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LIPSCHITZIAN MAPPINGS AND TOTAL MEAN CURVATURE

OF POLYHEDRAL SURFACES. I

BY

RALPH ALEXANDER

Abstract. For a smooth closed surface C in E3 the classical total mean curvature is

defined by M(C) = ¿/(«i + k2) do(p), where kx, k2 are the principal curvatures at

p on C. If C is a polyhedral surface, there is a well known discrete version given by

M(C) = IE/,(w - a,), where 1¡ represents edge length and a, the corresponding

dihedral angle along the edge. In this article formulas involving differentials of total

mean curvature (closely related to the differential formula of L. Schlàfli) are applied

to several questions concerning Lipschitizian mappings of polyhedral surfaces.

For example, the simplest formula T.I, da, = 0 may be used to show that the

remarkable flexible polyhedral spheres of R. Connelly must flex with constant total

mean curvature. Related differential formulas are instrumental in showing that if/:

E2 -> E2 is a distance-increasing function and KciE2, then Per(convK~)<

Per(conv/[A:]).

This article (part I) is mainly concerned with problems in E". In the sequel (part

II) related questions in S" and H", as well as E", will be considered.

1. Introduction. Suppose there are two pointsets {p0, px,. . ■ ,p„} and

{q0, qx,... ,qn} in a Euclidean space Em which are subject to the Lipschitz condition

(1) \q¡ - qj\ < c\p¡ - pj\    for each pair/,;.

There are natural questions of how various geometric functions of the two pointsets

are related, if at all. For example, if m > 1, the condition (1) will imply no general

relation between the w-volumes of conví^} and conv{/>,}, the respective convex

covers in Em. The set diameter, Dia{/?,-} = max,- ■!/>,■ —/>-|, provides a simple

example of a positively related function in that Diai^} < cDia{ p¡}.

However, there are positive results which are less obvious. If the circumradius of a

pointset is defined to be the radius of the least disk which contains the pointset, a

theorem of Kirszbraun [9] implies that the circumradii of the two pointsets satisfy

R < cR In fact the author has given the following characterization of the

circumradius [1]: Let R be the circumradius of the Euclidean pointset

{p0, px,...,pn}. Then 2R2 equals the maximum of the quadratic form

2w \Pi - Pj\  XiXj
ii

subject to the condition that (x0, xx,... ,xn) is a probability vector, i.e., xi > 0 and

£,*,. = 1.

Received by the editors August 2, 1983 and, in revised form. May 21, 1984.

1980 Mathematics Subject Classification. Primary 52A22; Secondary 53C65.

©1985 American Mathematical Society

0002-9947/85 $1.00 + $.25 per page

661



662 RALPH ALEXANDER

It might be noted that the set diameter and circumstances belong to that class of

nonnegative geometric functions / for which (i) f(K) = f(K') if K is congruent to

K', (ii) f(aK) = \a\f(K), and (hi) / is continuous with respect to the Hausdorff

metric on compact subsets. Many interesting problems have been raised concerning

the relationship of the Lipschitz condition (1) to various /. Several questions in

addition to those treated in the main body will be mentioned at the end of the

article.

An important additional property shared by the set diameter and circumradius is

(iv) f(conyK) = f(K). So unless it is stated otherwise, K will always denote a

convex, compact subset of Euclidean space.

The present article treats those integral mean curvature functions M, or equiva-

lent^ Quermassintegrale, which satisfy in particular condition (ii) above. Any

integral mean curvature function satisfies (i) and (hi), at least when suitably

generalized in the manner of Minkowski (as in formula (4) below).

In E\ M(K) is the length of K; in E2, M(K) is Per(K), the perimeter of K. For a

smooth body in E3 the total mean curvature is given by the classical formula

(2) M(K)=f   UKx + K2)do(p)

where the k, are the principal curvatures at the surface point/?,.

A formula for the integral mean curvature for a smooth body in E m can be given

conveniently in terms of an integral over the spherical image:

(3) M(K) = /     (m - l)-1^«) + • • ■ + ÄB.,(«)) da(u)

where R¡ = k,"1, and Sm~l denotes the unit (m — l)-sphere. It is clear from (3) that

M satisfies condition (ii). (See Firey [7] for a solution of the long-standing problem

of characterizing those functions /: S" -» E1 which can be represented as /(«) =

Rx(u) + • ■ • + Rn_x(u) for some convex body AT in E".)

A major advance in integral geometry was achieved by Minkowski when he

obtained the famous formula

(4) M(K) = f     H(u)da(u)
•'s1"'1

where H(u) = max{(x,u): x^K} is the usual support function for K. An

important feature of the formula (4) is that it defines the function M for any

bounded convex set in E m. Also, it is easily seen from (4) that M is continuous with

respect to the Blaschke-Hausdorff metric on compact convex subsets of E m.

There exists yet another fruitful interpretation of the number M(K). There is a

motion-invariant measure on the oriented hyperplanes of Em (a Crofton measure).

The space of oriented planes may be coordinatized by the points on the cylinder

Sm~l X R. The point (u, r), r > 0, is associated with the plane of distance r from 0

and positive outer normal u; (-u, -r) is associated with the plane if the inner

normal is positive. The Tj-measure of a planeset is the usual cylindrical measure of

the coordinate pointset. The following formula can be deduced rather easily from

(4):

(5) M(K)= l2t){h:h OK* 0}.
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One goal of the present article is to prove the following result.

Theorem 1. Let the pointsets { p0, px,... ,p„ } and { q0, qx,..., q„} in Em satisfy the

Lipschitz condition (1). Then

(6) A/(conv{ qt} ) < cM(conv{ />,}).

In the sequel (Part II) we shall give an integral geometric proof of Schlafli's

differential formula (which is briefly stated in §9), and give yet another proof of

Theorem 1.

