] which had

been available three years earlier (Kobayashi has also given an exposition of these

measures in [K5] and has surveyed the results obtained about these measures up to

1975 in [K6]). These Eisenman measures are potentially very useful because they give

a general frame of reference for the understanding of certain aspects of function

theory on complex manifolds in general and on domains in C" in particular.

Moreover, when k = n (top dimension), this top dimensional measure is the simplest

known invariant of the complex structure of M. It is much to be regretted, therefore,

that while a substantial amount of information has been amassed concerning the

Kobayashi metric through the years, the present knowledge of the Eisenman

measures has remained extremely meagre. Our puzzlement over this anomaly

prompted us to take a closer look at these measures—particularly the top dimen-

sional one—by examining systematically some of the open problems that have

naturally emerged. This paper contains the results of this investigation.

Throughout the paper, there is a special emphasis on unbounded domains in C",

for it is our conviction that one must come to grips with these domains if one hopes

to understand the notion of measure hyperbolicity. Although there are positive

results in this paper, our explicit computations of the top dimension measures of

these domains more often than not led to counterexamples of some existing

conjectures. The somewhat unexpected phenomena uncovered in this paper may well

be its main contribution.
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Let it be noted that the Eisenman construction, when suitably modified, also

yields measures of each real dimension k, 1 < k < 2n, on the «-dimensional

complex manifold M [E]. They are direct generalizations of the Kobayashi metric.

Moreover, Eisenman also defined a sequence of "dual" measures (i.e., the

Carathéodory measures, so to speak) in [E]. We will not discuss either of these in this

paper.

We now give a more detailed description of the problems we have considered as

well as an overview of this paper. First we fix our convention and terminology. The

Eisenman &-norms Ek are defined using the unit /c-ball Bk in CA; this is Eisenman's

original convention but subsequent authors have sometimes employed the unit

&-disc instead. The ^-dimensional measure derived from Ek is denoted by Ik. An

«-dimensional complex manifold M is k-measure hyperbolic iff Ik(A) > 0 for any

nonempty ^-dimensional complex submanifold A of M; M is strongly k-measure

hyperbolic iff Ek, when applied to unit ^-vectors on each compact subset of M, is

bounded below by a positive constant. When k = n, the reference to k will be

dropped and we say simple measure hyperbolic and strongly measure hyperbolic.

Again these definitions are by no means universal. Following a brisk review of such

basic matters in §2, we make the observation in §3 that the product formula holds

for the top dimensional norm: E^+Xqp = F„M • Ep (dim P = q). Since this equality is

unlikely to hold if polydisks are used in place of balls in the definition of the F^'s, it

makes for a very persuasive argument for adopting the definition using balls (in this

sense, we have answered Problem B.2 on p. 401 of [K6]).

It is well known that if the holomorphic sectional curvature of a Hermitian

manifold is bounded above by a negative constant, then M is strongly 1-measure

hyperbolic (theorem of Grauert-Reckziegel [G2]; cf. also [K5 and Wl]); note that

"strongly 1-measure hyperbolic" is equivalent to "hyperbolic" in the sense of

Kobayashi [R2]. Moreover, a result of Kobayashi [K5, p. 121] says that M is strongly

measure hyperbolic if the Ricci curvature of M is bounded above by a negative

constant. It has been an obvious open problem (cf. e.g. [K6, p. 374]) whether there is

a curvature condition to insure strong /¿-measure hyperbolicity that interpolates

between the two preceding theorems. It turns out that a condition called strongly

negative kth Ricci curature (Definition 4.4) does exactly this, so in a formal sense the

preceding problem has been solved. In a deeper sense, however, the problem is still

very much open because we do not know whether M admitting a metric of strongly

negative kth Ricci curvature implies M also admits a metric of strongly negative

(k + l)th Ricci curvature, while it is known that "strongly A:-measure hyperbolic"

implies "strongly (k + l)-measure hyperbolic" (cf. e.g. Proposition 2.17 below).

Thus much remains to be done in this regard.

In §5 we take up the well-known extension problem for measure hyperbolic

manifolds [K7], namely, the following assertion:

(A) Let X and M be «-dimensional complex manifolds, let F be a proper

subvariety in X and let M be compact and measure hyperbolic. If /: X - V -* M is

holomorphic, then / extends to a meromorphic map on X.
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Experience with extension theorems for hyperbolic manifolds (cf. [Kl, K2 and

K9]) leads one to believe that if (A) is indeed true, then so is the following:

(A') Let X and M be «-dimensional Hermitian manifolds, let V be a proper

subvariety of X and let M be compact. If /: X — V -» M is holomorphic and / is

volume decreasing relative to the volume forms £lx ancl ®m oi" me corresponding

Hermitian metrics, i.e.,f*QM < £ix> then/extends to a meromorphic map on X.

We could prove (A) only after making various additional hypotheses (Theorem

5.8). But the main thrust of §5 is perhaps the counterexample which shows that (A')

is false even for Kählerian X and M, and that one of the additional hypotheses in

Theorem 5.8 is in some sense optimal (Example 5.15). This throws some doubt on

the validity of (A) for a nonalgebraic manifold M. Very likely, the validity of (A) for

an algebraic M would require the proof of another conjecture that an algebraic

manifold is of general type iff it is measure hyperbolic [K7]. We note that this

conjecture has recently been verified for algebraic surfaces by M. Green and

Griffiths [G3] and D. Mumford and F. Bogomolov (for the latter we thank Robert

Friedman for a private communication).

Next we take up the question of how regular the Eisenman norms Ek have to be.

While they are a priori only upper-semicontinuous, there was hope that they cannot

behave too pathologically because they arise from holomorphic considerations.

Specifically, on an «-dimensional complex manifold, one would like to have the

following:

(Bl) If F„ vanishes on a nonempty open set, then it vanishes identically.

(B2) Log En is plurisubharmonie

These are respectively Problems B.6 and B.l of [K6, pp. 401-402]. We show in §6

that both are false for domains in C" and hence for noncompact manifolds. The case

of a compact manifold is still open.

The question of the behaviour of hyperbolic manifolds under deformation is as

old as the subject itself and has only recently been settled [B3 and B4]. In §7, we

consider the corresponding question for measure hyperbolic manifolds. At least for

domains in C", every conceivable question in this context turns out to be false.

Again, the compact case is unknown.

Among unbounded domains in C", those that are closest to the bounded ones

from the point of view of measure theory are obviously those with finite (euclidean)

volume. Furthermore, there is reason to believe that measure hyperbolicity is

intimately related to the finiteness of euclidean volume (cf. Proposition 8.1). It is

then natural to consider the following series of assertions, which are arranged in

such a way that each one implies the next:

(Cl) There is a positive constant e such that if the unit ball in C" is denoted by Bn

and /: Bn —* C" is a holomorphic map whose Jacobian determinant Jf satisfies

Jf(0) = 1, then the volume of f(B„) is bounded below by e.

(C2) (Schottky-Landau theorem for domains of finite volume.) If ß is a domain in

C" of finite volume, then there exists a constant R depending only on il such that if

Bn(r) is the ball of radius r in C and/: Bn(r) -* Q is a holomorphic map satisfying

Jf(0) = 1, then r < R.
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(C3) If £2 is a domain of finite volume, then ß is strongly measure hyperbolic.

(C4) If 0 is a domain of finite volume, then ß is measure hyperbolic.

(C5) If /: C" -» C" is a holomorphic map whose Jacobian determinant is not

identically zero, then the volume of f(C") is infinite.

In §8, we give a counterexample to (C3); hence (C1)-(C3) are all false. The fact

that (Cl) should fail took us by surprise. We are now inclined to believe that even

(C5) may be false. See the discussion in §8.

The last section, §9, of this paper is concerned with more examples of these

measures on domains. We point out that as a result of the work of Eisenman [P], the

intrinsic norm F„ of the unit ball B,„ when restricted to the punctured unit ball

B„ - {0}, differs from the intrinsic norm E'n of the latter. This answers Problem B.4

of [K6, p. 402]. We also give a simple extension of Eisenman's work. In another vein,

we exhibit some other domains with unusual intrinsic norm En: a domain ß which is

not strongly measure hyperbolic but its En is everywhere positive; a domain $lx

which is hyperbolic outside a hypersurface F and whose intrinsic norm E„ vanishes

exactly on F, and a domain ß2 whose intrinsic norm F„ vanishes on a set strictly

bigger than a hypersurface. Finally, we show how to use a theorem of Sibony [S2]

and a differential geometric calculation in [W4] to generate a large class of measure

hyperbolic domains. A by-product of this is the observation that all (unbounded)

strictly pseudoconvex domains are hyperbolic, a fact at once trivial and useful but

never before mentioned anywhere else.

Above and beyond the results outlined above, our overall impression as a result of

this work is that if the notion of measure hyperbolicity is to prove its usefulness, it

should be along a different line from the one the development of hyperbolic

manifolds has taken. There is no doubt that more examples of measure hyperbolic,

but nonhyperbolic, manifolds are needed before we know what to expect of these

measures. For this reason, we ask

(D) Can all unbounded measure hyperbolic domains in C2 be classified?

The need for new examples of measure hyperbolic manifolds is more acute in the

compact case. If indeed the general belief that, for algebraic manifolds, measure

hyperbolicity is equivalent to being of general type is correct (cf. the discussion in

§5), then interesting compact measure hyperbolic manifolds would have to be

nonalgebraic. The paucity of examples of nonalgebraic compact complex manifolds

in general may then explain why it is so difficult to obtain new examples of compact

measure hyperbolic manifolds.

We end this introduction by raising a question concerning what we call complete

measure hyperbolicity. By definition, a measure hyperbolic domain ß c C" is com-

plete iff for each p e 3ß and for each neighbourhood U of p in C", U D ß has

infinite volume with respect to the intrinsic measure /„ of ß. There are domains of

holomorphy which are measure hyperbolic but not complete (the punctured disc in

C, for instance). Nevertheless, the boundary estimates of the first author in [Gl]

show that every bounded strongly pseudoconvex domain is complete measure

hyperbolic. The following is then a natural problem:

(E) Is a complete measure hyperbolic domain a domain of holomorphy?
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2. Basic definitions. In this section, we collect together some basic definitions as

well as some elementary and mostly known facts needed for the succeeding sections.

Let M be a complex manifold of dimension «. Let p g M. We denote by T M

(resp. TM) the holomorphic tangent space to M at p (resp. the holomorphic tangent

bundle). Let AkTM be the kth exterior power of TM. The decomposable elements of

AkTpM (resp. AkTM) will be denoted by DkM (resp. DkM). Thus DkM is the space

of complex /c-dimensional subspaces of TpM when nonzero scalar multiples are

identified. If ( , ) is a Hermitian metric in TM, it can be extended to a Hermitian

metric on AkTM by defining: for a, ß g DkM with a = vx A • • • A vk and ß = wx

A  • • • A wk, set

(2.1) (a,ß)^det{(vi,wJ)}

for i, j = l,...,k, and extend this definition to arbitrary elements of AkTpM by

linearity. Write ||a||2 = (a, a). Clearly if a in (2.1) contains a direction orthogonal

to all the vectors in ß (we are identifying a with spanc{i;1,...,t)^} and ß with

spanc{ wx,.. .,wk}), then (a, ß) = 0. For later use, we introduce

Definition 2.2. We say a, ß g DkM are strictly orthogonal if any vector in a is

orthogonal to any vector in ß.

We denote the unit ball in C" by Bn, but will always write D in place of Bx for the

unit disc in C. The standard inner product in C" will always be understood unless

otherwise stated. The complex manifold structure of C" gives it a fixed orientation;

by convention, we require the form

(2.3) 0„ = (f-ï/2) " dzx A dzx A  • • • A dz„ A dzn

to be positive. Modifying slightly a definition of Eisenman [E], we introduce

Definition 2.4. Let k be any integer between 1 and «, and let a g DkM, p g M.

The intrinsic (Eisenman) norm of a is by definition

(2.4.1)    Ek(p; a) = inf/||y|| : y g DqBu and there exists a holomorphic mapping

f: Bk^> M such that/(0) = p and/*(y) = a).

