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GENERAL POSITION PROPERTIES SATISFIED
BY FINITE PRODUCTS OF DENDRITES

BY

PHILIP L. BOWERS1

ABSTRACT. Let Ä be a dendrite whose endpoints are dense and let A be the

complement in A of a dense er-compact collection of endpoints of A. This paper

investigates various general position properties that finite products of A and A

possess. In particular, it is shown that (i) if X is an LCn-space that satisfies

the disjoint n-cells property, then X X A satisfies the disjoint (n + l)-cells

property, (ii) An X [—1,1] is a compact (n + l)-dimensional AR that satisfies

the disjoint n-cells property, (iii) Än+1 is a compact (n + l)-dimensional AR

that satisfies the stronger general position property that maps of n-dimensional

compacta into Än+1 are approximable by both Z-raaps and Zn -embeddings,

and (iv) An+1 is a topologically complete (n + l)-dimensional AR that satisfies

the discrete n-cells property and as such, maps from topologically complete

separable n-dimensional spaces into An+1 are strongly approximable by closed

Zn-embeddings.

1. Introduction. It is well known that the standard (2n + l)-cell 72n+1 is a

compact absolute retract that satisfies the disjoint n-cells property and, as such,

admits an embedding of every compact n-dimensional metric space. Moreover,

the collection of embeddings of an n-dimensional compactum X into J2"+1 forms

a dense Gg in the function space C(X,I2n+1) [HW]. Though there are compact

n-dimensional spaces that satisfy the disjoint n-cells property and admit embed-

dings of every n-dimensional compactum, there are no topologically complete n-

dimensional absolute neighborhood retracts that satisfy this property, for any such

space would contain uncountably many pairwise disjoint embedded n-cells and

thereby violate a result of Sieklucki [Si]. In this paper, we produce examples

of compact (n + l)-dimensional absolute retracts that satisfy the disjoint n-cells

property, and the collection of embeddings of an n-dimensional compactum X into

any of these examples forms a dense Gs in the corresponding function space. The

examples are particularly nice in that they arise as product spaces whose factors

are compact 1-dimensional absolute retracts, equivalently, dendrites.

The disjoint n-cells property is but one example of a variety of general posi-

tion properties that have played an interesting and increasingly important role in

Geometric Topology during the past fifteen years, particularly in the area of char-

acterizations of manifolds modeled on various spaces. The disjoint disks property of
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J. W. Cannon is crucial in the current characterizations of finite dimensional mani-

folds [Ca, Ed, Qu] as are the disjoint and discrete cells properties of H. Torunczyk

in the current characterizations of infinite dimensional manifolds modeled on the

Hubert cube and Hubert space [Toi, T02]. It was during an investigation of factors

of Hubert space manifolds that the author was led to examine the various general

position properties that the finite products of dendrites and special subsets of den-

drites possess. The results subsequently obtained are of interest in their own right,

without regard to manifold theory. The author has learned that H. Torunczyk inde-

pendently has obtained many of the results herein and in particular, the examples

alluded to in the first paragraph.

A dendrite is a nondegenerate uniquely arcwise connected Peano space, equiva-

lently, a compact 1-dimensional absolute retract. Throughout the paper, A denotes

the class of dendrites whose endpoints are dense and Ä denotes a typical element

of A. In §2, we prove the following theorem.

THEOREM 2.1. If for some n G N U {0}, X is an LCn metric space that

satisfies the disjoint n-cells property and Ä G A, then X x A satisfies the disjoint

(n + l)-ce//s property.

This theorem allows us to produce the examples alluded to in the first paragraph

of this introduction.

Example. If n G N and À G A, then I x Än satisfies the disjoint n-cells

property. Moreover, every map of an n-dimensional compactum into I x Än can be

arbitrarily closely approximated by embeddings.

If we replace the interval I by Ä in the previous example, we obtain examples

of compact (n + l)-dimensional absolute retracts that satisfy a stronger general

position property.

COROLLARY 2.8. If n G N U {0} and A G A, then every map of an n-
dimensional compactum into Än+1 can be arbitrarily closely approximated by both

Z-maps and Zn-embeddings.

For those readers who are familiar with current results in Hubert space man-

ifold theory, the definitions of the discrete cells properties that appear in §3 are

natural extensions to the finite dimensional world of H. Torunczyk's strong discrete

approximation property that appears in his characterization of Hubert space man-

ifolds [T02]. As with the disjoint cells properties, the discrete cells properties have

important consequences in embedding theory. The proof of the following theorem

appears implicitly in [T02].

THEOREM (TORUNCZYK). A topologically complete separable ANR X satisfies

the discrete n-cells property if and only if every map from any topologically complete

separable n-dimensional space into X is strongly approximable by closed embeddings.

Let A denote the following class of topologically complete separable 1-dimen-

sional absolute retracts: A is an element of A provided A is the complement in

some Ä from A of a dense c-compact collection of endpoints of A. J. J. Walsh,

the author's thesis advisor, suggested to the author that the elements of A might

play a role in Hubert space manifold theory in many ways analogous to the role

played by the interval I in Hilbert cube manifold theory (see [B01]). This led

to an investigation of the general position properties satisfied by finite products
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whose factors are in A, and the results of this investigation appear in §§3 and 4. In

particular, in §4 we prove

COROLLARY 4.3. If n G Nu{0}u{oo} andAG A, then An+1 is a topologically
complete separable AR that satisfies the discrete n-cells property.

