VARIETIES OF AUTOMORPHISM GROUPS OF ORDERS

BY W. CHARLES HOLLAND¹

ABSTRACT. The group $A(\Omega)$ of automorphisms of a totally ordered set Ω must generate either the variety of all groups or the solvable variety of class n. In the former case, $A(\Omega)$ contains a free group of rank 2^{\aleph_0} ; in the latter case, $A(\Omega)$ contains a free solvable group of class n-1 and rank 2^{\aleph_0} .

1. Introduction. This work was prompted by the following question of A. Ehrenfeucht (see the footnote on p. 47 of [8]); I thank J. Mycielski for calling it to my attention:

Must the group of automorphisms of an ordered set have a free subgroup of rank 2^{\aleph_0} whenever it has a free subgroup of rank 2?

The answer is yes. In fact, if the group $A(\Omega)$ of automorphisms of the (totally) ordered set Ω fails to satisfy every nontrivial equational group law, then $A(\Omega)$ must contain a free subgroup of rank 2^{\aleph_0} (Theorem 5.6).

Phrased in the last way, the question suggests an analogous question for groups $A(\Omega)$ which do satisfy some equational laws. In the first place, one should ask what varieties (equationally defined classes) can be generated by the groups $A(\Omega)$. We will show that these are just the varieties \mathfrak{S}_n of n-solvable groups, together with the variety \mathfrak{G} of all groups (Theorem 2.10). Then we show that if $A(\Omega)$ generates \mathfrak{S}_n , $A(\Omega)$ contains a free- \mathfrak{S}_{n-1} subgroup of rank 2^{\aleph_0} (Theorem 5.3). As a byproduct of this investigation, we can describe precisely the structure of a group $A(\Omega)$ if $A(\Omega)$ generates \mathfrak{S}_n (Corollaries 4.3 and 2.6), thus generalizing a theorem of Chang and Ehrenfeucht [1] from the case \mathfrak{S}_1 = abelian. In the special cases that $A(\Omega)$ is transitive on Ω , we characterize not only the group $A(\Omega)$ but the set Ω if $A(\Omega)$ generates \mathfrak{S}_n (Theorem 3.2 and Corollary 2.6), thus generalizing a theorem of Ohkuma [10], again from the case \mathfrak{S}_1 .

In many ways the most natural context for the study of $A(\Omega)$ is as a lattice ordered group. The lattice operations are defined pointwise: for $f, g \in A(\Omega)$ and $\alpha \in \Omega$, $\alpha(f \vee g) = (\alpha f) \vee (\alpha g)$, and dually. The questions posed above have analogues in the language of lattice ordered groups (l-groups), where the operations \wedge, \vee together with the group operations can be used in equational laws for $A(\Omega)$. In Corollary 2.6 we show that the group $A(\Omega)$ generates \mathfrak{S}_n iff the l-group $A(\Omega)$ generates \mathfrak{S}^n (the l-group analogue of \mathfrak{S}_n), and in this case $A(\Omega)$ contains a free- \mathfrak{S}^{n-1} l-subgroup of rank \mathfrak{S}^n (Theorem 5.2). Finally, the group $A(\Omega)$ generates \mathfrak{S} iff the l-group $A(\Omega)$ generates either \mathfrak{N} or \mathfrak{L} , where \mathfrak{N} is the join of all \mathfrak{S}^n

Received by the editors June 11, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 06A05; Secondary 20B27.

¹Work done while the author was on sabbatical leave at Simon Fraser University.

and \mathcal{L} is the variety of all l-groups (Corollary 2.8). In each case $A(\Omega)$ contains an appropriate free l-subgroup of rank 2^{\aleph_0} (Theorems 5.4 and 5.5).

2. The varieties of $A(\Omega)$. For general background in the theory of ordered permutation groups and l-groups, the reader is referred to Glass [2]. We deal first with varieties of l-groups. Let \mathcal{A} denote the variety of abelian l-groups, \mathcal{A}^0 the variety of one-element l-groups, and, for each positive integer n, \mathcal{A}^n the variety of those l-groups G which have an l-ideal H (convex normal sublattice subgroup) such that $H \in \mathcal{A}^{n-1}$ and $G/H \in \mathcal{A}$ (see Martinez [6]). Let \mathcal{N} be the join of all \mathcal{A}^n . Then \mathcal{N} is covered by the variety \mathcal{L} of all l-groups [4, 5]. We show that the variety of l-groups generated by $A(\Omega)$, l-var $A(\Omega)$, is either \mathcal{L} , \mathcal{N} , or \mathcal{A}^n for some n.

