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STRICTLY CONVEX SIMPLEXWISE LINEAR EMBEDDINGS
OF A 2-DISK

BY

ETHAN D. BLOCH1

ABSTRACT. Let K C R2 be a finitely triangulated 2-disk; a map /: K —»

R2 is called simpkxwise linear (SL) if ¡\c is affine linear for each (closed) 2-

simplex a of K. Let E(K) = {orientation preserving SL embeddings K —►

R2}, Eec(K) = {/ € E(K)\f(K) is strictly convex}, and let E(K) and ESC(K)

denote their closures in the space of all SL maps K —» R2. A characterization

of certain elements of E(K) is used to prove that Eac(K) has the homotopy

type of S1 and to characterize those elements of E(K) which are in Eac(K),

as well as to relate such maps to SL embeddings into the nonstandard plane.

1. Introduction. In this paper we apply the methods of [B] to the study of

simplexwise linear embeddings of a 2-disk in R2 with strictly convex image, and

simplexwise linear maps which are the limits of such embeddings. (A map from

a triangulated 2-disk into R2 is called simplexwise linear (SL) if it is affine linear

on each (closed) 2-simplex.) Our results are the analogs in the strictly convex case

of [BCH, Theorem 5.1] and [B, Theorem 1.2]. The interest in strictly convex SL

embeddings is threefold. First, knowing the homotopy type of the space of strictly

convex embeddings (Theorem 1.1) could help calculate the homotopy type of the

space of all SL embeddings of a 2-disk (which in turn would be useful in the study

of SL homeomorphisms of surfaces); second, characterizing SL maps which are the

limits of strictly convex embeddings (Theorem 1.2) answers a problem arising in

the attempt to extend the foundations of algebraic topology to the nonstandard

case, as suggested by C.-H. Sah (private communication); third, if C(pi,... ,pn)

denotes the configuration space of n points in the plane having the same order type

as pi,... ,pn G R2 (see [GP]), then it can be seen that

C(Pl,. ..,Pn) = £sc(^i) n • • • n Esc(Kr)

for some triangulated 2-disk K\,..., Kr; hence Theorern 1.1 should help determine

the homotopy type of C(pi,... ,p„).

We will use the definitions, notation and results of [B] without restating them.

For background on SL maps, see the introductions to [B and BCH], as well as [BS

and CHHS].

DEFINITION. A polyhedral 2-disk D in R2 is called strictly convex if for every

boundary vertex v of D, there is a line / in R2 such that InD = {v}. If a polygonal

circle C in R2 bounds a strictly convex disk, we also say C is strictly convex.
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Let K be a (finitely triangulated, rectilinear) 2-disk in R2. We regard simplices

as closed, and will write K when we mean the topological space |if| underlying

K. Let Kl denote the set of (closed) ¿-simplices of K and let [intK)° and (dK)°

denote the interior and boundary vertices of K, respectively.

DEFINITION. E(K) = {orientation preserving SL embeddings K -> R2} and

ESC(K) =.{/ G E(K)\f(K) is strictly convex}.

As in [B, §1], E(K) and ESC(K) are identified with open subsets of Euclidean

spaces, and hence their closures E(K) and ESC(K) are well defined. Let E(K, (*R)2)

and the "standard part" map ° be as in [B, §1]. The following definition gives the

simplest way of extending the notion of strict convexity to the infinitesimal case.

DEFINITION, g G E(K, (*R)2) is strictly boundary-convex if

(l    g(wi+2)\

det     1    g(wi+i)     > 0    (in *R)

V1     9(wi)  )

for all 0 < i < s, where {wn,... ,ws} are the boundary vertices of K in clockwise

order.

Note. For a "standard" map g G E(K) C E(K, (*R)2), g is strictly boundary-

convex iff g(K) is strictly convex (i.e. g G ESC(K)).

In §§4 and 5, respectively, we prove the following results.

THEOREM 1.1. For any K, ESC(K) is homeomorphic to S1 x C for some

contractible C. In particular, ESC(K) has the homotopy type of S1.

THEOREM  1.2.   For any K and any f G E(K), the following are equivalent:

(l)fGË~(K),
(2) / = °g, for some strictly boundary-convex g G E(K, (*(R)2), and

(3) for any line I in R2,  f~l(l) H dK has at most two components.

REMARKS. (1) Condition (3) in Theorem 1.2 is a natural generalization of

convexity. If / G E(K) has image a 2-disk, then the condition can be stated more

simply: f(K) is convex and for any two distinct noncollapsed boundary 1-simplices

A and B, int f(A) n int f(B) = 0 (where "int" denotes relative interior, i.e. interior

in the affine span). This last condition on f\dK cannot be elminated. The main

case of implication (3)=>(1), which requires the bulk of the proof, can then be stated

as follows: Suppose / : K —> R2 is the limit of maps in E(K) (none of which need

have convex image); if f(K) is a convex 2-disk and f\dK behaves nicely, then / is

actually the limit of maps in ESC(K).