The proof of Corollary 4.3 involves rather technical results that supply char-

acterizations of those o-Z-sets in locally compact separable metric spaces whose

complements satisfy one of the discrete cells properties. These technical results

appear in §3 and are influenced by the work of D. W. Curtis that appears in [Cui,

ACM, vM],
Terminology and notation. By I we denote the interval [—1,1], by N the col-

lection of positive integers; continuous functions are called "maps." All spaces are

assumed to be separable and metrizable, and if X is a space, then p usually denotes

any metric on X compatible with the topology on X. Sometimes, for emphasis,

we write (X, p) for the space X with metric p. A compact space is called a com-

pactum. Absolute neighborhood retracts, abbreviated ANR, and absolute retracts,

abbreviated AR, are understood to be absolute neighborhood retracts and absolute

retracts, respectively, for the class of metrizable spaces. If K is an abstract simpli-

cial complex, we use standard abuse of notation and also write K for the standard

geometric realization of K and K^ for both the abstract n-skeleton of K and its

standard geometric realization. If / and g are maps of a space X into a space F

and U is an open cover of Y and e: Y —* (0, oo) is a map, then / is said to be

¿/-close (respectively, e-close) to g provided for every x G X, {f(x), g(x)} C U for

some U in U (respectively, for every x G X, p(f(x), g{x)) < e(f(x))). X ss Y means

X is homeomorphic to Y. By i, k, n we denote elements ofNU{0}U{oo} and i < n

means "¿ < n — 1 if n / oo and i ^ oo if n = oo", and oo + 1 and oo — 1 mean oo.

2. Disjoint cells properties and products of dendrites. Recall that A

denotes the class of dendrites whose endpoints are dense and A denotes the class

of spaces that arise as complements of dense cr-compact collections of endpoints in

spaces from A. If X is an element of either A or A, then £(X) denotes the collection

of endpoints of X.

A metric space X is said to satisfy the disjoint n-cells property provided any

two maps of the n-cell 7™ into X can be arbitrarily closely approximated by maps

whose images are disjoint. In [Da], R. J. Daverman proves that if an LC1 space

X satisfies the disjoint 1-cells property, then X x I2 satisfies the disjoint 2-cells

property. Theorem 2.1, stated in the introduction and proved below, illustrates the

usefulness of replacing the interval I by a dendrite Ä whose endpoints are dense.

PROOF OF THEOREM 2.1. Let e > 0 and let / and g be maps of In+1

into X x A. Since X is LCn and A contains a dense set of endpoints, we can

choose a finite triangulation T of In+1 and for each (n + l)-simplex a in T, open

sets Ua and Va in X of diameter less than e/2 and B„ and Ca in Ä such that

/(<x) C Ua x B„, g(o) C Va- x C„, maps of the n-sphere Sn into Ua and Va

are e/2-homotopic to constant maps, B„ (respectively, C„) is e/2-contractible to

an endpoint b(o) (respectively, c(a)) in Ä, and {b(o)\o G T'"+1'} D {c(cr)|cr G

r(n+i)j _ 0 Let fx =pxo f\p and f2 = pÄo/|P_where P denotes the n-skeleton

of T and px'- X x A —» X and p¿: X x A —> A are the projection mappings,

and define gx and g2 similarly by replacing / by g.   Choose e/2-approximations
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/i and v to /i and gi, respectively, such that p,(P) H v(P) = 0 and assume that

p is so close to /i that (¿(do) C Ua for each <r G T(~n+1"> and similarly for v.  It

is easy to construct a retraction h of Ä onto a subset of Ä so that /i is e/2-close

to id¿, h(Ba) C Ba and h(C„) C CCT for each o G T<n+1\ and b(a) £ h(Ä) and

c{a) i h(A) for each a G T^+V.   Let /' = (p,h o f2) and g' = (i/,/i o g2) and

observe that f',g': P ^ X x A are maps which satisfy /'(P) fl g'(P) — 0, and

/'(¿V) C Ua x Ba and g'(cV) cVtxC5 for each a £ T^n+1\

We now define /' and g' over the (n-f-l)-skeleton of T. Let <r be an (n+l)-simplex

and write o as
_ do x [0,2]

° ~  da x {2} '

Since n(da) C <7o-, there is an e/2-homotopy tp: da x [1,2] ^> X of /z|3ct to a point

in X. Since /i o f2(da) C BCT, there is an e/2-homotopy 9: da x [0,1] —> Ä of

ho f2\da to the endpoint b(a) of Ä Since for each r G T^n+1\ c(t) ^ ho f2(da), it

can be arranged that c(r) ^ 6(da x [0,1]). Use [s, t] for (s, i) G da x [0,2] to denote

a point of a and define /' on a by

?n,t]\- Í (^),0(s,t)),        0 <i < 1,
/ll,|,"lWM),6(<T)),        1 < * < 2.

/' is well defined and continuous on o- and extends /'|cV. Similarly, with u, V„, ho

52, C„, and c(a) respectively in place of /¿, í/^, rio/2, jBq-, and b(a), define g' on a.

In this way we obtain maps /', g' : In+1 —* X x Ä and it is easy to see that px o /'

is e-close to px o f and p¿ o f is e-close to p^o f and similarly for g'. Also, it is

straightforward to verify that f'(In+1) n g'(In+1) — 0 and thus X x Ä satisfies the

disjoint (n + l)-cells property.

The main fact that allows us to prove Theorem 2.1 is that Ä contains a dense

collection of endpoints. An easy Baire category argument shows that every element

of A also contains a dense collection of endpoints (specifically, if F is a cr-compact

subset of £(Ä), then ¿(A) — F is dense in A) and this allows us to prove the

following corollary using exactly the same proof as above.

COROLLARY 2.2.   The previous theorem is true with A G A in place of Ä G A.

According to [Toi], if X is a topologically complete ANR that satisfies the dis-

joint n-cells property, then every map of a compact n-dimensional metric space into

X can be arbitrarily closely approximated by embeddings. In fact, the collection

of embeddings of any n-dimensional compactum into X forms a dense G s -subset

of the corresponding function space. The following corollary provides examples of

(n-l-l)-dimensional AR's that are universal for n-dimensional compacta in the sense

of this paragraph.

COROLLARY 2.3. If ÄGÄ, AG A, andnGN, then I x Än, Ix An, Än+1,

and An+1 satisfy the disjoint n-cells property.

PROOF. I, A, and A satisfy the disjoint 0-cells property. Apply Theorem 2.1 n

times.

_ COROLLARY 2.4. Let X denote either I x An, I x An, Än+1, or An+1 where

A G A, A G A, and n G N. Then the collection of embeddings of an n-dimensional

compactum Y into X forms a dense G¿-subset of C(Y,X).
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In [DW], R. J. Daverman and J. J. Walsh prove that if X x Y is a manifold

modeled on the Hilbert cube, abbreviated Q-manifold, for a locally compact space

X and a finite dimensional space Y, then X x I2 is a Q-manifold. Theorem 2.1

provides an improvement of this result by replacing the 2-dimensional AR I2 by a

1-dimensional AR Ä.