Equivalently, if we denote the ball of radius R in C" by Bn(R), then

(2.5)

Ek(p; a) = inf< A-2*: there exists a holomorphic map/: Bk(R) —> M

such that/(O) = p and fJ -r— A  ■■■ A -^—(0)   = a\.

In the above, if we not not require that the origin 0 be mapped onto/? by/, then

we would need to take the norm ||y||2 with respect to the Bergman metric of Bk in

(2.4.1), and to use a unit /c-vector with respect to the Bergman metric in place of

8/8zj A • • • A d/dzk(0) in (2.5). Observe that Ex is just the square of the Royden-

Kobayashi infinitesimal metric [R2]. Also observe that there is nothing to be gained

by using B,, I > k, in place of Bk in the right-hand side of (2.4.1). See Proposition

2.9(h) on p. 58 of [E] for the simple proof.
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The function Ek: DkM -> [0, oo) is upper-semicontinuous; Eisenman proved this

for k = « in [P, Lemma 2.5], and the proof for the general case of arbitrary k is an

easy consequence of the work of Royden ([R2 and R3]; see [S4] for a more general

theorem). In general, Ek is badly discontinuous; see §§6 and 9 below for some

nontrivial examples.

When k = « (top dimension), yet another reformulation of (2.4.1) will be useful.

Let {wx,...,wn} be complex coordinates near p G M. Then

(r) c\

p; — A  ■■■ A-r-(p)
awx dwn

= inf( |//(0)|~2: there exists a holomorphic mapping

f:Bn^ M such that/(0) = p),

where Jf denotes the complex Jacobian determinant of/. Now introduce the intrinsic

volume form tm on M defined by

(2.7)

Pl dw~ A  "'" Adw~(p})l~2r)   dwxAdwxA  ■ ■ ■ A dw„ A dwn.

The following equivalent definition of tm shows that it is independent of the choice

of coordinate systems: let 0„ be as in (2.3); then

(2.8)    TM(p) = inf((/*)^ 0„(O): there is a holomorphic map

f: Bn -> M such that/(0) = p and df(0) is nonsingular}.

Again one may use the volume form of the Bergman metric of Bn in place of 0„ in

(2.8), in which case the requirement that/(0) = p on the right-hand side of (2.8) may

be dropped.

More generally, let A be a /c-dimensional complex submanifold of an open set

U cz M (call these local complex submanifolds of M for short). We introduce an

intrinsic volume form t^1 on A as follows. Let p g A and let wx,...,wn be local

coordinates near p so that d/dwx,.. .,d/dwk are tangent to A at p. Then by

definition

(2.9)

t"(/>)s £*(/>;  9^A   ''' Adw~k(pn[~2~)   dwxAdwxA   ■■■AdwkAdwk.

Or equivalently,

(2.10)    rf(p) = inf^/*)"1©^):/: Bk -» M is holomorphic,

/(0) = p, df(0) is nonsingular, and df(TQBk) = TpA\

This shows the independence of the definition from the choice of {w¡} in (2.9). It has

already been remarked that Ek is upper-semicontinuous. Hence t¿ is an integrable

2k form on A. Now define the intrinsic volume of A to be

(2.11) h(A)=(
Ja

A   •
A
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In particular, the intrinsic volume of an open subset F of M is

(2-12) 7„(F) = /tm.

The assignment A -> Ik(A) defines a Borel measure on every /c-dimensional

complex submanifold of M; this is the Eisenman measure of dimension k. Following

Eisenman [E], we introduce another Borel measure on each such A as follows: let Xk

be the Borel measure on Bk defined by integration with respect to the volume

element of the Bergman metric on Bk; then

(2.13)

I*(A) = inf< £ Xk(Ei): each F, C Bk and there exist
l/=i

CO \

holomorphic maps/: Bk -» M such that A c (J f¡(E¡) >.
;=1 i

Note that the measures 7^ and 7* are both decreasing with respect to holomorphic

mappings in the same way that the Kobayashi metric is. Moreover, on Bn, there are

constants c„ k such that I*(A) = c„ kIk(A) for every local ^-dimensional complex

submanifold A of Bk (see [E, Proposition 1.5 on p. 51 and Proposition 2.4 on p. 57]).

Standard reasoning then gives 1% < c„ kIk.

Lemma 2.14. On any complex manifold of dimension n, the equality I* = cn kIk

holds.

For « = k this has been proved in [E, Proposition 2.13]. The general proof is only

a minor modification of Eisenman's argument provided one uses the upper-semicon-

tinuity of Ek alluded to above (this lemma was in fact conjectured in [E], but at that

time the upper-semicontinuity of Ek was not available).

Whereas most of the definitions in the study of hyperbolic manifolds have met

with universal agreement, the notions of "measure hyperbolicity" and "strong

measure hyperbolicity" are susceptible to tremendous variations (see [K5, K6 and

P]). In order to standardize the terminology of this paper, we introduce

Definition 2.15. A complex manifold M of dimension « is said to be k-measure

hyperbolic iff for any nonempty local ^-dimensional complex submanifold A of M,

Ik(A) > 0. M is strongly k-measure hyperbolic iff for any compact set K C M, there

is a positive constant cK such that Ek(p; a) > Cjç-||«||2 for all p G K and for all

a g DkM.

In general, strong A:-measure hyperbolicity is a more stringent requirement than

^-measure hyperbolicity (see §9). When k = n, which is the most important special

case in this paper, we will simplify the terminology by using measure hyperbolicity

and strong measure hyperbolicity in place of «-measure hyperbolicity and strong

«-measure hyperbolicity. We will also say that M is almost hyperbolic iff there exists

a proper subvariety V c M such that M is hyperbolic at each point of M — V in the

sense that for each compact subset K of M — V, there exists a positive constant cK
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such that Ex(p; X) > cK\\X\\2 for all p g K, X g TpM (see [R2]). In general, we

have the natural inclusions:

strongly measure hyperbolic

measure hyperbolic

almost hyperbolic ^

For the lower inclusion, see for instance Proposition 2.17 following. It is very

tempting to conjecture that every strongly measure hyperbolic manifold is almost

hyperbolic, but the evidence at hand in support of this conjecture is very limited. It

is well known that all bounded domains are hyperbolic and hence strongly measure

hyperbolic. On the other extreme, projective space P„C with certain hyperplanes

deleted furnishes examples of unbounded hyperbolic domains and unbounded

almost hyperbolic (but nonhyperbolic) domains in C" (cf. [K3] for a survey). In this

paper, we deal only with domains which are in between these two extremes:

unbounded but with C° or C00 boundary manifolds. In §9 will be found examples of

domains with C00 boundary which are (1) almost hyperbolic and the intrinsic

volume form vanishes somewhere, and (2) not strongly measure hyperbolic but the

intrinsic volume form is everywhere positive.

Purely for the sake of completeness, we state here the two characteristic properties

of the intrinsic volume forms tm and the intrinsic norms Ek (the superscript will

serve to pin down the manifold under discussion).

Lemma 2.16. (i) Let <f>: M —> N be a holomorphic map between complex manifolds

each of dimension > k. Then Ek($(p); d<p(a)) < Ek(p; a) for all p G M and for all
a G DkM.

(ii) // M is the unit ball Bn, n > k, then E¡f(p; a) = \\ct\\2, where \\a\\ denotes the

norm of the Bergman metric on Bn.

The proof of (i) is trivial; the proof of (ii) can be found in [E, p. 57]. As usual Ek

can be characterized as the largest norm on DkM (M running through all complex

manifolds) with these two properties (cf.  [K5]). The next proposition gives  a

relationship between Ek and Ek + X.

Proposition 2.17. Suppose 1 < k < n = dim M. If M is strongly k-measure

hyperbolic, then it is strongly (k + l)-measure hyperbolic. (The converse is obviously

false.)

Proof. Introduce a Hermitian metric ( , ) in TM, and hence also in A'FM for

/ = 2,...,«. Let p G M and let a g Dk + lM such that ||a|| = 1. Suppose there exists

a holomorphic map /: Bk+X -* M such that /(0) = p and df(y)=a for some

y G D¿¡ + lBk + x satisfying ||y|| = e. Since ||y|| = e and ||¿/(y)|| = 1, there must exist a

tangent vector u of Bk+X at 0 such that ||u|| = 1 while ||í//(k)II < e~1/U + 1). Write

y = y' A u, where y' g D¿Bk+x and y' is strictly orthogonal to u (Definition 2.2).

There is no loss of generality in regarding y' as the tangent space of Bk at 0. We now

use the following well-known algebraic fact (cf. [W3, p. 10]).
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Lemma 2.18. Let 1 < k, I < « and let a g AkTpM, ß g A'TpM. Then \\a A ß\\ <

IMI ' llßll- Jf both a and ß are decomposable and k + I < «, then equality holds iff a is

strictly orthogonal to ß.

Returning to the proof of Proposition 2.17, we see that ||y'|| = e by Lemma 2.18.

Again using this lemma, we obtain

1 = \\df(y)\\ = \\df(y') A df(u)\\

^\\df(y')\\-\\df(u)\\^\\df(y')\\-e-^k + 1\

Thus Hy'H = e while \\df(y')\\ > elAk + l). If we set tj = e~lAk + l)y', then tj g D$Bk,

||t)|| - e***+1> and \\df(r,)\\ - 1.
Now if M were not strongly (k + l)-measure hyperbolic, then we could contradict

the fact that M is strongly k-measure hyperbolic by taking a sequence of values

e —» 0 and using the above construction.    Q.E.D.

The reader familiar with the Kobayashi metric will not be surprised by the

following

Lemma 2.19. // M is a complex manifold and M is a covering manifold with

projection tt: M -* M, then

EÙ(p;a) = EkM(TT(p);dTT(a))

for all p G M and for all a e DkM.

We end this section with a few simple remarks on the standard examples. It has

been pointed out above that on Bn, Ek(p; a) = \\cx\\2 with ||a|| understood to be the

Bergman norm [E], i.e., the norm of the Bergman metric ds2 given by

"     ( (1 - ||z||2)ó\. + z-z\

ds2=  E    -—"    ' iJ 2 *' Ui«-/
'£i\    (i - ii-ii2)2   /

Its volume form and hence the intrinsic volume form t„ (= tb ) of Bn is easily

computed to be

(2-20) -, =-r®„
(i-iku2)"*1

(see (2.3)).

On the unit polydisc A„, we have much less information. Ex is known because it is

just the square of the Royden-Kobayashi infinitesimal metric and the latter is known

to be just the Bergman metric on A„. Also, E„ is known because it is equal to the

volume form of the Bergman metric

\   2   /  '-1 (1 - |z,.|2)
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(this is a consequence of the automorphism invariance of ta and the homogeneity of

A„; see also Corollary 3.2 below). However, for 1 < k < n, nothing is known about

Ek" except for some special cases such as those covered by Theorem 3.1 below.

We now produce for each « an «-dimensional compact complex manifold which is

strongly measure hyperbolic but not /c-measure hyperbolic for 1 < k < n. Let M be

a compact complex manifold which is strongly measure hyperbolic, e.g., take M to

be the Fermât variety of degree « + 4 in P„ + 1C, « > 1 (cf. [K6, p. 394]). Let tt:

M —> M be the blow-up (quadratic transform) of M at some point p G M. Since

C"-1 c ir~l(p) c M, M is not ^-measure hyperbolic for any k = l,...,n — 1. On

the other hand M remains strongly measure hyperbolic because if /: Bn -» M is a

nondegenerate holomorphic map (i.e. df is somewhere nonsingular), so is tt ° f:

Bn -» M. Thus the assertion follows from (2.16) for the case k = n.

We can also use the Fermât varieties to show that the product of strongly

^-measure hyperbolic manifolds need not in general be ^-measure hyperbolic. In

fact, let F be the 2-dimensional Fermât surface of degree six (say) in P3C. Then F is

strongly 2-measure hyperbolic. However F X F contains PtC X PjC (cf. [K6, p. 394])

and hence cannot be 2-measure hyperbolic.

