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VARIETIES OF AUTOMORPHISM GROUPS OF ORDERS

BY

W. CHARLES HOLLAND1

ABSTRACT. The group A(ST) of automorphisms of a totally ordered set fi

must generate either the variety of all groups or the solvable variety of class

n. In the former case, A(fi) contains a free group of rank 2N° ; in the latter

case, A(ST) contains a free solvable group of class n — 1 and rank 2K°.

1. Introduction. This work was prompted by the following question of A.

Ehrenfeucht (see the footnote on p. 47 of [8]); I thank J. Mycielski for calling it to

my attention:

Must the group of automorphisms of an ordered set have a free

subgroup of rank 2N° whenever it has a free subgroup of rank 2?

The answer is yes. In fact, if the group A(Q) of automorphisms of the (totally)

ordered set fl fails to satisfy every nontrivial equational group law, then A(Q) must

contain a free subgroup of rank 2H° (Theorem 5.6).

Phrased in the last way, the question suggests an analogous question for groups

A(U) which do satisfy some equational laws. In the first place, one should ask what

varieties (equationally defined classes) can be generated by the groups A(Q). We

will show that these are just the varieties 6„ of n-solvable groups, together with

the variety (S of all groups (Theorem 2.10). Then we show that if A(fi) generates

&n, A(Q) contains a free-6n_i subgroup of rank 2N° (Theorem 5.3). As a by-

product of this investigation, we can describe precisely the structure of a group

A(Q) if A(fi) generates &n (Corollaries 4.3 and 2.6), thus generalizing a theorem

of Chang and Ehrenfeucht [1] from the case G i = abelian. In the special cases that

A(il) is transitive on Q, we characterize not only the group A(Q) but the set U if

A(fl) generates 6„ (Theorem 3.2 and Corollary 2.6), thus generalizing a theorem

of Ohkuma [10], again from the case &i.

In many ways the most natural context for the study of A(Q) is as a lattice

ordered group. The lattice operations are defined pointwise: for /, g G A(ü)

and a G íí, a(f V g) — (af) V (ctg), and dually. The questions posed above have

analogues in the language of lattice ordered groups (/-groups), where the operations

A, V together with the group operations can be used in equational laws for A(D).

In Corollary 2.6 we show that the group A(Q) generates 6n iff the Z-group A(Q)

generates An (the Z-group analogue of &n), and in this case A(U) contains a free-

An~l Z-subgroup of rank 2N° (Theorem 5.2). Finally, the group A(Q) generates

<S iff the Z-group A(fi) generates either M or £,, where M is the join of all An

Received by the editors June 11, 1984.
1980 Mathematics Subject Classification. Primary 06A05; Secondary 20B27.
1Work done while the author was on sabbatical leave at Simon Fraser University.

©1985 American Mathematical Society

0002-9947/85 $1.00 + $.25 per page

755



756 W. C. HOLLAND

and t is the variety of all Z-groups (Corollary 2.8). In each case A(Q) contains an

appropriate free Z-subgroup of rank 2N° (Theorems 5.4 and 5.5).

2. The varieties of A(0). For general background in the theory of ordered

permutation groups and Z-groups, the reader is referred to Glass [2]. We deal first

with varieties of Z-groups. Let A denote the variety of abelian Z-groups, A0 the

variety of one-element Z-groups, and, for each positive integer n, An the variety

of those Z-groups G which have an Z-ideal 77 (convex normal sublattice subgroup)

such that H G il""1 and G/77 G A (see Martinez [6]). Let M be the join of all An.

Then M is covered by the variety £, of all Z-groups [4, 5]. We show that the variety

of Z-groups generated by A(fi), Z-var A(Q), is either £, M, or An for some n.