COROLLARY 2.5. If X xY is a Q-manifold for a locally compact ANR X and
a finite dimensional space Y and A G A, then X x A is a Q-manifold.

PROOF. Apply Theorem 2.1 of this paper along with Corollaries 6.3 and 6.4 of

[DW].
The (n+ l)-dimensional AR's Än+1 and An+1 satisfy stronger general position

properties than the disjoint n-cells property, namely, maps of In into Än+1 and

An+1 can be arbitrarily closely approximated by both Z-maps and Z„-embeddings.

This is proved by showing that both Än+1 and An+1 contain a-Z-sets that absorb

n-cells. The remainder of this section outlines a proof and several corollaries of this

result.

A closed subset F of a space X is a Zn-set in X for some n G N U {0, oo} if each

map / : In —> X can be arbitrarily closely approximated by maps into X — F. It is

easy to see that F is a Zoo-set in X if and only if X is a Zn-set for all n G N. We

use the more common term Z-set for Zoo-set. A a-Z-set is a countable union of Z-

sets and a Z-map (respectively, Zn-embedding) is a map (respectively, embedding)

/: Y —> X such that f(Y) is a Z-set (respectively, Z„-set) in X.

A subset F of a space X is said to absorb n- complexes for some nonnegative

integer n if each map / : K —► X of a compact n-complex K into X can be arbitrarily

closely approximated by maps whose images lie in F. If F is a a-Z-set in X

that absorbs n-complexes, then every map of a compact n-complex into X can be

arbitrarily closely approximated by Z-maps.

Given Ä G A and a dense er-compact subset F\¡ of £(Ä), let Fi = (F0 x Ä) U (Ä x

F0) C Ä2 and, inductively, let Fn = (Fn-i x Ä) U (Än x F0) C Än+1. Note that

A - F0 = A is an element of A and Fn = An+1 - An+1.

LEMMA 2.6. If for some n G Nu{0}, F is a subset of an LCn metric space X

that absorbs n-complexes, then (FxA)U(XxFo) C XxA absorbs (n+l)-complexes.

PROOF. Let /: K —»Xxibea map of a compact (n+ l)-complex K into XxA

and let /i and /2 be / followed by projection to X and A, respectively. Name a

triangulation T of K having small mesh and let P denote its n-skeleton. If the mesh

of T is small enough, we can approximate /i |P by a map p : P —> F so that for each

a G THn+1', p\da is homotopic via a small homotopy to a constant map and /2|<9<7

is homotopic via a small homotopy to an endpoint b(a) in F0 (for details, see the

proof of Theorem 2.1). Now extend (p, /2IP) to each (n+ l)-simplex a in T exactly

as in the proof of Theorem 2.1 and thereby obtain a map /' that approximates /.

If z G a G T(n+1), then either px o f'(z) = p(z) G F or pÄ o f'(z) = b(a) G F0

where px and p¿ are the obvious projections. Thus f'(K) C (F x A) U (X x F0)

and (FxI)U(Ix F0) absorbs (n + l)-complexes.

PROPOSITION 2.7. FornëNU {0}, Fn is a a-compact a-Z-set in Än+1 that

absorbs n-complexes.
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PROOF. It is an easy matter to verify that a compact subset of £(Ä) is a

Z-set in Ä. Thus Po is a cr-Z-set in A and since Po is dense in A, Po absorbs

O-complexes. Assume that P„_i satisfies the conclusion of the proposition. Then

easily Fn = (P„_i x Ä) U (An x Fo) is a cr-Z-set in An+1 and an application of

Lemma 2.6 with X — An and F — P„_i implies that Fn absorbs n-complexes.

Almost immediately, we have the proof of Corollary 2.8 that is stated in the

introduction.

PROOF OF COROLLARY 2.8. Since An+l is an ANR, every map of an n-

dimensional compactum into An+1 can be arbitrarily closely factored through a

compact n-complex. Proposition 2.7 then implies that any such map can be ar-

bitrarily closely approximated by a Z-map. To obtain an approximation by a

Zn-embedding, first move the given map off of the cr-Z-set Fn by a small move,

then use Corollary 2.4 to approximate this map by an embedding whose image lies

in An+1 = An+1 - Fn. By Proposition 2.7 (or Corollary 2.10), this image is a

Z„-set in An+1.

COROLLARY 2.9.   The previous corollary is true with A G A in place of A G Ä~.

PROOF. Let F¿ C £(A) be a dense cr-compact subset of A and define F^

analogously to Fn. The proofs of Lemma 2.6 and Proposition 2.7 apply to show

that F'n is a cr-Z-set in An+1 that absorbs n-complexes.

Compact subsets of the pseudo-interior s of the Hubert cube I°° are Z-sets in

both s and I°°. The following corollary points out that the pair (An+1,An+1)

satisfies the analogous finite dimensional property.

COROLLARY 2.10. Let A G A and let A be the corresponding element of A. If
n G N U {0}, then compact subsets of An+1 are Zn-sets in both An+1 and An+1.

The proof is immediate from Proposition 2.7.

3. Discrete cells properties. The strong discrete approximation property

was introduced by H. Torunczyk in his study of Hubert space manifolds [T02] and

this extremely useful approximation property subsequently has been studied by R.

D. Anderson, D. W. Curtis, and J. van Mill in [ACM], D. W. Curtis in [Cui], and
T. Dobrowolski and H. Torunczyk in [DT]. The purpose of this section is to define

finite dimensional versions of the strong discrete approximation property and to

supply sufficient conditions on a dense cr-compact subset F of a locally compact

ANR X to ensure that X - F satisfies various ones of these finite dimensional ver-

sions. In the next section, we use the results of this section to investigate the various

discrete cells properties satisfied by finite products of elements of A- Throughout

this section we fix an element n of N U {0} U {00}.

H. Torunczyk has obtained the following topological characterization of Hubert

space manifolds [T02].