It is straightforward to show that the product of (strongly) measure hyperbolic

manifolds remains (strongly) measure hyperbolic. In the next section, we shall give a

quantitative version of this statement.

3. The product formula. The main purpose of this section is to prove the following

theorem.

Theorem 3.1. Let M and N be complex manifolds of dimensions m and n respec-

tively, and letl < k < m, 1 < / < «. Let p g M and q g N. Suppose a G Dkp+q)M X

N and a = ß A y, where ß G DkM and y g D'qN. Then

(3.1.1) EkM+r((P, ?);«) = E¡f(p; ß) ■ E»(q; y).

Corollary 3.2. Let tm, tn and tMxn denote the intrinsic volume forms of M, N and

M X N respectively. Then rMxN = rM A tn.

In the preceding corollary as well as in the theorem, we have purposely omitted

some projection maps in the interest of brevity. The corollary may be considered an

answer to Problem B.2 on p. 401 of [K6]. The latter problem was formulated in

terms of an intrinsic volume form defined by poly discs; in that case this product

formula is not likely to hold and in fact we do not believe there would be anything

more than a pair of inequalities involving the two sides of (3.1.1).

Proof of the theorem. We first prove E^J^p, q); a) < Ek(p; ß) ■ E,N(q; y);

this proof is valid whether balls or polydiscs are used to define Ek. Given any e > 0,

let fx: Bk -» M and f2: B, -> N be holomorphic maps so that fx(0) = p, f2(0) = q,

and for some ux g D$Bk and w2 g D¿Bh we have

dfx(o:x) = ß,        \\oox\\2^EkM(p;ß) + \e,

df2(œ2) = y,        \\u2\\2<E/N(q;y) + 2-e.
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Now Bk + Icz Bk X B¡, so dispensing with the projection maps for the sake of

notational simplicity, we have ux A u2 g DQ+lBk+h and / = (fx, f2): Bk+I -* M X

TV" is a holomorphic map such that /(0) = (p, q) and df(cox A to2) = a. Since

\\ux A u2\\ = ||<o1|| • \\u2\\, we see that

EkM+r((p, q); «) < Kll2 • IKII2 < -**(;; ß) ■ «A* y) + o(«),
where O(e) -» 0 as e -» 0. This proves the inequality.

Now we prove Ek(p; ß) ■ E,N(q; y) < E^N((p, q); a). This proof depends on

the fact that the ball is round. Thus let/: Bk + / -» M X TV be a holomorphic map

such that/(0) = (p, q), and for some a g D£ + lBk + l, we have

«//(«) = a,    where ||«||2 < Ek^N((p, q); a) + e.

Let us write w = a(d/dzx A  • • • A 3/3z¿ + /)(0) for some a g C, a # 0. Note that

|<z| = ||<o||. After a unitary transformation of Ck + I (and hence of 5A + / onto itself) if

necessary, we may assume that df(bd/dzx A  ■ • • A d/dzk(0)) = ß for some b g C,

6 * 0. Since

ß A y = a = d/(w)

= df[b4-A  ••• A^-(0)) AJ/fj^-A  ...A--5-(0))

= ßAdf\l^—A   ...Ajrf-iO)
\b 0zk + x dzk+/

it follows that

pj) *(ta¿7A-'A3ib<o>H Hi(o)"'-i<o)
Now let /'i: F¿ -» B¿ + / and /2: B¡ -» BA+/ be the injections induced by the canonical

injections Ck = Ck X {0} c Ck+/ and C = {0} xC'c Ck+I. Also let ttx: M X N

-» M and 7r2: M X TV -» TV be the canonical projections. If /x = ttx ° f * ix, and

f2 = tt2° f ° i2, then fx: Bk -* M and f2: B¡ -* N are holomorphic maps such that

f1(0)=p,f2(0) = qandby(3.3),

d44A-Aeí0))^'   ^(?¿iA---A¿;(0)
Hence,

EkM(p; ß) ■ E»(q; y) < |Z>|2 • \a/b\2 = |a|2 = ||<o||2 < E^,N((p, q); a) + e.

Since e is arbitrary, we are done.    Q.E.D.

Application. Let D* be the punctured disc, i.e. D* = {0 < \z\ < 1}. We shall

compute the intrinsic volume form rk, of Akl = D* X ■ ■ ■ X D* X D X ■ ■ ■ X D

(k copies of D* and / copies of D). We shall make use of Lemma 2.19.

We know that the intrinsic volume form of F is (1 - \z\2)~2(yf-l /2)dz A dz. Now

the map z -* exp(-(l + z)/(l - z)) gives a covering of D onto D*, and so by

Lemma 2.19, the intrinsic volume form of D* is (4(|z| log \z\)2)~1(\f^ï /2) dz A dz.

Thus by Corollary 3.2,

vT \k + ' A     dz- A dz¡ _ .    *+'     dz, A dzi
,20.4)      *,- m  n --—-a n

= 1 4(|z,|log|z,|)/     »-*+! (l-|z,|2)'
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It follows that if for any r such that 0 < r < 1, we define D(r) = [\z\ < r} and

D*(r) = D(r) - {0}, then the region D*(r) X ■■■ X D*(r) X D(r) X ■■■ X D(r)

(k and / copies, as before) as a subset of AA>/ has finite volume with respect to rk ¡.

This fact was first observed by Griffiths [G6] and is crucial in his work [G6 and G7]

as well as in Kobayashi and Ochiai [K7].

4. Curvature condition for /-measure hyperbolicity. Let M be an «-dimensional

Hermitian manifold; the connection to be used will be understood to be the

canonical Hermitian connection (cf. [G5, pp. 194-196; K5, pp. 37-39 and W5, pp.

73-86]). Given a ^-dimensional complex subspace Vof TpM (p G M), we introduce

a reduced Ricci form RicK on V as follows. Let ex,...,ek be any orthonormal basis of

V; we may assume that they are part of an orthonormal basis ex,... ,en of TpM. Let

ß,- be the curvature form relative to the frame {e¡}. Then for X = £„_, Xaea and

Y = Hka_xYaea in V, we define

(4.1) RicK(X,T)=    ¿   X"Y?\tüaß(ey,ey)).

Straightforward algebraic manipulation shows that this definition is independent of

the choice of {ex,...,ek}. Recall that the bisectional curvature of X and Y is just

K(X, Y) = Ekaß_, XaXßÜaß(Y, Y). Hence,

k

(4.2) RicK(X,;r)=  LK(X,ea)
a = l

for any orthonormal basis {ex,...,ek} of V. Also recall the basic Bochner inequality

(first proved in [B2] and subsequently rediscovered in [G5 and K4], among others): if

TV is a local complex submanifold of M, p g N, X, y g T N and KN( X, Y) denotes

the bisectional curvature of X and Y in the induced metric of TV, then

(4.3) KN(X,Y)^K(X,Y).

We can now introduce the basic concept underlying this section.

Definition 4.4. M is said to possess strongly negative kth Ricci curvature iff there

exists a constant T > 0 such that for any p g M and for any fc-dimensional complex

subspace Vof TpM, (i) Ricéis negative definite on V, and (ii) |detRicK| > T.

The determinant det Ric,/ above is of course taken with respect to the given

Hermitian metric, i.e. if {ex,...,ek} is any orthonormal basis of V, then by

definition,

det Ric,, = det{Rkv(ea, eß))x^aß^k.

The purpose of this section is to prove

Theorem 4.5. Let M be a Hermitian manifold with strongly negative kth Ricci

curvature. Then M is strongly k-measure hyperbolic.

The proof of this theorem, which is no more than a simple exercise, will be given

at the end of the section. More interesting are the implications of this simple result
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as well as its relationship with the curvature conditions studied by the other authors.

These we now explore.

Suppose k = 1. Then strongly negative 1st Ricci curvature is just the condition

that the holomorphic sectional curvature is bounded above by a negative constant.

Moreover, strongly 1-measure hyperbolic is, according to Royden [R2], equivalent to

hyperbolic in the sense of Kobayashi [K5]. Thus Theorem 4.5 contains the classical

result of Grauert-Reckziegel [G2] that holomorphic sectional curvature < -I" < 0

implies hyperbolicity. (Note that for a noncompact manifold, there is a strictly

stronger result; see Theorem E in [G4].)

Next suppose k = n = dim M. Then strongly negative «th Ricci curvature is

equivalent to the following: if {A;} are the eigenvalues of the Ricci tensor, then

X, < 0 for each i and \XX ■ ■ ■ X„\ > T > 0. In this case, Theorem 4.5 says that if the

Ricci tensor of M satisfies these conditions, then M is strongly measure hyperbolic.

Two comments are very pertinent at this point. The first is that the preceding

statement implies Kobayashi's theorem [K5, p. 121] to the effect that if the Ricci

curvature of M is bounded above by a negative constant, then M is strongly measure

hyperbolic. A second comment is that this special case of Theorem 4.5 (for k = h)

was in fact stated without proof on p. 373 of [K6]; without being aware of this,

Greene and Wu proved this special case in the process of proving something else

[G4, p. 134] and noted explicitly that this criterion of strong measure hyperbolicity

"has never been stated in the literature to the best of our knowledge". This is the

right place to correct this oversight.

In [C2], J. Carlson proved that if AkTM is negative, then M is strongly ^-measure

hyperbolic. In our present terminology, the negativity of AkTM means precisely

this: there exists a negative constant -c such that for any p g M, for any

/c-dimensional complex subspace V of Tp M and for any unit vector A" g TM,

Y.k, = lK(X, ea) < -c, where {ea} is any orthonormal basis of V. In this case, (4.2)

implies that M possesses strongly negative kth Ricci curvature. Thus Theorem 4.5

implies Carlson's result. It should also be pointed out that with the stronger

condition of the negativity of AkTM, Carlson could prove an extension theorem [C2,

p. 279]; with the weaker condition of strongly negative kth Ricci curvature we do

not yet see how to recover Carlson's result.

In [SI], B. Shiffman studied a curvature condition which, in our context, may be

phrased as follows: for any p g M and for any /c-dimensional complex subspace V

of TpM, RiCy has at least one nonpositive eigenvalue. For k = 1, this is precisely the

statement that M has nonpositive holomorphic sectional curvature. It is clear that

for each k, Shiffman's condition is strictly weaker than ours, and that his condition

cannot be used to prove any kind of A>measure hyperbolicity result.

It was pointed out that "Ricci curvature < -I" < 0" implies strongly negative «th

Ricci curvature. Trivially the converse holds on compact manifolds, but in general

one can easily construct examples of noncompact «-dimensional manifolds of

strongly negative «th Ricci curvature whose Ricci curvature is not bounded above

by any negative constant.

Finally we give the simple proof of Theorem 4.5. Let us begin with a simple

observation, which is an immediate consequence of (4.2) and (4.3).
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Lemma 4.6. Let M be a Hermitian manifold with strongly negative kth Ricci

curvature with constant Y as in Definition 4.4. If N is a local complex submanifold of M

of dimension > k, then TV in the induced metric also possesses strongly negative kth

Ricci curvature with constant T.

Proof of Theorem 4.5. By hypothesis, M has strongly negative kth Ricci

curvature with constant I\ for some T > 0. Given p G M and a G DkM such that

||a|| = 1, we must give a positive lower bound of Ek(p; a) as p varies in a

neighborhood. Let /: Bk -» M be a holomorphic map such that /(0) = p and

df(y) — « for some y G D¡¡Bk. Let G be the Hermitian metric on M. Then f*G is a

Hermitian metric on Bk — S, where S is the hypersurface on which df is singular;

moreover, f*G is a C00 Hermitian tensor on Bk which degenerates on 5. Thus/*G is

a pseudo-hermitian metric on Bk in the terminology of [G4] on p. 129. By Lemma

4.6, the restriction of f*G to Bk - S has strongly negative k th Ricci curvature with

constant T. By the Ahlfors-type lemma on volume forms, due essentially to Chern

and Kobayashi (to be precise, the form of the lemma needed for the application here

is proved in [G4, Lemma 7.17]), ßy,G < r_1ß^, where Slk is the volume form of the

Bergman metric on Bk normalized so that the Ricci curvature is -1, and where ß,,G

is the volume form of f*G. Note that üf»G = (f*u)k/k\, where co is the associated

Kahler form of G on M. Now

ß,=    2k(k + t^

(1-PII2)

(see (2.3) and (2.10)). Hence,

\\y\\2 = 2k\®k(yAy)\=(k + l)k\ak(yAy)\

> yx(k + l)*r|w*(a A a)\ = (k+ l)kT

which shows that Ek(p; a) > (k + 1)AT.    Q.E.D.

