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HELICAL MINIMAL IMMERSIONS

OF COMPACT RIEMANNIAN MANIFOLDS

INTO A UNIT SPHERE

by

kunio sakamoto

Abstract. An isometric immersion of a Riemannian manifold M into a Riemannian

manifold M is called helical if the image of each geodesic has constant curvatures

which are independent of the choice of the particular geodesic. Suppose Mis a

compact Riemannian manifold which admits a minimal helical immersion of order 4

into the unit sphere. If the Weinstein integer of M equals that of one of the

projective spaces, then M is isometric to that projective space with its canonical

metric.

0. Introduction. In [2], Besse constructed a minimal immersion with a nice

property of a strongly harmonic manifold into a sphere. This nice property is that

the images of geodesies of the strongly harmonic manifold are of constant curvatures

as curves in the sphere, and the curvatures and the osculating orders are independent

of geodesies. Immersions with such a property are said to be helical (cf. [8]).

Sakamoto [8] studied a helical immersion of a Riemannian manifold M into a unit

sphere. The result is that if M is compact, then it is a Blaschke manifold and,

moreover, if the helical immersion is minimal, then M is a globally harmonic

manifold. It is well known that if a globally harmonic manifold is compact and

simply connected, then it is a strongly harmonic manifold (Michel's theorem, cf. [2]).

Thus, we can declare that the theory of helical minimal immersions of compact

simply connected Riemannian manifolds into a unit sphere is a submanifold version

of strongly harmonic manifold theory.

Let /: M -» S(\) be a helical immersion of a compact Riemannian manifold M

into a unit sphere 5(1). Since M is a Blaschke manifold, all geodesies of M are

simply closed and of the same length. Furthermore, if we denote the cut-locus of

x e M by Cut(x), then the unit tangent vectors at x of geodesies emanating from x

and entering to v e Cut(jc) compose a great sphere in the unit tangent sphere at x.

The dimension of the great sphere is independent of x and it is equal to 0, 1, 3, 7, or

n — 1 (« = dim M), which is the index of the first conjugate point y of x (cf. [2],

Proposition 5.39 and Theorem 7.23). Geodesies are also helical in the Euclidean

Received by the editors March 15, 1984 and, in revised form, June 20, 1984.

1980 Mathematics Subject Classification. Primary 53C40; Secondary 53C42.

Key words and phrases. Helical immersions, strongly harmonic manifolds, geodesies, Blaschke structure,

cut loci, second fundamental forms.

©1985 American Mathematical Society

0002-9947/85 $1.00 + $.25 per page

765



766 KUNIO SAKAMOTO

space E in which 5(1) is naturally embedded. Thus, it is easy to find the equation of

geodesies in E if we are given a certain initial condition which consists of the second

fundamental form of / and its covariant derivatives. So we can express the immer-

sion / in terms of geodesic polar coordinates by using the second fundamental form

and its covariant derivatives at the center (cf. Theorem 1.2). Moreover, we can

compute all normal Jacobi fields (precisely, their images by/). Therefore, we are

interested in the study of the property of the second fundamental form derived from

Blaschke structure.

Helical immersions of order 2 into a sphere are planar geodesic immersions which

are completely classified in [5 and 7]. Helical minimal immersions of order 3 into a

sphere were determined by Nakagawa [6] under a more general situation. In the

present paper we shall study helical minimal immersions of order 4 into a unit

sphere.

The organization of this paper is as follows. We deal with a helical immersion /:

M -» 5(1), where M is a compact Riemannian manifold. In §1 we explain the results

obtained in [8] together with notation. In §2 we compute all normal Jacobi fields by

making use of the expression of the immersion / stated in Theorem 1.2. As a

corollary we show that the second fundamental form satisfies equations containing

the arc length parameter of the geodesic. In §3, we discuss a property of the second

fundamental form which is derived from the Blaschke structure. We also char-

acterize the tangent space of the cut-locus and its orthogonal complement (which is a

holomorphic section if M is a complex projective space) as eigenspaces of the second

fundamental tensor (shape operator) corresponding to some normal vector. In §4,

making use of results obtained in §3, we show that compact Riemannian manifolds,

admitting helical minimal immersions of order 3 into a unit sphere, are isometric to

a sphere of constant curvature. The proof is different from Nakagawa [6]. We also

show that if the cut-locus degenerates to one point (and hence M is isometric to a

sphere of constant curvature because of [2, Theorem D.l, p. 236]), then the order of

the helical minimal embedding / must be odd. These results lead us to conjecture

that if the order of a helical minimal embedding of a compact Riemannian manifold

into a unit sphere is odd, then the manifold will be isometric to a sphere of constant

curvature. As the cut-loci of compact rank-one symmetric spaces are totally geodesic

submanifolds, we hope that cut-loci are totally geodesic in M. Here we give good

information about the total-geodesicity of cut-loci. At the end of this section we

consider the fiber bundle whose total space is the unit tangent sphere at x and whose

base space is the cut-locus Cut(;x:) (cf. [2, p. 134]).

If the projection of the fiber bundle is a Riemannian submersion, then we can

apply Escóbales' result [3] to this submersion. We shall give a certain condition for

this application. In §5 we consider a helical minimal immersion of order 4. We prove

that if a = (y(0),y(L)) for a unit speed geodesic y, where L denotes the distance

from y(0) to the cut point and ( , ), the inner product in E, is positive, then M is

isometric to one of the compact rank-one symmetric spaces. In §6 we continue to

study helical minimal immersions of order 4 and compute the Weinstein integer of

M. We show that if the Weinstein integer of M is equal to that of a certain compact
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rank-one symmetric space and if M admits a helical minimal imbedding of order 4

into the unit sphere, then M is isometric to that rank-one symmetric space.

The author wishes to express his hearty thanks to Professor S. Ishihara for his

constant encouragement and valuable suggestions.

1. Preliminaries. In this paper, the differentiability of all geometric objects will be

C°°. Let M be a connected complete Riemannian manifold and /: M -* M an

isometric immersion into a Riemannian manifold M. Let a be a curve / -» M

parametrized by arc length s. Let a(1) = ó be the unit tangent vector and put

K, = || Vda(1)||. If «1 vanishes on /, then o is said to be of order 1. If k, is not

identically zero, then we define a(2) by Vàom = Kjo'2' on the set /, = {s e /:

k,(í) =£ 0}. Put k2 = || Vda(2) + «i«*'1'!!- If k2 — 0 on /,, then a is said to be of order

2. If k2 is not identically zero on Iv then we define a(3) by Vda(2) = -(c,a(1) + K2a<3).

Inductively we put

„.    _ IIT7 „(d)   , (rf-l)ll
Kd       || v*a ^ Kd-\° ||>

and if Kd = 0 on 7d_1, then a is said to be of order d. Let y be an arbitrary geodesic

of M. If the curve a = f ° y in M is of order J and has constant curvatures which do

not depend on y, then /: M —> M is called a helical immersion of order d. In the

sequel, the ambient manifold M will be a unit sphere 5(1).

Let t: 5(1) -» E be the canonical inclusion, where £ is a Euclidean space whose

origin is the center of 5(1). In [8] we showed that /= t ° /: M -* E is also a helical

immersion of order d*, where

Id ii dis an even integer,
d   = {

\ d + 1     if d is an odd integer.