(2) Let L(K) = {SL homeomorphisms K —> K fixing dK pointwise}, as in

[BCH and B]. The methods used to prove Theorem 1.1 can also be used to give

an alternate proof that L(K) is contractible if K is strictly convex, which is a

version of Theorem 5.1 of [BCH].

2. Preliminary lemmas.

Definition. Let E.(K) = {/ g E(K)\f\dK is injective}.
REMARK. If K has p vertices, then E,(K) C E(K) C R2p, as mentioned in [B,

§!]■

DEFINITION. Let nx: R2 —> R1 be the projection onto the z-coordinate and let

n^ : R2p -> RP = R1 x {0} x R1 x {0} X ■ • • C R2p
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be the projection map given by

(xi,yi,X2,y2,■ • ■ ,xp,yp) i-> (xi,X2,.-.,Xp),

so that if /: K —► R2 is SL, then Ux(f) = (■trxf(vi),- ■ ■ ,irxf(vp)).
REMARK. By rotation, any direction in R2 could be used as the "x-direction".

We can think of the "x-directions" as points in S1.

LEMMA 2.1. [EJJC] - E(K)} n [UieSi il-^E^)} is collared in Et(K),
where the union is over all possible choices of the ax-direction" in R2.

PROOF. First, for a fixed x G S1, one can deduce the existence of local collarings

using the convex disk decomposition method of [BCH, §4]. The existence of the

global collaring follows from the local one by standard arguments (as in [Br]).    D

DEFINITION. Let

M(K) = {/: K —> R2| / is SL and f\dK is an orientation preserving embedding}.

DEFINITION. For /, g G M(K), f has the same collapsing as g if, for any

S G K2, f(6) is a 2-simplex, line segment, or a point iff g(6) is, respectively, a

2-simplex, line segment, or a point and, for any A G K1, f(A) is a 1-simplex, or a

point iff g(A) is, respectively, a 1-simplex, or a point.

REMARK. If /, g G M(K) have the same collapsing, then 6 G K2 is of type PC,

EC, or SC (as in [B, §2]) with respect to / iff it is of the same type with respect

to g.

Let R(K) be as in [B, §1].

LEMMA 2.2. // ft: [0,1] —> M(K) is a continuous map such that f0 G R(K)

and /i ^ R(K), then, for some to G (0,1], ft0 has different collapsing then fr,.

PROOF. First, note that for fixed 6 G K2, the map M(K) -* R, given by

/ h-> det(/|6), is continuous (see [B, §1] for definitions). The lemma can then be

deduced easily, using [B, Lemma 1.1] and the Intermediate Value Theorem.    D

LEMMA 2.3. Let ft : [0,1] —> M(K) be a continuous map such that f0 G E,(K),

and let ft have the same collapsing as /o for all t G [0,1). Then ft G E*(K) for all
te [0,11.i i  j

PROOF. E»(K) is closed in M(K), so it suffices to show ft G E*(K) for all

t G [0,1). Since /o G E*(K), fQ G R(K), and it follows from Lemma 2.2 that

fteR(K) for allí G [0,1). Let

r = sup{i0 G [0, l)|/t G E.(K) for t G [0,í0]},

which is well defined. If r = 1 the lemma is proved, so assume 0 < r < 1. ft G

E»(K) for t < r by definiton of r, so fr G E+(K) also; in other words, there is a

map in E(K) as close as desired to fr. ft has the same collapsing as fr for t G [0,1),

so e(ft) (as in [B, Theorem 1.2]) varies continuously with t (although e is not a

continuous function in general). It now follows by standard arguments that there

is some n > 0 such that [r, r + n) C [0,1), and for each t G [r,r + r¡) there is a map

in E(K) within e(ft) of ft. [B, Theorem 1.2] now implies that ft G E(K) for all

t G [r, r + r¡); since ft G M(K) for all t, it follows that ft G E,(K) for t G [r, r + n),
a contradiction; so r = 1.    □
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DEFINITION.   Let Ai = (ai,6i), A2 = (a2,62) be line segments in R2.   Ai

immediately dominates A2 if:

(1) Ai n A2 — {02} G int Ai; and

(2) Ai is not parallel to the y-axis; and

(3) A2 is not parallel to the y-axis and

(4) for any p G 7^ (Ai) f~l 7rx(A2) such that p / 7rx(a2),

(ttzIAi)-» > (7r:c|A2)-1(p),

or

(3') A2 is parallel to the y-axis and

(4') a.2 has larger y-coordinate than b2. See Figure 2.1(i).

Note that the inequality in (4) holds independently of the choice of p, so the

above definition makes sense.

(ü)
Figure 2.1

DEFINITION. Let Ai, A2 be the line segments in R2. Ai dominates A2 if there

is a chain C of line segments Ai = Bq,B\,. .. ,Bm = A2, called a domination

chain, such that Bi immediately dominates B¿+i for 0 < i < m — 1. We write

D(AUA2; C) = m; let D(A, A; {A}) = 0. See Figure 2.1(h).

The following lemma can be proved by elementary methods.

LEMMA 2.4.   Let An,..., An be a domination chain, and suppose

Ai n Aj =

At = Aj, or
0, or

single point, which is an

endpoint of at least one of Ai and Aj.