Since in E2, M(K) = Per(Ä^), we wish to state a corollary theorem which is of

independent interest. In fact it answers the original question which motivated the

present work.

Theorem 2. Let the planar pointsets { p0, px,... ,p„} and {q0, qx,... ,qn} satisfy the

Lipschitz condition (1). Then

(7) Per(conv{^,}) < cPer(conv{/>,}).

A basic result on a differential invariant involving the edges and dual-dihedral

angles of a deformed simplex (Theorem 4) leads at once to Theorem 1. Before

proceeding, we mention at least one unexpected by-product.

Recently, Connelly [6] has made the remarkable discovery of embedded poly-

hedral 2-spheres in E3 which are not rigid. Such surfaces, which are the only known

examples of embedded closed polyhedral surfaces that flex, are termed Connelly

spheres. The question of whether or not a Connelly sphere must flex with constant

volume has been raised (the bellows conjecture). Since the derivative formulas add

properly under simplicial decomposition in E3, we can at least obtain the following

theorem.

Theorem 3. A Connelly sphere flexes with constant total mean curvature.

In addition to the proof using the principal method of this paper, two other

methods of proof for Theorem 3 are given in §9. In fact, if the reader wishes a direct

and elementary proof of Theorem 3, this may be obtained by first reading §3, and

then going to §9 for a direct proof of equation (11) valid for dimension n = 3. The

application to Connelly spheres is explained in a self-contained manner in §7.

In this paper the invariant measure rj on the hyperplanes of E" plays an important

role, and the arguments involving tj are essentially complete and self-contained.

However, much of what is done can be generalized to r\r, the invariant measure on

the r-flats of E". Even though a thorough discussion of t]r is not included (complete

information may be found in Santaló's book [11]), an extended version of the basic

differential invariant is outlined in §8.

The principal method of the paper exploits the fact that the first derivative of the

angular measure of a varying angle may be recovered from orthogonal projections

(Theorem 5). Apologies are offered in advance for the somewhat involved proof; we

were not able to find results of this type in the literature. It is hoped that our general

approach in this article will give still more information on questions of rigidity and

how this concept is related to mean curvature and perhaps to higher order curvatures

as well.
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2. Moving points in Euclidean space. Let { p0, px,... ,/>„} and {q0, qx,...,qn} be

pointsets in Em. For 0 < / < 1 we define p¡(t) in £2m by

(8) Pi(t) = (JT^tP„ftqi).

It is clear that p,(t) is a smooth (C00) path in E2m for 0 < t < 1, and that for each

pair i, j, |/>,(0 - Pj(t)\ is a monotone function in t.

Now suppose that m = n, and that the pointsets {/?,} and {q¡} are the respective

vertex sets of a pair of nondegenerate simplices; in addition assume that/?0 = q0 = 0.

Let [(/*,-(*), Pj(t))], 1 < /', / < n, denote the nX n Gramian matrix of inner

products. Note that

(9) [{PM, Pj(t))\ = (1 - t)\{Pi, Pj)\+ t[{q,,qj)].

The equation (9) shows that for 0 ^ t < 1, the matrix [( p,(t), p,(t))] is positive

definite since each of the two matrices on the right side of (9) is positive definite.

Hence the points {p¡(t)} are the vertices of a nondegenerate «-simplex in E2".

However, by choosing a smoothly changing reference frame, we may assume the

homotopy { p¡(t)} occurs in a fixed copy of E". We summarize these observations in

the following lemma.

Lemma 1. Let {pQ, px,... ,pn} and {q0, qx,...,qn} be the respective vertex sets of

two nondegenerate simplices in E". Then there is a piecewise smooth homotopy

{p0(t), px(t),...,p„(t)} in E" such that: (i) |/>,(0) - pj(0)\ = \p,,- pj[ and

I />,•(!) ~~ PjWI = \ai ~ Qj\ for eacn P°ir i) j\ (h) for each t, { p¡(t)} is the vertex set of

a nondegenerate simplex; (hi) for each pair i, j, \p¡(t) — p¡(t)\ is monotone in t.

The homotopy (8) seems to be a very effective choice for the type of problem

considered in this article. For example, if the pointsets {p¡} and ( q¡} both lie on a

sphere of radius R, so does the pointset {p¡(t)}; and hence the homotopy may be

applied to metric inequalities on the sphere. A suitable modification also applies to

hyperbolic space. A strengthened version of the lemma, where for any /, p¡(t) is

moving for at most one value of /', can be proved via a compactness argument. This

refinement is useful for certain problems, but is unnecessary for the present work.

3. The total mean curvature of a simplex. Before proceeding, it is necessary to

introduce notation. If {p0, />,,... ,p„} is the vertex set of a nondegenerate simplex K

in E", let e, denote the segment joining p, and p¡, and let /, denote the length of e¡j.

Suppose that h0 is a hyperplane, orthogonal to etj, which cuts the interior of e(J at

a point q. Now h0 n K is a convex (n — l)-polytope which possesses a certain

discrete Gaussian curvature ßu in h0 at the vertex q. The number ßtj, which does not

depend on the choice of h0, will be called the curvature of the edge etj.

The following formula for M(K) is known [11, Chapter 13]:

(10) M(K) = cXßu'u>
ii

where c„ is a dimensional constant. There are various ways to prove (10), and at least

one method will appear later in this article.
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Next, suppose that K(t), a < t < b, is a collection of nondegenerate simplices in

E" determined by a smoothly varying vertex set {p0(t), px(t),.. .,pn(t)}. Such a

collection will be called smooth. The homotopy discussed in §2 provides a useful

example of a smooth collection of simplices.

It is now possible to state a theorem on the derivative of total mean curvature. A

major portion of this article is devoted to its proof. (See §8 for an extended version.)