The curvatures A,,.. .,Xd,_1 of r=f°y are rational functions of curvatures

K,,...,k¿ , of a (cf. [8, Corollary 4.2]). We computed in [8] the Frenet vectors of the

curve t. If we denote the second fundamental form of the immersion f: M -* 5(1)

by H and the van der Waerden-Bortolotti covariant differentiation with respect to /

by D, then they are given as follows:

Theorem 1.1. Let y: R -> M be a unit speed geodesic such that y(0) = x and

y(0) = X. Then Frenet vectors T(y)( X),j = 1,... ,d, at x of the curve r are given by

r"(X)=f*X,

r<J>(X) = (K-- Xj.yi-b^x) + EM^'-^M*')]    iff is even,

T^(X)^(\1--\j_iy1ltbji(Di-2H)(Xi)    ifjtsodd,

where the index i in the summation runs over the range [2,4,... J) and (3,5,... ,j'},

respectively. When d is an odd integer, Frenet vector T{d+1)(X) is given by

r^1KX) = (Xl---Xd)1[-bd+12f(x) + Ubii+lk-ad+lk)(D^H)(X%

where the index k in the summation runs over the range {2,4,...,d — 1}. The

coefficients bj¡ (resp. ad+1 k) are polynomials of\1,...,\d+_1 (resp. kv. . .,Kd_x).
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Let A be the Frenet matrix

0     -Xj

A,       0

A..-I

and '(fi(s),... ,fd.(s)) the first column of the matrix (esA — I)A 1. Thus, functions

f¡ defined on R satisfy

/Í = 1 - X1/2.

f¡-K-ifi-i-Kfi+i     (2</<¿*-i),

/</* = "-d'-lfd'-V

We see easily from the definition that /, is an odd function. Therefore if i is odd

(resp. even), then f¡ is an odd (resp. even) function. For the sake of convenience, we

shall adopt the following notation:

fW(Jf) = (\l---\j_xylY,bji{Di-2H)(Xi)    ify(< d) is even,

T("+1)(jf) = (A, ■ • ■ XdylZ (bd+lk- ad+lk)(D^H)(Xk)    if ¿is odd,

and

10;*)=  I /»*">(*),
j: even

?(*;*) =   E   í(í)tw(í)
j: odd »3

for arbitrary unit vector X tangent to M. In [8] we showed

Theorem 1.2. For jeR and X G UXM (unit tangent sphere at x), we have

f(expxsX) = F(s)f(x) +f1(s)f\X+i(s; X) + ¡(s; X),

where

X2X4 ■ ■■ A _2

F(s) = 1-1   c//*),
j: even

^1^3 " " " Ày-i

Therefore, we see that position vectors/(jc) and/(y) satisfy (f(x), f(y)) =

F(8(x, v)) for every x, y G M where ( , ) is the inner product on E and 8 denotes

the distance function on M. From this fact, we obtain

Theorem 1.3 [8]. If a compact Riemannian manifold M admits a helical immersion

f: M -» 5(1), then M is a Blaschke manifold.

Corollary 1.4. If a helical immersion f: M -» 5(1) is not an embedding, then the

manifold M is diffeomorphic to a sphere and f is invariant under the action of antipody

of the Blaschke structure on M described in the above theorem; in this case the map f is

two-sheeted on f(M) which is diffeomorphic to RP". Moreover, M is simply connected

except for the case that M is diffeomorphic toRP".



HELICAL MINIMAL IMMERSIONS 769

If an isometric immersion /: M -» 5(1) is minimal, then it is well known that

height functions are eigenfunctions of the Laplace operator corresponding to the

eigenvalue n = dim M. Thus, we obtain

Theorem 1.5 [8]. If a Riemannian manifold M admits a helical minimal immersion

f: M -» 5(1), then M is a globally harmonic manifold. Furthermore, if M is compact

and simply connected, then M is a strongly harmonic manifold.

Conversely, if M is a strongly harmonic manifold, then M admits a helical

minimal immersion into a unit sphere (cf. [2, Theorem 6.99]). Thus, the theory of

helical minimal immersions is a submanifold version of harmonic manifolds.

2. Jacobi fields. In the sequel, f: M -* 5(1) will be a helical embedding. By virtue of

Corollary 1.4 we may assume that/is an embedding. Thus we shall identify xeM

with/(x) G E. The tangent space TXM will be identified with the subspace/*(TXM)

of TXE ~ E. Before computing Jacobi fields, we introduce some notation to avoid

complexity. Let X and V be orthonormal vectors at x tangent to M. Define the

following normal vectors at x:

èx(s;V)= ^(s;œs6X+sinev)\„_0,

Sx(s;V) = -jjjjS(s;cos8X+smev)\t_0,

(Dt)(s;V;X)=Zfj(s)(m<»)(V;X),

(Dt)(s;V;X)=lifJ(s)(Dr^)(V;X),

where DfU)(V; X) is defined by

D*M(V; X) = (\1---\j-iy1IlbJi(Di-1H)(V, X,...,X)

for/ = 2, 4,... < d; if d is an odd integer, then

Df<d+1>(V, X) = (\1---\dr1L(bd+lk- ad+lk)(D^H)(V, X,...,X),

and if/ is odd, then Dt(j)(V; X) is defined in a similar way.

Let us now compute Jacobi fields along a unit speed geodesic y. Let x = y(0),

X = y(0) and let F be a unit tangent vector orthogonal to X. In Theorem 1.2 we

exchange X for cosöA' + smOV. Then we have a variation of geodesies. Further-

more, if X*(t) is a vector field parallel to X along a curve ß(t) parametrized by arc

length such that ß(0) = x and ß(Q) = V, then each geodesic which issues from ß(t)

and is tangent to X*(t) forms another variation. These variations yield all normal

Jacobi fields along y. We have

Theorem 2.1. Let Jv and J* be normal Jacobi fields along y such that Jv(0) = 0,

VyJy(0) = VandJp(0) = V, VyJ*(0) = 0, respectively. Then they are given by

(2.1) Jy(s) = f¿s)V + tx(s; V) + ¡¡¿(à; V),

(2.2) J*(s) = F(s)V- Aé(s;XyV - A((S.X)V

+fl(s)H(V, X)+(Dt)(s; V; X)+(D£)(s; V; X),
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where A^S.X) (resp. A^S.X)) denotes the second fundamental tensor corresponding to

the normal vector ^(s; X) (resp. Ç(s; X)).

Proof. Consider the variation (s, 6) >-> expx.s(cos0A' + sin ÖF). Then we have,

from Theorem 1.2,

Jv(s) = -rñ[F(s)x + /1(.s)(cos0A' + ûndV)

+ £,(s;cos6X + ûnOV) + Ç(s;cosOX + sm6V)]\e = 0

= f1(s)V+èx(s;V) + $x(s;V).

Next let ß(t) and X*(t) be as above. We then consider the variation (s, t) •->

exp^,) sX*(t). Theorem 1.2 implies that

J*y(s) = jt[F(s)ß(t) +fl(s)X*(t) +£(s; X*(t)) + t(s; **(0)]U

= F(s)V + fx(s)H(X, V) - AHx.X)V + (Dè)(s; V; X)

-AUs.X)V+(Dl)(s;V;X),

where we have used Gauss and Weingarten equations of the immersion /: M -* 5(1)

and the fact that A', £(s; X) and Ç(s; X) are orthogonal to V.    Q.E.D.

Remark. For arbitrary V g TxM (not necessarily unit vector) orthogonal to X, we

also define £x(s; V), Çx(s; V), (D£)(s\ V; X) and (D$)(s; V; X) in a trivial manner.

Thus in the above theorem, the tangent vector V in the initial conditions need not be

a unit vector, because both sides of equations (2.1) and (2.2) are linear with respect

to V.

Corollary 2.2. Let V be an arbitrary tangent vector orthogonal to a unit vector X.

Then for any s e R we have

(2.3) f¿s)(DC)(s;V; X)

= -Çx(s; AUs;X)V) + F(s)i;x(s; V) - t;x(s; Aiis.X)V),

(2.4) (/,(,))2//(I/ X) +fl(s)(Dt)(s; V; X)

= F(s)£x(s; V) - èx(s; A(U;X)V) - $x(s; AK,i3C)V).

Proof. Let y be a unit speed geodesic such that y(0) = x and y(0) = X. Since

{Jv(s)\ F G {X}-1} spans the subspace {y}-1 in TyM, then if y(s) is not a

conjugate point of x, there is a tangent vector W g {A'}± such that J*(s) = Jw(s)

at every nonconjugate point y(s) of x, where we note that W may depend on s. Thus

we have from (2.1) and (2.2)

f1(s)W=F(s)V-A(is;XyV-AS(s.X)V,

èx(s; W) + tx(s; W)=f1(s)H(V, X)+(D£)(s; V; X)+(DÇ)(s; V; X).