We make use of the (orbital) wreath product, defined as follows. Let (K,Λ) be an ordered permutation group, that is, K is a subgroup of $A(\Lambda)$. For each $\lambda \in \Lambda$ let H_{λ} be a group with $H_{\lambda} = H_{\mu}$ when λ and μ lie in the same K-orbit. Let $H = \prod_{\lambda \in \Lambda} H_{\lambda}$. The wreath product $\{H_{\lambda}\}$ Wr (K,Λ) is the splitting extension of H by K where conjugation by an element of K permutes the indices of H in the obvious way. If K is a sublattice of $A(\Lambda)$ and each H_{λ} is an l-group, then G becomes an l-group with the order $e \leq hk$ (for e the identity element, $h \in H$, $k \in K$) iff for each $\lambda \in \Lambda$, $\lambda < \lambda k$ or both $\lambda = \lambda k$ and $h_{\lambda} \geq e$. If each H_{λ} is given as an l-subgroup of $A(\theta_{\lambda})$ for some totally ordered set θ_{λ} , the wreath product can be described another way. Let $\Omega = \{(\sigma, \lambda) \in (\bigcup_{\lambda \in \Lambda} \theta_{\lambda}) \times \Lambda : \sigma \in \theta_{\lambda}\}$, and order Ω lexicographically from the right. Then $\{H_{\lambda}\}$ Wr (K,Λ) consists of all $g \in A(\Omega)$ having the form $(\sigma, \lambda)g = (\sigma g_{\lambda}, \lambda \overline{g})$, where $\overline{g} \in K$ and $g_{\lambda} \in H_{\lambda}$ for each λ .

Of special interest are the iterated wreath products of the *l*-group Z of integers (permuting itself), $\operatorname{Wr}^0 Z = \{e\}$, $\operatorname{Wr}^1 Z = Z$, $\operatorname{Wr}^2 Z = \{Z\} \operatorname{Wr}(Z,Z)$, and, generally, $\operatorname{Wr}^n Z = \{\operatorname{Wr}^{n-1} Z\} \operatorname{Wr}(Z,Z)$.

An orbital of an ordered permutation group $A(\Omega)$ is the convexification of an orbit $\alpha A(\Omega)$, $\alpha \in \Omega$. Note that if Ω_i is an orbital of $A(\Omega)$, then the restriction of $A(\Omega)$ to Ω_i is $A(\Omega_i)$, and $A(\Omega)$ is the full direct product of its restrictions to orbitals. A natural congruence on an orbital Ω_i is an equivalence relation on Ω_i whose classes are convex, which is respected by the action of $A(\Omega_i)$, and which satisfies certain technical conditions (see McClearly [7] or Glass [2] for details). For our purpose here, the important properties are that the natural congruences on any orbital form a complete tower under containment, and if $C_i \subseteq C^i$ are natural congruences such that C^i covers C_i (a covering pair) and if C is a C^i class, then $A(\Omega)$ induces a primitive component corresponding to C and \mathcal{C}_i by restriction to C followed by the natural homomorphism arising from the congruence \mathcal{C}_i . The primitive component $K = K(C, \mathcal{C}_i)$ is again an ordered permutation group, and either (i) K is regular, that is, K is a subgroup of the real numbers R, and the set permuted by K is a union of cosets of K in R, or (ii) K is 0-2-transitive on one of its orbits, which means that if $\alpha < \beta$ and $\gamma < \delta$ are points of that orbit, then there exists $k \in K$ such that $\alpha k = \gamma$ and $\beta k = \delta$ (see McCleary [7] or Glass [2, especially Corollary 4.4.1). It is also useful to note that if \mathcal{C} is a congruence, then $A(\Omega_i) \approx \{A(C_\lambda)\} \text{ Wr } (G,\Omega_i/\mathcal{C}), \text{ where } \{C_\lambda \colon \lambda \in \Omega_i/\mathcal{C}\} \text{ are the } \mathcal{C} \text{ classes and the } \mathcal{C}$ induced group $G \approx A(\Omega_i/\mathcal{C})$ in case $A(\Omega_i)$ is transitive (though not in general).

We call an element $e < f \in A(\Omega)$ join irreducible if $f = a \lor b$ and $a \land b = e$ imply a = e or b = e.

LEMMA 2.1. If on one orbital of $A(\Omega)$ there are covering pairs (C_i, C^i) , $i = 1, 2, \ldots, n$, of natural congruences with $C^i \subseteq C_{i+1}$, and there are C^i classes C^i with $C^i \subseteq C^{i+1}$, and induced primitive components $K_i = K_i(C^i, C_i)$ all nontrivial, then $A(\Omega)$ contains an l-subgroup isomorphic to $\operatorname{Wr}^n Z$; moreover, we can assume the generator of the upper copy of Z is join irreducible.

PROOF. We prove by induction that $A(C^i)$ contains a copy of Wr iZ . Since K_1 is nontrivial, there exists a join irreducible $e < g \in A(C^1)$. Then g generates an infinite cyclic totally ordered subgroup, so $A(C^1)$ contains an l-subgroup isomorphic to $Z = \operatorname{Wr}^1Z$. Assume $A(C^i)$ contains an l-subgroup H_0 isomorphic to Wr iZ . We may identify $A(C^i)$ with a subgroup of $A(\Omega)$ fixing each point not in C^i . Let C be the C_{i+1} class containing C^i . Since K_{i+1} is not trivial, there exists a join irreducible $e < g \in A(C^{i+1})$ such that $Cg \neq C$ (this follows from the technical definition of natural congruence; see [7 or 2]). Then the set $\{Cg^j\}$ is pairwise disjoint. Let $H_j = g^{-j}H_0g^j$. Clearly $A(C^{i+1})$ contains the full direct product $\prod H_j$, and conjugation by g permutes the indices of this product. Thus $A(C^{i+1})$ contains an l-subgroup isomorphic to $H_0\operatorname{Wr} Z \approx \operatorname{Wr}^{i+1} Z$.