Then A0 ^ An.    O

3. The basic homotopy. Let {wr,,. ■-,wg} be some labeling of the bound-

ary vertices of K in clockwise order and let A C ESC(K) be a compact subset.

For some boundary vertex, say wq, suppose we are given a continuous function

4>: A -> R2 such that, for each g G A, <p(g) is outside g(K) and the circle

{<t>{Q),a{wt), ■ ■ ■ tQÍws)) is strictly convex. We will then construct an SL isotopy

Ft : A x [0,1] -» ESC(K) such that, for all g G A, F0{g) = g and Fi(o)(w0) = 4>(g),

where ql: A —> R2 is some (unspecified) continuous function as close as desired to
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<f>. To construct Ft, we will construct a homotopy

Ht: Ax[0,l}^E,(K)n (J \1XXWXE(K)

LxGS1

such that, for all g G A, H0(g) = g, Hi(g)(wç,) = <f>(g), and Ht(g)(K) is strictly

convex for all t G [0,1]; Ft is then obtained from Ht by using Lemma 2.1 and the

compactness of A.

To define H, we fix g G A and define Ht(g) for all t G [0,1]. Define H0(g) = g.

Ht(g) will be defined by specifying Ht(g)(v) for all v G K°. Without loss of

generality we assume that <f>(g) is the origin in R2 and that g(u>o) is on the positive

y-axis, noting that g(itfo) can never equal (¡>(g). The idea for defining Ht(g) is

very simple: the image of uir, will move uniformly toward the origin, reaching it

at t = 1; the images of other vertices will move on lines parallel to the y-axis if

they get "caught" on moving 1-simplices. (This is very similar to the proof of

Lemma 4.2 in [BS], except that they used radial "tracks" whereas we use parallel

"tracks".) Because of the restrictions on <p, and the parallel track method, it is easy

to check that all maps are injective on dK, have strictly convex images, and are in

Uzes1 ni"1IIxJ5(Ä"), so we will not mention these properties further. (Note that

no boundary vertex besides wr¡ will have its image moved, by strict convexity.)

More precisely, suppose g(wc¡) = (0,u>o,2)- Then define

Ht(g)(w0) = (0,(1 -t)w0t2).

Define H?(g): [0,1] - M(K) by H?(g)(w0) = Ht(g)(w0) and H°(g)(v) = v for all

veK°, v¿ w0. By hypothesis, H$(g) = geAc E(K). Let

77i = sup{i0 G [0, l]|r7°(g) G E(K) for all t G [0,í0)}.

By the continuity of if°(g) as a function of t and the fact that E(K) is open,

Hf(g) G E(K) for all t close enough to 0, and thus 771 is well defined, 0 < 771.

H?(g) G E(K) for all t G [0,771), so the continuity of H°(g) implies that H^g) G

E„(K); once again the definition of 771, E(K) being open, and the continuity of

H°(g) imply that, in fact, H^(g) G ÊJK) - E(K). Now, define Ht(g) = H°(g)
for all t G [0,771]. If 771 = 1 we have defined Ht(g) all t; if not we proceed as follows.

By [B, Lemma 1.1], Hr)l(g) collapses some 2-simplices of K (as in [B, §2]). Since

only the image of u>o moved for t G [0,771], any 2-simplex collapses by Hni (g) must

contain wo asa vertex. The image of u>o does not hit the images of any other

vertices for t G [0,771], so all 2-simplices collapsed by HVl(g) are of type SC (as

in [B, §2]). Since only 1-simplices containing wq (as an endpoint) have moving

images and since the image of wq is moved in the negative y-axis direction, the

only possible Hni (g)-segment complexes (as in [B, §3]) are as seen in Figure 3.1.

(Of course, there may be a number of such complexes.)

Let {vi,...,vn} be the vertices of M such that HVl (g)(vi) G int Hril (g)(Ai) for

some 1-simplices A¿ whose images are moved for t G [0,771] (wq is an endpoint of
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\      \ : ■

Figure 3.1

each Ai); there may be more than one choice for each A¿, but we can always pick it

uniquely so that the endpoint of A¿ other than wo is not one of the u», 1 < i < m.

Define H}(g): [771,1] -♦ M(K) as follows:

H^(g) = HVl(g), H¡(g)(w0) = Ht(g)(w0)    for all t,

Hl(g)(v) = v   for v ^ Vi, 1 < i < m,

and H¡(g)(vi) is the intersection of the lines H}(g)(Ai) and 7r~17rx(7j¿). H¡(g) is

well defined since the image of K is always strictly convex. It is also evident that

for all t close enough to 771, Hl(g) has the same collapsing as H}li(g).

Let

772 = sup{t0 G [771, l]\Ht(g) has the same collapsing as H^(g) for all t G [771,in)}.