We make use of the (orbital) wreath product, defined as follows. Let (K, A) be

an ordered permutation group, that is, K is a subgroup of A(A). For each À G A

let H\ be a group with 77a = 77^ when A and p lie in the same 7f-orbit. Let

77 = riAeA ^- The wreath product {77a} Wr (K, A) is the splitting extension of

77 by K where conjugation by an element of K permutes the indices of 77 in the

obvious way. If K is a sublattice of A(A) and each 77a is an Z-group, then G becomes

an Z-group with the order e < hk (for e the identity element, h G 77, fc G Tí) iff

for each A G A, A < Xk or both A = Afc and h\ > e. If each 77a is given as an

Z-subgroup of A(9\) for some totally ordered set 9\, the wreath product can be

described another way. Let fi = {(cr,A) G (UasA^O x A: cr g 9\}, and order fi

lexicographically from the right. Then {77a} Wr (-^A) consists of all g G A(fi)

having the form (cr, X)g = (ag\,Xg), where g G K and g\ G 77A for each A.

Of special interest are the iterated wreath products of the Z-group Z of inte-

gers (permuting itself), Wr°Z = {e}, Wr*Z = Z, Wr2Z = {Z}Wr(Z,Z), and,
generally, WrnZ = {Wr"-xZ} Wr (Z, Z).

An orbital of an ordered permutation group A(fi) is the convexification of an

orbit aA(fi), a G fi. Note that if fi¿ is an orbital of A(fi), then the restriction

of A(fi) to fi¿ is A(fi¿), and A(fi) is the full direct product of its restrictions to

orbitals. A natural congruence on an orbital fi2 is an equivalence relation on fi¿

whose classes are convex, which is respected by the action of A(fi¿), and which

satisfies certain technical conditions (see McClearly [7] or Glass [2] for details).

For our purpose here, the important properties are that the natural congruences on

any orbital form a complete tower under containment, and if C¿ Ç Cl are natural

congruences such that C% covers d (a covering pair) and if C is a O class, then

A(fi) induces a primitive component corresponding to C and C¿ by restriction to

C followed by the natural homomorphism arising from the congruence C». The

primitive component K — K(C, d) is again an ordered permutation group, and

either (i) K is regular, that is, K is a subgroup of the real numbers R, and the set

permuted by K is a union of cosets of K in R, or (ii) K is 0-2-transitive on one

of its orbits, which means that if a < ß and 7 < ¿5 are points of that orbit, then

there exists k G K such that ak — -7 and ßk = 8 (see McCleary [7] or Glass [2,

especially Corollary 4.4.1]). It is also useful to note that if C is a congruence, then

A((ii) » {A(Cx)} Wr (G,n¿/C), where {Cx: X G Qi/C} are the C classes and the
induced group G « A(Q¿/C) in case A(fi¿) is transitive (though not in general).

We call an element e < / G A(ü) join irreducible if / = a V b and a A b = e imply

a = e or b = e.
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LEMMA 2.1. 7/on one orbital of A(fi) there are covering pairs (d,Cl), i =

1,2,..., n, of natural congruences with C1 Ç Ci+i, and there are Cl classes Cl with

Cx Ç Cl+1, and induced primitive components Ki = Ki(Cl,d) all nontrivial, then

A(fi) contains an l-subgroup isomorphic to WrnZ; moreover, we can assume the

generator of the upper copy of Z is join irreducible.

PROOF. We prove by induction that A(Cl) contains a copy of Wr'Z. Since Tfi

is nontrivial, there exists a join irreducible e < g G A(C1). Then g generates an

infinite cyclic totally ordered subgroup, so A(C^) contains an Z-subgroup isomorphic

to Z = Wr1/?. Assume A(Cl) contains an Z-subgroup 77n isomorphic to Wr'Z. We

may identify A(C%) with a subgroup of A(fi) fixing each point not in C\ Let

C be the G¿+i class containing C\ Since 7í¿+i is not trivial, there exists a join

irreducible e < g G A(Cl+1) such that Cg ^ C (this follows from the technical

definition of natural congruence; see [7 or 2]). Then the set {Cg^} is pairwise

disjoint. Let Hj = g~3Hog3■ Clearly A(Cl+1) contains the full direct product

[\Hj, and conjugation by g permutes the indices of this product. Thus A(Cl+1)

contains an Z-subgroup isomorphic to TFoWrZ sa Wrî+1Z.

If / G A(fi), supp/ = {a G fi: af ^ a} and, for any subgroup G Ç A(fi),

supp G = {a G fi: 3/ G G, af ^ a}.