Theorem 4. Let l¡j(t) and ß<j(t) be the associated edge length and edge curvature

function for a smooth collection K(t) of simplices in E". Then

(n) zZiiJ(t)d/dtßu(t) = o,
ii

and hence

(12) d/dtM(K(t)) = cXßij(t) d/dtl,j(t).
ij

Throughout the article, the smoothness of j8,- -(r) and certain related angle mea-

sures is assumed without proof. For general information on the structure of convex

polyhedra, see the book [8] of Grünbaum.

4. A dynamic formula in integral geometry. The possibility of using integral

geometry to study derivatives (or differentials) of geometric functions such as M

appears to have received little attention. Therefore it seems necessary to develop

from first principles several ideas to be used later.

In the classical development of integral geometry, fundamental notions such as

Quermassintegrale, kinematic formula, etc., involve integrals of bounded functions;

and hence the standard theorems of integration may be directly applied. This luxury

does not exist in the type of integral formula discussed in this section. There seem to

be many interesting problems in the general area, but we focus our attention and

ignore many obvious questions of generalization.

An angle A is defined to be a closed, convex, polyhedral cone in E". If A is

contained in a /c-plane, A is called a k-angle. The k-measure aA of a /c-angle is

defined to be a{k~lA', where A' = A n S"~\ and a{k~l) is (k - l)-measure on the

unit sphere S"~\ which is understood to be centered at the vertex of A. The facets

of an angle will be termed the sides of the angle.

The angle A is determined by a vertex v and unit vectors ux, u2,...,ur which direct

the extreme rays of A. We wish to define a smooth family of angles A(t), a < t < b,

as the family given by the smooth vector functions v(t), ux(t),...,ur(t). It will be

understood that in the interval a < t < b, the unit vector functions {«,(<)} direct

the exact set of extreme rays.

For the purposes of this paper it may be assumed that k = n — 1 and that

r — n — 1, the least number for which aA could be positive.

Let A(t) be a smooth collection of (n — l)-angles; and for the arbitrary point q in

E", let H(q) denote the set of oriented planes which pass through q. There is an

obvious invariant measure /x on H(q), obtained by identifying each oriented plane h

via its positive unit normal n(h) at q with a point on5"_1. Put fi(H(q)) = on_x, the
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usual measure of S"~l, for normalization. Let A(h, t) be the (n - l)-angle obtained

by projecting A(t) orthogonally into h.

The remainder of the section is devoted to the proof of the following theorem.

Throughout the paper cn, dn, etc., will denote general dimensional constants depend-

ing only on n. The same symbols might denote other such constants later.

Theorem 5. IfA(t), a < t < b, is a smooth collection of(n — l)-angles in E", then

(14) d/dtaA(t) = cA     d/dtaA(h,t)d¡x(h).
JH(q)

Before beginning the proof, some remarks are in order. The difficulty revolves

about the fact that d/dtaA(h, t) generally possesses unbounded singularities where

n(h) is parallel to an extreme ray of A(t). Consideration of the simplest situation of

a smooth collection of 2-angles of E3 makes this clear. While formula (14) seems

natural, there seems to be no simple justification. In fact it will be shown in §10 that

no corresponding formula exists for d2/dt2aA(t).

Standard ideas of invariant measures in integral geometry show that for each /,

(15) aA(t) = cA     aA(h,t)dn(h).
JH(q)

It follows at once from (15) that

(16) d/dtaA(t) = limit cA     At~1[aA(h, t + At) - aA(h, t)] dn(t).
Ai-0     JH(q)

Let { A,i} be a sequence of positive numbers such that a < t + A¡t < b for each i,

and L, A,i converges. If it is verified that (16) implies (14) as Ai tends to zero over

such a sequence, then the general validity of (14) follows at once. This is because any

sequence { Ajt} of nonzero numbers tending to zero contains a subsequence {A,<}

such that all terms are of the same sign and E, Ajt converges.

Before proceeding further, the translation invariance in formula (15) allows

several simplifying assumptions which cause no loss of generality. First, since the

vertex velocity vector d/dt v(t) makes no contribution to the integral in (14), it may

be assumed that v(t) is constant. Second, since the location of q does not influence

(14), (15), or (16), it may be assumed that v = q.

Also, it will be understood that any sphere mentioned in the remainder of this

section will be centered at q. For convenience, if B is a subset of E", let B' denote

B n S"-\

The Lebesgue dominated convergence theorem will be used to show that the limit

may be taken inside the integral in (16), and thereby establish (14). In order to

accomplish this it seems necessary to obtain a tractible bound for

\A¡aA(h, 0| = \aA(h, t + A,i) - aA(h, t)\.

The following lemma provides a suitable estimate.

Lemma 2. Let nx, n2,...,ns be the normals to the sides of a k-angle A in Ek.

Suppose the angle is perturbed. Then
s

(17) \AaA\^dkY. |Ah,|.
7=1
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Proof. The lemma is easily seen to be true when k = 2 (and s = 2, necessarily).

The general inequality (17) will be established via a covering argument. We may

assume that the vertex remains fixed.

Let hx, h2,...,hsbe the (k — l)-planes which determine the sides of A, and let A

be the result of perturbation. Note that for each/, hj n Sk~1 is contained in a slab

W: of width 2|A«7| centered by h . Thus

s

aÄ^ aA + £ o^-^W/;
7 = 1

and since

o(k-l)W/<, 2TTOk_2\Ajn\,

it follows that

s

aA —aA < dk^ |A-w|.

7 = 1

The reverse inequality is obtained by merely reversing the roles of A and A while

noting that |—A« -| = |A« -|. This proves the lemma.

It would be improper to employ, as one could easily do, more precise results such

as Schläfh's formula (equation (41) in §9) in the proof of the lemma because this

would invalidate the application of Theorem 5 to such formulas.