By the above remarks, 772 is well defined and 771 < 772. H}(g) is continuous as

a function of t, H^l(g) = H^^g) G E*(K), and H¡;(g) has the same collapsing

as H^t(g) for all í G [771,772), so Lemma 2.3 implies that Hl(g) G E+(K) for

t G [771,772]. Define Ht(g) = H}(g) for t G [771,772], which makes Ht(g) continuous

on [0,772], since H^^g) = H^^g). If 772 = 1, we have defined Ht(g) as desired

on [0,1]; otherwise, the above process continues. Assuming 772 < 1, it is easy to

see that H^2(g) collapses some 2-simplices not collapsed by H^(g) for t G [771,772),

although everything collapsed for those í is collapsed in the same way by H^2(g).

We will now define H2(g): [772,1] -» M(K), with H22(g) = H„2(g), H2(g)(w0)

= Ht(g)(w0) for all i, and find 773 > 772 so that H2(g) G E*(K) for t G [772,773].

We then define Ht{g) = H2(g) for t G [772,773]. Also, it will be seen that if 773 < 1

(we are done if 773 = 1), then H23(g) collapses some 2-simplices not collapsed by

H^(g) for í G [772,773). We then continue this process, finding 774,775,... until some

■nk — 1, which must be the case, since at each successive 77¿ more 2-simplices are

collapsed and K is finitely triangulated.  Ht(g) will be defined to equal H¡(g) on
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[t7¿, 77¿+i] for i = 0,..., k — 1 (setting 770 =0). Ht(g) will then be a continuous map

[0,1] —» E*(K) with Hi(g)(wo) = <p(g) as desired. Hence it suffices to show how to

define H2(g) satisfying the appropriate conditions.

To define H2(g) we need the following claim, which can be checked from the

definition of Ht(g) | [0i 772]. Let {Ai,.. . ,AP} be the set of HV2 (g)-segment complexes

and let Ij — Hr,2(g)(Aj) for 1 < j < p; Ij is a line segment in R2. Since HV2(g) G

E,(K), all Aj are simple (as in [B, §3]).

CLAIM, (i) Each Ij, neither end of which contains wr¡, has at least one end with

image in the interior of some other (unique) /&;

(ii) no 2-simplex is collapsed to a point by Ht(g), t G [0,772];

(iii) Ij is not parallel to the y-axis for all j;

(iv) the "top" side of Aj (which is defined by (iii)) is a single 1-simplex;

(v) HV2(g)(wo) <fc int J, for any j.
We now define /f2(g): [772,1] -» M(K) as follows: Let H22(g) - Hn2(g) and let

H2{g){wo) = Ht(g)(w0) for t G [t?2,1]. If v ¿ w0 and H22(g)(v) £ intlj for any

j, let H2(g)(v) = v for all t. Because of the claim, we can apply the notions of

immediate domination and domination to the Ij, in order to define H2(g) on the

rest of the vertices of K. Clearly any two Ij intersect in at most one point, which is

the endpoint of at least one. Lemma 2.4 shows that the following definition makes

sense.

DEFINITION. For Ij as above, let

n(Ij) — sup{D(Ik,Ij;C)\C is a domination chain from Ik to Ij)}.

For a vertex v such that Hrt2(g)(v) G intlj (note that Ij is unique), let n(v) —

n(Ij) + 1. Also, let n(wo) — 0, and n(v) = -1 for v ^ wq such that Hm(g)(v) £

intlj for any j. n(Ij) and n(v) are called the order of Ij (resp. v).

REMARK. n(Ij) — max{ra(t>)|i; is a vertex in an end of A.,}, where "end" is

defined in [B, §3].

So far, we have defined H2(g)(v) for vertices of order —1 and 0. Next, let

n(v) = 1, so H22(g)(v) G int I, for some Ij with n(Ij) = 0. Define H2(g)(v)

to be the intersection of (H2(g)(w),H2(g)(wç,)) and the line parallel to the y-

axis containing H22(g)(v), where w is any vertex contained in the end of Aj not

containing wq (noting that wo is the single vertex in one end of Aj, since n(Ij) = 0).

Any such w has order —1, so the choice of w does not effect H2(g)(v). We can

continue in this fashion, defining H2(g) on the vertices of successively higher order,

until H2(g) is defined on all vertices. It is seen that vertices with the same H22(g)-

images have the same H2(g)-images for all t G [772,1], that the Aj are the H2(g)-

segment complexes for t near enough to 772, and that indeed H2(g) has the same

collapsing as H22(g) for t near enough to 772. As before, there exists maximal

7/3 > 772 such that H2(g) G E*(K) for t G [772,773]. This completes the definition of

Ht. It only remains to be noted that Ht(g) is continuous as a function of both t

and g; the following claim, which can be proved by induction on n(v) (with respect

to t and g), suffices.

CLAIM. For fixed (g,t) G A x [0,1] and for any v G K°, Ha(h)(v) is as close as

desired to Ht{g)(v) for all (h,s) G A x [0,1] sufficiently close to (g,i).
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4. Strictly convex embeddings.

PROOF OF THEOREM 1.1. For / g Eac(K), one can define the center of

gravity of f(K), denoted cog(/), in the usual way; the map ESC(K) —► R2 given by

/ h-> cog(/) is continuous. Note that cog(/) G int/(if). Let {wo, ■ ■ -,wa} be the

boundary vertices of K in clockwise order.