LEMMA 2.2. If some primitive component of A(fi) is not regular then A(fi) has

l-subgroups Gn « WrnZ, n — 1,2,..., such that ifn ^ m, suppGnDsuppGm = 0.

PROOF. If Tí is a nonregular primitive component, K is 0-2-transitive on one of

its orbits. Let a < ß be any two points of this orbit. We construct Gn ~ Wr™Z with

suppGn Ç (a,ß). There exists k G K such that e < k and supp/c Ç (a,ß). Hence

K contains (/c) s¿ Z. If ^k ^ 7, the intervals (7A;1, ̂kt+1) are pairwise disjoint, and

(7,7/c) contains suppfc' for some e < k' G K. Then suppk~lk'kl C (^kl,^kl+1)

and K contains the full direct product of the groups k~l(k')kl. Hence K contains

an Z-subgroup isomorphic to ZWrZ = Wr2Z. The construction is completed

by induction. We can then choose disjoint intervals (ai,ßi), (02,^2),... and find

Gn « Wr"Z with suppGn Ç (an,ßn).

We let Z-var G denote the variety of Z-groups generated by G, and ¡7-var G the

variety of groups.

LEMMA 2.3. Z-var WrnZ = An [4, Theorem 4.6] and g-varWr"Z = 6n (see

Neumann [9, 22.24 plus 17.6]).

LEMMA 2.4. 7/A(fi) has just one orbital and there are only a finite number

of natural congruences, then A(fi) can be embedded (as an l-group) in the iterated

wreath product of its primitive components (see Glass [2]).

We also note the following connection between wreath products and varieties. If

77 G A and each GA G Ai then {GA} Wr (77, A) G Al+1.

THEOREM 2.5.   If A(fi) has just one orbital, the following are equivalent:

(i) There exist at least n nontrivial primitive components or some primitive com-

ponent is not regular.

(ii) Wr"Z Ç A(fi).
(iii) AnC Z-var A(fi).

(iv) Gn Çc;-varA(fi).
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PROOF. That (i) implies (ii) follows from Lemmas 2.1 and 2.2, while (ii) implies

both (iii) and (iv) by Lemma 2.3. If there are no more than m < n covering pairs

of natural congruences and all primitive components are regular, then Lemma 2.4

implies A(fi) can be embedded in the iterated wreath product of m regular, hence

abelian, Z-groups, and so A(fi) G Am Ç 6m, contradicting both (iii) and (iv).

Hence (iii) implies (i), and (iv) implies (i).

COROLLARY 2.6.   7/A(fi) has just one orbital then the following are equivalent:

(i) There exist exactly n nontrivial primitive components and all are regular.

(ii) WrnZ C A(fi) but Wrn+1Z % A(fi).

(iii) Z-varA(fi) = i?".

(iv) o-varA(fi) = 6„.

COROLLARY 2.7.   For any A(fi), Z-var A(fi) = An z/fo-var A(fi) = 6„.

COROLLARY 2.8.   For any A(fi), Z-var A(fi) = M or i iff g-var A(fi) = 0.

PROOF. M is the join of all An and t covers H. Hence Z-var A(fi) = fi or £ is

equivalent to the statement: for all n there is an orbital fi¿ such that Z-var A(fi¿) 2

An. In turn, this is equivalent to c/-varA(fi¿) D &n; and the corollary follows

because 0 is the join of all &n (any free group is a subdirect product of solvable

groups).

THEOREM 2.9.   Z-var A(fi) is either £, M, or An for some n.

PROOF. Since the named varieties form a complete tower, and since A(fi)

belongs to a variety "V iff the restriction of A(fi) to each of its Orbitals belongs

to "V, it suffices to prove the theorem assuming A(fi) has just one orbital. If

some primitive component is not regular, then Z-var A(fi) = £ [5]. If all primitive

components are regular then A(fi) G M (Read [11]). The theorem now follows from

Corollary 2.6 and the fact that M is the join of all An.

THEOREM 2.10.   cy-varA(fi) is either 0 or 6n for some n.

PROOF. Immediate from Theorem 2.9 and Corollaries 2.7 and 2.8.

COROLLARY  2.11.   A(fi) G An iff A(fi) G 6„.