Substituting the first equation into the second one, we have

fiWMsWV, X) +(DZ)(s; V; X)+(D$)(s; V; X)\

= Íx{s; F(s)V - AUs.X)V - AUs,X)V)

+ Sx{s;F(s)V--Ails.¡XyV-Aeis;X)V).
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Since both sides of this equation are continuous with respect to s, we see that this

equation is valid for every s G R. Exchange X for -X. Then we have

fiW-fM'HiV, X) +(D£)(s; V; X)-(D$)(s; V; X)\

= -ix(s\ F(s)V- AHs.¡X)V + AK,iX)v)

+$x(s;F(s)V-AHs.xyV + At(s.J0V).

Therefore, we obtain the desired equations.    Q.E.D.

3. Blaschke structure and the second fundamental form. In the sequel, we shall

assume that M is compact. Hence by Theorem 1.3 we know M is a Blaschke

manifold. Here we recall the definition of a Blaschke manifold (cf. [2]). Let N be a

Riemannian manifold. Let x g N and Cut(x) be the cut-locus of x in N. If for every

v G Cut(x) the link (y( y) G UN: y is a minimal geodesic from x to y} is a great

sphere of UN, then N is called a Blaschke manifold at the point x.-Moreover, N is

said to be a Blaschke manifold if it is a Blaschke manifold at every point in N. It is

well known that A' is a Blaschke manifold at x if and only if the distance from x to

each point of Cut(jc) is constant (cf. [2, Proposition 5.44, p. 138]). If A7 is a Blaschke

manifold, then every geodesic is a simply closed geodesic loop with the same period

(cf. [2, Proposition 5.39, p. 136]). We shall denote the length of geodesies of M by

2L. Let X g UXMand y = e\pxLX G Cuu». Then define J^(Ar) by

J^x( X) = Span{ y (0) : y is a minimal geodesic from x to y}.

This subspace is orthogonal to the tangent space TxCut(y) of Cut( v) at x (cf. [2,

Proposition 5.39, p. 136]). The dimension of 3^X(X) n UXM is constant for every

x G M and X g UxM, which is equal to the index of the first conjugate point y of x

along a geodesic from x toy. Let e = dim Jifx(X). Then by [2, Theorem 7.23, p. 186]

we know that e is equal to 1, 2, 4, 8, or n, corresponding to which n = m, 2m, 4m,

16, or any (m = 1,2,...). We notice that if M is a complex projective space with the

canonical metric, then J^X(X) is the holomorphic section determined by X. Let

Jif*( X) be the orthogonal complement of X in Jtx( X). We have

Lemma 3.1. The subspaces JCX(X) and3?*(X) are given by

JTX(X) = Span{Z g UXM: ¿(*) = {(Z)},

■#?(*) = [ZeTxM:tx(Z)-0,Z±X),

whereè(X) = £(L; X)andtx(Z) = ÍX(L; Z).

Proof. Note that^ (1 </ < d*) is a periodic function with period 2L. If/ is an

odd integer, then/ is an odd function. Thus we have/(L) = 0 for every odd integer

/ (1 </ < d*). It follows that Ç(L; X) = 0. Therefore using Theorem 1.2, the

cut-locus Cuu» of x is given by Cut(x) = { y: v = F(L)x + |(Ar), X g UxM}.We

see that expxLX = expxLZ if and only if £(X) = £(Z), which shows the first

equation. It is clear thatJif*(X) c {Z g TxM: ^(Z) = 0, Z ± X). For Z g TxM

such that Z ± X, £X(Z) = 0 if and only if /Z(L) = 0 because of (2.1). Since the

index of the first conjugate point expx LX of x is equal to e — 1, we have

àxmJf*(X) - dim{ZG J^Mi^Z) = 0, Z± X).    Q.E.D.
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Remark. If Z g Jífx(X) n UXM, then Jfx(X) = 3fx(Z).

Let y be a unit speed geodesic such that y(0) = jc and y(0) = X. Define (D£)(X)

by

(Di)(X) = Z/j(L)Dr^(X),

where Df (J)(X) = Vx(f<-J)(y)), V x being the normal connection of the embed-

ding/: M -* 5(1).

Lemma 3.2. Let y = y(L). Then

Jfv.(y(L)) = Span{ûZ + (Z)|)(Z): ZeJTx(X), \\Z\\ = 1},

TyCut(x)={tx(Y):YeTxCut(y)},

where a = f{(L).

Proof. Since ^X y (L)) = Span{à(L): a is a unit speed geodesic from* to v}, for

the first equality we have only to show à(L) = aZ + (D£)(Z) if á(0) = Z. Since

a(s + L) = ba(s) + è,(ci(s)), where b = F(L), we have

à(L) = bZ-Ai(Z)(Z)+(Dè)(Z).

On the other hand, from Theorem 1.2, à(L) = aZ + Ç'(L; Z), where Ç'(L; Z) =

£ ff(L)TU)(Z). Hence bZ - A((Z)Z = aZ and (D£)(Z) = ?(L; Z). Next we prove

the second equality. Consider the linear map £x: Kg {X}x-^ £x(V). The curve

0 -» bx + £(cos6X + sin OF) is contained in Cut(x). Thus £X(V) g rvCut(x).

Since Kerl^ = Jif*(X) and dim TxCul(y) = dim 7,yCut(x), we see that £x induces

an isomorphism from TxCut( v) to T^Cut(x). Q.E.D.

In the proof of the above lemma, we have also proved

(3.1) A((X)X=(b-a)X

for every X g UxM. Furthermore, we note that JY(L) = ZX(Y) for Y e TxC\xt(y).

Hereafter we shall assume that the helical embedding f: M -» 5(1) is minimal. Thus

by Theorem 1.5, M is a globally harmonic manifold and, moreover, if M is simply

connected, then M is a strongly harmonic manifold.

Lemma 3.3. We have a # 0, where a = f[(L).

Proof. Let X g TxM - {0} and let {Vt}, i: = 2,...,n, be an orthonormal base in

{X}\

Let {J¡}, i = 2,...,«, be Jacobi fields along the geodesic

y: s'" exPxÚ\\x

such that /,(0) = 0 and 7,'(0) = V, for every i. We define 6: TM -> R by

0(0) = 1,   Ö(A-) = ||Z||-"+]det(72(||Z||),...,/n(||X||)),

where the determinant should be understood with respect to the parallel frame field

along y such that it is equal to {V,} at s = 0. Since M is globally harmonic, there

exists a C°°-function 0: R + -> R such that 6(X) = 0(||A"||). Consider the equation

(6.2) in [8, p. 78];

(3.2) /1'+/1-((«-l)A + 0'/0) = «F.
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Assume that a = f[(L) = 0. Since /,(£) = f"(L) = 0 and, from the definition,

F' = -/,, we have

F(s) = b + b4(s - L)4 + 0[(s - L)6],

where b4 = F(4)(L)/4\. In [1, p. 110] Allamigeon proved

®(s) = A(s - L)e~l + 0[(s-L)e],        (A*0).

It follows that

0'/0 = (e- l)(s- L)"1 + O(l).

Thus, from (3.2) we have

-I2b4(s - L)2 + 0[(s- L)4]

-{4b4(s - L)3 +0[(s- L)5} }{(e- 1)(, - L)"1 + 0(1)}

= n{b + b4(s-L)4+0[(s-L)6]}

on some interval (L - e , L], e>0. Thus 6 = ¿>4 = 0. Repeating this argument, we

see that all derivatives of F at s = L vanish. Since F is analytic, we conclude F = 0,

which contradicts F(0) = 1.    Q.E.D.

Now we characterize Jifx(X) and TxCut( v) ( v = expxZJQ as eigenspaces of the

second fundamental tensor A^X).

Theorem 3.4. The subspace 3^fx(X) and the tangent space of Cut(y) at x are

characterized by

J¡CX(X) = {Z g TXM: A((X)Z = (b - a)Z),

rxCut(y)= {Y<=TxM:AUX)Y=bY}.

Proof. Let Z(=Jf?x(X)n UXM. By Lemma 3.1 and (3.1) we have AHxyZ =

A^Z)Z = (b - a)Z. Thus J^X(X) is contained in the eigenspace of A^(X) corre-

sponding to the eigenvalue b - a. Since TXM = 3fx(X) ® TxCut(y) (orthogonal

direct sum), it suffices to show that TxCut(y) is contained in the eigenspace

corresponding to the eigenvalue b of A^X). Let Y g TxCut(y) and let y be the unit

speed geodesic such that y(0) = x and y(0) = X. From Lemma 3.2, we see that

Y ^> JY(L) = ix(Y) gives a linear isomorphism from TxCat(y) to TvCut(x).