The lemma allows \AaA(h, 01 to be estimated by means of a careful examination

of \ An j(h, t)\,j = 1,2,...,5. To this end letS""1 lie in £", and/zbean(« - l)-plane

through q. If p, p # ±n(h), lies on 5"_1, the polar projection mapping ®h onto the

(n — 2)-sphere h' is defined by letting ®h(p) be the unique point on h' where the

great circle arc from n(h) throughp (the meridian through/?) strikes h'.

If Sk, k < n - 2, is a great sphere of S"_1 not containing n(h), then Sh[Sk] is a

great /c-sphere lying in h'. Balancing this helpful property is the fact that @h is not an

isometry. The mapping ®h is of central importance in the study of formula (14)

because if A(t) is an (n — l)-angle, not containing ±n(h), then

(18) aA(h,t) = o^(®h[A'(t)]).

The pointsets A'(t) and A'(h, t) are spherical (n — 2)-polytopes. If A'(t) has í

sides, then so will A'(h, t). The sides of A'(t) will be determined by a collection

S"~3(t),...,S"~3(t) of (n - 3)-spheres which are mapped by ®h onto a collection

of (n - 3)-spheres S['~3(h, t),.. .,Ss"~3(h, t) lying in the (n - 2)-sphere h'. When

n = 3 it is understood that an (n - 3)-sphere is a pair of antipodal points on S2.

(For the purposes of this paper it may be assumed that s = n — 1.)

Next suppose that S"3(t), a < t < b, is a smooth collection of (n — 3)-spheres

on S"1-1, none of which contain n(h), i.e., a collection determined by a smooth path

on the Grassmann manifold of (n — 2)-planes through q. Put S"3(h, t) =

®„[S"-3(t)].

At each time t the motions of S"~3(t) and S"~3(h, t) determine two vector fields,

V(t) and V(h,t), respectively. The velocity at each point gives a vector and, taken

together, these vectors define V(t) and V(h,t), which are special cases of Jacobi
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vector fields. It is clear that these fields are tangent to S"-1. Also, it is convenient to

define the vector field N(h, t) by taking at each point of S"3(h,t) the component

of V(h, t) which is normal to S"~3(h, t).

If IF is a vector field, put \W\ = sup{|x|:x e W}. Choose M so that \V(t)\ < M

for a < t < b. Compactness shows that such an M exists since \V(t)\ is a continuous

function of /.

If p(h, t) is the mimimum distance between n(h) and points of S"~3(0, the

following vital inequality holds

(19) \V(/!,/)(< 2Mp(h,t)'

The inequality (19) may be validated by observing that if p is on S"~ (t), ®h(p)

may be calculated by first projecting p orthogonally to p* on h and then projecting

p* radially to ®h(p) on h'. If dp/dt is the velocity of p, it is seen that (d/dt)®h(p)

= 8~1(dp*/dt)0 where 8 = \q — p

which is normal to the vector q

> \p(h, t), the inequality (19) follows.

Because of the dimensional gap of 2 between (n - 1) and (n - 3) we have

M and (dp*/dt)0 is the component of dp*/dt

p*.  Since \(dp*/dt)0\ < \dp/dt\ < M and 8

(20) (     P(h,tyldn(h) < oo.
'H(q)

Since H(q) is compact the integrability of p1 is equivalent to local integrability.

That p"1 is locally integrable is established in essentially the same manner as showing

|x|_1 is locally integrable in E2.

The vector field N(h, t), introduced above, for the smooth famly S"~3(h, t) in the

(n — 2)-sphere h' has an especially pretty structure which is easy to visualize. The

field V(h, t) is certainly tangent to h', hence the field N(h, t) of components normal

to S"~3(h, t) is also. It is seen that there are antipodal points ±p on S"3(h, t)

such that \dp/dtN\ = \d(-p)/dtN\ = \N(h, t)\, while on the equatorial (n - 4)-sphere

for ±p on S"~3(h, t) we have dp/dtN = 0; here, xN is the TV-component of x.

Next, let n(h, t) be the positive pole to S"3(h, t) on the (n — 2)-sphere h'.

Observe that ±d/dt n(h, t) = ±(dp/dt)N so that

(21) \N(h,t)\ = -rn(h, t)dt   v   '  '
^2Mp(h,t)~

The inequality (21) uses (19) and the obvious fact that \N(h, t)\ ^ \V(h, t)\. While

(21) shows that \(d/dt)n(h, t)\is ¡u-integrable, still more calculation is necessary.

If a < t + At < b, then S"3(t + At) is contained in a tubular neighborhood^fof

radius M\At\ about S""3(0; or equivalently, the Hausdorff distance between these

spheres will not exceed M|Ar|.

Define F¡(h) ~ 2/A,i if n(h) is in the tubular neighborhood^, of radius 2M|A,(|

about S" 3(0, and if n(h) lies outside/, define F¡(h) = 4Mp(h, t)'1. Here the

sequence {A,-r} and the function p are as defined above.

Now

\n(h, t + A,0 - n(h, t)\ <  f ''\— n(h, t + y) dy < 2M f ''p(h, t + y)~ldy.
Jft dt Jn
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For any y satisfying 0 < y < A,/, each point of S"~3(h, t + y) is at least MA,?

distant from the boundary of,/, and, of course, interior to,/,. Thus, if n(h) lies

outside of,/,, p(h, t + y)> MA¡t. Also, it is always true that

\(h,t+yx)-p(h,t+y2)\ *iM\yx - y2\ < MA¡t.

We conclude that if 0 < y < A,í and n(h) lies outside #¡, then

p(h,t)<2p(h,t+y).

Thus in this situation

2MÍ%(/¡, í + y)'ldy < 4M /%(A, i)"** - 4MA,?p(A, /)"\
•'o A)

and hence A,/_1|«(A, í + A,í) - n(h, t)\ < 4Mp(h, t)'\

The previous work shows that for each i, the difference quotient A,i ^^«(A, t)\ is

dominated by F¡(h). Now

(22) f     F,(h) dii(h) <  f   ^-¿Ji(A) +  (     4Mp(A,i)-1rf/i(A).