It follows from Theorem 2.5 that if Z-var A(fi) = M then, for each n, A(fi)

contains an Z-subgroup isomorphic to WrnZ. In §5 we need the following strong

version of this fact.

LEMMA 2.12. 7/Z-varA(fi) = M then A(fi) contains l-subgroups G„, n —

1,2,..., such that Gn ss WrnZ and suppGt n suppGj = 0 if'i ^ j.

PROOF. Case 1. Suppose, for every orbital U\, Z-var A(Q\) / M. Inductively,

suppose Wr*Z s¡G¡C A(fiAl), i = 1,2,... ,n, with fiA¡ ^ fiA, when i ^ j. Then

Z-var A(ÜXi) = Am>, so there exists fiAn+1 such that Z-varA(ÍÍa„+1) 2 Ami, i =

1,2,..., n. Hence fiA„+1 is different from all f^, i < n, and A(fin+i) contains an

Z-subgroup Gn+i isomorphic to Wr™+1Z by Theorem 2.5.

Case 2. Suppose Z-var A(ü\) = fj for some orbital í7a-
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Subcase 2a. Suppose Q.\ has no largest proper natural congruence. Inductively,

suppose Wt1Z k, GíC. A(Vl\), i = 1,2... ,n, with each G¿ having a join-irreducible

generator c/¿ for its uppermost copy of Z. Then supp<7¿ is a congruence class 7?¿

(because A(fi¿) G M; see [11]). There exists a join irreducible g'n+i which moves

Bn. Let suppc/^+1 = B'n+l. Then the conjugates of Gn by powers of g'n+i have

disjoint support, so A(Q\) contains their full direct product which, together with

9n+i! generates an Z-subgroup G'n+i isomorphic to Wrn+1Z. There is a proper

congruence class B D B'n+l. Let g be any element of A(í2a) which moves B. Let

Gn+i = g~ G'n+ig.
Subcase 2b. Suppose Q\ has a largest proper natural congruence C. Then A(ü\)

induces A(C) on each C class C. It cannot be that Z-var A(C) Ç An for a fixed n

and all G, for then A(Q\) G An+1. Hence for each n there exists a C class Cn such

that Wr™Z Ç A(Cn), and we may assume Cn ^ Cm when n ^ m, since each C

class has infinitely many isomorphic translates. The proof can now be completed

just as in Case 1.

3. The structure of transitive A(fi) G An. Ohkuma [10] showed that if

A(fi) is uniquely transitive (for each a, ß G fi there exists a unique g G A(fi) such

that ag — ß), then A(fi) is isomorphic to a subgroup of the additive ordered group

of real numbers and fi « A(fi) as ordered sets. Nonzero subgroups of the reals with

this property have since been called Ohkuma groups and extensively studied ([3];

see also Glass [2]). Since it is easily seen that a transitive abelian A(fi) must be

uniquely transitive, Ohkuma's result may be stated as follows: if A(fi) is transitive

and nontrivial, then Z-var A(fi) = A iff fi is an Ohkuma group, and in this case

A(fi) « fi. In this section we study the analogous problem when Z-var A(fi) = An.

The heart of the main theorem of this section is contained in the following

technical lemma.

LEMMA 3.1. Let Oi, O2,..., On be Ohkuma groups, and fi = Oi x O2 x • • •x On
ordered lexicographically from the right. Then (i) fi is not isomorphic to any proper

segment of itself, and (ii) no proper initial segment o/fi is isomorphic to any proper

final segment of fi.

PROOF. We deal first with the case n = 1. The result is clearly true if fi =

Oi m Z. Since all other (noncyclic) subgroups of the reals are dense, we assume

fi = Oi is a dense subgroup of the reals. If <j>: fi —» fi' is an isomorphism (of

ordered sets) where fi' is a proper segment of fi, let / be any nontrivial member

of A(fi). Then c/>_1/c/> is a nontrivial member of A(fi'), which can be extended to

/' G A(fi), fixing all points of fi\fi'. This contradicts the unique transitivity of

A(fi), hence (i) holds.

Since fi is a dense subset of the real numbers, each initial segment of fi has the

form (—00,a) = {x G fi: x < a}, where a is a real number (not necessarily in fi).