Exchanging x for y, we have a Jacobi field KY along y such that KY(L) = 0,

VyKY(L) = Y g 7; Cuu» and KY(0) = Y. If we put W = V*#y(0), then KY =

7* + Jw. By Theorem 2.1 we have

KY(L) = bY-AHX)Y + (D£)(Y; X)+tx(W),

where (DÇ)(Y; X) = (7>¿)(L; F; if). TJtïM^T = ¿7.   Q.E.D.

Corollary 3.5. We have the equality a = mb(m = n/e).

Proof. Since /: M -» 5(1) is minimal, trace A^X) = 0. Hence e(b - a) +

(n - e)b = 0.    Q.E.D.
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We will now consider W in the proof of Theorem 3.4. Since V^KY(L) = Y, we

have

dsKv VyKY     +
ds

KY,y(s)\y(s)

= ViKY(L) + H(y(L),KY(L))

= YeTyCut(x),

where V denotes the covariant differentiation on 5(1). On the other hand, Theorem

2.1 implies

4-M* + Jw)l-L = -¿(Dt)(X)Y + aH(X, Y)ds

+ (D2i)(Y, X,...,X) + aW + (Di)x(W),

\s = L>

where we have defined (D2£)(Y, X,...,X) and (D£)X(W) by

(D2i)(Y, X,...,X) = (DO(L; Y; X) = j¿(D£)(s; Y; X)

(Dè)x(W) = ML; W) = fjx(s; W)\S=L.

Therefore, by Lemma 3.2 we have W = \A,D^X)Y and

(3.3) Y=aH(X, Y)+(D2£)(Y, X,...,X) + HW) x{A(Dé)(X)Y).

Moreover, we obtain

(3-4) (Dt)(Y;X) = -ttx(A(mxX)Y)

for every Y g rxCut(y).

Proposition 3.6. If Y g TxCut(y) andZ g Jf*(X), then

J*Y(L) = -nAA(Dtxx)Y) e TyCut(x)

and

J*(L) = aZ+(Di)x(Z) - l(x(AlDtKX)Z).

Proof. The first equation is clear because of (3.4) and Theorem 2.1. (2.2) shows

that J£(L) = aZ + (.£>£)(Z; A'). If we differentiate (2.3) with respect to s at s = L,

then we have

a(D£)(Z; X) = -ÍX(AÍD€ÁX)Z) + b(Dt) X(Z) -(b - a)(D£)X(Z)

= a(Di)x(Z)-ix(A{Di)iX)Z).   Q.E.D.

From Lemma 3.2 we see that aZ + (DÇ)X(Z) G jf*(y(L)) for Z g JÍT*(X) n

UXM. Hence aZ + (D£)X(Z) is proportional to aW + (D£)(W) for some IF G

Jí?x( X) n UxM. Thus Z = W and hence we obtain

(3.5) (Di)(Z) = (Dt)x(Z)

for every Z G JV*(X) n UXM. It follows that the^*(y(L))-component of 7|(L) is

equal to aZ + (7>£)(Z) and its Tj, Cut»-component is equal to - adx(A,Di)iX)Z).
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We notice that aZ + (D£)(Z) is the unit tangent vector at s = L of the geodesic

s -> exp^jZ. The next proposition asserts that the linear map Z >-* aZ + (Dt¡)x(Z)

from^*( A') to^*(y(L)) is an isometry.

Proposition 3.7. 7/Z,, Z2 g 3VX(X) n UXM, then

{aZl+(D^)(Zl),aZ1+(DÍ)(Z2)) = (Zl,Z2).

Proof. Taking a unit vector Z orthogonal to Z,, we write Z2 = cos 0Z, + sinBZ.

Define <¡>(6) by

<t>(0) = (aZ1 +(£>£)(Z1), aZ2 + (Dt)(Z2))

= a2cos6 + ((D£)(Z1),(D£)(cos6Z1 + sin0Z)).

Then <j>'(6) = -a2sm6 + ((Dè)(Z1),(D^)(-sineZ1 + cosOZ)) where we have

used (3.5). Thus we have §"(8) = -<¡>(6) because Z2 is orthogonal to -sinöZ, +

cos BZ. Since <f>(0) = 1, it suffices to show <t>'(0) = 0. Since ||(Z)£)(F)||2 = 1 - a2 for

every V^JiTx(X)n UXM, we have <?>'(0) = ((D|)(Z), (D|)Z(Z1)> =0.    Q.E.D.

4. Some results. At first we consider the case d = 3. Since a helical immersion of

order 3 is a proper cubic geodesic immersion, we can apply the result obtained by

Nakagawa [6] to this case. However, we make use of results in the preceding section.

Theorem 4.1 [6]. ///: M -» 5(1) is a helical minimal embedding of order 3 of a

compact Riemannian manifold M into a unit sphere 5(1), then M is isometric to a

sphere of constant curvature and f is equivalent to a standard minimal embedding of the

sphere (for the definition of standard minimal immersions, see [2 or 12]).

Proof. Since / is of order 3 and (D£)(X) = Ç'(L; X), we have (££)(*) =

Ö3(A1A2)"1(Z)//)(A'3) where a'3 =/3'(L) and we note that b3 3 = 1 in Theorem 1.1.

Assume that e > 2. By virture of the Codazzi equation we see that D£ satisfies

(Di)(U, V, W) = (Dt)(V, U, W) = (D£)(U, W, V)

for every U, V, We TXM. Thus (£>£)(Z; X) = (D£)(Z, X, X) = \(D£)(Z) for

Z g Jíf*(X) n UXM. By Proposition 3.6 and (3.5), we find f(£>£)(Z)

= ^x(A^Di)(X)Z). Since we see from Lemma 3.2 that both sides of this equation

are orthogonal, we conclude that (D£)(Z) = 0 and hence a'3 = 0. The constants a, b

and a'3 satisfy a = 1 - A,/2(L), a'3 = X2f2(L) — X3f4(L) and 6 = 1 — c2f2(L) -

c*fÁL). Moreover, c\ + c\ = 1 by [8, Remark, p. 74]. From these equations we

obtain a = b. By virtue of Corollary 3.5 we have e = n. Next assume that e = 1. Let

Y<=TxCut(y)= {X}"- such that ||T|| = 1. By (3.4), we have |(2)¿)X(F) =

- aèx(A(m(X)Y). Noting that ((DS)(V), H(V, W)) - 0 for every V, W g UXM

(cf. [8, Lemma 3.3, p. 68]), we find

<(/>«)(*). h(y, y)> = -((D6)X(Y), h(x, y)).

Thus,

*<(*>«)(*), "(Y, y)> = h{tx(Aimx)Y), H(X, Y)).
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Since (¿.(V), H(V, W)) = (b - a)(V, W) for every V, W G UXM (cf. [8, Lemma

3.3, p. 68]), we see that

\((Di)(X),H(Y,Y))

= ¿[-(¿(A), H(A{DixX)Y, y)) +(b- a)(AID(XX)Y, Y)]

= ~((Di)(X),H(Y,Y)),

where the last equality is derived from Theorem 3.4. It follows that A(D^XX) = 0 and

hence (D£)X(Y) = 0 for every Y g {A}-1 n UJA. This means that (D£)(V) is a

constant vector on UXM. Since the covariant degree of Z)£ is equal to 3, we have

(Dí¡)( X) = 0, and so a\ = 0. We conclude e — n in the same way as the case e > 2.

This conclusion contradicts to the assumption e = 1. In this way we have proved

e = «. So we can use [2, D.3, Corollary, p. 236 and 5.57, p. 142]. We conclude that

M is isometric to a sphere of constant curvature. The second assertion is derived

from the fact that the degree of a helical immersion M —> 5(1) is smaller than the

order (cf. [8, Proposition 5.6]) and Wallach's linear rigidity theorem (cf. [12, p. 32]).

Q.E.D.