It is clear that

Eac(K) « R2 x {/ G Esc(K)\cog(f) = (0,0) G R2}

where

D = {fe Eac(K)\cog(f) = (0,0), f(wo) G (0,oo) x {0}}.

The theorem will be proved if we show D is contractible. D is a C W-complex, being

dominated by Eac (K) (which is an open subset of some Euclidean space, and hence

a CW-complex itself); see [M, p. 272], A theorem of Whitehead implies that D is

contractible if we can show all its homotopy groups are trivial, and hence it suffices

to show that any compact subset of D contracts in D to a point. Let Ccöbe

compact.

Let B2 be the unit ball in R2 and S1 the unit circle. We then deform C into

a compact set C such that, for / G C, f{K) c intß2; this is done by radially

shrinking (about (0,0)) the images of maps in C (by which it is meant that the

images of vertices are moved radially, thus specifying SL maps, in order to avoid

the "standard mistake"). Such a deformation takes place entirely in D and it

will suffice to prove C contracts in D. To do so, we will construct a homotopy

Ft : C x [0,1] -* G, where

G = {/ G Eac(K)\f(w0) G (0,oo) x {0}, cog(/) G (f(w0),oc) x {0}},

such that Fo is the inclusion of C in G, and Fi (C) is a single point. For any such F,

we construct a map H : F(C x [0,1]) -» D such that H fixes F(C x [0,1]) C D; the

homotopy H o Ft : C x [0,1] —► D is then the desired contraction of C in D, so that

constructing Ft will suffice to prove the theorem, once we see that H exists. H is

constructed as follows: for g G F(C x [0,1]), let H(g) be the map obtained by first

pivoting the image of g about g(7t>o) (which lies in (0, oo) x {0}) until the center

of gravity is in (—oo,g(u;o)) x {0} (where this rotation is such that the center of

gravity misses (g(wo),oc>) x {0}), and then radially expanding or shrinking about

g(wo) (as before) the image of the pivoted map until the center of gravity is at

(0,0). F(C x [0,1]) is compact and this definition of H is seen to be continuous.

Let B°(x, r) denote the open ball in R2 of radius r centered at x. Let {po, ■ ■ ■, pa}

be the s+1 roots of unity, lying in clockwise order in S1 with po = (1,0). Choose e >

0 so small so that the B°(pi, 2e) are disjoint and any polygonal circle (20,2i, • • •, za),

with Zi G B°(pi,2e), is embedded and bounds a strictly convex 2-disk.

We will construct Ft in four steps, using the method of §3 repeatedly. The first

step, Ft\[0, \], moves the images of the vertices of dK radially outward toward S1

(recall that, for / G C, f(K) C int52). We will move one boundary vertex at a

time, using the isotopy constructed in §3 to do so. In order to stay in Eac(K) we

we pick some large integer n, using the compactness of C, so that if we move the

images of the vertices of dK radially outward one at a time (going around dK n

times) by amounts equal to 1/n of their initial distances from S1, then at each
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stage the image of dK is strictly convex. It is easy to see what the appropriate <j>

is for each of the isotopies. Because only one boundary vertex moves during each

isotopy and the image of that vertex ends up as close as desired to <p(g), we can

insist that at the end of Ft\[0, |] the images of the boundary vertices are no more

than e/4 from S1. This deformation clearly stays in G and we have thus defined

Ft\[0,\}.
By a similar process, it|[j,|] is constructed so that its approximates moving

the images of the Wi, i ^ 0, by a rotation about the origin, so that the final image

of each Wi is close to p¿. This isotopy moves the images of the w¿, i ^ 0, one at a

time in short straight lines approximating a rotation. We can construct the isotopy

so that the image of Wq is fixed throughout, and F\/2(g)(u)i) G B(pi, e) for all g G C

and all i.

it[5, |] is constructed as before, this time moving the images of each Wi, i / 0,

only once in a straight line toward r¿, which is the point of B(pi,e) farthest from

(0,0). Hence, the final images of the Wi lie arbitrarily closely to r¿ (except wr,,

whose image is fixed), so that we can insist that they are in B(p¿, 2e); also, for each

0 < i < s, r\ = F3/4(g)(wi) is constant for all g G C. Hence, F3/^(g)(dK) is the

strictly convex polygonal circle (r0,ri,... ,r's) for all g. Let K\ = F3/4(g)(K) for

some choice of g G C; it follows that F3/i(C) C L(K\) (see [B, §1] for the definition

of L(Ki)). Note that since all choices of g yield SL homeomorphic triangulations

of the 2-disk bounded by (r0,...,r's), any choice of g could be used.