THEOREM (TORUNCZYK). A topologically complete separable ANR X is a

Hubert space manifold if and only if every map f: ©jeN If —> X of the countable

free union of Hubert cubes into X is strongly approximable by maps g: 0¿eN If —»

X for which the collection {g(If)}ieN is discrete.

The above approximation property is referred to as the strong discrete approx-

imation theory in [ACM]; however, we shall delete the adjective strong and refer



GENERAL POSITION PROPERTIES OF DENDRITES 745

to this as the discrete approximation property. Recall that a collection V of subsets

of X is discrete provided every point in X has a neighborhood that meets at most

one element of D. If we replace the countable free union of Hubert cubes by the

countable free union of n-cells, we obtain a hierarchy of discrete cells properties:

DEFINITION 3.1. A metric space X satisfies the discrete n-cells property (dis-

crete oo-cells property = discrete approximation property) provided either of the

following equivalent conditions is satisfied:

3.1.1. For each map / : 0¿eN If —> X and each open cover U of X, there exists

a map g: 0i6N F" —> X such that / and g are ¿/-close and {g,(F¿l)}¿eN is discrete.

3.1.2. For each map /: 0î€N /" —> X and each map e: X —► (0, oo), there

exists a map g: 0¿6n F" —► X such that / and g are £-close and {c;(/™)}¿eN is

discrete.

The following theorem is due to H. Torunczyk and establishes the relationship

between discrete cells properties and embedding theory. All of the ingredients for

its proof appear in [To2].

THEOREM (TORUNCZYK). A topologically complete separable ANR X satisfies

the discrete n-cells property if and only if every map from any topologically complete

separable n-dimensional space into X is strongly approximable by closed embeddings.

The following theorem provides a characterization of those cr-Z-sets in a locally

compact separable metric space whose complements satisfy one of the discrete cells

properties. The reader should note that if X — F satisfies either of the equivalent

properties in the theorem, then necessarily F is dense in X.

THEOREM 3.2. Let F be a a-Z-set in a locally compact separable metric space

(X,p) and let n G N Li {0} U {oo}. The following statements are equivalent:

(l.n) X — F satisfies the discrete n-cells property (discrete oo-cells

property = discrete approximation property).

(2.n) For each map e: X - F —> (0, oo), there exists a closed in X

subset J C F such that for every map /:/"—> X — F and every

neighborhood N(J) of J in X, there exists a map f: F™ —► N(J)

such that p(f, /') < e o /.

PROOF. (2.n) implies (l.n) : Let e: X-F -* (0,oo) and /: 0¿ A-> X - F be
maps where for each i G N, Di « Fn, and set /, = /|A- Let J be as hypothesized

in (2.n) for the map |e and let ß(l) = \p(gi(Di), J) where gi — fi- According to

(2.n), we can choose a map /2 : D2 —* Nß^)(J) (for a positive number ß, Nß(J)

denotes the ^-neighborhood of J in X) such that p(/2, /2) < \eof2. Since F is a cr-

Z-set in X, and therefore a cr-Z„-set in the topologically complete space X, there is

amapc;2: D2 —> X-F which is 72-close to /2 where ^2 = ¿ min[{/?(l)}U£(/2(D2))].

Note that g2(F)2) C N2ß(i)(J) and for each x G D2, p(/2(x),ç/2(x)) < £(/2(z)j.

Inductively we let ß(i) = \p(gi(Di),J) and

ll+i = \ min[{/3(i)}U £(/t+i(A+i))]

and obtain a map g¿+i : F)¿+i —> X — F which satisfies c/¿+i(F>¿+i) C N2ß(i)(J)

and for each x G Di+i, p(fi+i(x),gi+i(x)) < e(fi+i(x)). Let g = ®igl: 0¿ A -»

X-F and observe that p(f, g) < e o /. Since ß(i + 1) < \ß(i), ß(i) —► 0 as i —» oo
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and, since g(A+i) C N2ß(i)(J) and J is closed in X, it follows easily from the

definition of ß(i) that {ç/(A)}îgn is discrete in X - F.

(l.n) implies (2.n): Let e: X - F —> (0, oo) be a map. Choose a cover of X - F

by relatively compact sets open in X and let Y denote the union of this cover. Let

li* be a locally finite refinement of a double star refinement of this cover of Y and

for each x G Y, let g(x) = p(x,Y - st(x,W)) where p(x,(f>) is defined to be oo.

Thus Ngtx)(x) is the largest ball about x contained in st(x, W). Clearly 0 < g(x)

for each x G Y and we show that g is a lower semicontinuous function of Y into the

extended reals. Let x G Y so that g(x) > a > 0 and let

ß± = 9(X|]± a        (ß ± may be oo).

V = f){W G y\)\x G W} is open in Y since W is locally finite. Check that for

each y GV n N0-(x), N0+(y) C iVg(x)(x) C st(x,W) C st(y, ~W) so that g(y) >

ß+ > a and thus g is lower semicontinuous. Since 0 < g, Theorem 4.3 [Du, p.

171] applies to give a continuous function e: Y —► (0, oo) such that 0 < £ < g. Let

ê: X — F —» (0, oo) be the map given by 6(x) — min{£(x),£(a;)} and observe that

Ns(x)(x) C st(x, "W) for each x G X — F. We leave it to the reader to show that

Ns(C) — \J{Ns(c)(c)\c £ C} is a relatively compact subset of Y for each compact

C cX-F.
Since the function space C(In,X — F) with metric topology is separable [Du,

Theorem 5.2, p. 265 and Theorem 8.2(3), p. 270], we can choose a countable dense

collection {/¿}¿£n of maps of In into X-F. For each i, j G N, define fz¿ = fi

and use the fact that X — F satisfies the discrete n-cells property to obtain maps

gij: In —► X — F such that p(fi,g%,j) < \è o fi and {gi¿(In)\i,j G N} is discrete

in X — F. Let J be the "limit points" of the maps gij in X, that is, x G X is

in J if and only if there are points x(i,j) G gij(In) such that every neighborhood

of x in X contains infinitely many of the x(z,j')'s. Since {gi,j(In)} is discrete in

X — F, J c F and it is easy to see that J is closed in X.