Theorem 4.2. Let f: M -> 5(1) be a minimal helical embedding. If M is compact

and e = n (hence M is isometric to a sphere), then d must be an odd integer. In this

case, we have |( A) = 0 for every X G UXM and a = b = -1.

Proof. In [8, Theorem 6.7] we have proved

A,({(j; A) + ¡(s; X)) = *"(*; X) + $"(*; X)

+ u(s)(?(s; X) + ¡¡'(s; A)) + n(è(s; A) + £(*; A)),

where to = {nF — /i)//i and As denotes the Laplace operator with respect to the

metric gs on UXM induced by the map A —* expx sX from the induced metric on the

geodesic sphere with center x and radius s. Since the volume form of the metric gs is

equal to snl6 dv where dv is the canonical volume form on UXM (cf., [2, p. 159]), we

have from Green's theorem

f     [¿"(*; X) + u(s)?{s; X) + «|(î; A)] dv = 0
JUXM

for every s G (0, L). It follows that

Y,(fJ' + o>fj + nfj)(    r^(X)dv = 0.
JVXM

From the definition of fj we have

jlfj(s) - (X1 ■ ■ ■ \j-JsJ + 0(sJ+1),    a(s) = (n- l)/s + O(s).

Therefore we obtain

fj' + Ufj + nfj = (^1}!(A, • • • \j_Jin +j - 2)s^2 + O(s').

It follows that we have, inductively, iUxM^{i)(X) dv = 0, from which ¡UMÍ( A) dv

= 0. Since e = n, £(A) is constant on UXM. Thus we conclude that ¿(A) = 0.
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Noting that ||£( A)||2 = 1 - b2 and/is an embedding, we have b = -1. If d is even,

then H(X, A), (D2H)(X%... ,(Dd-2H)(Xd) are linearly independent and hence

f U),j = 2, 4,... ,d, are also linearly independent. Thus/(L) = 0 for/ = 2, 4,... ,d,

which implies that b = I. This contradicts the assumption that / is an embedding.

Q.E.D.
Remark. The equality b = -1 means that the cut-locus Cut(x) is the antipodal

point of x in 5(1).

When d is an odd integer, can one show e = «? In this case we have E eíü)( A) = 0

(cf. [8, Remark, p. 74]), which is equivalent to f0L £(s; X) ds = 0. I do not know

other conditions equivalent to d is odd.

Next we shall compute the second fundamental form of Cut(y) in M. Let y be a

unit speed geodesic in M such that y(0) = x, y(0) = A and y(L) = y.

Proposition 4.3. Let Z ^Jifx(X) n UXM (unit normal vector at x of Cut(y) in

M). Then the second fundamental tensor Az corresponding to Z of the submanifold

Cut(y) in M is given by

N^Z^l' Y2) = -o\>4(Df)(Z)ll' I2/

for y,, Y2 g TxCut(y). In particular, Cut(y) is a minimal submanifold in M.

Proof. We may assume that Z = A because of Jfx(X) = 2^X(Z). Consider the

Jacobi field A"y as in the proof of Theorem 3.4. Since this Jacobi field is a variation

vector of a geodesic variation such that each geodesic is orthogonal to Cut(y) and

passes through y at s = L, we have

-ÄXY- V*A:y(0)G^(A)

(cf. [4]). Since vxKY(0) =W= aA,D(XX)Y, we have

(ÄXYU y2> = -{{A(Di)(X)Yx, Y2).    Q.E.D.

The second fundamental tensor A(D^X) gives good information for the study of

Riemannian structure on M. Indeed, we have

Proposition 4.4. The matrix representation ofA(D^X) is given by

l-A
n^(D()(X)

i_Q_i_P-J_û.
0 ; Qx

lQx ! ~A;

x

}3PX*(X)

RCut(y)

where Qx is an (e — 1) X (n — e) matrix. Let Qy be the field of linear transformation

Jt*(y) -* ryCut(y(s + L)) along y. Then Qy vanishes along y if and only if 3^y(y) is

parallel along y.

Proof. Let Zv Z2 g Jíf*( X) n UXM. Then we have

(AmxX)Zv Z2) = -<(Z>f)(Zi)> H(X, Z2)>

by (3.5). If Z, = Z2, then ((Z>£)(Z,), H(X, Z2)> = 0. If Z, is orthogonal to Z2,

then

((D^ZJ, H(X, Z2)> = -((/)¿)(Z2), H(X, Z,)>
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because of (3.5) where we note that Z2 G^*(Z,). However, (A(Di)(X)Zl, Z2) is

symmetric with respect to Z, and Z2, so that [A(^DixX)Z1, Z2) = 0. SinceA^D^x^X

= 0, we have the first assertion. Let s0 g [0, L) and let I be some interval

containing s0. Let Z* be a vector field defined on y(I) such that Z*(s) g ^*s)(y(s))

for each j g 7. Let IF be an arbitrary tangent vector at y(s0) which is orthogonal to

y(s0) and W* the parallel vector field defined on y(I) such that W*(s0) = W. Since

y4i(i<)Z* = (b — a)Z*, we have

((Di)(y),H(Z*,W*)) + (ttj),(DH)(y,Z*,W*))

+ {i(y),H(viZ*,W*))=(b-a)(v^Z*,W*).

Noting that (è,(V),(DH)(V,V,W)) = 0 for any V, W g 7;M (cf. [8, Lemma

3.3]), we see that

2(i(y),(DH)(y,Z*,W*)) = -(^(Z*),(DH)(y,y,W*)).

Since Z* G ^,*(y), the right-hand side vanishes. So we find

Qy(Z*)+AM)V,Z* = (b-a)v,Z*,

which shows Qy vanishes at s = s0 if and only if  VyZ*|j=j   is contained in

•*&.>(í(-»o))-    Q-E-D.
Next we shall consider the submersion II: UXM -» Cut(x) defined by 11(A) =

expxLA (= bx + |(A)) (cf. [2, p. 134]), whose fiber through A is the (e - 1)-

dimensional great sphere J^x( A) n C/xAf. The total space UXM and the base space

Cut(x) are equipped with the canonical metric and the metric induced from M,

respectively. We hope that II becomes a Riemannian submersion when the metric on

UXM is changed homothetically. In fact, we have Escóbales' theorem [3, Theorem

3.5, p. 273], which states that if II: Sm(l) -* B is a Riemannian submersion with

connected totally geodesic fibers (1 < dim fiber < m - 1), then B is isometric to

one of CP", QP", S2, 54 and 58 with maximal curvature 4. Indeed, for n > 2 and

B = CP", QP" or 52, IT is equivalent to the Hopf fibering. Unfortunately, when

B = 54 or 58, the last assertion is not given in [3] (see [3, Remark, p. 271]). Making

use of Escóbales' result we have

Proposition 4.5. Let e ¥= n. Define ij(A) by 7)( A) = £"(L; X) for every X g UM

(unit sphere bundle of M). If jti = \A ¡X)Y, y) is constant for every x g M, X g UXM

and Y g T^Cuu» n UXM (y = expxLA), then the cut-locus Cut(x) is isometric to

one of C7""_1, QPm l, S2, 54, 58 with standard metric of maximal curvature

2(a + ¡i)/a, or RP"~l with constant curvature (a + ¡i)/2a.

Proof. Let Y g TxCut(y). Consider the Jacobi field KY along y: s >-» expxíA

satisfying KY(0) = Y, KY(L) = 0 and V^KY(L) = Y G 7;Cut» as in the proof

of Theorem 3.4. Then we have v^yiO) = i;A(Di){X)Y and Y is given by (3.3). The

second derivative of (2.4) at s = L gives

(4.1) 2a2H(X,V)+2a(D2i)(V; A,...,A)

= -aèx(V)-Çx(AlliXyV) + bvx(V)

-Tlx(Anx)V) - 2(Dè) x(A(Di)(X)V),
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where yx(V) = i'x(L; V). If V = Y, then from Theorem 3.4 we have

(4.2) aH(X,Y)+(D2è)(Y;X,...,X)

= ~2ix\Y + ^n(xy ) ~ ä(7>£) x\A,D^x^Y j.