Finally, let Ft | [|, 1] be a contraction in L(K\ ) of .F3/4 (C) to a point, using [BCH,

Theorem 5.1]. Putting Ft\[0, |],... , .Ft|[f, 1] together, we obtain a contraction of

C to a point, and it is easy to check that the contraction remains in G.    D

5. Convex near-embeddings.

LEMMA 5.1.   For f G E(K), the following two conditions are equivalent:

(i) for any line I in R2, /_1(0 H dK has at most two components;

(ii) f(K) is either:
(a) a point,

(b) a convex 2-disk with dK the union of subcomplexes Ai,..., Ar, B\,..., Bm,

where the Ai are the noncollapsed 1-simplices of dK in clockwise order, each Bj is

a maximal connected (nontrivial) subarc of dK which is mapped to a point, /(A¿) n

/(A¿+i) = {point} for alii (modr), and f(Ai)P¡f(Aj) = $ for alii and allj / ¿±1,
or

(c) a line segment with dK = E\ U S\ U E2 U 52, where the Ei and Si are as in

the definition of a simple f-segment complex (following [B, Lemma 3.3]) and each

Si is decomposed as is all of dK in case (ii).

PROOF. (i)=>(ii). First, let us examine f(dK). Suppose there exist two distinct

points x, y G dK such that f(x) — f(y), yet neither subarc of dK joining x to y is

mapped to a point. By the hypothesis on /, if any line / in R2 contains f(x) = f(y)

and intersects f(dK) in some other point (say f(z)), then the image of one of the

subarcs of dK from z to x or y must lie entirely in /. Because this holds for any

f(z) in any such /, f(dK) must be a figure "V" with vertex at f(x) = f(y). In

that case, however, we could pick some other x', y' satisfying the same conditions

as x,y, but with f(x') = f(y') ¿ f(x) = f(y).  It would then follow that f(dK)
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is a figure "F" with vertex at f(x') = /(y'), and this could only happen if f(dK)

were actually a line segment. Assume f(dK) is not a point, or there is nothing to

prove. As in [B, Lemma 3.4], it is seen that dK = Ei U Si U E2 U S2 as desired; it

is also seen that for any distinct u, v G 5¿ with f(u) = f(v), the arc in 5» joining u

and v must be mapped to a point. It then follows that each St can be decomposed

as in case (c). If no x and y as above exist, then it follows similarly that dK can

be decomposed as in (b); if dK = Bx then f(dK) is a point, and otherwise it is a

polygonal circle. Finally, / G E(K), so an argument like one given in the proof of

[B, Lemma 2.4] shows that f(K) is contained in the region bounded by f(dk) and

(i)=>(ii) follows easily.

(ii)=^(i). This is straightforward.    D

PROOF OF THEOREM 1.2. (3)=>(1). We prove / G Eac(K) in three cases,

corresponding to the cases in (ii) in Lemma 5.1.

Case 1. f(K) is a point. Even if K is not convex, there is always some embedding

g G ESC(K) by [BS, Theorem 2.2, p. 207]. We may assume that f{K) is in the

interior of g(K), and then / is the limit of a sequence of embeddings in ESC(K)

obtained by radially shrinking the image of g toward f{K) (more precisely, radially

moving the images of vertices toward f(K), to avoid the Standard Mistake).

Case 2. f(K) is as in case (ii) (b) of Lemma 5.1. Because f(K) is convex,

ft (f(Ai),f(Ai+i)) < it for all i = 1,... ,r (modr), where ft ( , ) denotes the
interior angle. In fact, we may assume without loss of generality that if A¿ and

Ai+i are not in the same /-segment complex, then ft (/(A¿),/(A¿+i)) < 7r; this

condition need not hold in general, but we can always find a map in E(K) arbitrarily

close to / satisfying this condition by moving the images of all the vertices mapped

to /(A¿)n/(A¿+i) by a small amount if ft (/(A¿), /(A¿+i)) = tt. Call this new map

/. In other words, we may assume that every natural edge of f(K) (that is, a line

segment which is the intersection of df(K) with a line in R2) is either the image

of a single 1-simplex or the image of a single /-segment complex; this condition

implies that all vertices v G dK for which the interior angle of df(K) at f(v) is tt

are, in fact, side vertices of /-segment complexes. (Note that this argument uses

2-dimensionality in a crucial way; R. Connelly and D. W. Henderson show in [CH]

that the analogous "budging" cannot always happen in 3-dimensions.)

We now proceed to "pull f(K) apart" in such a way that the final image is

strictly convex, using the method of proof of [B, Proposition 7.1]. If S(f) = 0, i.e.

no 2-simplices are collapsed by /, then / is actually an embedding and the A¿ are

all of dK. There are no /-segment complexes, so by our assumption in the above

paragraph ft (/(A¿),/(A¿+i)) < tt for all i, and therefore / G ESC(K). Since / is

arbitrarily close to the original map, it is seen that the original map is in Eac(K).

Assume from now on that S(f) > 0.

Since / G E(K), choose g G E(K) very close to /. /(B¿) is a point for all i, so

g(Bi) is contained in a small open disk about /(S¿). For each B¿, we now add some

2-simplices to g(dK), as follows. First, for each £?¿, we adjoin a convex polygonal

arc Si to g(dK) where s¿ fl g(K) = {endpoints of s¿} = {endpoints of g(B¿)}, and

the Si are disjoint, as in Figure 5.1(i). Next, we add a triangulated collar Ci to the

outside of Si such that (C¿ — s¿) n g(K) = 0, and the (finite) triangulation of C¿

(which contains s¿ without subdivision) is such that (1) every 2-simplex of Ci has

either one vertex in s¿ and two in dCi —Si,  or vice-versa,   and (2) no vertex
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FIGURE 5.1

of dd — Si is contained in more than one 2-simplex which has two vertices in s¿; by

making C¿ thin enough, we can insist that the C¿ are disjoint. (See Figure 5.1(h).)