Remark. The concept of strongly negative kth Ricci curvature as introduced

above is not well understood. It is not known if the existence of a Hermitian metric

of strongly negative kth Ricci curvature on a manifold necessarily implies the

existence of one with strongly negative (k + l)th Ricci curvature. In fact it is still

unknown if a manifold carrying a metric of holomorphic sectional curvature

bounded above by a negative constant must also carry a metric of Ricci curvature

bounded above by a negative constant (cf. the discussion in [K6, p. 374]). It has been

mentioned above that using a stronger geometric assumption (that AkTM be

negative), Carlson [C2] proved an extension theorem for holomorphic mappings

from ^-dimensional manifolds into M. It is important to find a proof valid for all k

of a similar extension theorem using only the weaker condition of strongly negative

kth Ricci curvature. This would clarify the extension theorem for hyperbolic

manifolds of Mrs. Kwack and P. J. Kiernan [K9 and Kl] on the one hand and the

extension theorem for algebraic manifolds of general type due to Griffiths-

Kobayashi-Ochiai-Kodaira [G6, K7 and K8] on the other. The latter extension is in

fact the topic of the next section.
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Added in proof. It has come to our attention that the material in §4 is closely

related to a paper of Noguchi [N]. In particular he has introduced a notion similar to

the strong negativity of the kth Ricci curvature as defined in §4 (cf. [N, p. 414]).

Also Theorem 3.1 of Noguchi is relevant to the extension problem posed in the

remark at the end of §4.

5. Extension of holomorphic mappings. In this section, we consider the extension

problem of a holomorphic map /: X - V -» M, where X and M are «-dimensional

complex manifolds with M compact and measure hyperbolic, and V is a proper

subvariety of X. Under various additional conditions, we show that / can be

extended meromorphically across V (Theorem 5.8). When no additional hypotheses

are imposed, the most natural approach is to try to exploit the volume-decreasing

property of such an /. However, we shall give examples of volume-decreasing

holomorphic maps between Kahler manifolds for which no such extension is

possible. At the end of the section, we discuss some open problems.

First we give some definitions. Let /: X -* M be a holomorphic mapping between

Hermitian manifolds and let dim X = k and dim M = «, with k < «. Given/? g X,

let {Xv-'Xk) and {/*i,- - - ,M«} De orthonormal bases of the dual tangent spaces

T*X and Tf*(p)M respectively. Define a matrix A = {AJa} by

*

(5.1) />„ = I A'aXi,
i = i

for a = 1,... ,n. Let G be the Hermitian metric of M; then G = T,^^xnaJia at the

point f(p). Hence the Hermitian form f*G on T^may be written

(5-2) f*G(p) = Z(zZA'aÂ-AXiXJ.
/',/'      a

Let the eigenvalues of the Hermitian form f*G(p) be arranged in increasing order:

(5.3) 0<A! < ••■ < X¿.

For a later reference, we note explicitly that there is an orthonormal basis {6x,...,6k}

of T*X such that

(5-4) f*G(p)=- £aM-
¡=i

Now the map / is said to be quasiconformal iff in the preceding notation there is a

positive constant K such that the inequality Xk < K2XX holds at every/? g M. For

precision, we shall at times refer to this condition as K-quasiconformality. In view of

(5.2),/being F-quasiconformal is equivalent to the validity of the inequality

(5.5) max \\df(z)\\ < K min \\df(z)\\
ll-ll = i 11-11= i

at each p g X. A little linear algebra (cf. Lemma 11.1 in [Wl]) shows that / is

F-quasiconformal for some K > Q iff there exists a positive constant K' such that for

all/» g X,

(5-6) zZ\A'a\2<K'\detf*G(p)\^k,
Lot
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where   det   f*G(p)   is   understood    in    the   usual   sense:    det   f*G(p) =

det{/*G(e,, ej)}l<ij<k for any orthonormal basis {ex,... ,ek} of T X. This can be

better said: Recall that the norm \\df(p)\\ of the linear map df(p): TpX -> Tf(p)M is

defined by \\df(p)\\2 = E, a|/4'a|2 in the notation of (5.1). Thus/is F-quasiconformal

for some K > 0 iff there is a positive constant K' such that the inequality

(5.7) \\df\\2^K'\detf*G\l/k

holds on X. Finally, we say í//g Lp(X) iff ¡x\\df\\p < oo, where the integration is

with respect to the volume form of the Hermitian metric on X.

Theorem 5.8. Let X be a k-dimensional Hermitian manifold and let V be a proper

subvariety of X. Let M be an n-dimensional compact Hermitian manifold which is

strongly k-measure hyperbolic, where k < «. Let f: X — V —> M be a holomorphic

mapping. Then f extends to a meromorphic map from X to M if any one of the following

conditions is also satisfied:

(i) / is K-quasiconformal for some K > 0.

(ii) dfe L2k~2(X).

(hi) dim X = dim M and V is a discrete point set in X.

Remark. We shall see that the condition in (ii) is in some sense optimal. The

condition of F-quasiconformality in (i) is very stringent and may even seem

somewhat unnatural to some, but it is by now a fairly standard assumption (cf. [Wl

and W2], for instance).

Proof, (i) Given q g V and a neighbourhood 5 of q g X, it suffices to extend /:

S — V -* M to all of 5 meromorphically. Using the reasoning in either [G6, pp.

445-446] or [K7, pp. 142-143], we may assume that S is a polydisc D X ■ ■ ■ X D

and S - F is a product D* = D* X ■ ■ ■ X D* X D X ■ ■ ■ X D (I copies of D* =

{0 < |z| < 1} and k — I copies of D, with / < k). To show that / extends to S, we

again follow [G6] by invoking the extension theorem of Bishop [Bl]. Thus, with the

understanding that D* has the Hermitian metric induced from X, we are reduced to

showing that the graph r^of/: D* —> M has finite volume in the product metric on

D* X M. Let to and ß be the associated Kahler forms of the Hermitian metric on X

and M respectively. Then the Kahler form of the induced metric on r^ is (the

restriction to I}of) « + ß, the latter being regarded as defined on D* X M. Thus:

(5.9)       volume ̂ = ^/j«+/*«)* =-^ L ( *)jfV 'A(f*ü)J.

At a fixed point p g D*, let {#,} be as in (5.4). Then for each/ > 1,

»*-■>' A(f*Q)J = (constant)(      £      X,, ••• X,J«*.

Since ||d/(/>)||2 = XX +  ■■ ■ + Xk, we see that

(5.10) ak-J A(f*Q)J *zc\\df\\2Juk,
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where c is a constant depending only on k and «, but independent of p. Hence, from

(5.9),

volume r, < (const)   /" «* + ¿   [ \\df\\2juk\.

By (5.7), the F-conformality of/implies

volume I><c'   f ook + ¿   f \det f*G\J/kwk\,

where the constant c' is dependent only on «, k and K. Now at each p g D* we

have, using the notation of (5.4), that

|det/*GV = (Xx •• • X>* = -MI>,0, a §]" = ±(f*Q)k.
kl\~   ''       ' k\i

Hence noting that /D. uk < oo, we obtain by Holder's inequality

volume r^ < (const) const + /   (/*ß)     .

Pick an r so that 0 < r < 1, and let successively D(r) = [\z\ < r}, D*(r) = D(r) n

D* and D*(r) = F*(r) X ■ • • X D*(r) X D(r) X ■■■ X D(r). Now,

j(f*a)k=(        +(    ,

and the first integral is finite because/is defined on X - V. Hence,

(5.11) volume T, < (const) const + [     (/*ß)M.
\ JD'(r) I

Now M is compact, so the unit sphere bundle of DkM is also compact. Thus for all

unit vectors y g DkM, there is the inequahty c,|ß*(Y A y)\ < E¡?(y), where cx is

some positive constant independent of y. Hence

|(/*a)*(« A 5)| < f (f*E»)(a) < ±-EF(a)
cx cx

for all unit ^-vectors a in D*. This implies that (/*ß)* < t/cx by the definition of t,

where t is the intrinsic volume form of D*. So (5.11) implies:

volume I\ < (const) const -\-/
\ cl ■/D*(r

T I   <   00,

where the last inequality is nothing but a restatement of the fact that D*(r) has

finite volume with respect to the intrinsic measure of D* (see the discussion at the

end of §3). This proves (i).
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(ii) Let df G L2k  2(X). We follow the set-up in the preceding proof of part (i) and

again try to show that volume Tf < oo. By (5.9) and (5.10),

volume I) < (const) if w* + £  f uk~JA(f*Q)J + f  (/*ß)M

k-l

< (const)   [ <*"+  Z   [ \\df\\2^k + f  (/*ß)

< (const)f f (0a■ + f \\df\\2k-2ak + í (/*ß)

where the last inequality is due to Holder's inequality. Now the first integral of the

last sum is clearly finite. The finiteness of the second integral follows from the

assumption that J/g L2k~2(X). The finiteness of the last integral, i.e. /D„(/*ß)\

under the assumption that M is compact and strongly ^-measure hyperbolic has

been proved in the proof of part (i). Hence volume Yf < oo.

(hi) Assumption as given in the theorem, we are immediately reduced to showing

that if/: D - {0} -> M is holomorphic, where D is the polydisc D X ■ ■ ■ X D and

dim D = dim M = n, then / extends to a meromorphic map defined on D. By a

theorem of Stoll (Satz 2 of [S5]), it suffices to show that the cardinality of f~l(y) is

finite for a set of points y G M of positive measure in M. Let N(y) be the cardinality

°ff~\y)- A standard fact (cf. [W3, Lemma 2.12]) states that

(5.12) /        f*rM = f      N(y)rM(y),
•/D-{0} ji<eM

where tm is the intrinsic volume form of M. We claim that /D-{0}/*Tw < °°- Indeed,

the integral is equal to the sum /D((.)_{o)/*tw + f0-D(r)f*TM, where D(r) = (|z,| <

r: i = 1,...,«} and 0 < r < 1. Since/may be assumed to be defined on D — {0},

/d-D(,)/*tm < °°- T° analyze /D<r)-{0}/*TM> let T denote the intrinsic volume form

of D — {0}. Then the intrinsic volume-decreasing property of holomorphic maps

implies that/*Tw ^ t. Thus it suffices to show /D(r)_¡o¡ T < °°- That this is so is due

to the following elementary reason. Let tx be the intrinsic volume form of Df = D*

X D X ■ ■ ■ x D. Then the imbedding DfcD- {0} implies t < tx on Df. Hence

with T>*(r) = D(r) n D*, we have

/ T =   / T</ Tj  <   oo,
JD{r)-{0} JT>;(r) JDt(r)

where the last inequality has already been used in the proof of part (i). This proves

the claim.

Thus by (5.12), freMN(y)rM(y) < oo. Now if N(y) = oo almost everywhere, this

inequality would imply rM = 0 almost everywhere, thereby contradicting the mea-

sure hyperbolicity of M. Hence N(y) < oo on a set of positive measure, as desired.

Q.E.D.
Remark. Note that what is really needed for (hi) is only the measure hyperbolicity

(rather than the strong measure hyperbolicity) of M.
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Corollary 5.13. Let X and M be 2-dimensional Hermitian manifolds, let M be

compact and strongly measure hyperbolic, let V be a proper subvariety of X and let f:

X - V -» M be a holomorphic map such that df G L2( X). Then f can be extended to a

meromorphic map on X.

We now comment on the possibility of proving the preceding theorem without any

of the supplementary conditions (i)-(iii). Thus consider the following conjecture (cf.