The second integral is over those A for which «(A) lies in ,/'.

The rightmost integral in (22) is finite by (20). The area of,/' is less than

16M2a„_3A,/2; so the second integral in (22) is less than 32M2a„_3A,i.

Next set G(h) = max, F¡(h). It follows by summing (22) over i that

í     G(h)dli(h)^32M2an^3zZA,t + 4MÍ     p(h, t)~ld¡x(h).
JH(q) , JH(q)

Thus  G(h)  is integrable and  dominates  the  sequence of difference quotients

{Alr1|Al«(A,i)|}.

Finally, we consider the inequalities

(23) |A,a^l(A, 01 ^ ¿.-i t \*,*j(h, t)\ ^ dn_xA,t t Gj(h).
7=1 7=1

The first inequality of (23) is obtained by applying Lemma 2 to A(h, t). The second

inequality is obtained by constructing Gj(h) to dominate the sequence

{A,i_1|A,n (A, 01}» j = l,...,i, in the manner described above. The ju-integrable

function dn_xT.jGj allows the dominated convergence theorem to be applied to (16).

This completes the proof of Theorem 5.

5. A proof of Theorem 4. Let K(t), a < t < b, be a smooth family of nondegener-

ate simplices in E". If for a fixed /, the hyperplane A cuts the simplex K(t) so that no

vertex p¡(t) lies on A, we say that A properly cuts K(t). Here A D K(t) is an

(n — l)-polytope whose vertices lie in the relative interiors of various edges of K(t).

If q is such a vertex lying in the edge etj(t), we define y,7(A, 0 to be the discrete

Gaussian curvature in A at q for the (n — l)-polytope A n K(t).

If the plane A does not cut K(t) properly, define y,y(A, 0 = 0 for all i, j.

Otherwise, define y,7(A, 0 = 0 for all pairs i, j where A does not cut eu(t), and

define y,y(A, t) = yij(h,t)ifh cuts e¡¡(t).
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Since proper cutting is an open condition with respect to t, we have the following

formulas for a hyperplane A which properly cuts K(t);

(24) Hyu(h,t) = an_2,
v

(25) L|y„(A,0 = 0.
ii

We wish to integrate equations (24) and (25) term by term with respect to the

Crofton measure 17 on the hyperplanes of E". At present we are unable to perform

any meaningful integration of the corresponding equations for second and higher

derivatives of y,7(A, t).

Suppose A passes through a point q in the interior of e¡¡(t), and let A(h, t) be the

dual angle in A at q so that y,7(A, t) = aA(h, t). If A = A0 is orthogonal to e¡J(t),

then Y¡j(h0, t) = ßu(t), the edge curvature along eu(t) as defined in §3.

The key observation is that A(h, t) is the orthogonal projection of A(h0, t) onto A.

To see this, observe that an extreme ray in A (A 0, t) is also normal to a facet of K.

Therefore the projection of this ray onto A will be orthogonal to a side of the interior

angle at q in A of A n K. Thus the projected ray is an extreme ray of the dual angle

at q in A of A n K.

Proceeding to integrate equation (24), using (5), the following equations are

immediate since all functions are bounded;

2on_2M(K(t)) = /Iy,7(A, 0 d-q(h) = E/y,/A, 0 dn(h).
O ii

Next fix i, j and consider the equations

(26) [ y,J(h,t)di)(h)= ff y,7(A,O|cos0(A,OMA)¿7
JH[e,j(t)] JJeiJU)H(q)

= cBft7(0/,7(0-

The first equation in (26) is obtained by use of the fundamental differential

relation

(27) dr,(h)= \cos 6(h,t)\dn(h)dq,

where 0(h, t) is the angle between the unit normal n(h) and the segment eij(t), and

dq gives linear measure on e. At). The verification that the inner integral equals

cnßjj(t) is an exercise on invariant measures.

Summing (26) over all i, j yields the formula (10), whose derivation was promised

earlier.

Before integrating equation (25) we observe that if q is any point in E", equation

(25) is valid on any plane in H(q) which does not contain a vertex p¡(t); for if A does

not cut K(t), Y,7(A, t) = 0, and (d/dt)ytj(h, t) = 0 is a well-defined statement since

"not cutting" is an open property with respect to t. It follows at once that (25) is

valid a.e. (ju) and a.e. (tj).
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The integration of equation (25) with respect to tj clearly gives zero. However,

term-by-term integration leads to the problem of showing that

(28)    / ^-y,J(h,t)dv(h) = ff -£y,7(A,O|cos0(A,OMA)¿<7
JH[e¡j(t)]dt JJe¡j(t)H(q)dt

« C„hj(h) ¿Ay(0.

The first equality in (28) follows from the previously discussed differential relation

(27) provided we can prove integrability. We proceed to analyze the inner integral

over H(q),

f^yiJ(h,t)\cosO(h,t)\dß(h).

As in the proof of Theorem 5, let {Akt} be a sequence of positive numbers

tending to zero so that T,k At converges. The previous integral equals

, Y,,(A, t + At0 - Y,,(A, 0
( limit ^-^-{A-Ï,A      ;|cosg(A,01¿M(A)

.      , J   Ají-O &kt

(29)
Y,,(A,í +A^)-Y,,(A,0

--;;     y'A      7|cos^(A,0|^(A).= limit   /
A.r^O J »A1

In explaining equation (29) first note that there is logical meaning to both sides

since Y,y(A, 0 is weU defined independently of q due to the translation invariance of

the measures involved in defining angle projection onto A. This was discussed earlier

with regard to equations (14) and (15).