Likewise, each final segment has the form (ß,00). Suppose ip: (-00,a) m (/?,00).

Let a be any negative member of A(fi). Then (-00, a) ss (-00, ag), and if we let

ß' = agip, there is an isomorphism <p: (ß,ß') « (ß,00), which can be extended to

an isomorphism of the real intervals (ß,ß') ~ (ß, 00). Because fi is dense, there

exists a positive t G A(fi) such that ß < ßt < ß'. We may also consider t extended

to a map from the reals to the reals. Because both t and <f> preserve order, their

extensions are continuous. Since ßt < ß' — ß<p and ß't < 00 — ß'<p, there exists a
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real number 7 such that 7Í = 7c/) and ß < 7 < ß'. Now define /: fi —> fi by

(x if x < ß,

x4> if ß < X < ß',
xt if ß' < X.

Then / G A(fi). But / fixes some points without fixing all, denying unique transi-

tivity of A(fi). Hence (ii) is satisifed. This takes care of the case n = 1.

Now let fi = Oi x O2 x • • • x On, n > 1, and suppose the result is true for

A = Oi X O2 x ■ • • x On-i- Let Cn be the equivalence relation on fi given by

(01,02,.. •, an) Ci (&i, i>2i • • • j bn) iff an = bn. If <p: fi —> fi' is an isomorphism of

fi onto a proper segment of itself and <f> preserves Cn classes, then <j> induces an

isomorphism of On onto a proper segment of itself, contradicting the result for

n = 1. Hence for some Cn class x Cn, xcpCi ^ x Cn <A- Each of these two classes is

a convex segment of fi and is isomorphic to A. Further, x<p belongs to both. Hence

either one is contained in the other, or they overlap so that an initial segment of

one is a final segment of the other. But each of these possibilities contradicts the

inductive assumption about A. Hence (i) is satisfied by fi. A similar argument

shows that (ii) is satisfied, completing the proof of the lemma.

THEOREM 3.2.   7/A(fi) is transitive,

Z-varA(fi) = .tf"    ifffl « Ox x 02 x ■ • • x On,

a lexicographically ordered product of Ohkuma groups; in this case A(fi) x, Oi Wr O2

Wr---WrO„.

PROOF. If Z-var A(fi) = An, then there are exactly n primitive components Oi

and are all regular by Corollary 2.6. But a transitive regular primitive component

must be an Ohkuma group (see Glass [2]). Hence A(fi) can be embedded in the

wreath product Oi Wr O2 Wr • • • Wr On, which acts as an ordered permutation group

on the set Oi X O2 x ■ • ■ x 0„ ordered lexicographically from the right. In the

embedding fi « Oi x 02 x • • • x On, however, so A(fi) « Oi Wr 02Wr • • • Wr On-

For the converse, suppose that Oi,Ö2,- ■ ,On are given Ohkuma groups and

fi = Oi x O2 x • ■ • x On- We claim that each of the relations d, given by

(0-1,02,. •• ,an) d (61,62,... ,bn) iff aj = bj for all j > i, is a congruence for

A(fi). This is the case because each of the d classes is isomorphic to the set

fi = 01 x O2 x • • • X Oi-i, to which Lemma 3.1 applies. It follows that the primi-

tive components of A(fi) are A(0¿) » 0¿, each of which is nontrivial and regular,

so Z-var A(fi) = An by Corollary 2.6.

The case of transitive A(fi) with Z-var A(fi) = M appears to be much more

complicated. It is still true, just as before, that fi is embedded in a lexicographically

ordered product of Ohkuma groups, but the embedding need not be onto. Worse

yet, even the full product of Ohkuma groups need not have the natural congruences.

For example, ■ ■■ x Z x Z x Z is isomorphic to the set of irrational real numbers,

which has no proper natural congruence.