It follows that y = - HX(Y + Uv(x)Y)- Let W g rxCut(y). Since (ky, V^Jw) -

(VyKY, Jw) = constant along y, we find

(4-3) ±(tx(Y + UV(X)Y), tx(W)) = (Y,W)

for every Y, W g FxCut(y). Thus the assumption implies that

(tx(Y),tx(W)) = 2a(Y,W)/(a + u)

for every Y, W g T^Cuu». Consider the metric 2a/(a + u)( , ) on UXM and note

that rxCut(y) is the horizontal space at A g UxM of the submersion II. Since

n„y= J^(cos0A+sin0y)|^o

for y g FxCut(y) n UXM, we see that II is a Riemannian submersion. Therefore if

e = 1, then Cut(x) is isometric with RP"_1 of constant curvature (a + p.)/2a. If

e = 2, 4, or 8, then by Escóbales' theorem, Cut(x) is isometric to one of CPm_1,

QPm~\ S2, 54, or 58 with maximal sectional curvature 2(a + u)/a.   Q.E.D.

Note. Under the assumption of Proposition 4.5, can one show M is isometric to

one of RP", CP"1, QPm or CayP2 with standard metrics? Perhaps this is possible if

the cut-loci are totally geodesic submanifolds in M. It seems that the fact that II is

equivalent to Hopf fibering is useful to show that the cut-loci are totally geodesic in

M. However, the corresponding homogeneity of the submersion in the case B = 54

or 58 is not given in [3].

5. Helical immersions of order 4. In the present and subsequent sections we shall

consider the helical minimal embedding of order 4 of compact Riemannian manifold

M into a unit sphere 5(1). By Theorem 4.2 we have e ¥= n. For the sake of

convenience we shall put

a2=f2(L),   a4 = f4(L),   a'3-fi(L)   and   r2 = c\ + c2.

By definition we have b = 1 — c2a2 — c4a4, and hence for A g UxM

(5.1) ¿(A) = a2XllH(X, X) + a4(A1A2A3)-1[A2277(A, A) +(D2H)(A4)]

= (1 - b)H(X, X) + a4(XlX2X3y\D2H)(X4),

where we note that b42 = X22 (cf. Theorem 1.1 and [8, Theorem 4.1]). We also have

(5.2) (Dt)(X) = «3(A1A2)-1(Z)//)(A, A, A)

for A g Í/XM. Noting that s is the arc-length parameter and /(expxiA) g 5(1) in

Theorem 1.2, we have £?_,(#)3 = 1 and I4^/,2 = 2(1 - F). Thus we obtain

(5.3) a2+(a'3)2 = l,

(5.4) a22 + a24 = 2(1 - b).
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Since/!' = 1 - A,/2 and/3 = A2/2 - A3/4, we have

(5.5) a2 = c2(\-a),

(5.6) a4 = c4(\ - a) - X~3a'3.

Substitute (5.5) and (5.6) into the equation (a2 - c2)2 + (a4 - c4)2 = r2 which is

derived from (5.4). Then we find

(A-32a3 + 2c4A»a3 = r2(l-a2),

from which we see that a'3 = 0 or a3 = 2c4X3a/(X\r2 — 1).

First, we shall consider the case (I): a'3 = 0. In this case, a2 = 1. If a = 1, then

a2 = 0 and a4 = 0 because of (5.5) and (5.6), respectively. Thus b = 1. This result

contradicts the assumption that/is an embedding. Thus we have a = -1. We need

the following

Lemma 5.1. Let f: M —> 5(1) be a helical minimal embedding of a compact

Riemannian manifold M. Then we have

(5.7) i](X) = aH(X,X)+(D2i)(X),

(5.8) aH(X, Z) +(D2i)(Z; X,...,X)

= -UAA^Z) + hx(Z) - a(DÇ)x(AmxX)Z)

for A G UxMandZ<= Jif*( A).

Proof. Let y be a unit speed geodesic such that y(0) = X g UXM. Then by

Theorem 1.2 we have

y(s + t) = F(s + t)x +fx(s + t)X+ £(s + t; X) + Ç(s + t; X)

= F(t)y(s) +f1(t)y(s) + ¿(r; y») + f(/; y(s)).

Differentiate this equation with respect to s at s = 0. Then

-fiU)x +f[(t)X+?(t; X) + £'(*; X)

= F(t)X + f,(t)(H(X, X) - x) - Ai(nX)X +(Dt)(t; X)

-Ai{nX)X+(DÏ)(t;X),

where we have used Gauss and Weingarten equations. We know At(vX^X = 0 by [8,

Lemma 3.3]. It follows that

A((nX)x = (F(t) -f[(t))X, {'(/; X)=f1(t)H(X, A) +(D$)(t; X)

and

?(t; X) = (Dt)(f, X).

Therefore, we see that

£'(t; X) = f[(t)H(X, X) +(Dr')(t; X)

= f[(t)H(X,X)+(D2ii)(t;X).

In particular, at t = L we obtain (5.7).

Let V = Ze je*(X) in (4.1). Since A(IX)Z = (b - a)Z and £X(Z) = 0, we

obtain (5.8).    Q.E.D.
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Since (7>£)( A) = 0 for every A g UM, we have v(X) = -H(X, A) because of

(5.7) and hence r\x(Z) = -2H(X, Z) for Zejf;(I). Thus (5.8) implies

£X(AV(X)Z) = 0 which means that Art(X)Jf*(X) c Jifx*(X). Noting that Av(X)X is

proportional to A(cf. [8, Lemma 3.3]), we conclude that./lî)(A.)rxCut(y) c FxCut(y).

Let Y¡, i = e + l,...,n, be an orthonormal base in TxCut(y) such that A IX)Y¡ =

H¡Y¡. Then from (4.2) we find

-H(X,Yi) = ^2(l-^)ix(Yi)

for each i. It follows that

u, = {AMX),Y„ Y) = -{H(X, A), H(Y„ Y,))

= 2\\H(X,Y,)\\2-{X\-1)

= (l-a,)(èx(Y,),H(X,Y,))-{X\-l),

where for the third equality we have used the fact that a helical immersion is

K2-isotropic, as well as [7, (3.5), p. 40]. Since

(ix(Yt), H(X, y,)) = -({( A), H(Y„ Yi)) + b-a = 1,

we obtain ju, = (2 - X\)/2 for each i. Hence by Propositions 4.3 and 4.5 the

cut-locus is a totally geodesic submanifold in M and isometric to one of CPm_1,

Q/"""1 (m > 2), 52, 54 with standard metric of maximal sectional curvature A2, or

RP""1 with constant curvature A2/4.

Assume e > 2. Let Y0 g FxCut(y) n UXM and x0 = expxLyo. Then J^X(YQ) c

FxCut(y) by virtue of the above conclusion. Thus Jífx( A) c FxCut(x0). Since the

sectional curvature of Cut(x0) corresponding to a section in Jifx(X) is equal to A2, [7,

(3.6), p. 40] implies H( X, Z) = 0 for every Z g J?*( A). Therefore

(DH)(X,X,Z) = 0   forZGj#7(A)

because of Proposition 4.4.

Next we shall prove (DH)(X, X, Y) = 0 for Ye TxCut(y). Recall the Jacobi

field KY along y: s -» expxiAsuch that KY(Q) = Y, KY(L) = 0 and W^KY(L) = Y

g 7^,Cut(x), where y is given by

y=-Hx{y+UMX)y).

It is easy to show d2KY(L)/ds2 = 2H(y(L), Y). On the other hand, since KY = JY

+ 7,        Y/„, Theorem 2.1 implies

d2KY(L)/ds2 = -aY - AMX)Y+(DV)(Y; X) + i)x{U(Di)(X)Y),

where (Dr¡)(Y; A) = (Df )(L; Y; A). Thus we have

(DV)(Y; A) = 2H(y(L), Y) + aY + A„(X)Y - i\x{Um)(X)Y).

Computing the third derivative of (2.3) at s = L, we have

3a(DV)(Y; X) +fr (L)(D£)(Y; X)

= -ixUwxxyY) - HX(A{DmX)Y) - 3a(D£)x{Y+ U«x?)
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(see the proof of Lemma 5.3). Since (7>£)( A) = 0 for every A G UM, we see that

(Dn)(Y; A) G 7; Cut», from which 2H(y(L), Y) - Y + (1 - X\/2)Y g

FyCuu». But this vector is a normal vector aty. Thus we conclude (DH)(Y, X, X)

= -(DV)(Y; A) = 0.