Let / : F" —> X - F be a map and let N(J) be a neighborhood of J in X. Since
{/¿}¿gn is dense in C(In,X — F) and In is compact, there exists anieN such

that \6o f -So fi\ < \8j [Du, Theorem 2.1(2), p. 259] and p(/,/¿) < \6f where
6f = min[6(f(In))}. Observe that for each j G N and x G In,

P{f(x),9i,j{x)) < P{f{x), fi{x)) + p(fi{x),gij(x))

< \of + Í6(fi(x)) < \6¡ + ¿ (\6f + ö(f(x))) < 6(f(x)).

Thus all we need do is to show that there exists a j G N such that gij(In) C N(J).

But this follows easily from the fact that Ns(fi(In)) is relatively compact in X and

contains gij(In) for each j G N, for otherwise there are "limit points" of {{/i,¿}¿eN

which are not in N(J).
For a space X local compactness in Theorem 3.2 is used only for the implication

(l.n) implies (2.n). The other implication is true in the setting of topologically

complete separable spaces and thus provides a method for detecting those cr-Z-sets

in this setting whose complements satisfy a discrete cells property.

COROLLARY 3.3. (2.n) implies (l.n) in Theorem3.2 providedX is topologically

complete.
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PROOF. The proof is exactly the proof that (2.n) implies (l.n) in Theorem 3.2

except that here we hypothesize that X is topologically complete whereas this is a

consequence of local compactness in Theorem 3.2.

We now define two versions of what it means for a subset of a space to be

locally n-connected in that space. We then state the precise relationship between

the discrete cells properties and these two versions of local connectivity and this

provides us with the tools that we use in §4 in our examination of the general

position properties that products of elements from A possess.

DEFINITION 3.4. For n < oo, a subset F of a space X is locally n-connected

in X provided for every x G X and neighborhood U of x in X, there exists a

neighborhood V of x in X such that every map / : Sn —> V f) F is null-homotopic

in U n F. We say that F is LCn in X if it is locally ¿-connected in X for 0 < i < n,

and F is LC°° in X if it is locally ¿-connected in X for all i > 0. F is said to be

LC~x in X provided F is dense in X.

The property of being LCn in X is not an intrinsic property of the subset F of

X. Rather, this property combines an intrinsic property of F with a property of the

particular embedding of F into X. Indeed, F is LCn in X if and only if F is an LCn

space and X — F is an LCCn subset of X, the former property being an intrinsic

property of F and the latter a property of the embedding of F into X. For example,

(0,1) « {eü G Sl\0 < t < 1} is LC° in S1 while (0,1) « {e2™* G S^O < t < 1} is

not Z,C° in S1.

We now define a continuum version of local connectivity in a space. This def-

inition reflects the fact that a subset F of a space X may fail to have nice local

connectivity properties, yet it may be embedded in the overlying space X in such

a way that nice local connectivity properties abound for open neighborhoods of

F. This definition is inspired by Curtis [Cui] and arises naturally in the study of

discrete cells properties (see [Boi and Cui]).

DEFINITION 3.5. For n < oo, a subset F of a space X is proximately locally

n-connected in X provided for every x G X and neighborhood U of x in X, there

exists a neighborhood V of x in X such that, for every compactum S C V C\ F,

there exists a compactum K C U fl F such that, for every neighborhood N(K)

of K in X, there exists a neighborhood N(S) of S in X such that every map

/: Sn —* N(S) is null-homotopic in N(K). We say that F is proximately LCn in

X if it is proximately locally ¿-connected in X for 0 < i < n, and F is proximately

LC°° in X if it is proximately locally ¿-connected in X for all i > 0.

If we require X to be an ANR and replace "for every x G X" by "for every x G F"

in Definition 3.5, we arrive at Curtis' definitions of proximately locally n-connected,

proximately LCn, and proximately LC°°. These properties are intrinsic properties

of F, independent of the particular embedding of F into any ANR. The property of

being proximately LCn in X holds the same relationship to being proximately LCn

as the property of being LCn in X holds to being LCn. Indeed, F is proximately

LCn in X if and only if F is a proximately LCn, an intrinsic property of F, and F

is (n + l)-target dense embedded in X (maps of (n + l)-cells into X can be pushed

close to F by small moves). See Curtis [Cui].

In investigating the general position properties that products of elements of A

possess (§4), only (i) and (iii) of Theorem 3.6 below are used, (ii) of Theorem 3.6

is included for completeness, since it provides a characterization in terms of local
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connectivity of those dense cx-Z-sets in locally compact metric spaces whose com-

plements satisfy the discrete n-cells property while (iii) provides merely a sufficient

condition on such cr-Z-sets. Recall conditions (l.n) and (2.n) from Theorem 3.2.

THEOREM 3.6. Let F be a dense a-Z-set in a locally compact separable metric

space (X,p). J/bGNU {0}, then the following statements hold:

(i) Condition (l.n) is equivalent to condition (2.n).

(ii) If X is LCn~l, then condition (2.n) holds if and only if F is proximately

LC"-1 inX (n^¿0).

(iii) If F is LC"-"1 in X, then condition (2.n) holds. The reverse implication is

false.

PROOF, (i) This is Theorem 3.2.

(ii) (2.n) implies F is proximately LC71"1 in X. Let x G X and let U be

a neighborhood of x in X. Choose a ó-ball Ns about x such that Clx{N3g) is

compact and contained in U where N3$ is the 3<5-neighborhood of x, and choose

a neighborhood V of x in X such that maps of S* for 0 < i < n into V are null-

homotopic in Ns. Let 5 C V PlF be compact and let s: X —> [0, ̂ 6} be a map such

that £_1(0) = S. Let J be as promised in (2.n) for the map e\X — F and assume

that S C J. Define K - J n C\X(N3S), a compact subset of U í) F, and let N(K)

be a neighborhood of K in X.

Since X is LCn~l and locally compact and £_1(0) = S, we can choose -y with

6 > 7 > 0, a neighborhood N(S) of S in X, and a relatively compact open set W

in X such that N{S) C W c Clx W c -/V(Ji) n V, e(y) < 7 for each y G N(S),
and the 7-neighborhood of N(S) is contained in W, and 7-close maps into W of

spheres of dimension less than n are homotopic in N(K).