4. The group structure of arbitrary A(fi) G An. A theorem of Chang and

Ehrenfeucht [1] states that A(fi)G¿íiffA(fi),asa group, is a full direct product

of subgroups of the real numbers 72. In order to extend this to higher powers, we

define a group G to be of wreal height < n inductively as follows. If n = 0, G = {e};
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in general, G x {Ga} Wr (77, A), where 77 is a subgroup of 72 acting regularly on

A, a union of orbits of 77 in R, Gx = Y\k Gx,k, and each G\,k is a group of wreal

height < n — 1. Note that G has wreal height < 1 iff G is isomorphic to a subgroup

of R. We will show that A(fi) G An iff A(fi) if a full direct product of groups of

wreal height < n.

THEOREM 4.1. 7/A(fi) G An, then A(fi) is a full direct product of groups of

wreal height < n.

PROOF. It suffices to prove that if A(fi) has just one orbital and belongs to

An, then A(fi) is a group of wreal height < n. The theorem is trivially true if

n = 0. In the general case, by Corollary 2.6 and Theorem 2.9, A(fi) has exactly

to < n nontrivial primitive components, and each is regular. If 77 is the component

corresponding to the uppermost covering pair of natural congruences (C¿, C%), then

77 is a subgroup of 72 acting on A, a union of its orbits. On each of the d classes

9\, A(fi) induces A(0X) G A™*1, and so by induction A(9\) is a product of groups

of wreal height < n - 1. Since A(fi) rs {A(9x)} Wr (77, A), A(fi) has wreal height

<n.

THEOREM 4.2. If G is a product of groups of wreal height < n, then, for some

fi, Gx A(fi) andA(Q)GAn.

PROOF. The theorem is trivial for n = 0. We proceed by induction. We may

assume G has wreal height < n, for if G = \\ Pi and each P¿ has wreal height < n,

and if we know P¿ x A(fi¿) G An, let {ít¿} be ordinals each greater than \fi |P¿|,

and all different, and let fi¿ = 7r¿ x fi¿ ordered lexicographically from the right. Let

fi be the disjoint union of all fi¿ ordered in any way so that each fi¿ (as previously

ordered) is convex. Then A(fi) = FJ A(fi¿) x FJ A(fi¿) = G. Hence, we now assume

G has wreal height < n and is a wreath product as in the definition. By induction,

each Ga x A(9x) G i?""1. Let fi* = {(a,X) G (IJ0a) x A: o g 9x}. Then

G = {g G A(fi*) : (a, X)g = (agx,g), gx G A(9X), g G H}.

Suppose, in the first case, that 77 is a proper subgroup of R. We consider the

regular action (77,72). Following Chang and Ehrenfeucht, for each orbit (coset) J¿

of 77 in R, we let 7r¿ be an ordinal greater than \f A |#a| and all 7r¿ different. If we

replace each real number r by the ordinal 7r¿ when r G Ji, we get a totally ordered

set T and a natural action (77, T) such that 77 = A(T) (see [1]). Moreover, we can

assume A Ç 72 Ç T. For A G A we already have 9X defined. For the other t G T\A,

let 9t be a single point, so A(9t) = {e}. Then

G x {A(9t): t GT}Wr (A(T),T).

Let A = {(a,t) G (\J6t) x T: a G 9t} be the set acted on by this wreath product.

Clearly each #t x {t} is a congruence class for A(fi) because if x < y with x, y G

9t x {t}, then |(x,y)| < 7r¿ for all i, while if x G 9t x {t} and y G 9t> x {t1} with

17¿ t', then some ordinal 7r¿ lies between x and y. It follows that

A(Q)x{A(9x)}W(A(T),T)xG.

In the second case, 77 = 72.   Then 77 is isomorphic to a proper subgroup 77'

of R, and as permutation groups (thought not as ordered permutation groups),

(77,77) x (77', 77'). It follows that G x {Gh} Wr (77,77) x {Gh,}Wr (77', 77'),
and we proceed as in the first case.
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Finally, observe that it follows from induction that any group of wreal height

< n belongs to the solvable variety &n. Hence, by Corollary 2.11, if A(fi) is a

product of groups of wreal height < n, then A(fi) G An.

COROLLARY 4.3. If G is a group, there exists fi such that G x A(fi) G An iff
G is a full direct product of groups of wreal height < n.

COROLLARY 4.4 (CHANG AND EHRENFEUCHT [1]). 7/G is a group, there

exists fi such that G x A(fi) G A iff G is a full direct product of subgroups of the

real numbers.