If $f \in A(\Omega)$, supp $f = \{\alpha \in \Omega : \alpha f \neq \alpha\}$ and, for any subgroup $G \subseteq A(\Omega)$, supp $G = \{\alpha \in \Omega : \exists f \in G, \alpha f \neq \alpha\}$.

LEMMA 2.2. If some primitive component of $A(\Omega)$ is not regular then $A(\Omega)$ has l-subgroups $G_n \approx \operatorname{Wr}^n Z$, $n = 1, 2, \ldots$, such that if $n \neq m$, $\operatorname{supp} G_n \cap \operatorname{supp} G_m = \emptyset$.

PROOF. If K is a nonregular primitive component, K is 0-2-transitive on one of its orbits. Let $\alpha < \beta$ be any two points of this orbit. We construct $G_n \approx \operatorname{Wr}^n Z$ with supp $G_n \subseteq (\alpha, \beta)$. There exists $k \in K$ such that e < k and supp $k \subseteq (\alpha, \beta)$. Hence K contains $\langle k \rangle \approx Z$. If $\gamma k \neq \gamma$, the intervals $(\gamma k^i, \gamma k^{i+1})$ are pairwise disjoint, and $(\gamma, \gamma k)$ contains supp k' for some $e < k' \in K$. Then supp $k^{-i}k'k^i \subseteq (\gamma k^i, \gamma k^{i+1})$ and K contains the full direct product of the groups $k^{-i}\langle k' \rangle k^i$. Hence K contains an l-subgroup isomorphic to $Z \operatorname{Wr} Z = \operatorname{Wr}^2 Z$. The construction is completed by induction. We can then choose disjoint intervals $(\alpha_1, \beta_1), (\alpha_2, \beta_2), \ldots$ and find $G_n \approx \operatorname{Wr}^n Z$ with supp $G_n \subseteq (\alpha_n, \beta_n)$.

We let l-var G denote the variety of l-groups generated by G, and g-var G the variety of groups.

- LEMMA 2.3. l-var $\operatorname{Wr}^n Z = \mathcal{A}^n$ [4, Theorem 4.6] and g-var $\operatorname{Wr}^n Z = \mathfrak{S}_n$ (see Neumann [9, 22.24 plus 17.6]).
- LEMMA 2.4. If $A(\Omega)$ has just one orbital and there are only a finite number of natural congruences, then $A(\Omega)$ can be embedded (as an l-group) in the iterated wreath product of its primitive components (see Glass [2]).

We also note the following connection between wreath products and varieties. If $H \in \mathcal{A}$ and each $G_{\lambda} \in \mathcal{A}^{i}$ then $\{G_{\lambda}\}$ Wr $(H, \Lambda) \in \mathcal{A}^{i+1}$.

THEOREM 2.5. If $A(\Omega)$ has just one orbital, the following are equivalent:

- (i) There exist at least n nontrivial primitive components or some primitive component is not regular.
 - (ii) $\operatorname{Wr}^n Z \subset A(\Omega)$.
 - (iii) $\mathcal{A}^n \subseteq l\text{-var }A(\Omega)$.
 - (iv) $\mathfrak{S}_n \subseteq g$ -var $A(\Omega)$.

PROOF. That (i) implies (ii) follows from Lemmas 2.1 and 2.2, while (ii) implies both (iii) and (iv) by Lemma 2.3. If there are no more than m < n covering pairs of natural congruences and all primitive components are regular, then Lemma 2.4 implies $A(\Omega)$ can be embedded in the iterated wreath product of m regular, hence abelian, l-groups, and so $A(\Omega) \in \mathcal{A}^m \subseteq \mathfrak{S}_m$, contradicting both (iii) and (iv). Hence (iii) implies (i), and (iv) implies (i).

COROLLARY 2.6. If $A(\Omega)$ has just one orbital then the following are equivalent:

- (i) There exist exactly n nontrivial primitive components and all are regular.
- (ii) Wr ${}^{n}Z \subseteq A(\Omega)$ but Wr ${}^{n+1}Z \not\subseteq A(\Omega)$.
- (iii) l-var $A(\Omega) = \mathcal{A}^n$.
- (iv) g-var $A(\Omega) = \mathfrak{S}_n$.

COROLLARY 2.7. For any $A(\Omega)$, l-var $A(\Omega) = \mathcal{A}^n$ iff g-var $A(\Omega) = \mathfrak{S}_n$.

COROLLARY 2.8. For any $A(\Omega)$, l-var $A(\Omega) = \mathcal{N}$ or \mathcal{L} iff g-var $A(\Omega) = \mathfrak{G}$.