Let 0 < ¿ < n and let /: ¿>! —> N(S) be a map. Since F is a cr-Z-set in X

and X is LCn~1, f is homotopic in N(K) to a map g: Sl —► AT(S') - F and since

Af(S) C V, there exists an extension G: Il+1 —► 7V¿ of g. Again since F is a cr-

Z-set and since g(S') fl F = 0, we may assume that G(Il+1) n F = 0. Let n =

min[¿, p(Fi, X - iV(FC))]. According to (2.n), there exists a map /': Ii+1 -» ./Vn(J)

such that p(G, f')<eo G. Check that /'(F+1) C NV(J) n A^ä and therefore

/'(/i+1) C JV,(Jir) C iV(FC).

Also, /'[5' is 7-close to G\Sl; thus both /'|Si and G|S'i are homotopic in AT(K)

and this shows that / is null-homotopic in N(K).

F is proximately LCn~l in X implies (2.n). The proof uses techniques found

in [Cui]. Since the proof is rather cumbersome and since (iii) suffices for our

purposes in §4, we delete the proof. We note, however, that the proof of this result

is a straightforward, though somewhat technical modification of the proof of (iii).

(iii) First, the fact that the reverse implication is false follows from an example

of van Mill [vM] of a boundary set in the Hubert cube containing no arcs. The

proof for n = 0 follows from (i) as every nowhere locally compact space satisfies

the discrete 0-cells property. The remainder of this section is devoted to a proof of

(iii) in case n is finite and nonzero.

If n G N and F is LCn~l in X, then condition (2.n) holds. Let ë: X - F —>

(0,00) be a map. We first replace the map £ by a map £ that is defined on all of X.
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LEMMA.   There is a map s: X —► [0,1] such that 0 < e(x) < e(x) for each

xGX-F.

PROOF. For each x G X - F, choose an open neighborhood Ux of x in X such

that ë(Ux - F) is bounded away from 0 and let ex = inf e(Ux — F) > 0.   Let

Y = \J{Ux\x G X - F}, an open subset of X, and note that X - Y C F. For each

x G X - F, define fx : Y -♦ [0,1] via fx(y) = 0 if y i Ux and fx(y) = min{£x, 1}
if y G Ux. Each fx is a lower semicontinuous function on Y and thus the function

f(y) = sup{/x(y)|x G X - F} is lower semicontinuous on Y [Wi, 7K.1]. Note that

0 < f(y) < 1 for each y G y and f(x) < e(x) for each x G X-F. Theorem 4.3 [Du,

p. 171] applies to give a continuous function c/>: Y —► [0,1] so that 0 < (j)(y) < f(y)

for each y G Y.

Assuming I/V, since X - Y is a closed G s subset of X, there is a Urysohn

function V: X -+ [0,1] with ^_1(0) = X - Y. Define e: X -» [0,1] by

~m _ / v»(aO • </>(*),    x e 17
^-{o, xeX-F.

Clearly, 0 < £(x) < £"(x) for each x G X - F, and it is easy to check that e is

continuous on X.

Throughout the remainder of this proof, £ denotes the map of the lemma and

Y denotes the open subset of X containing X — F that appears in the proof of the

lemma. Note that e(y) > 0 for each y G Y, £_1(0) = X - Y, and, since Y is an

open subset of the locally compact separable metric space X, y is a locally compact

separable metric space and as such is also cr-compact.

Write Y = \Ji oí where each cr¿ = Cly-(r¿) is compact where r¿ is an open subset of

Y and, for each ¿ G N, ai C r»+i. Let ero = 0. For each ¿ G N, let £¿ = 2~l min[£(cj¿)]

and note that £i > £2 > • • • > 0 and £¿ —► 0 as ¿ —> ce. Let ¿>¿(n + 1) = £¿ and

use the fact that each a i is compact and F is LCn~x in X to choose for each

i G N, 6i(n) > 0 so small that if a: dln -^r,nF and diama(3/n) < ¿>¿(n), then

there exists an extension ß: In —> r¿+i flF of a so that

diam/?(/") < i<5I+2(n-r-l).

Force the ¿¿(n)'s to have the further property that ¿,(n) > <5¿+i(n) and notice that

¿\(n) —> 0 as i —> oo. Continue in this manner and obtain positive constants 6i(j)

for ¿ G N, and j = 1,..., n + 1 that satisfy:

(1) 6i(j) —> 0 monotonically as ¿ —> oo for each 7 = 1,..., n + 1,

(2) 6i(j - 1) < |5»+2(i) for i = 1,2,... and j = 2,..., n + 1,

(3) ¿j(n + 1) = Si < 5 min[£(<T,-)] for i G N,

(4) if a: dP -v r¿ D F and diama(5P) < ¿¿(j), then there

exists an extension ß: P —+ r¿+i D F of a so that

diam/3(FJ) < |¿l+2(/ + l),for j = l,...,n.

For each ¿ G N, choose a finite collection of points Si C (r¿ - ctí_i) n F such that

every point x of ai - r¿_i lies within |é¿+i(l) of some element s of 5¿ - {x} and

let So = 0-

(*)
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Let K be the collection of simplices whose vertices are the points of (J¿ S¿ and

such that (so, • • •, sp) G K for vertices sn,..., sp provided the following properties

are satisfied:

(i) P<n,

(ii) {so, • • •, sp} C Sm_i U Sm with some s¿ G STO for some m G N,

(iii) p(si,Sj) < 6m(l) for 0 < ¿, j < p and m as in (ii).

The reader may verify that (i) through (iii) define K as a locally finite n-dimensional

abstract simplicial complex.