5. Free subgroups of A(fi). The following lemma is only a slight modification

of a theorem of J. Mycielski applied to the special case of Z-groups. We invoke

Mycielski's theorem in the proof.

LEMMA 5.1. Let V be a variety of groups (or of l-groups). Suppose there are

subgroups (or l-subgroups) G¿ Ç A(fi), i = 1,2,..., such that supp G¿flsupp Gj = 0

if i 7^ 3> and whenever (w = e) is not a law of]) (where w is a word in the free group

(or free l-group) on xi,X2,..-), then there exists i = i(w) such that if j > i, Gj

does not satisfy (w = e). Then A(fi) contains f] Gt which contains a free "V group

(or l-group) on 2N° generators.

PROOF. Clearly A(fi) D Y[Gi. We first show Yid has a free subgroup (Z-

subgroup) on No generators. List all those words wi, u>2, ■ ■ ■ such that (u>¿ = e) is not

a law of "V. Inductively, there exists i(n) > i(n — 1) such that G^n) does not satisfy

(wn = e); that is, there are g(n, 1), g(n, 2),... G G¿(n) such that wn(g(n, —)) / e.

Let gi = (g(l,i),g(2,i),...) G Y\Gn- Then {gi,c/2, • • •} is free.

Next, partition Z+ = P1ÙP2Ù • • • into an infinite number of infinite sets. Then

for each j, {Gí: i G Pj} satisfies the hypotheses of the lemma. Hence G' =

n¿ep Gi contains a free "V subgroup (or Z-subgroup) on a countable set. More-

over, suppG^ n suppG'fc = 0 when j ^ k, so A(fi) D Y\G'y Mycielski's theorem

([8, Corollary 3] and the ensuing discussion) implies that \\G'- contains a free V

subgroup (or Z-subgroup) on 2N° generators.

THEOREM 5.2. 7/Z-varA(fi) = An then A(U) contains a free An~l l-subgroup

on 2K° generators.

PROOF. We may suppose A(fi) has just one orbital and a maximal proper

natural congruence C (Corollary 2.6). For some C class C, Z-var A(C) = An~l

(otherwise A(fi) G An~1). There are infinitely many disjoint translates of G, so

A(fi) contains Z-subgroups G¿ ~ Wrn_1Z satisfying the hypotheses of Lemma 5.1

for V = A71'1 (by Lemma 2.3).

THEOREM 5.3. 7/g-var A(fi) = &n, then A(fi) contains a free 6n_i subgroup

on 2H° generators.

PROOF. The hypothesis is equivalent to that of Theorem 5.2 (by Corollary 2.6).

In the proof of Theorem 5.2, since Z-var A(C) = A71-1, g-varA(G) = 6n_i by

Corollary 2.6, and the hypotheses of Lemma 5.1 are satisfied for "V = 6n_i.

THEOREM 5.4. 7/Z-varA(fi) = M then A(fi) contains a free M l-subgroup on

21*0 generators.
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PROOF. M is generated by the set of all WrnZ since M is the join of all An (and

using Lemma 2.3). From Lemma 2.12 the hypotheses of Lemma 5.1 are satisfied

with V = M.

THEOREM 5.5. 7/Z-varA(fi) = Z then A(fi) contains a free l-subgroup on 2N°

generators.

PROOF. Some primitive component of A(fi) is not regular and so is 0-2-transitive

on one of its orbits (see remarks preceding Lemma 2.1). Let a < ß be points of

that orbit. Then the restriction of A(fi) to the interval (a, ß) satisfies no nontrivial

Z-group law [5]. Hence, choosing disjoint intervals, we have Z-subgroups G¿ Ç A(fi)

satisfying the hypotheses of Lemma 5.1 for ~V — £..

THEOREM 5.6. 7/g-varA(fi) = 0, then A(fi) contains a free subgroup on 2*°

generators.

PROOF. We have either Z-var A(fi) = fi or Z-var A(fi) = L by Corollary 2.8. In

either case A(fi) has subgroups Gn ~ WinZ satisfying the hypotheses of Lemma

5.1 for "V = 0 (by Lemmas 2.2, 2.3 and 2.12).
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