PROOF. \mathcal{N} is the join of all \mathcal{A}^n and \mathcal{L} covers \mathcal{N} . Hence l-var $A(\Omega) = \mathcal{N}$ or \mathcal{L} is equivalent to the statement: for all n there is an orbital Ω_i such that l-var $A(\Omega_i) \supseteq \mathcal{A}^n$. In turn, this is equivalent to g-var $A(\Omega_i) \supseteq \mathfrak{S}_n$; and the corollary follows because \mathfrak{G} is the join of all \mathfrak{S}_n (any free group is a subdirect product of solvable groups).

THEOREM 2.9. l-var $A(\Omega)$ is either \mathcal{L} , \mathcal{N} , or \mathcal{A}^n for some n.

PROOF. Since the named varieties form a complete tower, and since $A(\Omega)$ belongs to a variety $\mathcal V$ iff the restriction of $A(\Omega)$ to each of its orbitals belongs to $\mathcal V$, it suffices to prove the theorem assuming $A(\Omega)$ has just one orbital. If some primitive component is not regular, then l-var $A(\Omega) = \mathcal L$ [5]. If all primitive components are regular then $A(\Omega) \in \mathcal N$ (Read [11]). The theorem now follows from Corollary 2.6 and the fact that $\mathcal N$ is the join of all $\mathcal A^n$.

THEOREM 2.10. g-var $A(\Omega)$ is either \mathfrak{G} or \mathfrak{S}_n for some n.

PROOF. Immediate from Theorem 2.9 and Corollaries 2.7 and 2.8.

COROLLARY 2.11. $A(\Omega) \in \mathcal{A}^n$ iff $A(\Omega) \in \mathfrak{S}_n$.

It follows from Theorem 2.5 that if l-var $A(\Omega) = \mathcal{N}$ then, for each n, $A(\Omega)$ contains an l-subgroup isomorphic to Wr nZ . In §5 we need the following strong version of this fact.

LEMMA 2.12. If l-var $A(\Omega) = \mathcal{N}$ then $A(\Omega)$ contains l-subgroups G_n , $n = 1, 2, \ldots$, such that $G_n \approx \operatorname{Wr}^n Z$ and $\operatorname{supp} G_i \cap \operatorname{supp} G_j = \emptyset$ if $i \neq j$.

PROOF. Case 1. Suppose, for every orbital Ω_{λ} , l-var $A(\Omega_{\lambda}) \neq \mathcal{N}$. Inductively, suppose $\operatorname{Wr}^i Z \approx G_i \subseteq A(\Omega_{\lambda_i}), \ i=1,2,\ldots,n$, with $\Omega_{\lambda_i} \neq \Omega_{\lambda_j}$ when $i \neq j$. Then l-var $A(\Omega_{\lambda_i}) = \mathcal{A}^{m_i}$, so there exists $\Omega_{\lambda_{n+1}}$ such that l-var $A(\Omega_{\lambda_{n+1}}) \not\supseteq \mathcal{A}^{m_i}, \ i=1,2,\ldots,n$. Hence $\Omega_{\lambda_{n+1}}$ is different from all $\Omega_{\lambda_i}, \ i \leq n$, and $A(\Omega_{n+1})$ contains an l-subgroup G_{n+1} isomorphic to $\operatorname{Wr}^{n+1} Z$ by Theorem 2.5.

Case 2. Suppose l-var $A(\Omega_{\lambda}) = \mathcal{N}$ for some orbital Ω_{λ} .

Subcase 2a. Suppose Ω_{λ} has no largest proper natural congruence. Inductively, suppose $\operatorname{Wr}^i Z \approx G_i \subseteq A(\Omega_{\lambda}), \ i=1,2\dots,n$, with each G_i having a join-irreducible generator g_i for its uppermost copy of Z. Then supp g_i is a congruence class B_i (because $A(\Omega_i) \in \mathcal{N}$; see [11]). There exists a join irreducible g'_{n+1} which moves B_n . Let supp $g'_{n+1} = B'_{n+1}$. Then the conjugates of G_n by powers of g'_{n+1} have disjoint support, so $A(\Omega_{\lambda})$ contains their full direct product which, together with g'_{n+1} , generates an l-subgroup G'_{n+1} isomorphic to $\operatorname{Wr}^{n+1} Z$. There is a proper congruence class $B \supseteq B'_{n+1}$. Let g be any element of $A(\Omega_{\lambda})$ which moves B. Let $G_{n+1} = g^{-1}G'_{n+1}g$.

Subcase 2b. Suppose Ω_{λ} has a largest proper natural congruence \mathcal{C} . Then $A(\Omega_{\lambda})$ induces A(C) on each \mathcal{C} class C. It cannot be that l-var $A(C) \subseteq \mathcal{A}^n$ for a fixed n and all C, for then $A(\Omega_{\lambda}) \in \mathcal{A}^{n+1}$. Hence for each n there exists a \mathcal{C} class C_n such that $\operatorname{Wr}^n Z \subseteq A(C_n)$, and we may assume $C_n \neq C_m$ when $n \neq m$, since each \mathcal{C} class has infinitely many isomorphic translates. The proof can now be completed just as in Case 1.