[K7]), which has remained open since the papers [G6, K7 and K8] appeared:

Let X and M be «-dimensional complex manifolds, let F be a

hypersurface in X and let M be compact and measure

hyperbolic. Then any holomorphic map /: X - V -* M

extends to a meromorphic mapping X -* M.

Some special cases are known. In case M is Kahler, a remarkable theorem of Siu

[S3], which is an extension of earlier results of Griffiths [G7] and Shiffman [SI],

implies that if the codimension of V in X > 2, then (5.14) is true regardless of

whether M is measure hyperbolic or not. What happens in case F is a hypersurface

and M is in addition Kählerian in (5.14) is unknown at present. Even for an

algebraic M, the truth of (5.14) is conjectural but, at least in this case, entirely

plausible. The reason for this state of affairs is a consequence of the three papers

[G6, K6 and K7] of Griffiths, Kobayashi-Ochiai and Kodaira; they proved that when

M is an algebraic manifold of general type, then M is measure hyperbolic and

furthermore, with /, X and V as in (5.14), the mapping / does extend meromorphi-

cally to all of X. Thus if in (5.14) M is assumed in addition to be algebraic, then

(5.14) would be valid provided one can show that a measure hyperbolic algebraic

manifold is of general type. The proof of the latter conjecture in dimension 2 was

started by M. Green and Griffiths [G3] and completed by D. Mumford and F.

Bogomolov independently (we learned of the latter from Robert Friedman).

If M is not assumed to satisfy an additional hypothesis such as being Kählerian or

algebraic, there has been thus far no evidence to show that (5.14) would be valid. We

are now going to present an example which, while not a counterexample to (5.14),

seems to indicate that (5.14) is unlikely to hold in general. From the vast number of

similar extension theorems in the theory of hyperbolic manifolds [Kl, K2, K6 and

K9], one may be allowed to conclude that the truth of (5.14) would be concomitant

with the truth of the following stronger assertion: let X and M be «-dimensional

Kahler manifolds, let F be a proper subvariety in X and let /: X — V —> M be a

holomorphic mapping which decreases the volume forms of X and M (i.e. /*ßw <

ctix for some positive constant c, where üx and ßM are the volume forms of the

respective Kahler metrics); then / extends to a meromorphic mapping on X. The

following example shows that such an assertion cannot possibly be true.

Example 5.15. Let D be the unit disc and let D* = D - {0} as usual. Let <¡>:

D* -* C/Z2 be a holomorphic mapping, where Z2 stands for the integral lattice in

C; the derivative <£' of <p (regarded as a holomorphic function indeterminate up to

integral multiples) will be required to be everywhere nonzero in D*. Let Z4 be the

integral lattice in C2 and let T2 be the torus C2/Z4. Now define/: D* X D -» T2
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by f(z, w) = (<j>(z), w/<t>'(z)). With the flat metrics on D* X D and T2 understood,

a simple computation shows that /* preserves the volume forms. We now specialize

<p to be <¡>(z) = (l/27r/)logz. Then f(z,w) = ((l/2w/)logz, 2-nizw). Let T be the

graph of / in (D* X D) X T2. An elementary computation shows that if 0 < r < 1

and A(r) = {r < \z\ < 1}, then the volume of T(r), which is defined to be Y n

[(A(r)X D)X T2], is equal to \|log r| + (polynomial in r). Hence volume r(r) -> oo

as r —> 0, so that / cannot have any meromorphic extension to D X D.

Note that \\df\\2 = (1/4tt2)(1/\z\2) + (polynomial in |z|2 and |w|2). Thus df €

L2(D* X D) but df g LP(D* X D) for 0 < p < 2. Since/is volume preserving and

at the same time not extendible to F X F meromorphically, Corollary 5.13 is in

some sense best possible.

Another example that is similar to the preceding one but throws a different light

on the failure of meromorphic extension may be constructed as follows. This time let

<í> be a holomorphic function on D* such that $' is nowhere zero. Let/: D* X D -* C2

be defined by/(z, w) = (<¡>(z), w/4>'(z)). Let i: C2 -» P2C be the natural inclusion of

C2 into the projective plane. Then F = i ° f: D* X D -» P2C is a holomorphic

immersion because dF is nowhere singular. Equip D* X D with the flat metric and

P2C with the Fubini-Study metric. Then a straightforward computation shows that if

^ is the volume form of P2C while 0 = 02 (cf. (2.3)) is the volume form on D* X D,

then

F*V =-0.

(1+IIFII2)3

In particular, F*ty < 0, so that F is volume decreasing. Letting 4>(z) = exp(l/z),

for instance, we obtain a volume-decreasing holomorphic immersion of D* X D —>

P,C that has no meromorphic extension to D X D.

Of course all preceding considerations are rooted in the extension theorem of E.

Bishop [3] on the closure of the graph of a holomorphic map. The belief in the truth

of (5.14) is related to the belief, in view of Bishop's theorem, that the graph of a

volume-decreasing holomorphic map must behave reasonably. The two preceding

examples show that such is not the case, but in each case the map is oo to 1. We now

show that even the graphs of volume-decreasing holomorphic imbeddings may not

behave.

Example 5.16. Let T2 be the complex torus C2/Z4, where Z4 is the integral lattice

in C4 as usual. We shall produce holomorphic imbeddings <pn: D X D -* T2 such

that each </>„ is volume decreasing and that as « -> oo, volume[<f>„(Z> X D)] -> 0 while

the volume of the graph of <j>n -> oo. The definition of <j>n is

<t>„(z, w) = (z/n2 + 2w/n, nw).

The complex Jacobian determinant of <f>,; is 1/« so that, relative to the Oat metrics on

D x D and T2, </>,, is volume decreasing. We now show that each <pn is an imbedding.

Suppose <¡>„(z, w) = <j>„(z', w'); then

(z - z')/n2 + 2(w - w')/n = 0    (modZ2),

n(w-w') = 0    (modZ2).
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Since \z - z'\ < 2, \w - w'\ < 2 and since we may assume « > 10, the first equation

implies (z — z')/n2 + 2(w — w')/n = 0. The second implies n(w — w') = a + iß,

for some a, ß g Z. Hence (z - z')/«2 = -2(a + iß)/n2 which implies z - z' =

-2(a + iß) which implies z - z' = 0 because if one of a, ß is nonzero we would

have 2 > |z — z'| = 2|a + iß\ > 2. Hence also w = w', which shows 4>„ is an imbed-

ding.

An elementary computation shows that the volume of the graph Tn of <j>„ is

tt2(«2 + 1 + 5/«2 + l/«4) while the volume of <j>n(D X D) is w2/«2. Thus as

« —> oo, volume Tn -» oo while volume <bn(D X D) —> 0.

It remains to raise some questions concerning the extension problem. With part

(ii) of Theorem 5.8 in mind, we ask for a weaker version of (5.14):

(5.17) Does Corollary 5.13 hold when both X and M are of dimension «?

The next question is inspired by the Remmert-Stein extension theorem [Rl]:

If /:  B„ - A -* M is a holomorphic map, where A is a

hypersurface in the unit ball B„ and M is an «-dimensional

(5.18) compact strongly measure hyperbolic manifold, and if /

extends meromorphically across a point of each branch of A,

does / extend meromorphically across ^4?

Recall that in §2 we have defined a complex manifold M to be almost hyperbolic

if there exists a proper subvariety S c M on which the infinitesimal Royden-

Kobayashi metric ds2/ vanishes identically and if M is hyperbolic at each point of

M — S. Such a manifold is of course measure hyperbolic. Hence the following is

another watered-down version of (5.14):

,       . Does (5.14) hold if M is compact and almost hyperbolic and

ds2M\M_s decays to zero on S in a suitable manner?

Needless to say, part of the problem is to specify what should qualify as " suitable

manner".

6. Regularity properties of the intrinsic volume form. It is the purpose of this

section to exhibit some pathological phenomena of the intrinsic volume forms of two

domains in C2. As a consequence, we shall see that the intrinsic volume form of a

domain of holomorphy may vanish on a nonempty open set without vanishing

identically, thereby settling Problems B.l and B.6 on pp. 401-402 of [K6].

Example 6.1. Let ß = {(z, w) g C2: |zw| < 1}. ß is a domain of holomorphy. Let

t be the intrinsic volume form of ß. We shall show that t = 0 on ß - {0}, but that

t(0) > 0. Indeed, let the intrinsic volume form of ß — {0} be t'. Then r' vanishes

identically because C acts effectively on ß - {0} without fixed points by the action:

/ • (z, w) = (e'z, e~'w) for all t g C. (This is the observation of Kobayashi and Bun

Wong on p. 371 of [K6]; note that it is important to explicitly exclude the presence

of fixed points of the action for this result to be valid. Otherwise, the present

example would furnish a counterexample: C acts on ß itself by the same action, 0 is

the unique fixed point and t(0) > 0.) Since ß — {0} c ß, t < t' on ß — {0}. Hence

t = Oonß - {0}.
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It remains to prove t(0) > 0. Let <£: B2 -» ß be a holomorphic map such that

<i>(0,0) = (0,0). By (2.4.1), it suffices to show that \\d<p[d/dÇ A 9/9t/(0,0)]|| has an

upper bound independent of <j> (f and tj are the coordinates on B2). After a rotation

of B2, we may let

(6.2) ¿*(¿(0,0)) = a¿(0,0),    ^(A)(0,0) = ft¿(0,0)+c^(0,0)

for some a, b, c g C. We have to bound |ac| from above. Let <¡> = (<j>x, <£2). The

polydisc A2(l/ \/2) of radius 1/ \¡2 is contained in B2. In A2(l/i/2 ), (6.2) implies

that

t^a, i,) = flf + 6- + 0(2),    <#»2(f, ~) = cr? + 0(2)

where 0(2) denotes terms of order > 2 in f and r/. For ? g F(l/ -¡2) (the disc of

radius 1/ \/2 in C), define h(t) = <¡>x(t, t)<¡>2(t, t). Then h(t) = c(a + b)t2 + 0(3).

The definition of ß above implies that \4>x<j>2\ < 1, and hence \h(t)\ < 1. The Cauchy

estimates applied to h(t) then lead to

(6.3) |c(a + 6)|<2.

Similarly, we can define a holomorphic function /: F(l/v^)-»C by f(t) =

<bx(t,-t)<¡>2(t,-t). Then/(í) = c(a - b)t2 + 0(3) and consequently |c(a - b)\ < 2.

Together with (6.3), we obtain:

\ac\ < |i(a + b)c\ + \k(a - b)c\ < 2,

as desired.    Q.E.D.

Remark. If F„ denotes the «th Eisenman intrinsic norm of the preceding domain

ß, then we have shown that F2 = 0 on ß — {0} and F2(0) > 0. Thus we have an

example, with « = 2, of a domain ß such that log F„ is not plurisubharmonic on

A"Fß, thereby answering negatively Problem B.l on p. 401 of [K6].

Example 6.4. Let A2 be the unit polydisc in C2 and let S be the infinite strip

{(z, w) g C2: |z| < 1/2}. Consider the "infinite cross" region ß = A2 U S. The

intrinsic volume form t of ß vanishes identically on S, for trivial reasons. We are

going to show that Ex(p, X) > c||^||2 for some positive constant c on compact

subsets of ß - S, where Ex is the first Eisenman intrinsic norm as defined in (2.5).

Thus ß is hyperbolic at each point of ß - S and in particular, t > 0 on ß — S. (We

do not know what happens on the real hypersurface ß n (|z| = 1/2}.)

Let (z0, wQ) g ß - S. Then by definition

(6.5) |z0| > 1/2,       K| < 1.

Now write the unit sphere of the tangent space at (z0,w0) as the union of the

following two sets:

At m {(XX,X2):\XX\2 + \X2\2 = 1,\XX\ >e},

A2 = {(Xx, X2): \XX\2 + \X2\2 = 1,|*2| > e},

where e is any preassigned small positive constant. Let X G Ax. The holomorphic

map tt: ß -» D (D = unit disc) defined by m(z, w) = z maps X = ( A',, X2) onto the
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vector d-rr(X) which has length \XX\^ e and which is tangent to D at z0. Hence by

the area decreasing property of Ex,

F^ÍZq, w0); X) ^ ExD(z0;eU) for all X g Ax, where F  is a

unit vector with respect to the flat metric on D.