In this way, (DH)(X, X, V) = 0 for every V g TxM orthogonal to A. This shows

that (DH)(X, X, A) is a constant vector on UXM and so DH = 0. This result

contradicts the assumption that the order d = 4.

Secondly we shall consider the case (II): a3 ^ 0. In this case, we showed

a'3 = 2c4X3a/{X23r2- l),

so by definition of c4 and r2,

(5.9) a3 = 2A1A2a/(A22 + A2-A2).

Lemma 5.2. Let X g UxM. We have

(5.10) t,(A) = //(A, X) + ß£(X),

(5.11) (D-n)(X) = a(Dt)(X),

where a = -(A2 + A22 + A2)/2 and ß = a — A,A2/a3.

Proof. From (5.1) we find

(D2t)(X) = (1 - b)(D2H)(A4) + «4(A1A2A3)-1(i)4i7)(A6).

We proved (D3H)(XS) = -(X\ + A23)(7>H)(A3) in [8, Theorem 3.4, p. 70] (also see

[8, Corollary 3.5, p. 71]). Using (5.5), (5.6) and (5.9), we thus have

(D2H)(X4) = ¿(A22 + A2 - X\)(D2è)(X),

so that (5.7) implies

(D2H)(X4) = ¿(A22 + A2 - A2)(„(A) - aH(X, A)).

We now substitute this equation into (5.1). Here we note that

a2 = (X\ + A2 - A2)/{(A22 + A2 - A2)2 + 4A2A22}

is derived from (5.3) and (5.9). The straightforward computation shows

_ {(A2 + A22 + A2)q -(A22 + A2 - X\)}(H(X, X) - v(X))

i{X)~ 2aX\X23

By definition and (5.9) we have

ß = -{(A2 + A22 + X23)a +(A22 + A2 - A2)}/2a.

Thus the coefficient of the above equation is equal to -1/ß. Thus (5.10) has been

proved. Since (7>i))(A) = (DH)( A3) + ß(D£)(X), (5.11) clearly follows from (5.2).

Q.E.D.
Since we have

(aX),n(X)) = (ax),aH(X,X)+(D2è)(X))

= a(b- a)-(I - a2) = ab- 1,

(|(A), H(X, X) + /3|(A)) = b - a + ß(\ - b2)



HELICAL MINIMAL IMMERSIONS 783

for A G UXM, (5.10) gives

(5.12) ß = (a - 1)/(1 - b) < 0.

Lemma 5.3. Let X g UxM, Z g jf/( A) and Y g TxCut(y). 77¡é?w we obtain

(5.13) «.(flO^Z) - K« - /*HxU(W)Z)

= -3{2i/(A, ¿(fli)WZ) +(Df)x(^ff(x,x)Z)},

(5.14) S2(Z)É)r(y) - K« - /*)tx(>W:r)ir)

= -3{2/i(A, A(m)(X)Y)+(Dè)x(AfHx,x)Y)},

where 81 = (a - /3)(a + 1) + 3(/3 + l)and82 = (a - 0)a + 3(/3 + 1).

Proof. Differentiate (2.3) with respect to s three times. Then at s = L we have

3a(Dr,)(V;X)+f1'"(L)(Dè)(V;X)

= -£x\A(Dri)(X)V) — ̂ VX\A(D^X)V)

-3a(D£) X{V + IAV(X)V) +(Dt,) x(bV - A((X)V)

for V g ( A}x . So by Lemma 5.2,

{a(a -ß) + 3a- ba}(DÇ)x(V) +(3ß + a)(D^) X(AUX)V)

+ (3aß+fl'"(L))(Di)(V; X) +(3ß + a)$x{A(D(xxyv)

= -3{2H(X, Am)(X)V) +(DÇ)x(AmxX)V)}.

It is easily verified that/,'" (L) = -A2a + XLX2a'3. Using (5.9), we have a = -A2 -

A,A2a/a3, and hence //" (L) = aa + XxX2a2/a'3 + A,A2a3 = aa + a - ß. When

V = Z, the above equation reduces to (5.13), where we have used Theorem 3.4,

(5.12) and the equation

(Di;)(Z; X) = (Dè)x(Z) - ttx(AmxX)Z)

(cf. Proposition 3.6). When V = Y, we have (5.14) in a similar way.    Q.E.D.

If a4 = 0, then (5.6) and (5.9) give a = (X22 + X23 - X\)/(X\ + X\ + X\), which

means that ¿(A) = 0 (see the proof of Lemma 5.2), so we have 6=1. This

contradicts the assumption that/is an embedding. Thus we see that a4 =£ 0.

Let h(s), k(s), l(s) be defined by

h(s) = l-F(s)-(l-b)f4(s)/a4,

k(s)=f4(s)/a4,        l(s) = f3(s)/a'3.

Since

€(*; X) = (1 - F(s))H(X, X) +f4(s)(X1X2X3yl(D2H)(X4)

and

Us;X)=f3(s)(X1X2y\DH)(X'),

we can represent them by

(5.15) i(s; X) = h(s)H(X, A) + k(s)i(X),

(5.16) ¡(s; X) = l(s)(D£)(X)
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for every A g UxM, which are shown by using (5.1) and (5.2). Then (2.3) is rewritten

as

(K« - j8)/,A - Fl}(D£)x(V) + kl(DZ)x{AiwV)

+flk(Dè)(V;X) + kltx(A(mxX)V)

= -hl{2H(X,AÍD(XX)V)+(DC)x(AH(XíX)V)}

for every FG{A}-L.IfF=ZG J^*(X), then this equation reduces to

{K« - ß)hh - Fl+fxk +(b - a)kl}(Di)X(Z)

(5.17) +(kl-iJlk)Çx(A(m)(x)Z)

= -hl{2H(X, A{Di)(X)Z) +(DOx(AH(X,X)Z)}.

If V = y g 7xCut(y), then we obtain

{\-(a-ß)flh-Fl+bkl)(Di)x(Y)

(5.18) +{kl-^fik)èx{Am)(X)Y)

= -hl{2H(X,A,D(XX)Y)+(D0x{Amx>X)Y)}.

Lemma 5.4. Let X g UxM, Z g Jíf*( A) am/ y g TxCut(y). 77¡e« we have

(5.19) /7(Z)|)X(Z) + qHx(A(m(X)Z) = 0,

(5.20) (/> + aq)(Di)x(Y) + qtx(A(D()(X)Y) = 0,

tv/jtve functions p and q are defined by p = \(a — ß)fxh - Fl + fLk + (b - a)kl

- \8xhlandq = kl - \fxk + ¿(a - ß)hl.

Proof. These equations are easily derived from (5.13), (5.14), (5.17) and (5.18).

Q.E.D.

Lemma 5.5. 77ie Frenet matrix A can be normalized as

(0     -v \
v      0

0      -2v   '

\ 2v      0   j

where v = y'-/?.

Proof. Suppose that e > 2. Taking account of Lemma 3.2 into (5.19), we see that

p vanishes identically since \\(D£) X(Z)\\2 = 1 - a2 # 0 for Ze//(I) n UXM.