For each Aj which intersects some Bi, add a very thin 2-simplex 6j to G(Aj) so

that 8j n \g(K) U Ci U ■ • • U Cm] = g(Aj), as in Figure 5.1(iii). Let Uj be the vertex

of 6j not in dg(K). For each C¿ and 6j which intersect (at most in a single point,

which is a vertex, and an endpoint of s¿, g(Bi) and g(Aj)), we would like to add the

2-simplex 7^ containing Uj, the point of intersection of C¿ and 6j, and the vertex

of dCi - Si which is joinable to C¿ D 6j, as in Figure 5.1(iv); this 2-simplex might

overlap with C¿, but we could have chosen Sí,Cí,Sí so that 7¿j only intersects C¿

and 6j in one boundary 1-simplex each, as in Figure 5.1(iv). Finally, the region T¿

bounded by s¿ U g(Bi) is a polyhedral 2-disk, and we extend the triangulation of

its boundary to a triangulation of the whole disk (see Figure 5.1(iv)). We now let
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h(C¡ - S/)

Figure 5.2

K\ be the union of g(K) with all the d,Ti,êj,^ij. It is easy to see that K\ is a

finitely triangulated 2-disk.

The map fog-1: g(K) —> R2 is in E(g(K)) and we extend it to an SL map

h: K\ —> R2 by defining h on the vertices of Ki — g(K), as follows. First, let h(uj)

be outside of f(K) very close to the midpoint of f(Aj), so that det(h\6j) > 0 for all

j. Next, map the vertices of dCi — s¿ onto a small circle about f(Bi) such that the

images of these vertices are distinct, in order, and lie outside of /i(g(Ä") U^iUt^U- • •),

as in Figure 5.2. Finally, for v G T?, let h(v) = /(B¿).

It is easy to see that h: Ki —> R2 is boundary-nice and in R(K\) (as in [B,

§§1 and 2]). Also, the edge-point-inverses of h [B, §2] are either from / or unions

of spanning line segments of 2-simplices in the Ci, and in either case it is easy to

check that these edge-point-inverses are arcs; hence h is ordered (as in [B, §2]). h

thus satisfies the hypotheses of [B, Proposition 7.1], and we proceed to construct

the homotopy ht: [0,1] —► OBR(Äi), with ho = h and hi G E(K\), given by the
proposition, with p some arbitrarily small number. By examining the proof of the

proposition, it is seen that there is some freedom in how ht is constructed, and

we will now specify a particular choice of ht (which is needed for the proof of this

implication). ht is constructed as a finite sequence of homotopies, each of which

results from "pulling apart" an /i-segment complex or h-vertex inverse (as in [B,

§§3 and 5]). In each pulling-apart, the exact direction and distance in which the

set V(ht) is moved is not specified in the proof of [B, Proposition 7.1]; we will be

more specific now.

As mentioned previously, we may assume that every natural edge of h(g(K)) =

f(K) in either the image of a single 1-simplex of dg(K), or the image of a single

/i-segment complex (noting that by construction the /i-segment complexes with

images in h(g(K)) are precisely the /-segment complexes). Let C(t) be the following

condition:

C(t) :  For every E,F e (dg(K))1 such that ht(E), ht(F) are not

points and ht(E) n ht(F) ¿ 0, then  ft (ht(E), ht(F)) < it.

(Note that ht(E) and ht(F) intersect in precisely one point, by Lemma 5.1, so

the condition makes sense.) If every natural edge of h(g(K)) is the image of a single

1-simplex, then C(0) holds, and set to = 0; if not, we will start constructing ht in
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Figure 5.3

such a way that C(t0) holds for some f0 G (0,1). ht\[0, t0] is constructed as follows.

The natural edges of h(g(K)) which are not the images of single 1-simplices must

be the images of single /i-segment complexes which may have side vertices on their

"outside" sides. By the proof of [B, Proposition 7.1], we can start our "pulling-

apart" by moving the V(ho) corresponding to these side vertices one at a time. Each

V(h0) n dg(K) is precisely a single Bj and, when we move the V(n-o), we will not

be uncollapsing any of the 1-simplices in the Bj. More specifically, for each natural

edge with these side vertices, construct an arc of a circle intersecting its endpoints,

with the arc belonging to a circle of such large radius that (1) int h(g(K)) lies inside

the circle, (2) the region bounded by the union of dh(g(K)) and the arc contains no

vertices of Kx not in h(g(K)), and (3) if any two such arcs intersect (in a common

endpoint) the interior angle between their tangents at the point of intersection is

strictly less than n. See Figure 5.3. By properly choosing these arcs we can define

ht[0,t0] to be the result of "pulling apart" the V(h0), where each pulling-apart

of the V(h0) moves images of vertices perpendicularly to the corresponding edges

until they reach the appropriate arcs. hto has the images of all the V(ho) on the

arcs, and clearly C(t0) holds. See Figure 5.3.