3. The structure of transitive $A(\Omega) \in \mathcal{A}^n$. Ohkuma [10] showed that if $A(\Omega)$ is uniquely transitive (for each $\alpha, \beta \in \Omega$ there exists a unique $g \in A(\Omega)$ such that $\alpha g = \beta$), then $A(\Omega)$ is isomorphic to a subgroup of the additive ordered group of real numbers and $\Omega \approx A(\Omega)$ as ordered sets. Nonzero subgroups of the reals with this property have since been called *Ohkuma groups* and extensively studied ([3]; see also Glass [2]). Since it is easily seen that a transitive abelian $A(\Omega)$ must be uniquely transitive, Ohkuma's result may be stated as follows: if $A(\Omega)$ is transitive and nontrivial, then l-var $A(\Omega) = \mathcal{A}$ iff Ω is an Ohkuma group, and in this case $A(\Omega) \approx \Omega$. In this section we study the analogous problem when l-var $A(\Omega) = \mathcal{A}^n$.

The heart of the main theorem of this section is contained in the following technical lemma.

LEMMA 3.1. Let O_1, O_2, \ldots, O_n be Ohkuma groups, and $\Omega = O_1 \times O_2 \times \cdots \times O_n$ ordered lexicographically from the right. Then (i) Ω is not isomorphic to any proper segment of itself, and (ii) no proper initial segment of Ω is isomorphic to any proper final segment of Ω .

PROOF. We deal first with the case n=1. The result is clearly true if $\Omega=O_1\approx Z$. Since all other (noncyclic) subgroups of the reals are dense, we assume $\Omega=O_1$ is a dense subgroup of the reals. If $\phi\colon\Omega\to\Omega'$ is an isomorphism (of ordered sets) where Ω' is a proper segment of Ω , let f be any nontrivial member of $A(\Omega)$. Then $\phi^{-1}f\phi$ is a nontrivial member of $A(\Omega')$, which can be extended to $f'\in A(\Omega)$, fixing all points of $\Omega\setminus\Omega'$. This contradicts the unique transitivity of $A(\Omega)$, hence (i) holds.

Since Ω is a dense subset of the real numbers, each initial segment of Ω has the form $(-\infty, \alpha) = \{x \in \Omega : x < \alpha\}$, where α is a real number (not necessarily in Ω). Likewise, each final segment has the form (β, ∞) . Suppose $\psi : (-\infty, \alpha) \approx (\beta, \infty)$. Let g be any negative member of $A(\Omega)$. Then $(-\infty, \alpha) \approx (-\infty, \alpha g)$, and if we let $\beta' = \alpha g \psi$, there is an isomorphism $\phi : (\beta, \beta') \approx (\beta, \infty)$, which can be extended to an isomorphism of the *real* intervals $(\beta, \beta') \approx (\beta, \infty)$. Because Ω is dense, there exists a positive $t \in A(\Omega)$ such that $\beta < \beta t < \beta'$. We may also consider t extended to a map from the reals to the reals. Because both t and ϕ preserve order, their extensions are continuous. Since $\beta t < \beta' = \beta \phi$ and $\beta' t < \infty = \beta' \phi$, there exists a

real number γ such that $\gamma t = \gamma \phi$ and $\beta < \gamma < \beta'$. Now define $f: \Omega \to \Omega$ by

$$xf = \left\{ egin{array}{ll} x & ext{if } x < eta, \ x\phi & ext{if } eta \leq x \leq eta', \ xt & ext{if } eta' < x. \end{array}
ight.$$

Then $f \in A(\Omega)$. But f fixes some points without fixing all, denying unique transitivity of $A(\Omega)$. Hence (ii) is satisfied. This takes care of the case n = 1.

Now let $\Omega = O_1 \times O_2 \times \cdots \times O_n$, n > 1, and suppose the result is true for $\Lambda = O_1 \times O_2 \times \cdots \times O_{n-1}$. Let \mathcal{C}_n be the equivalence relation on Ω given by $(a_1, a_2, \ldots, a_n) \, \mathcal{C}_1 \, (b_1, b_2, \ldots, b_n)$ iff $a_n = b_n$. If $\phi \colon \Omega \to \Omega'$ is an isomorphism of Ω onto a proper segment of itself and ϕ preserves \mathcal{C}_n classes, then ϕ induces an isomorphism of O_n onto a proper segment of itself, contradicting the result for n = 1. Hence for some \mathcal{C}_n class $x \, \mathcal{C}_n$, $x \phi \, \mathcal{C}_1 \neq x \, \mathcal{C}_n \phi$. Each of these two classes is a convex segment of Ω and is isomorphic to Λ . Further, $x \phi$ belongs to both. Hence either one is contained in the other, or they overlap so that an initial segment of one is a final segment of the other. But each of these possibilities contradicts the inductive assumption about Λ . Hence (i) is satisfied by Ω . A similar argument shows that (ii) is satisfied, completing the proof of the lemma.

THEOREM 3.2. If $A(\Omega)$ is transitive,

$$l$$
-var $A(\Omega) = A^n$ iff $\Omega \approx O_1 \times O_2 \times \cdots \times O_n$,

a lexicographically ordered product of Ohkuma groups; in this case $A(\Omega) \approx O_1 \operatorname{Wr} O_2 \operatorname{Wr} \cdots \operatorname{Wr} O_n$.