Since |cos0(A, 01 < 1. the function G' = dn_xLG, constructed (see (23)) in §4,

allows application of the dominated convergence theorem to interchange the order

of limit and integral. Thus (d/dt)y¡j(h, t)\cos6(h, t)\ is /i-integrable, and hence

(d/dt)y¡j(h, t) is rç-integrable according to the theorems of Fubini-Tonelli. More

precisely, the function G'(h) has an obvious extension to the entire set of planes

which cut the interior of e,7(0 (or any planeset, if need be), defined by G'(hx) =

G'(h2) for hx parallel to A2. Tonelli's theorem may be applied to the nonnegative

function G'(A)|cos B(h)\ to show that G'(A) is rj-integrable.

The right side of (29) may be expressed as

/■Y(A,; + AO|cosfl(A,? + AQ|-Y(A,0|cosfl(A,?)|i (h)
(30)     à'-°J A/

r\cos6(h,t +At)\-\cosO(h,t)\   ,, .  ,   ,   ,,.
- hmit / !-^-f—!-S-L^1Y(A, / + Ai) dix(h),

provided both limits exist. The subscripts i, j, k are omitted in (30). The first limit in

(30) may be evaluated as

tß(t + At)-ß(t)\ d_l
A/-.0   "I A/ / dt

Because p¡(t) and pj(t) are smooth functions of t, \A0\ < K\At\; and it follows

easily that the integrand of the second limit in (30) is bounded. The bounded
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convergence theorem implies that this limit is

(31) f      ^-\cosd(h,t)\-y(h,t)dti(h).

If Hq is identified with the sphere S"~l, it may be noted that the integrand of (31)

is antisymmetric with respect to the axis of 5"_1 parallel to e¡¡(t), and hence the

integral (31) is zero.

The preceding work shows that

jjty(h,t)\cos6(h,t)\d»(h) = c„^,

and a simple application of Fubini's theorem verifies the second equality of (28).

Summing over all i, j we obtain equation (11). The product rule for differentiation

gives equation (12). This completes the proof of Theorem 4.

6. Proofs of Theorem 1 and Theorem 2. For any convex body K in Em,

M(cK) = cM(K) for c > 0. It follows at once that Theorem 1 is true for all c if it is

true for c = 1. Also, if {p0, px,.. .,p„} and {q0,qx,...,qn} are pointsets in E"

which satisfy condition (1) for c = 1, then the points may be moved slightly so that

condition (1) remains satisfied, but the pointsets are the vertex sets of two nondegen-

erate simplices in E". If Theorem 1 holds in this nondegenerate case, then the

continuity of M with respect to the Blaschke-Hausdorff metric on compact convex

sets in E" shows that Theorem 1 is valid when m = n.

To deal with the nondegenerate case of n + 1 points in E ", use Lemma 1 to form

for 0 < í < 1 a smooth family of simplices K(t) with K(0) congruent to conv{g¿}

and K(l) congruent to conv{ /»,.}. By Theorem 3,

imm)-c.zßu(^).

and hence (d/dt)M(K(t)) > 0 because ¿8,7(0 > 0 and (d/dt)li}(t) > 0 for each

/', j. Thus M(conv{<?,}) < M(conv{ /?,}).

Finally, if M' and M are the total mean curvature functions on compact convex

sets in Em and E", there is a constant b(m, n) such that

(32) M'(K) = b(m,n)M(K)

for K c Em c E". The identity (32) is an easy consequence of formula (4); A(2,3) =

tt, for example. Since the case m ± n now follows at once, the proof of Theorem 1 is

complete.

As was indicated earlier, Theorem 2 is a diret consequence of Theorem 1. If, as

seems clear, Theorem 4 generalizes to smooth families of convex polyhedra in E",

then Theorem 2 becomes a corollary to the special case n = 4. This is because if the

( p¡} and { g,} are planar pointsets, the the homotopy (8) occurs entirely in E4. A

simple inductive argument allows one to assume that for all 0 < t < 1, p¡(t) is an

extreme point of conv{ p¡(t)}.
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7. Polyhedral surfaces in E3, Connelly spheres. Let K(t) be a smooth family of

simplices in E3. There is the simple relation /?,7(0 = tt - a,7(0 where a,7(0 is the

measure of the dihedral angle along e¡j(t). So in E3, equation (11) is equivalent to

(33) £Mo|«,,(0 = o.
ij

Next suppose that C is a closed polyhedral surface in E3, along with its interior,

which has been triangulated by nondegenerate 3-simplices Kx, K2,... ,Kr. Suppose

that the 0-skeleton vx, v2,. . . ,vs is smoothly deformed for 0 < t < 1 as

{vx(t),. ..,vs(t)}, so that for each t, Kx(t),.. -,Kr(t) is a triangulation by nondegen-

erate 3-simplices of a closed polyhedral surface with interior C(0; set C = C(0).

Equation (33) is valid in each simplex Kk(t) so that the sum over C(0 is zero.

However, if e,7(0 is an element of the 1-skeleton which, except possibly for v¡(t) or

Vj(t), lies in the interior of C(0> we have Y.k{aijk(t): etj e Kk(t)} = 2tt. Hence

Ékl¡j(d/dt)ajjk = 0. Therefore if we sum only those terms l¡j(d/dt)aijk where

e,¡(t) lies in 9C(0 the result is still zero.

If etJ lies on 3C, ßi} = tt - aij, where a/y measures the dihedral angle along e,,

interior to dC. Define M(3C) = E{/,7A/ e¡¡ c 3C}. (This agrees with the formula

given by Blaschke [3].)

The previous observations immediately give the following theorem.

Theorem 6. Let C(t) be a smoothly deformed polyhedral surface in E3 (as described

above). Then for e^ c 8C(0,

(34) £/,,(0 Jtßtj(t) = 0,
ij

and hence

(35) JtM(dC(t)) = EAyvO |/y(0-
>j

As we remarked in the Introduction, Connelly [6] has given ingenious construc-

tions of embedded polyhedral 2-spheres in E3 which flex, i.e., may be deformed in a

manner which causes no nontrivial deformation of any 2-face. It is easily seen that

there is no loss of generality in assuming that all 2-faces are triangles.