Next let X g A2. Let £: D -> ß such that <i>(0) = (z0, w0) and d<p(V) = X. Write

<t> = (</>!, <f>2). By the definition of ß, \(j>x\ < 1. If also \(b2\ < 1, then using d<p2(V) =

(0, X2) and the Schwarz lemma, we obtain |F| > e(l - |w0|2)_1. Thus we may

assume that for some/? g D, \<t>2(p)\ = 1. We may also assume that no other q G D

such that \q\ < \p\ has the property that \<t>2(q)\ = 1. If we let D(\p\) = {z: |z| < \p\},

then (¡>(D(\p\)) c A2 and <t>(p) g 3A2 n 5. In particular,

(6.7) l*i(/>)l< 1/2,

and <i>2 maps D(\p\) into D. Since <i>2(0) = w0 and the derivative satisfies |<f>2(0)| =

| X2 l/l V |, the lemma of Schwarz-Pick applied to <b2 at 0 yields

(6.8) \pX2\/(l - \w0\2) < \V\.

Now consider <}>x: D -> D. We have

*i(/0 - *i(0) = fjt^'P) dt = pfViitp) dt,

so that by (6.7),

|z0| - 1/2 < |z0| - \<?x(p)\ < \p\ ■ f\^(tp)\dt.

Hence there exists a q on the line segment joining 0 top G D such that

(6-9) l-ot - I/-< l/»r: l*i(«)|.
If we apply the Schwarz-Pick lemma to <$>x at q, we get

l-\q\2        ^  l-\p\2

By (6.9), |z0| - 1/2 < \p|/(1 - 1/712) which imphes

-l+[l+4(|z0|-l/2)2]1/2   _ 2(|z0|-l/2)
\P\>

11/22(|z0|-l/2) l+[l + 4(|20|-l/2)2]]

Since (1 + x)1/2 < 1 + \x for x > -1, the above implies \p\ > (|z0| - |)/(|z0| + \).

Thus making use of (6.8), we finally obtain

1 ' " i - Ki2   kol + 1/2 "

Since X g A2, |X2\ ^ e. Hence altogether, we have

(6.10)    E?((z0,w0);X)>mml
\w. |2

1/2 \2|

\ i - KI2 1/2

|z0|-l/2,:

|2     \z0\ + 1/2
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for all A" g A2. Recalling (6.5), we see that the right side of (6.10) is a positive

constant independent of </>.

It is now clear that if (z0, vv0) varies within a compact subset of ß - S, the

right-hand side of each of (6.6) and (6.10) would remain bounded below by a

positive constant. This shows that ß is hyperbolic at every point of ß — S.    Q.E.D.

We should perhaps mention that many examples similar to Example 6.4 can be

easily constructed. Here is one: the domain ß c C2 defined by

ß= {(z,w):\z\<l) ~{(z,w):\z\< 1/2, \w\> 1}.

Then again, the intrinsic volume form vanishes identically on the open set ß n

{(z, w): \z\ > 1/2}, while ß is hyperbolic at each point of the open set ß n {(z, w):

\z\ < 1/2}. We do not know what happens on the real hypersurface ß n {(z,w):

1-1 = 1/2}.
It is not known if such irregular behaviour of t can occur on compact manifolds.

7. Deformations of measure hyperbolic domains. We shall show by examples that,

in a precise sense, the set of measure hyperbolic domains (as well as the set of all

strongly measure hyperbolic domains) is neither open nor closed in the space of all

domains properly contained in C". In this whole discussion, let it be noted explicitly

that the whole space C" is excluded from our consideration.

Let the following notation be fixed for the remainder of this section:

& = the set of all domains properly contained in C".

J( = the set of all measure hyperbolic domains in ¡P.

SfJt = the set of all strongly measure hyperbolic domains in 0>.

Thus yj{ c J( c 3P. Introduce a generalized distance function 8: 3P X 0> -* [0, oo]

by

(7.1) 8(QX,Q2) = sup{c/(z,3ß2): z g düx} + sup{i/(9ß,, z): z e 3ß2},

where d denotes the euclidean distance of C" and 3 denotes the boundary operator.

We now show that ô satisfies the triangle inequality

(7.2) 5(ß1(ß2) < o(ß!,ß3) + S(ß2,ß3).

The proof of (7.2) is entirely elementary but it does require some finesse. Since it is

quite short, we will supply the details. To this end, let us denote the first term on the

right side of (7.1) by 8X(UX, ß2) and the second term by 52(ßl5 ß2). Thus (7.1) now

reads

8(Qx,tt2) = S1(ß1,ß2) + S2(ß1,ß2).

To return to (7.2), suppose 5(ß1; ß2) = oo. If 8(tix, ß3) = oo, then there is nothing

to prove. So suppose fi(Q,, ß3) = a < oo. Given k, we shall prove that 5(ß2, ß3) > k.

Without any loss of generality, we may assume O^ßj, ß2) = oo. Thus there exists

zx G ßj such that d(zx, 3ß2) > k + a. Let z3 g 3ß3 such that d(zx, z3) = d(zx, 3ß3),

and let z2 g 3ß2 such that d(z3, z2) = d(z3, 3ß2). By the triangle inequality for d,

d(zx, z3) + d(z3, z2) > d(zx, z2) > d(zx,dQ2) > k + a.

But

d(zx, z3) = d(zx,dÇl3) < o\(ßj,ß3) < 8(ß!,ß3) = a.
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Hence, d(z3, z2) > k + a - d(zx, z3) > k, which immediately implies S(ß3, ß2) >

k. This proves (7.2) if S(ß,, ß2) = oo.

Now suppose o"(ßj, ß2) < oo. Let zx g 3ßj so that d(zx, 3ß2) > a^ßj, ß2) — e

for a given small positive e. Let z2 g 3ß2 such that d(zx, 3ß2) = d(zx, z2). Now

choose z3 g 3ß3 such that d(zx, 3ß3) = d(zx, z3) and then let z2 G 3ß2 such that

d(z3, 3ß2) = d(z3, z'2). It follows that

d(zx, z2) = d(zx, 3ß2) < d(zx, z'2) < d(zx, z3) + d(z3, z2)

= d(zx, 3ß3) + d(z2, 3ß2) < 8X(QX, ß3) + 8X(Q3, ß2),

and hence,

01(ß1,ß2)-e<o1(ß1,ß3) + S1(ß3,ß2).

Since e is arbitrarily small, we obtain

(7.3) ^(Ö!, ß2) < 8x(äx, ß3) + 8X(Q3, ß2).

Similarly, we obtain

S1(ß2,ß1) < o\(ß2,ß3) + 51(ß3,ß1).

Since 8X(Q, ß') = o2(ß', ß) for any two domains ß, ß' g 3P, the preceding becomes

82(QX,Q2) < o2(ß3,ß2) + o2(ß1,ß3).

Adding this to (7.3), we obtain (7.2).

It is trivial to see that (i) 5(ß, ß') > 0, with equality iff ß = ß', and (ii) 5(ß, ß') =

o(ß', ß). Thus 8 is a distance function on ^in the usual sense of point set topology,

except that 8 may take the value oo. Nevertheless, the usual reasoning shows that the

sets of the form F(ß) = {ß': o(ß, ß') < 1/k} (k g Z+) form the basis of a

topology in á2, so that by abuse of terminology, we shall continue to refer to 8 as a

metric on ^(Strictly speaking, the sets {(ß, ß'): S(ß, ß') < r} for O < r < oo form a

uniformity on éP so that 8 turns í? into a uniform space.) This topology on £P will be

understood in the following discussion.

Before getting to the examples, we make a trivial but important observation; it is

an immediate consequence of Lemma 2.16(i).

Lemma 7.4. Let f: X -» M be a nondegenerate holomorphic mapping between the

n-dimensional complex manifolds X and M. If M is measure hyperbolic, so is X. If M is

strongly measure hyperbolic and f is an immersion, then X is also strongly measure

hyperbolic.

(Recall: /being nondegenerate means df is nonsingular somewhere.)

Example 7.5. J( is not open in 3P. To see this, let ß = {(z, w) G C2: |zw| < 1,

|z| < 1}. The holomorphic map <¡>: ß -» D X D given by <p(z, w) = (z, zw) is nonde-

generate. Hence ß is measure hyperbolic (Lemma 7.4). Now for each positive integer

k, let ßA. = ß U {(z,w) G C2: |z| < 1/k}. Clearly 8(Qk, ß) < 2/k -* 0 as k -* oo.

Since each ük fails to be measure hyperbolic, we are done.

Example 7.6. ¿fMis not open in @. Let ß = {(z, w) g C2: |zw| < 1, 0 < |z| < 1}.

The map <£: Ü ^> D* X D (D* = D - {0}) given by <j>(z, w) = (z, zw) is biholo-

morphic so that ß is strongly measure hyperbolic (Lemma 7.4). Let ß^. = ß U

{(z,w) g C2: 0 < |z| < 1/k}. Then ßA is not measure hyperbolic, but as before

5(ß, ßA) -» 0 when k -* oo.
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Example 7.7. SfJ( is not closed in 0>. Let ß = {(z, w) g C2: 0 < |zw| < 1}. Then

C acts on ß without fixed point by the action / • (z, w) = (e'z, e~'w) for t g C.

Hence the intrinsic volume form of ß vanishes identically (see discussion in Example

6.1). Now for every positive integer k, let

Uk = {(z,w) G C2: 0 < |z*vv*+1| < 1,0 < |zA' + 1w*| < l}.

The map (¡>: tlk -» D* X D* such that </>(z,w) = (zkwk + l, zk + lwk) is a holomorphic

immersion. Hence by Lemma 7.4, ßA is strongly measure hyperbolic. But 8(£ik, ß) <

2/k by an elementary computation—making use of the following inequalities on

[l.oo):

1      /1\<*+D/*      1 _ I l
t-(l) =-(l-'l/k)^-logt^k<-.

Thus 8(Qk, ß) -» 0 as k -» oo.

Remark. Example 7.7 also shows thatJ? is not closed in ¡P.

Suppose in the definitions of a3, J( and ifJi above we add the requirement that all

domains have nonempty C00 boundary. Then with obvious modifications, the

preceding examples can be adapted to suit the new requirement. Suppose now á3' is

the set of all proper domains of holomorphy in C", and JC and SfJt' are

respectively the subsets of measure hyperbolic and strongly measure hyperbolic

domains of holomorphy. Then Example 7.7 shows that neither.J'' noxifJC is closed

in ^'. We do not know whether^' and SfJt' are open in á3'.

On the other hand, if we define i?x, Jtx and í/'Jíx using compact manifolds, then

nothing seems to be known. In particular, is there a characterization of compact

measure hyperbolic manifolds analogous to Brody's criterion for compact hyperbolic

manifolds [B3]?

8. Domains of finite euclidean volume. It is well known that all bounded domains

are both hyperbolic and measure hyperbolic. To look for measure hyperbolic

domains which are not hyperbolic, one must go to unbounded domains. In this

context, the most natural candidates are therefore the unbounded domains of finite

(euclidean) volume. The idea that finite (euclidean) volume should be related to

measure hyperbolicity is further reinforced by the following theorem. First recall

that if M is a complex manifold and p g M, the indicatrix of Ex (the first Eisenman

intrinsic norm) at p is the set

/(/>)= {X^TpM:Ex(p;X)<l}.

This is of course the same as the indicatrix of the infinitesimal Kobayashi-Royden

metric.

Proposition 8.1. Let M be a Hermitian manifold, (i) If the indicatrix I(p) at

p g M is of finite volume relative to the Hermitian inner product on TpM, then

tm(p) > 0, where rM is the intrinsic volume form of M. (ii) // the volume of the

indicatrix I(p) is bounded above whenever p varies in a compact subset of M, then M is

strongly measure hyperbolic.