PROOF. If l-var $A(\Omega) = \mathcal{A}^n$, then there are exactly n primitive components O_i and are all regular by Corollary 2.6. But a transitive regular primitive component must be an Ohkuma group (see Glass [2]). Hence $A(\Omega)$ can be embedded in the wreath product $O_1 \operatorname{Wr} O_2 \operatorname{Wr} \cdots \operatorname{Wr} O_n$, which acts as an ordered permutation group on the set $O_1 \times O_2 \times \cdots \times O_n$ ordered lexicographically from the right. In the embedding $\Omega \approx O_1 \times O_2 \times \cdots \times O_n$, however, so $A(\Omega) \approx O_1 \operatorname{Wr} O_2 \operatorname{Wr} \cdots \operatorname{Wr} O_n$.

For the converse, suppose that O_1, O_2, \ldots, O_n are given Ohkuma groups and $\Omega = O_1 \times O_2 \times \cdots \times O_n$. We claim that each of the relations C_i , given by $(a_1, a_2, \ldots, a_n) C_i(b_1, b_2, \ldots, b_n)$ iff $a_j = b_j$ for all $j \geq i$, is a congruence for $A(\Omega)$. This is the case because each of the C_i classes is isomorphic to the set $\Omega = O_1 \times O_2 \times \cdots \times O_{i-1}$, to which Lemma 3.1 applies. It follows that the primitive components of $A(\Omega)$ are $A(O_i) \approx O_i$, each of which is nontrivial and regular, so l-var $A(\Omega) = \mathcal{A}^n$ by Corollary 2.6.

The case of transitive $A(\Omega)$ with l-var $A(\Omega) = \mathcal{N}$ appears to be much more complicated. It is still true, just as before, that Ω is embedded in a lexicographically ordered product of Ohkuma groups, but the embedding need not be onto. Worse yet, even the full product of Ohkuma groups need not have the natural congruences. For example, $\cdots \times Z \times Z \times Z$ is isomorphic to the set of irrational real numbers, which has no proper natural congruence.

4. The group structure of arbitrary $A(\Omega) \in \mathcal{A}^n$. A theorem of Chang and Ehrenfeucht [1] states that $A(\Omega) \in \mathcal{A}$ iff $A(\Omega)$, as a group, is a full direct product of subgroups of the real numbers R. In order to extend this to higher powers, we define a group G to be of wreal height $\leq n$ inductively as follows. If n = 0, $G = \{e\}$;

in general, $G \approx \{G_{\lambda}\}$ Wr (H, Λ) , where H is a subgroup of R acting regularly on Λ , a union of orbits of H in R, $G_{\lambda} = \prod_k G_{\lambda,k}$, and each $G_{\lambda,k}$ is a group of wreal height $\leq n-1$. Note that G has wreal height ≤ 1 iff G is isomorphic to a subgroup of R. We will show that $A(\Omega) \in \mathcal{A}^n$ iff $A(\Omega)$ if a full direct product of groups of wreal height $\leq n$.

THEOREM 4.1. If $A(\Omega) \in \mathcal{A}^n$, then $A(\Omega)$ is a full direct product of groups of wreal height $\leq n$.

PROOF. It suffices to prove that if $A(\Omega)$ has just one orbital and belongs to \mathcal{A}^n , then $A(\Omega)$ is a group of wreal height $\leq n$. The theorem is trivially true if n=0. In the general case, by Corollary 2.6 and Theorem 2.9, $A(\Omega)$ has exactly $m \leq n$ nontrivial primitive components, and each is regular. If H is the component corresponding to the uppermost covering pair of natural congruences $(\mathcal{C}_i, \mathcal{C}^i)$, then H is a subgroup of R acting on Λ , a union of its orbits. On each of the \mathcal{C}_i classes θ_{λ} , $A(\Omega)$ induces $A(\theta_{\lambda}) \in \mathcal{A}^{n-1}$, and so by induction $A(\theta_{\lambda})$ is a product of groups of wreal height $\leq n-1$. Since $A(\Omega) \approx \{A(\theta_{\lambda})\}$ Wr (H,Λ) , $A(\Omega)$ has wreal height $\leq n$.

THEOREM 4.2. If G is a product of groups of wreal height $\leq n$, then, for some Ω , $G \approx A(\Omega)$ and $A(\Omega) \in \mathcal{A}^n$.

PROOF. The theorem is trivial for n=0. We proceed by induction. We may assume G has wreal height $\leq n$, for if $G=\prod P_i$ and each P_i has wreal height $\leq n$, and if we know $P_i \approx A(\Omega_i) \in \mathcal{A}^n$, let $\{\pi_i\}$ be ordinals each greater than $\bigvee_i |P_i|$, and all different, and let $\Omega_i' = \pi_i \times \Omega_i$ ordered lexicographically from the right. Let Ω be the disjoint union of all Ω_i' ordered in any way so that each Ω_i' (as previously ordered) is convex. Then $A(\Omega) = \prod A(\Omega_i') \approx \prod A(\Omega_i) = G$. Hence, we now assume G has wreal height $\leq n$ and is a wreath product as in the definition. By induction, each $G_{\lambda} \approx A(\theta_{\lambda}) \in \mathcal{A}^{n-1}$. Let $\Omega^* = \{(\sigma, \lambda) \in (\bigcup \theta_{\lambda}) \times \Lambda \colon \sigma \in \theta_{\lambda}\}$. Then

$$G = \{ g \in A(\Omega^*) \colon (\sigma, \lambda)g = (\sigma g_{\lambda}, \overline{g}), \ g_{\lambda} \in A(\theta_{\lambda}), \ \overline{g} \in H \}.$$