We now proceed to construct /it|[i0,1]; C(t0) holds, and we will construct

Mio.l] so that Cit) holds for a11 t £ [*o,l]- In particular C(l) will hold and,
since hi will be in E(K{), it will follow that \hi\g(K)] o g: K -> R2 will be in

ESC(K), thus completing the proof of this case. (Note that hi could have been

made as close as desired toh- h0, so that [hi\g(K)]og is as close as desired to /.)

/it|[io,l] is constructed by a finite sequence of "pullings-apart", on which we

proceed inductively; assume that after a certain pulling-apart condition C(t) is still

satisfied. In the next pulling-apart, if none of the collapsed 1-simplices of dg(K)

are uncollapsed, then, by simply insisting that the vertices of Ki are moved by very

small amounts, it is evident that condition C(t) can be preserved throughout this

pulling-apart. Now assume that in some pulling-apart, some collapsed 1-simplices

in dg(K) are pulled apart. These 1-simplices are contained in an /it-vertex inverse
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which is being pulled apart; since we have freedom in choosing the pulling path

used (as in [B, §5]), this path could have been chosen so that it only intersected

one 1-simplex of dg(K) (in particular, one end of the path is in ht(g(K)), and the

other is in ht(Ki — g(K))), so that we may assume only one 1-simplex of dg(K))

is being pulled apart. Let E,F G (dg(K))1 be the two distinct, noncollapsed 1-

simplices of dg(K) which intersect the /i(-vertex inverse being pulled apart. By

assumption, condition C(t) holds before we start "pulling apart", so the interior

angle between ht{E) and ht(F) is strictly less than tt. Hence, both exterior angles

between the lines containing ht(E) and ht(F) lie outside of ht(g(K)). It is easy to

see that V(ht) may be moved by a small enough amount into the interior of one of

these exterior angles, and that by doing so the "uncollapsed" 1-simplex of dg(K)

will be pulled apart in such a way that condition C(t) is satisfied throughout the

pulling-apart. This completes the proof of Case 2.

Case 3. F(K) is as in Case (ii)(c) of Lemma 5.1. This case will be reduced

to the previous one. K must be either a single /-segment complex, or the union

of a finite number of /-segment complexes together with their /-vertex inverses.

In the latter case the images of the /-segment complexes intersect in at most the

images of their ends; if E is such an end and e G E°, then [B, Lemma 5.1(h)]

implies that T(e) (as in [B, §5]) is a 1-connected subcomplex of K. In either

case (one or many /-segment complexes), we construct h: Ki —> R2 as in Case 2,

and g(K) c Ki is then the union of /i-segment complexes and h-vertex inverses

(which are 1-connected subcomplexes) corresponding to the /-segment complexes

and /-vertex inverses mentioned above. The set of boundary vertices of g{K)

which are mapped into the interior of h(g(K)) — f(K) can be divided into two

subsets, corresponding to the two sides of h(g[K)). We can find an arc of a circle,

intersecting h(g(K)) in its endpoints, very close to h(g(K)), as was done for each

natural edge in the previous case. We would like to start pulling apart h(g(K)) by

moving those boundary vertices of g(K) corresponding to the side of h(g(K)) on

which the arc lies until they lie on the arc. If g(K) were exactly one /i-segment

complex, this could be done as in the previous case; if not, there would still be no

problem, since all the /i-vertex inverses in g(K) are 1-connected subcomplexes, so

we can pull them apart at will, rather than waiting until no /i-segment complexes

have side vertices as in the proof of [B, Proposition 7.1] (since this last condition

was only required in order to insure that no image of an ht -vertex inverse is in the

interior of the image of an /it-segment complex, which holds automatically here).

By partially pulling apart h(g(K)) in this fashion while moving vertices less than

any given amount, we thus obtain, for some t G [0,1], [fit|g(Ä')] og: K —> R2 which

is as in Case 2, and the present case is proved.

(1)=>(3). If / € ESC(K), then / = lim ft, for some /< G ESC(K), i = 1,2,3,....
For any line /in R2, f~l{l) n dK is either empty, or one or two points; it follows

that f~l(l) n dK has at most two components.

(2)=>(3). If (3) does not hold, then it follows from Lemma 5.1 that there must

be some line I in R2 such that / intersects f(dK) in the interiors of the images

of at least three distinct, noncollapsed 1-simplices, say (oi,6i), (02,^2), (¿13,63)- It

then follows that there is a line *l in (*R)2 which intersects the interiors of the

(g(cti),g(bi)), i = 1,2,3, where ( , ) is now convex hull in (*R)2. However, the

existence of such a line contradicts the fact that g is strictly boundary convex (using
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the analogous result in the standard case and the Transfer Principle, as in [D, p.

28]), so (3) must hold.

(3)=>(2). Proceed as in the proof of (3)=>(1), but pull apart by infinitesimally

small amounts.    D
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