Remark. The converse of part (i) is false. To see this, recall that the intrinsic

volume form of the domain ß = {(z, w): \zw\ < 1} of Example 6.1 is positive at the
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origin. However, the indicatrix 1(0) at 0 G ß is just ß itself and hence has infinite

volume (the flat metric on ß is of course understood). The fact that 1(0) = ß is a

particular instance of a folklore result for which both K. Diederich and N. Sibony

have shown us proofs. It states: Let ß be a disked domain of holomorphy in the

sense that z G ß => az g ß for all a G C such that |a| < 1. Then the indicatrix at

the origin equals ß.

Proof of Proposition 8.1. (i) We begin with an observation: if /: Bn^> M

(n = dim M) is a holomorphic map such that/(0) = p, then df"maps the unit ball B

in the tangent space to B„ at 0 into I(p). Indeed, if X g B, then ExM(p; df(X)) <

\\X\\2 < 1, by the definition (2.4.1). Now with/ above, df: T0Bn -+ TpM is a linear

map between inner product spaces with the property df(B) c I(p). Hence, if c =

volume I(p) and ß = the determinant of df, then

^j- = volume B = \ß\~2 vo\ume[df(B)] < \ß\'2c,

=* |ß|2 < cn\/(2tT") =* EnM(p; <o) > 2ir"/(nk),

for any unit «-vector to at p G M. Thus rM(p) > 0. Part (ii) follows immediately

from the preceding proof.    Q.E.D.

It follows from Proposition 8.1(i) and the folklore result quoted in the previous

remark that if ß is a disked domain of holomorphy in C" with finite volume, then

Ta(0) > 0. In general, it seems reasonable to ask: is a domain in C" of finite

(euclidean) volume necessarily strongly measure hyperbolic1] Example 8.6 below shows

that this is not so. This example also shows that there are holomorphic maps <f>:

Bn -* C with Jacobian determinant identically equal to 1 such that the volume of

<t>(B„) is arbitrarily small. It also shows that for domains of finite volume, there can

be no Schottky-Landau theorem in the sense of [G8, p. 55]. The next two questions

are still open:

(8.2) Is a domain of finite volume measure hyperbolic?

(8.3) If <j>: C" -» C" is a nondegenerate holomorphic mapping (« > 2),

is the volume of the image <i>(C") necessarily infinite?

We wish to append some comments on (8.3), which is of course weaker than (8.2).

According to Kodaira [K8], the volume of the complement of <f>(C") in C" (« > 2)

can be infinite in a strong sense even for a holomorphic imbedding <j>. It seems to us

that if the complement of <t>(C") can be so large, then it would not be so surprising

that </>(C") itself can in fact be quite small, i.e. the answer to (8.3) may well be

negative. On the other hand, if one believes that the answer to (8.3) is in the

affirmative, then a natural approach would be to assume <#>(C") has finite volume

and try to use the first main theorem in value distribution theory to deduce a

contradiction. While traditional value distribution theory only deals with holomor-

phic maps taking values in a compact manifold (so that in the case of <i>: C" —> C",

one would regard C" as a subset of P„C and consider the composite mapping <i>:

C" -> P„C instead), the problem at hand demands that the target space C" should be

equipped with the flat metric and hence must remain noncompact. It turns out that
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for the special case of C" as the target space, it is possible to set up a noncompact

value distribution theory (essentially a modified version of the appendix in [W2]).

Our effort so far in making use of the resulting first main theorem to attack (8.3) has

remained unsuccessful and this is in fact a contributing factor in our present belief

that the answer to (8.3) may be negative. For future reference, we are now writing

down the first main theorem in this context; the proof will be omitted.

With <|>: C" -» C" as above, let t = T,iz/zi be the exhaustion function on the

domain space C" and let the sublevel sets of t be denoted by B(s) = {z g C":

t(z) < s}. Let

wn =
v^r

X>, A dS„       0 = w?;/«!,

and for a g C", let

-T +

(« - 1)! 4(« - 1)77" |2n-2
CO,,

Furthermore, for each regular value a of the mapping <f>, let n(t, a) be the cardinality

of <t>~\a) n B(t). Finally let dc = fÄ(d" - d'). Then for each regular value a of <f>,

(8.4) fn(t,a)dt =  fdt (    <¡>*Q + S(r,a)
J0 J0      JB(i)

where S(r, a) = 4/B(r) <¡>*Xa A to0 - /3B(r) d'r A <b*Xa. (8.4) is the integrated form

of the first main theorem.

We now give the example of a domain with finite volume which is not strongly

measure hyperbolic. First we construct a special mapping.

Example 8.5. We exhibit a holomorphic map B2 -> C2 with Jacobian determinant

identically equal to 1 and with an image of arbitrarily small volume. Let Q be the

square of side-length equal to 2 around the origin in C, i.e., Q = {(x + \[~îy) g C:

|x| < 1 and |_y| < 1}. Fix a positive integer « and define <b: Q X Q —> C2 by

1
$(z,w)

277«
exp(27T«z), wexp(-27T«z)

The Jacobian determinant J<¡> of <j> is identically 1. Moreover, <j> is a covering map

onto its image with fundamental domain R = {(x + 4-ïy) g C: |x| < 1, 0 < j> <

1/«} X Q. Since volume R = 8/« and J<¡> = 1, we see that volume <¡>(Q X Q) = 8/«,

which is small if « is large. Restricting this <f> to B2 then gives the desired map.

Example 8.6. We exhibit a domain of finite volume in C2 which fails to be

strongly measure hyperbolic. Using notation as in Example 8.5, let <t>„: Q X Q -> C2

be defined by

1
<t>„(z,w)

2t7«5/2
exp(27T«3z), wexp(-27T«3z)

Then J$n = «1/2, and <i>„ is a covering map onto its image with fundamental domain

Rn = {(x + i^îy) e C: \x\ < 1, 0 < y < l/«3} X Q. Since volume Rn = 8/«3, we

see that volume <pn(Q X Q) = 8/«2.
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Now define a domain ß c C2 by

00

ß=  Ui(Oxß).
n=l

Hence volume ß < Y.™_x8/n2 < oo. Moreover, if C* = C - {0} as usual, then

C* X {0} c ß. We claim: the intrinsic volume form t of ß vanishes identically on

C* x {0}.

To prove the claim, let (f, 0) g ß, where f # 0. We must show x(f, 0) = 0. Note

that ß is circular in the sense that (a, ii)e!l=» (ei6a, eiBb) G ß for 6 G [0,277].

Hence it suffices to take f above to be real and positive, i.e., we need only prove

j(r, 0) = 0 for any r g (0, oo). Take «0 to be a sufficiently large integer such that for

all n > «0,

(8.7) -^108(277«^) < 1277« z

Denote by t the left side of (8.7). Then 0 < t < 1/2 and the ball of radius 1/2

around (t, 0) is contained in Q X Q. Let B2(l/2) be the ball of radius 1/2 in C2 and

let )//„: B2(l/2) -> ß be defined by i//„(z, w) = <j>a(t + z, w). Note that ^„(0,0) =

(r,0)and

<8-8> ^¿í'rM)-¿a¿('.*

where (f, tj) are the coordinates on ß c C2. Since (8.8) holds for all « > «0,

F2a((r,0); 3/3f A 3/3tj) = 0.    Q.E.D.

Remarks. (1) The method used in Example 6.4 can be used to show that in fact ß

is hyperbolic at each point outside C* X {0}. Hence this is an almost hyperbolic

domain which is not strongly measure hyperbolic. Since we shall present another

such example in the next section, we omit the details. (2) If a domain ß has finite

(euclidean) volume, then no complex Lie group can act on it effectively. If fact

suppose C acts on ß c C". Then there exists a small (« — l)-ball B c ß transversal

to the orbits of C. There is then a nondegenerate holomorphic map <b: C X B -» ß

such that

<f>(a, (zx,...,zn_x)) = a •(zl,...,z„)

for each a g C. Note that <i> has degree 1, so that if 0„ is the usual volume form on ß

and J<$> denotes the Jacobian determinant of <i>, then

/ ©„ = /     <i>*0„=/     |/*|2 = /(/V*|2) = oo,
J<t>(CxB) JCxB JCXB JB\JC I

where the last equality is because \J<t>\2 is plurisubharmonic and so /c|/^>|2 >

\J<b(0)\2 ■ (volume C) = oo. (We may assume J^>(0) ¥= 0 or else use a translation to

achieve this.) Thus certainly volume ß = oo, a contradiction.

9. Further examples. The main purpose of this section is to compute the intrinsic

volume forms of several domains, in particular unbounded domains.
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9.1. An example of a domain ß whose intrinsic volume form t is everywhere positive

but ß is not strongly measure hyperbolic. Let ß = {(z,w) g C2: |zw| < 1, |z| < 1}.

We begin by showing that the intrinsic volume form t is positive everywhere. Let

ß* c ß be defined by ß* = ß - {z = 0}. We now show t > 0 on ß*. Indeed the

map \p: ß —> D X D given by \p(z, w) = (z, zw) has nonsingular Jacobian every-

where in ß*. Hence if tx is the intrinsic volume form of D X D, the fact that

i/>*Tj < t implies t > 0 on ß*.

We next prove that t > 0 on {z = 0}. Pick any w0 g C. To show t(0, w0) > 0, let

/: B2 -* ß be a holomorphic map such that /(0,0) = (0, w0). We shall prove that if

(f, tj) are coordinates on B2, then

^(¿A^(0,0) < (2 + 2K|).(9.1)

This is equivalent to showing ||t(0, w0)|| ^ 1^-1 /2|2(2 + 2|>v0|)"2. To prove (9.1), we

may assume, after applying a rotation to B2 if necessary, that

(9.2) ¿/(^(0,0))=a¿(0,w0),    rf/|A(0jo))=A¿(0,Wo)-rc^(0,Wo),

where a, b, c g C. Hence (9.1) is equivalent to

(9.3) \ac\ < (2 + 2K|).

Let/ = (fx, f2). The bidisc A2(l/ y/2 ) of radius 1/ \/2 is contained in B2. Now (9.2)

implies that we have the following power series expansions inside A2(l/ \¡2):

/i(f, 7,) = aÇ + br, + A¿2 + A2V2 + A3Sv + 0(3),

f2(S,v) = w0 + cn+ 0(2),

where 0(2) and 0(3) denote terms of order 2 and 3 respectively. Let F(l/ \/2 ) be

the disc of radius 1/ -fl in C. Define h: D(l/ y/2) -» C by h(t) = /^f, t) ■ f2(t, t).

Then

«(0 = wo(a + b)' + [c(a + b) + w0(Ax + A2 + A3)]t2 + 0(3).

Since |«| < 1 (because |zw| < 1 in ß), the Cauchy estimates imply that

|c(a + b) + w0(Ax + A2 + A3)\ < 2,

which in turn implies that

(9.4) \c(a + b)\^2 + \w0(Ax+A2 + A3)\.

Now l/jl < 1 (because |z| < 1 in ß); hence the Cauchy estimates applied to fx(t, t)

= (a + b)t + (Ax + A2 + A3)t2 + ■ ■ ■ imply that \AX + A2 + A3\ < 2. Hence from

(9.4), we obtain

(9.5) \c(a + b)\<2 + 2\Wo\.

Similarly define a holomorphic function g: F(l/ J2) -> C by

g(t)=fx(t,-t)f2(t,-t).

The same reasoning then yields |c(a - b)\ < 2 + 2|w0|. Together with (9.5), we

obtain

|ca| = {\c(a + b) + c(a - b)\ < 2 + 2|w0|,

which is (9.3). Thus t > 0 on ß.
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To show that ß is not strongly measure hyperbolic, it suffices to show that for

p g ß - {z = 0}, t(/>)-> 0 asp -» {z = 0}. To this end, let ß* = ß - {z = 0} as

before. The map $: ß* -» D* X D given by <p(z, w) = (z, zw) is biholomorphic

Hence if t2 and t3 are respectively the intrinsic volume forms of ß* and D* X D,

then cf>*T3 = t2. By (3.4),

,2 dSAd$
A

dr¡ A di)

2  ' 4(|s1log|fir    (l - \n\2Y

where (f, tj) are the coordinates in D* X D. Hence

(9.6)
i/-F \2 dz A dz

A
dw A dw

{z = 0}, then

4(log|z|)z      (1 - |zw|2)z

In particular, if p g ß*, then r2(p) -» 0 asp -» (z = 0}.