Suppose, in the first case, that H is a proper subgroup of R. We consider the regular action (H,R). Following Chang and Ehrenfeucht, for each orbit (coset) J_i of H in R, we let π_i be an ordinal greater than $\bigvee_{\lambda} |\theta_{\lambda}|$ and all π_i different. If we replace each real number r by the ordinal π_i when $r \in J_i$, we get a totally ordered set T and a natural action (H,T) such that H=A(T) (see [1]). Moreover, we can assume $\Lambda \subseteq R \subseteq T$. For $\lambda \in \Lambda$ we already have θ_{λ} defined. For the other $t \in T \setminus \Lambda$, let θ_t be a single point, so $A(\theta_t) = \{e\}$. Then

$$G \approx \{A(\theta_t) \colon t \in T\} \text{ Wr } (A(T), T).$$

Let $\Lambda = \{(\sigma,t) \in (\bigcup \theta_t) \times T : \sigma \in \theta_t\}$ be the set acted on by this wreath product. Clearly each $\theta_t \times \{t\}$ is a congruence class for $A(\Omega)$ because if x < y with $x, y \in \theta_t \times \{t\}$, then $|(x,y)| < \pi_i$ for all i, while if $x \in \theta_t \times \{t\}$ and $y \in \theta_{t'} \times \{t'\}$ with $t \neq t'$, then some ordinal π_i lies between x and y. It follows that

$$A(\Omega) \approx \{A(\theta_{\lambda})\} \operatorname{Wr} (A(T), T) \approx G.$$

In the second case, H=R. Then H is isomorphic to a proper subgroup H' of R, and as permutation groups (thought not as *ordered* permutation groups), $(H,H)\approx (H',H')$. It follows that $G\approx \{G_h\}$ Wr $(H,H)\approx \{G_{h'}\}$ Wr (H',H'), and we proceed as in the first case.

Finally, observe that it follows from induction that any group of wreal height $\leq n$ belongs to the solvable variety \mathfrak{S}_n . Hence, by Corollary 2.11, if $A(\Omega)$ is a product of groups of wreal height $\leq n$, then $A(\Omega) \in \mathcal{A}^n$.

COROLLARY 4.3. If G is a group, there exists Ω such that $G \approx A(\Omega) \in \mathcal{A}^n$ iff G is a full direct product of groups of wreal height $\leq n$.

COROLLARY 4.4 (CHANG AND EHRENFEUCHT [1]). If G is a group, there exists Ω such that $G \approx A(\Omega) \in \mathcal{A}$ iff G is a full direct product of subgroups of the real numbers.

- 5. Free subgroups of $A(\Omega)$. The following lemma is only a slight modification of a theorem of J. Mycielski applied to the special case of l-groups. We invoke Mycielski's theorem in the proof.
- LEMMA 5.1. Let V be a variety of groups (or of l-groups). Suppose there are subgroups (or l-subgroups) $G_i \subseteq A(\Omega)$, $i=1,2,\ldots$, such that supp $G_i \cap \text{supp } G_j = \emptyset$ if $i \neq j$, and whenever (w=e) is not a law of V (where w is a word in the free group (or free l-group) on x_1, x_2, \ldots), then there exists i=i(w) such that if $j \geq i$, G_j does not satisfy (w=e). Then $A(\Omega)$ contains $\prod G_i$ which contains a free V group (or l-group) on 2^{\aleph_0} generators.
- PROOF. Clearly $A(\Omega)\supseteq\prod G_i$. We first show $\prod G_i$ has a free subgroup (lsubgroup) on \aleph_0 generators. List all those words w_1,w_2,\ldots such that $(w_i=e)$ is not a law of $\mathcal V$. Inductively, there exists i(n)>i(n-1) such that $G_{i(n)}$ does not satisfy $(w_n=e)$; that is, there are $g(n,1),g(n,2),\ldots\in G_{i(n)}$ such that $w_n(\bar g(n,-))\neq e$. Let $g_i=(g(1,i),g(2,i),\ldots)\in\prod G_n$. Then $\{g_1,g_2,\ldots\}$ is free.

Next, partition $Z^+ = P_1 \dot{\cup} P_2 \dot{\cup} \cdots$ into an infinite number of infinite sets. Then for each j, $\{G_i \colon i \in P_j\}$ satisfies the hypotheses of the lemma. Hence $G'_j = \prod_{i \in P_j} G_i$ contains a free \mathcal{V} subgroup (or l-subgroup) on a countable set. Moreover, supp $G'_j \cap \text{supp } G'_k = \emptyset$ when $j \neq k$, so $A(\Omega) \supseteq \prod G'_j$. Mycielski's theorem ([8, Corollary 3] and the ensuing discussion) implies that $\prod G'_j$ contains a free \mathcal{V} subgroup (or l-subgroup) on 2^{\aleph_0} generators.