In a flex, (d/dt)lu(t) = 0 for all i, j in (35), hence (d/dt)M(dC) = 0 which
implies M(9C) is constant during the flex. We restate Theorem 6 in a slightly

expanded form, although Connelly spheres are the only known embedded closed

flexible polyhedral surfaces. No example of positive genus has been discovered.

Theorem 3'. Any flexible closed polyhedral surface in E3 must flex with constant

total mean curvature.

Also, it might be observed that for a flexible polyhedral surface, repeated

differentiation of (34) yields

(36) E/iy|kv = 0,       r>l.
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8. Extended versions of Theorem 4 and Theorem 5. Let Hr(q), 1 < r < n — 1, be

the manifold of oriented /--flats which pass through the point q in E". There is a

natural invariant measure /xr on Hr(q)- The structure of jtir as well as that of 7jr, the

invariant measure on the oriented r-flats of E", is discussed by Santaló in Chapter

12 of his book [11]. If 1 < k < r, let A(t) denote a smooth family of A-angles, and

let A(A, 0 denote the orthogonal projection of A(t) onto the r-plane h. The ideas

used to prove Theorem 5 may be applied without severe modification to yield the

following extension. Here a represents (k - l)-measure on Sk~x.

Theorem 5. d/dt aA(t) = c(n, r, k)fHÁq) d/dt aA(h, t) d\ir(h).

Next, if K = con\{p0,...,pn} is a simplex in E", let V-, j = {i0, ix,...,in_s},

denote the (n - s) volume of conv{ pt:i e/"}, and let /?■ denote the measure of the

dual angle (an i-angle) at V}. The extreme rays of ßi are the normals of the s

(n — 1)-faces of K whose intersection is V,. Clearly / ranges over (") indices.

Corresponding to the formula (10) there is the following formula for CS(K), the

T^-measure of the s-planes which cut K:

(37) Cs(K) = c(n,s)ZVjßj.
7

Theorem 4'. Let K(t) be a smooth family of simplices in E", and suppose

2 < s < « — 1. Then for those j with \j\ = n — s,

^ dßi
(38) E^)| = 0,

7

and hence

(39) jtCs(K(t)) = c(n,s)ZßJ(t)d£.

j

Proof (Sketch). Of those s-planes A which cut K(t), almost all (j\s) have the

property that A n K(t) is an s-polytope, all of whose vertices lie in the interiors of

various (n — s) faces of K(t). Equation (25), with/ replacing ij, may be integrated

with respect to tjj. At a given point q in the interior of Vj we have an analogue of the

differential (27): for í < n — s, dr¡s = c(n, s)\cos6x- ■ ■ ■ cos 0s\d[isdq where dq in-

tegrates to (n - s) measure on Vj and Icosi?! • • • cosOs\ is the Jacobian of the

orthogonal projection mapping from the s-plane A to V-. If s > n - s, the Jacobian

takes the form cos 6X ■ ■ ■ cos 8n_s. The angle 6X is the minimal angle between A and

K, etc. Equation (38) is validated by termwise integration of (25). A truly self-

contained discussion laying out all details, as in the previous proof for s = n — 1,

will be appropriate for 2 < s < n - 1 when there are more applications. It is hoped

that (39) will be useful in the study of higher order discrete integral mean curvature

as well as volume inequalities.

The case s = 2, which agrees with 5 = n — 1 for the important special case n = 3,

has several direct proofs. Two such proofs are given in §9, and thus our observations

about Connelly spheres will not depend on Theorem 5.
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9. Two direct proofs for the case ä = 2; Schlafli's differential formula. Let K(t) be

a smooth family of «-simplices in E", and let G(t) be an (n - 2)-face of K(t). Let

n(t) and n'(t) be the outward pointing unit normals to the (n - l)-faces of K(t),

F(t) and F'(t), that have G(0 as a common face. Let v(t) and v'(t) be vectors in the

hyperplanes of F(t) and F'(t), respectively, that are outernormal to G(t), and such

that

\v(t)\ = \v'(t)\=No\G(t).

-yolG(t)[d4)=(t,v(t)) + (d4^V)

Then

(40) ,^„y.,ydtl

where ß(t) is the angle between n(t) and «'(0- Equations (40) can be seen for

instance by writing n, n', v, v' in a coordinate system for a 2-plane which is

orthogonal to the (n - 2)-face G. (This is illustrated in Figure 1). Then

«(0 = cosf?(0«i + sin8(t)n2,

n'(t) = cosd(t)nx + sin8'(t)n2,

v(t) = VolG(O[sin0(O"i - cos8(t)n2],

v'(t) = VolG(0[-sino'(0"i + cos6'(t)n2].

Clearly ß(t) = 0'(t) - 8(t); formula (40) follows from a direct calculation.

Figure 1

For each F(t) let v¡(t), i = 0,...,n - 2, be the outward pointing normal to the

(n — 2)-faces of F(t), with length equal to the (n - 2)-volume of the corresponding

(n — 2)-face. The well-known observation of Minkowski that jn da = 0, where n is

the outer normal and the integral is over a closed surface, shows L"r02 v¡(t) = 0.

Summing over the various (n - l)-faces Fj gives T,jE¡(dnj/dt, vij(t)) = 0, and

substituting (40) for each pair of terms corresponding to the various (n - 2)-faces of

K(t) gives formula (38) for s = 2.

It may also be noted that this derivation shows that a natural smooth version of

(38) for 5 = 2 is j di\(dn/dt) da = 0, where n(t) is unit outer normal to a smooth

family of smooth closed hypersurfaces in E". This smooth identity is an immediate
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consequence of Stoke's theorem. Chapter 12 of Spivak's book [12] discusses the basic

results on the rigidity of smooth surfaces. Though a discussion would take us too far

off course, we remark that the Herglotz integral formula can be used to show that a

smooth analogue of Theorem 3 does hold. However, no example of an embedded

closed bendable smooth surface is known.