Now since ß* c ß, t < t2 on ß*. Hence if p G ß*  and p

r(p)-*0.    Q.E.D.

Note that we can improve on the preceding example by requiring ß to have C°°

boundary: simply round off the "corners" of 3ß at {(z, w): \z\ = 1 = |w|}. Call this

domain ß'; note that we may require ß' c ß. Then a trivial modification of the

preceding argument, when applied to ß', shows that ß' has the same property.

9.2. An example of a domain ß which is almost hyperbolic but whose intrinsic volume

form vanishes on a hypersurface. Let ß = {(z, w) g C2: |z| < 1, |z2w| < 1}. The map

<f>: ß -» D X D such that <j>(z, w) = (z, z2w) has nonsingular differential on ß* = ß

- {z = 0}. Hence Ex > <p*ExDxD > 0 on ß*, proving that ß is hyperbolic at each

point of ß*. We show next that the intrinsic volume form t of ß vanishes on

{z = 0}. Indeed, given (0, w0) g ß, let m be any integer such that m > \w0\ and let

$m: B2 -> ß be defined by

<>m(f-l) = (S/2m, m2T) + w0).

We must first show that <pm is well defined, i.e., that <j>m(B2) c £2. Clearly \{¡/2m\ < 1.

Furthermore,

a "2 i
^4

m
< 1,

d<t>„

Hence

»Î(0,0)

j (m2i) + w0)

,) c ß. No\

(0,w0)    and   ¿tj^(0,0)j = m2^(0,w0).

2«i

because m > \w0\. Hence <¡>m(B2) c ß. Now <|>m(0,0) = (0, w0). Moreover,

_L_3_
2m dz

\^A^0)) = ÍA^{0^
so that E2((0,w0); 3/3f A d/dy) < (2/m)2. Since m is arbitrary, t vanishes at

(0,w0).    Q.E.D.

Again, by rounding off the "corners" of 3ß at {(z, w): \z\ = \w\ = 1}, we arrive at

the same phenomenon with the additional property that ß has C°° boundary.
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Remark. The techniques used in the two preceding examples can be used to

establish the following comprehensive proposition; the details are omitted.

Proposition 9.7. For any positive numbers s and t, define ßs, = {(z, w) g C2:

|z| < 1, |z|JM' < 1}. Then:

(i) If s > t, then Qs, is almost hyperbolic, but its intrinsic volume form vanishes on

{z = 0}.

(ii) If s < t, the intrinsic volume form of ßs is everywhere positive, but Qs, is not

strongly measure hyperbolic.

(hi) If s -* uandt^v, then 8(tts„ QUB) -» 0 (see (7.1)).

In particular, let s -* 1+. Then O(ßsl,ßu) -* 0. But observe that the intrinsic

volume form of tix x is everywhere positive whereas the intrinsic volume form of Qs x

vanishes on {z = 0} for all s > 1. Thus the intrinsic volume form exhibits the

"jumping phenomenon" under deformation. In general, the intrinsic volume form is

upper-semicontinuous under deformation of complex structure (cf. [R2]).

9.3 An example of a domain of holomorphy which is measure hyperbolic but whose

infinitesimal Royden-Kobayashi metric is degenerate on a set larger than a subvariety.

(We remark that the construction of this example is related to the construction of the

domains £lx and ß2 in [D], and that in the same paper a corresponding phenomenon

for the Kobayashi pseudometric has already been observed. The domains in [D] are

not known to be measure hyperbolic, however.)

On the disc F(l/2) of radius 1/2 in C consider the function

oo

<t>(z) = E «,-log|z - Zj\,
7-1

where e is a sequence of positive rational numbers such that E.e, < oo, and (z } is

a sequence of points in F(l/2) such that 0 g {z-} and Zj —> 0. Observe that tf> is a

negative subharmonic function which is -oo only at the z,'s and that the function

oo

4>(z,w) = Mexp<i>(z) = |w|n|z - Zj\*J
7 = 1

is plurisubharmonic (psh) on D(l/2) X C. (For the latter fact, observe that log ip is

clearly psh.) Let ß = {(z, w) G C2: |z| < 1/2, \p(z, w) < 1}. In ß there is a family of

lines £C= {(z, w) g ß: z = z for some/}. We claim that ß is hyperbolic at every

point of ß — JSP. The proof is similar to the proof used in Example 6.4 and so may

be omitted. Since ß - i? is open dense in ß, ß is measure hyperbolic. Moreover, the

Royden-Kobayashi infinitesimal metric clearly vanishes on every vector tangent to

£/?. Since £C is not a subvariety of ß (z}■ -> 0 and (0,0) g 3P ), we are done.

9.4. The intrinsic volume form of Bn — {0}. Let t' be the intrinsic volume form of

B'n = Bn — {0} and let I'n be the intrinsic measure on B,' defined by t' (see (2.12)). If

U is any small neighbourhood of 0 in B„, it has already been pointed out in the

proof of Theorem 5.8 that I'„(U — {0}) < oo; this may be interpreted as an upper

bound on t'. We now observe that a lower bound on r' has already been obtained by

Eisenman [P]. Our interest in this lower bound stems partly from an open problem
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posed by Kobayashi. In Problem B.4 on p. 404 of [K6], Kobayashi asked if the

intrinsic volume form t of Bn, when restricted to B'n, in fact equals t'. It follows

immediately from Eisenman's result in [P] that the answer is no. (Contrast this

situation with the result of [Cl].) Proposition 3.4 of [P] states that if /: M -> TV is a

holomorphic mapping between hyperbolic manifolds of dimension « and if / is

intrinsic-measure preserving in the sense that I™(W) = I^(f(W)) for all Borel sets

W in M, then/must be biholomorphie In view of this theorem, if indeed t|b, = -',

then the natural injection B'n c Bn would be biholomorphie, a contradiction.

However, Eisenman's proof of Proposition 3.4 in [P] gives a quantitative compari-

son between r' and t|s,. In fact, inequality (3.8) on p. 11 of [P] implies that the

inequality

._. ,,  ,      const   .   ,
(9-8) t'(z)>—t(z)

holds for all z near 0 and z + 0 (there is a misprint there: "ku(p)n should read

"k'u(p)" instead).

We now give a mild generalization of (9.8). In the polydisc A„, let S be the

following codimension k complete intersection: {(zx,... ,zn) G A„: zx= ■ ■ ■ = zk =

0}. Let A0 = A„ - 5 and let Ek be the intrinsic A:th Eisenman norm of A0. Then we

claim

,n ^\ r-oi       3 9   i  \\      const
(9.9) El\z; —A  ... a-—(r)   >

9zi dzk      I "    \\z\\

for all z near S, z e. A0. Indeed, we can write A0 = A*k X An^k, where A*k =

{(zx,...,zk,0,...,0): \zx\<l for i = 1,. .. ,k} - {(0,... ,0)} and A„_k =

{(0,...,0, zk + x,.. .,zn): |z,| < 1  for /' = k + 1,...,«}. The natural projection 77:

A0 -» A*k gives

3 3   \       r-J    /   ^      3 3-A...A—J>E^(z

where F* is the intrinsic k th norm of A*. By (9.8),

z;3^A ■••A3z;J>^r(^;^1A ■•-A a^l'

EtU(z); 9^A •••
3   \       const       const

3^r ii*(z)n

so that (9.9) follows.

It follows from (9.9) that ;/ M is an n-dimensional complex manifold and V is a

subvariety of codimension k, then EkM\M_ v # EkM~ v. It is possible that an elabora-

tion of the argument of [Cl] would lead to the complementary assertion that, with

M, V as above, then E¡M\M_ v = E,M~ v for / = 1,...,k - 1.

9.5. All strictly pseudoconvex domains are hyperbolic. The purpose of this section is

to make use of the following theorem of Sibony in [S2] to produce a large class of

almost hyperbolic manifolds.

Theorem 9.10 [S2]. 7/ß is a domain in C" on which is defined a negative continuous

psh function \p, then ß is hyperbolic at each point of every open subset on which \p is

strictly psh.
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Sibony has proved even sharper statements than this in [S2] (see also the

discussion after Problem 2 on p. 141 of [W5]), but Theorem 9.10 is all we need here.

A simple proof of this theorem due to Diederich is reproduced in [W5, pp. 141-142].

As an immediate corollary, we obtain

Corollary 9.11. Let ^ be a C2 psh function on C" and for each c g R, let

ßc = {z G C": ¡l>(z) < c}. Then ßt. is hyperbolic at every point where \p is strictly psh.

We can use this corollary to construct a new class of unbounded measure

hyperbolic domains distinct from all those we have encountered so far.

Example 9.12. Let <¡>(z) be a C00 subharmonic function of the variable z. The

function \¡i on C" defined by \p(z, w) = Iwl2*?*^' is C00 psh, and is strictly psh

outside the set F = {(z,w): w = 0 or A$(z) = 0}; this is an easy computation. Now

suppose

,       . the domain of harmonicity of <¡> (i.e. the set of z G C such that

A<i>(z) = 0) is a discrete point set.

Then L is a hypersurface in C2, F being the union of the z-axis together with at

most a countable collection of complex lines in C2 each parallel to the vv-axis and

passing through a point of the form (z,0), where A$(z) = 0. It follows that each

sublevel set ßt. = {\p < 0} is hyperbolic in ßc - F by Corollary 9.11, and is almost

hyperbolic if (9.13) is satisfied because ß( n F is a subvariety of ß£..

More generally, assume instead

(9.14) the domain of harmonicity of <b is a set of measure zero in C.

Since ß( is still hyperbolic at each point of ß(. — L, ß(. is measure hyperbolic: for

in this case, ßt. n F is a set of measure zero in ßc (cf. Proposition 2.14 of [P]). This

remark leads to an easy construction of measure hyperbolic manifolds which are

hyperbolic at almost all points but are not necessarily almost hyperbolic: take any

C°° nonnegative function p on C such that the zero set of p is nondiscrete but is of

measure zero (e.g. a curve in C), let <b satisfy A<|> = p, and let ßc be constructed using

this <i>. This ßc is the required measure hyperbolic manifold; it may not be almost

hyperbolic in general because ß(. is a priori only hyperbolic at each point of ßc. — F,

and L n Qc is a real hypersurface in ß( (if we take the zero set of p to be a curve in

C).

The following proposition sharpens Corollary 9.11 in a specific situation.

Proposition 9.15. Let ß be a (possibly unbounded) pseudoconvex domain in C"

such that 3ß is Ccc and is strictly pseudoconvex except on a set S of measure zero in

3ß. Then ß is measure hyperbolic. If S = 0, then ß is hyperbolic.

Proof. Let 8 be the distance from 3ß, i.e., for each z g ß, 8(z) = dist(z, 3ß),

with euclidean distance understood. By assertion (P9) on p. 72 of [W4], e~s is psh on

ß, and is strictly psh on ß — 2, where 2 is the union of all the lines orthogonal to

3ß and passing through a point of S1 (the latter assertion follows immediately from

the proof of (P9) in [W4]). Now 2 is a set of measure zero in C" because S is a set of

measure zero in 3ß. By Corollary 9.11, ß is hyperbolic at each point of ß — 2 and
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hence measure hyperbolic (again compare Proposition 2.14 of [P]). If 5 = 0, then

2=0, and ß is hyperbolic.    Q.E.D.

The last assertion of Proposition 9.15, that any C00 strictly pseudoconvex (bounded

or unbounded) domain is hyperbolic, is of course an easy consequence of Sibony's

theorem (Theorem 9.10 above). It is quite possible that such domains are actually

complete hyperbolic (note that a theorem in [S2] already implies that they are taut in

the sense of [Wl]). More than this, it is an obvious question as to whether the

boundary estimates of the first author's work [Gl] can be extended to this case.
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