There is an obvious map vq : K^ —► Jo C F onto the closed subset Jo = |J¿ S¿

of Y. Given (so, Si) G K^ suppose that so, si G Sm_i USm with one of so or si in

Sm. Then p(so,si) < 6m(l) and So,Si G rmnF so that (*)(4) applies to produce a

map ß: (so,si) —► Tm+inF so that diam/3((so,si)) < ¿¿m+2(2) and /3(st) = s¿ for

i = 1,2. In this way extend u0 to obtain vi : K^ —> F. Note that if (so, «l, «2) €

Ft"(2) then diami>i((si,Sj)) < |¿m+i(2) for i,j G {0,1,2} where s0,Si,S2 £ Sm_iU

Sm and at least one of so,si,s2 is in Sm. Thus diam¡yi(c3(so,si,s2)) < 6m+i(2)

and vi(d(so,si,S2)) C rm+i n F. (*)(4) applies again to give an extension i/2 of

¡^i|c5(so,si,32) to (so,si,s2) so that diami/2((so,si,S2)) < |¿>m+3(3). We continue

through (n — l)-steps and obtain a map vn : K^ —> F so that ^«((so, ■ • •, sn)) has

diameter less than |¿m+n+i(n + 1) < £m+n+i if {so, ■ ■ ■, sn} C Sm_i U Sm and at

least one of so, • ■ •, sn is in Sm. Let ¡^ = j/„.

We claim that v(K) is a closed subset of Y. Indeed, for each m G N, de-

note by Km the finite subcomplex of K which consists of all simplices of K all

of whose vertices lie in Si U 52 U • • • U Sm_i. Given a positive integer j, choose

m > j + 1 so large that £m+n+i < \p(aj, Y — tj+i) and suppose that (so, ■ ■ ■ ,sp) G

K — Km and {so, ■ ■ ■ ,sp} C Sfc_i U Sfc with say so G Sfc where k > m. Then

diami;((so, • ■ • ,«P)) < £fc+n+i < £m+n+i < %p{pj,Y - rJ+i) < \p(oj,Y - rk-i)

and since v(so) = so G F — Tfc_i, ^((so, • • •, sp)) n cTj = 0. We have shown that

v(K) n Oj = u(Km) n aj, which is compact since Km is compact and this implies

that v(K) is closed in Y.

Let J = dx(y(K)). Since v(K) C FnY is closed in Y and X-F c F, J c F.
In fact, it follows easily that J = (X — V) U v(K). The next lemma shows that J

"£-absorbs" n-cells from X — F and this completes the proof of Theorem 3.6.

LEMMA. Let f:In —> X — F 6e a map. T/ien í/iere ex¿sís a map g: In —> J

suc/i íñaí p(f,g) < £ o f.

PROOF. Choose m so large that /(/") C rm and choose a triangulation T of In

such that each A G T satisfies diam /(A) < |5m+i(1) and /(À) C rfe -cjfe-2 for some

integer k with m > fc > 2. For each vertex t G T^°\ there is a unique integer A; with

m > k > 1 such that f(t) G Tk—Tk—i- For each such vertex t, choose s(t) G Sfc which

lies within %8k+1(l) of /(i) (see the definition of Sk) and define 0: T^ -* K^

via 9(t) = s(t). Suppose that A = (<o, ■ ■ ■ ,tp) GT where, of course, p < n. There

is an integer fc with m > fc > 2 such that {/(fo), • • •, f{tP)} C rk - crfc_2 and thus,

{9(to), • • •, 9(tp)} C Sfc_i U Sfc and we may assume without loss of generality that

9(t0) G Sfc. For ¿ and j in {0,..., p} we have

p(0(t¿),Ö(*i)) < pWí),/(**)) + P(/(«i),/(*i)) + P(f(tj),8(tj))

<h6k(l) + ±6m+1(l) + l6k(l)<6k(l).
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Thus 9(to),... ,9(tp) satisfy (i)—(iii) of the definition of K and therefore

(9(to),... ,9(tp)) G K. This shows that 9 sends the vertices of any simplex of

T to the vertices of some simplex of K and therefore, we may extend 9 linearly to

obtain a simplicial map (still called 9) 6: T —> K.

Let g : In —> J be given by g = v o 6 and let x G A G T where A is an n-simplex.

There is an integer k with m > fc > 2 such that /(A) C rk — ak-2 and therefore

diamg(A) = diami/(0(A)) < £fc+„ since 9(X^) C Sfc_i U Sk. Let t G Xw. Then

p(f(x), g(x)) < p(f(x), f(t)) + p(f(t),g(t)) + p(g(t), g(x))

< i¿m+i(l) + !¿fc(l)+£fc+„.

Properties (*)(1) through (*)(3) along with the fact that fc < m apply to show that

<Wi(l) < àm+i{n + 1) = £m+i < £fc, M1) < h(n + 1) = £fc, and £fc+n < £fc.
Thus property (*)(3) shows that

p(/(x),o(x)) < 2£fc < min[£(cTfc)] < e(f(x)).

4. Discrete cells properties and products of dendrites. Throughout this

section A denotes an arbitrary element of A and A denotes the element of A from

which A arises. In the following sense, An+1 can be thought of as a "finite dimen-

sional Hilbert cube." Both An+1 and the Hilbert cube 7°° are compact absolute

retracts and both An+1 and the pseudo-interior s of the Hilbert cube are nowhere

locally compact topologically complete absolute retracts that arise as the comple-

ments of dense cr-Z-sets in Än+1 and 7°°, respectively. Compact subsets of An+1

are Z„-sets in both An+1 and An+1 (Corollary 2.10) and compact subsets of s are

Zoo-sets in both s and 7°°. An+1 satisfies the disjoint n-cells property (Corollary

2.3) and as such is a universal embedding space for n-dimensional compacta while

7°° satisfies the disjoint Hilbert cubes property and is a universal embedding space

for compacta. An+1 satisfies the discrete n-cells property (Corollary 4.3) and as

such is a universal (closed) embedding space for topologically complete separable

n-dimensional spaces while s satisfies the discrete approximation property and is

a universal (closed) embedding space for topologically complete separable spaces.

Also, A°° « 7°° and A°° « s. For these reasons we call An+1 the pseudo-interior

of An+l and Fn = An+X - An+1 the pseudo-boundary of An+1.

Recall that Fo = A — A is a dense cr-compact collection of endpoints of A. The

main result of this section is Theorem 4.1 and this allows us to conclude that An+1

satisfies the discrete n-cells property.

THEOREM 4.1. Let F be a dense subset of a space X and let n G N U {0}. If
F is LCn~l in X and X is LCn, then (FxA)u(Xx F0) is LCn in XxA.