The second direct proof is not self-contained in that Schläfli's differential formula

is employed. However, in the sequel (Part II) this formula will be derived as an

application of the methods in the two articles. The book of Böhm and Hertel [4]

contains a detailed analytic derivation of the formula.

If K'(t) is a smooth family of simplices on S", then Schläfli's formula says that for

\j\ = n - 2

(41) 4-Vol K'(t)= —j-1-r
dt y '        2(n- 1)

Lv/(t)^ßJ(t)
dt'

Here ß' and V! on S" are analogous to ßj and Vj in E". If K'(t) lies on an «-sphere

of radius p, dimensional considerations show that the right side of (41) must be

multiplied by p2.

If K(t) is a smooth family of simplices in E", choose a point q in E" and an

«-sphere Tin En + 1 which is tangent to E" at q. Let K'(t) be the smooth family on T

obtained by radially projecting K(t) onto T. It is clear that as p —> oo,

(d/dt) Vol K'(t) and (d/dt)ßj(t) are of the same order of magnitude as

(d/dt) Vol K(t) and (d/dt)ßj(t), respectively. Thus for some constant c,

d\o\K

dt
>P¿

^ j dt \j = «

Letting p -» oo again leads to formula (38) for s = 2.

10. A simple example in E3. Let the smooth family K(t) be given by p0 = (0,0,0);

px = (1,0,0); p2 = (0,1,0); p3 = (0,0, t),t > 0. It follows that

n0=(2t2 + iy1/2(t,t,l);    «1 = (-1,0,0);

«2= (0,-1,0);    «j = (0,0,-1).

There are three distinct nonzero terms in formula (11) in this situation. The formula

( n,., n •) = cos /?,- ■ gives a desired formula. However, it turns out that conversion to

tan /?,.. generally gives simpler expressions. Summing gives

d „     .  .    d „     .  .    d_
dt'

d        _,,    nr -,   .    rz~.    T  d

'12 j? Pl2 + '23  ^ ßl3 + '31   Ai ^31

\ jt tan-H-v/20 + vTTT2 j tanl(-tly/l + t2)

+ vTT7T|-tan-1(-í-1yT+í2)
dt

= -2(1 + 2i2r! +(1 + 2«2)"1 +(1 + 2/T1 = 0,

as predicted by Theorem 4.
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A simple further calculation shows that Y.lij(d2/dt2)ßij is not zero. This example

shows that there is no obvious generalization of Theorem 5 involving higher

derivatives of the projected angle since the resulting generalization of Theorem 4 is

false. Thus equation (36) says something special about flexible polyhedral surfaces.

11. Further problems and observations. Branko Grünbaum asks whether there are

any two-dimensional linear spaces other than E2 for which Theorem 2 is valid. We

note that with the strong extra assumption that all pi he on the boundary of

conv{/>,}, the conclusion is valid. This follows at once from the fact that for any

two-dimensional linear space there is a measure tj on the linesets such that ||/> - q\\ =

jt¡ {I: I n pq ¥= 0}. (See G. D. Chakerian's paper [5].) The general question remains

open even for four-point sets.

Assuming c = 1 in the Lipschitz condition (1), G. D. Chakerian asks whether

Theorem 2 remains valid on S". Fortunately, this question can now be answered

affirmatively. If K(t) is a smooth family of simplices on S", let C(0 denote the

invariant measure of the great (« - l)-spheres which cut K(t). As a consequence of

Schläfli's differential formula (41) the following relation holds via duality:

(42) jtC(t) = cXßIJ{t)jtl,At)-

Thus there is a direct analogy with formula (12). Further investigation will be

required to determine the spherical (and hyperbolic) analogues of formulas (11),

(38), (39). There will be a complete discussion of equation (42) in the sequel.

Let D0,...,DS and D¿,...,D¿ be disks of fixed radius R in E2 with centers

p0,... ,ps and p'q, ... ,p's, respectively. Klee [10] asks whether the condition | p, — p\ <

|p- - p'j\, all /', j, ensures that Area n D¡ > Area n Df. We ask if the stronger result,

Per n Dj > Per n D¡, must also follow. This question is pursued a bit further in the

next paragraphs.

Let us assume that dDj n (C\ £>,) * 0 for/ = 0,... ,s, and let £ = a(fli),). The

centers p0,... ,ps are the vertices of the evolute of E, denoted by E*. It is easily seen

that E* = 9(Tl D,*) where £»0*,... ,D* are disks of radius R centered at the vertices

of E, and that E** = E. There is the relation

(43) Length E + Length E* = 2mR.

We therefore see that our question concerning Per n D¡ is equivalent to the

question: if \p¡ - pj\ < \p\ - pj\ for all /', /, is it true that Length E* < Length(£')*?

The difficulty arises because generally there will be/ for which dD' n (C\D,') = 0.

Now if R becomes large while keeping {/?,} and {/?,'} fixed, the question on

Length E * becomes precisely the question answered by Theorem 2. This establishes

a direct link between Klee's question and the results in this paper. There are

generalizations of (43) in higher dimensions which might lead to further conjectures

or counterexamples.

Let q0,... ,qn be points in E2. Define a partial reflection to be a line reflection of a

subset of the q¡ through a line which does not enter the interior of conv{<7,}. The
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complement remains fixed. Suppose {q¡} and {/>,} sastisfy the Lipschitz condition

(1) with c = 1. Will there always be a (finite) sequence of partial reflections and

continuous distance nondecreasing planar homotopies taking q¡ to />, for each /? A

case analysis shows that the answer is affirmative for four-point sets.

R. V. Ambartzumian [2] has developed a very interesting combinatorial theory of

mean curvature and generalized Crofton measures. Do any of the results of this

article fit into the framework of his theory?
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