THEOREM 5.2. If l-var $A(\Omega) = \mathcal{A}^n$ then $A(\Omega)$ contains a free \mathcal{A}^{n-1} l-subgroup on 2^{\aleph_0} generators.

PROOF. We may suppose $A(\Omega)$ has just one orbital and a maximal proper natural congruence \mathcal{C} (Corollary 2.6). For some \mathcal{C} class C, l-var $A(C) = \mathcal{A}^{n-1}$ (otherwise $A(\Omega) \in \mathcal{A}^{n-1}$). There are infinitely many disjoint translates of C, so $A(\Omega)$ contains l-subgroups $G_i \approx \operatorname{Wr}^{n-1} Z$ satisfying the hypotheses of Lemma 5.1 for $\mathcal{V} = \mathcal{A}^{n-1}$ (by Lemma 2.3).

THEOREM 5.3. If g-var $A(\Omega) = \mathfrak{S}_n$, then $A(\Omega)$ contains a free \mathfrak{S}_{n-1} subgroup on 2^{\aleph_0} generators.

PROOF. The hypothesis is equivalent to that of Theorem 5.2 (by Corollary 2.6). In the proof of Theorem 5.2, since l-var $A(C) = \mathcal{A}^{n-1}$, g-var $A(C) = \mathfrak{S}_{n-1}$ by Corollary 2.6, and the hypotheses of Lemma 5.1 are satisfied for $\mathcal{V} = \mathfrak{S}_{n-1}$.

THEOREM 5.4. If l-var $A(\Omega) = \mathcal{N}$ then $A(\Omega)$ contains a free \mathcal{N} l-subgroup on 2^{\aleph_0} generators.

PROOF. \mathcal{N} is generated by the set of all WrⁿZ since \mathcal{N} is the join of all \mathcal{A}^n (and using Lemma 2.3). From Lemma 2.12 the hypotheses of Lemma 5.1 are satisfied with $\mathcal{V} = \mathcal{N}$.

THEOREM 5.5. If l-var $A(\Omega) = \mathcal{L}$ then $A(\Omega)$ contains a free l-subgroup on 2^{\aleph_0} generators.

PROOF. Some primitive component of $A(\Omega)$ is not regular and so is 0-2-transitive on one of its orbits (see remarks preceding Lemma 2.1). Let $\alpha < \beta$ be points of that orbit. Then the restriction of $A(\Omega)$ to the interval (α, β) satisfies no nontrivial l-group law [5]. Hence, choosing disjoint intervals, we have l-subgroups $G_i \subseteq A(\Omega)$ satisfying the hypotheses of Lemma 5.1 for $\mathcal{V} = \mathcal{L}$.

THEOREM 5.6. If g-var $A(\Omega) = \mathfrak{G}$, then $A(\Omega)$ contains a free subgroup on 2^{\aleph_0} generators.

PROOF. We have either l-var $A(\Omega) = \mathcal{N}$ or l-var $A(\Omega) = \mathcal{L}$ by Corollary 2.8. In either case $A(\Omega)$ has subgroups $G_n \approx \operatorname{Wr}^n Z$ satisfying the hypotheses of Lemma 5.1 for $\mathcal{V} = \mathfrak{G}$ (by Lemmas 2.2, 2.3 and 2.12).

REFERENCES

- C. C. Chang and A. Ehrenfeucht, A characterization of abelian groups of automorphisms of a simply ordering relation, Fund. Math. 51 (1962), 141-147.
- A. M. W. Glass, Ordered permutation groups, London Math. Soc. Lecture Notes Ser., Vol. 55, Cambridge Univ. Press, London and New York, 1981.
- 3. A. M. W. Glass, Y. Gurevich, W. C. Holland and S. Shelah, *Rigid homogeneous chains*, Math. Proc. Cambridge Philos. Soc. 89 (1981), 7-17.
- A. M. W. Glass, W. C. Holland and S. H. McCleary, The structure of l-group varieties, Algebra Universalis 10 (1980), 1-20.
- W. C. Holland, The largest proper variety of lattice ordered groups, Proc. Amer. Math. Soc. 57 (1976), 25-28.
- 6. J. Martinez, Varieties of lattice-ordered groups, Math. Z. 137 (1974), 256-284.
- S. H. McCleary, The structure of intransitive ordered permutation groups, Algebra Universalis 6 (1976), 229–255.
- 8. J. Mycielski, Almost every function is independent, Fund. Math. 81 (1973), 43-48.
- 9. H. Neumann, Varieties of groups, Ergeb. Math. Grenzgeb., No. 37, Springer-Verlag, 1967.
- 10. T. Ohkuma, Sur quelques ensembles ordonnés linéarment, Fund. Math. 43 (1955), 326-337.
- J. A. Read, Wreath products of non-overlapping lattice-ordered groups, Canad. Math. Bull. 17 (1975), 713-722.

DEPARTMENT OF MATHEMATICS, BOWLING GREEN STATE UNIVERSITY, BOWLING GREEN, OHIO 43403