COROLLARY 4.2. Under the hypotheses of Theorem 4.1, if in addition F is a

a-Z-set in X and X is a locally compact separable LCn+k~1-space for some fc G N,

then (X — F) X Ak satisfies the discrete (n + k)-cells property.

PROOF. Since X is LCn+k~\ XxAk is LCn+k~l. Induction and Theorem 4.1

reveal that the dense cr-Z-set (F x Ak) U (X x (Ak - Ak)) is LC71^1 in X x Ak

and Theorem 3.6(i) and (iii) then apply to show that (X - F) x Ak satisfies the

discrete (n + fc)-cells property.

Corollary 4.3 is stated in the introduction.
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PROOF OF COROLLARY 4.3. The proof for n = 0 is left to the reader as every

nowhere locally compact space satisfies the discrete 0-cells property. If W and B

are connected and therefore path connected open subsets of A, then since F0 is

dense in A, (W x B) n Fx is path connected where Fx = (A x F0) U (F0 xA) C Ä2.

This implies that Fi is LC° in A2 and according to Theorem 3.6, A2 satisfies the

discrete 1-cells property. The fact that An+1 satisfies the discrete n-cells property

for n finite is now a direct consequence of Corollary 4.2. For n — oo, Corollary 4.2

applies to show that A°° satisfies the discrete n-cells property for all n G N and, in

this setting where A°° is the complement of a dense a-Z-set in the compact ANR

A°°, this is equivalent to the discrete approximation property (= discrete oo-cells

property) [Bo2].

Actually, Theorem 4.1 applies to show that the pseudo-boundary Fn = An+1 -

An+1 is LCn~x in An+1 since Fn = (Fn_x xi)U (Än x F0) and this guarantees

that An+1 satisfies the discrete n-cells property. The remainder of this section is

devoted to a proof of Theorem 4.1.

PROOF OF THEOREM 4.1. If W and B are path connected open subsets of

X and A, respectively, then since F is dense in X and Fo is dense in A, (W x

B) n [(F x Ä) U (X x F0)] is path connected. Since X is LC°, this ensures that

(F x Ä) U (X x F0) is LC° in X x Ä.

Assume that n > 0. Let x G X and let W be a neighborhood of x in X and B

a contractible open subset of Ä. Since X is LCn, choose a neighborhood W of x in

X such that maps Sl —> W for 0 < ¿ < n are null-homotopic in W. It is sufficient

to show that every map Sl —> (W x B) n F» for 0 < i < n is null-homotopic in

(W x B) nF* where F» = (F x Ä) U (X x F0). We show this for ¿ = n, the remaining

cases being similar.

_ Let/: dln+1 -> (IV x B) n F, be a map and px : X x Ä -> X and p2 : X x

A —► A be the projections. Let ç/: 7n+1 —> VF' x P> be any extension of / to the

(n + l)-cell /n+1 and choose collections of product open subsets of W x B, say

"Vo, Uo, ■ ■ ■, "Vn-ii Zin-ii "V, Zi, such that the following hold:

(i) for each U G U, p(g(dln+1), U) > diam U where p denotes a metric on X x A,

(ii) "Vo is a cover of g(7n+1) - g(dln+1),

(iii) "Vo < Uo<*Mi < ••■<*"V„-i < i/„_i<*"V < U where <* denotes star-

refinement,

(iv) for each j = 0,1,... ,n — 1 and for each V G ~Vj, there exists a U G Uj

containing V such that 7r¿(pi(V) fl F) —► nj(pi(U) f~lF) is the zero homomorphism,

and for each V G "V, there exists a U G IL containing V such that 7r„(pi(V)) —>

Ttn{pi(U)) is the zero homomorphism.

This choice is possible since X is LCn and F is LCn~l in X. (Choose these

covers in reverse order, starting with U and ending with "Vo-)

Let T be a locally finite triangulation of 7n+1 - g~1g(dln+1) such that T refines

9~1{\) and such that diameters of simplices go to zero near g~1g(dln+1). For

each simplex a G T, choose Va G "Vo such that c;(ct) C V„ and for each vertex

t G T(°), choose a point 9(t) in F which lies in HÍPi^)!* e ff(0)} and within

p(ç/(r.),c;(d7n+1)) of pi(g(t)). Thus obtain a map 0: r(°> -^ W" n F such that if

í¿ G T<°> and í¿ -» x G 0-1c/(c37n+1), then 0(í¿) -» pi(g(x)).

Since for each cr G T(1), 0(c?cr) C Pi(V) n F for some V G %, (iv) allows us to

extend 0 to T^ so that by (iii), if cr G T(2), then 9(da) C pi(V) n F for some
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Va G "Vi. We continue to extend 0 on higher dimensional skeleta of T until we obtain

a map 0: T^ —> W n F that is limited by pi("V), that is, for each (n + l)-simplex

A in T, 9(dA) is contained in pi(V) for some V G M. Let ip: T<n) ̂ W'xBbe the

map ip = (9,p2 o g\T^) and extend ip to T by extending on each (n + l)-simplex

A of T using (iv) via the trick used in the proof of Theorem 2.1 so that ^>(A) c U

for some U GÜ and

PliP(c(d&))=Pi(ip(dA))cF

and p2i/>(A-c(c?A)) G F0 where c(5A) denotes a collar on <9A. Since if t¿ G T^0) and

ti —► x G g_1c;(c37™+1), ̂ (í¿) = (0(£¿), P2í7(£¿)) —* g(x), and since ip is limited by £/,

(i) allows us to extend ip to g~1g(dln+1) via a to obtain a map h: In+i -^W'xB

given by h — g on g~1g(dln+1) and h — ip otherwise. Notice that h = f on dln+1.

Given x G 7n+1, there are three possibilities: either h(x) = g(x) G F» (for

x S 9-1g(ô/n+1)), pinfx) = pi^(a;) G F (for x G c(dA)), or p2h(x) = p2ip(x) G F0

(for x G A - c(dA)). Thus h(In+1) C F» and this implies since /i|d7"+1 = / that

/ is null-homotopic in (W x B) fl F*. This completes the proof.
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