Next suppose e = 1. From (5.20) we have

0 = ((/> + ûo)(Z)^)x(y) + qèx(Amxx)Y), H(X, Y))

= -(p + aq)((Dè)(X),H(Y,Y))

-bq(A,DèxX)Y, y) +(b- a)q(A(D(XX)Y, Y)

= -(p + 2aq)(A(DiKX)Y,Y)
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for y G TxCut(y). Assume that;? + 2aq does not vanish identically. Then A(D()(X)Y

= 0, where we note that A,DixX)X = 0. Thus also (5.20) shows (p + aq)(Di¡,)X(Y)

= 0. If (D£)x(Y) * 0 for some Y G TxCut(y) = {X}± , then p + aq vanishes

identically. If (DÇ)X(Y) = 0 for every y g {A}-1, then (7>£)(A) is a constant

vector on UXM and hence (D£)(A) = 0, which contradicts a2 + 1. We have shown

that/? + 2aq orp + aq vanishes identically when e = 1. We shall compute the fifth

derivatives of p and q at s = 0. Making use of the differential equation satisfied by

f¡, we have the following data:

/<1»(0) = 1,       //3)(0) =-A2,

F(0) = 1,    F(2>(0) = -1,    F(4»(0) = A2,

h(0) = 0,   /i(2)(0) = l,   hw(0) = -A2 -(1 - b)X1X2X3/a4,

k(0) = 0,   /c(2)(0) = 0,   A:(4)(0) = XxX2X3/a4,

/<1»(0) = 0,       /<3»(0) = A1A2A3,

/<5)(0) = -A1A2(A21 + A22 + A2)/a3,

where we note that//(0) = 0 if i ¥= 1. If y is a geodesic parametrized by arc length,

then (y(s),y(t)) = F(s - t). It follows that fx(s - L) = (y(s),y(L)) = afx(s)

+ a'3f3(s). Integrating both sides from 0 to L, we have

b-\ = a(\-b) + a'3(Lf3ds.
Jo

Since/,' = A3/3, we see that f¿f3ds = X'3a4. Therefore

a'3a4 - -(1 - b)(l + a)Xv

Using this relation, A2 = -{(a - ß)a + a} and AjAj/a'j = a — ß, we can rewrite

the above data in terms of a, ß and a. For example, /¡<4>(0) = 2a — ß. Then the

routine calculation shows the fifth derivatives of p and q at í = 0 are given by

/5>(0) = f (a - ß)(2a - 5ß),    ö<5>(0) = ¿(a - ß)(2a - 5ß).

Note that a * ß. If e > 2, then 2a = 5ß. If e = 1, then />(5)(0) + jaqí5)(0) = 0

(/ = 1 or 2), and so 2a = 5/8. From the definition of a, we have A2 + A22 + A2 = -5ß.

Since A,A2/a3 = §/8, we have A22 + A2 - A2 = 3aß because of (5.9), and A2A22

= fß2(l — a2). These equations imply

(5.2,)      m = -|(3<, + 5). y2 = -fi|^, xs - .JL.

It is easily verified that the characteristic polynomial of A is given by

x4+(A2+A22 + A23)x2 + A2A2,

so that the characteristic equation is given by x4 - 5/Sx2 + 4/82 = 0, which proves

the assertion.    Q.E.D.

Lemma 5.6. We have vL = it and

(5.22) fi(s)= T"{2(1 -a)smvs+(l + a)sin2vs),
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(5.23)     F(s) = 1 + ,     + —{4(1 - a) cos v s +(1 + a)cos2i».

Proof. In virtue of Lemma 5.5,/! is a linear combination of sin vs and sin2i».r (cf.

§1). Let

fx = (u/v)sinps +(v/2v)sin2vs.

The conditions /i(0) = 1 and /1(3)(0) = -A2 give u + v = 1 and uv2 + 4vv2 =

\v2(3a + 5), respectively. It follows that u = \(1 - a), v = \(\ + a), which show

(5.22). Since F' = -/, and F(0) = 1, we have (5.23). It is easy to show vL = m.

Q.E.D.

Theorem 5.7. Let f: M -* 5(1) be a helical minimal embedding of order 4 of a

compact Riemannian manifold M into 5(1). Then a > 0 if and only if there is a unique

real number s0 G (0, L) such that fx(s0) = 0. Assume that a > 0. Then a =

(e + 2)/(n + 2) and M is isometric to one ofRP", CPm, QPm (m > 2), or CayP2

with standard metrics. If M = RP", then the curvature is equal to n/4(n + 3). //

M = CPm, QPm, or CayP2, then the maximal curvature is equal to n/(n + e + 2).

And, moreover, fis equivalent to a standard minimal embedding (cf. [2, 11, 12]).

Proof. From (5.22) we have

fx(s) = (l/2»0sinr{(l - a) +(1 + a)cost),

where t = vs. It follows that a > 0 if and only if there is t0 (uniquely) such that

t0 g (0, w), cos/0 = -(1 - a)/(l + a). Suppose a > 0. (3.2) implies that nF - f[

vanishes at t = t0. Thus by Lemma 5.6 we have

«(3a - 5 + 8» + 4(1 - a)(n - v2)cost0

+ (1 + a)(n - 4p2)(2cos2t0 - l) = 0.

Substitute cosi0 = -(1 — a)/(l + a) into this equation. Using Corollary 3.5 and

(5.12), we easily obtain a = (e + 2)/(n + 2).

Let X g UXM and let y be the geodesic such that y(0) = x, and y(0) = A. We note

that {Jv(s): V G {X)x) spans the subspace {y(i)}"L on (0, L). Thus, at s0 = t0/v,

{y(s)}± is parallel to the normal space at x in the Euclidean space E by virtue of

(2.1). So we see from (2.2) that F(s0)I - Ai(s lX) - A^S&X) = 0 on {A}-1 where I

denotes the identity transformation of {X )L . Exchange A for - A. Then we have

F(s0)I - AUso.X) + AUso.X) = 0 on {X}1. Thus F(s0)I - AiUo.X) = 0 and AiUa.X)

= 0 on {A}"-. Since f[' = -X\fx + A,A2/3, using (5.21) (5.22) we see that l(s) =

-^siní/s - sin2xí)/4>' < 0 on (0, L). It follows from (5.2) and (5.16) that

A(dhxx,x,x) = 0, and so (H(Xl, X2), (DH)(X3, A4, A5)) = 0 for every A, (/ =

1,..., 5). Recall the Gauss structure equation of/:

R(U, V)W = (V, W)U-(U, W)V + AHiK W)U - AH(V,W)V.

Thus, we conclude that M is locally symmetric. We next make use of F(s0)I —

AUs0-.x)= F(s0)I - h(so)AH(XX)-k(so)A^X) = 0 on {X}± . As f{ = 1 - XJ2

and/3 = A2/2 — A3/4, we can compute f2 and/4. From this computation we have

h(s) = (1 - cos2»/4>'2,       k(s) = i(l - cos»2.
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Thus we see that

¿H(x.x)Z = [{n(n -e)- 4(e + 2)}/2(n + 2)(n + e + 2)}Z

forZ G^Tx*(A)and

AH(X,x)Y = [~(e + 2)(n + 4)/2(n + 2)(n + e + 2)] Y

for y g TxCut(y). Since/is isotropic (cf. [8, Proposition 2.1, p. 66]), we have

R(U, X)X - (1 - \k2)U + Uh(X,x)U

for t/e {I}1. Therefore, if e > 2, then the symmetric linear transformation

i?(-,A)Aof{A}-L has two distinct eigenvalues n/(n + e + 2) and n/4(n + e + 2)

whose eigenspaces arc^C*(X) and TxCut(y), respectively. In this case, we see from

[2, Theorem 7.23] and Theorem 1.3 that M is simply connected. Since M is complete

and locally symmetric, M is a globally symmetric space (cf. [2, Remark.2.2.13]). We

have shown that the minimal (resp. maximal) sectional curvature is equal to

n/4(n + e + 2) (resp. n/(n + e + 2)). It follows that the symmetric space M is of

rank one. We conclude that M is isometric to one of CPm, QP"' (m > 2), or

CayP2. If e = 1, then the symmetric linear transformation R(-, A)A is equal to

{n/4(n + 3)}7 and hence all sectional curvatures of M are equal to n/4(n + 3).

Using [2, Proposition 5.57] and Theorem 1.3, we conclude that M is isometric to

RP". Finally the assertion that/is equivalent with a standard minimal embedding is

due to Tsukada [11, Corollary 2.8].    Q.E.D.

Remark. It is well known in the theory of harmonic manifolds that if M is a

compact locally harmonic manifold and locally symmetric, then M is locally isomet-

ric to a compact rank-one symmetric space (cf. [2], [8, Theorem 6.5]) shows that if/:

M -» 5(1) is a helical minimal immersion, then M is globally harmonic. Thus if we

make use of these results, then, in the proof of the above theorem, it suffices to show

thatA(DH)(X3)= 0.

6. Weinstein integer. In Theorem 5.7 we assumed a > 0 to show that M is

isometric to a compact rank-one symmetric space. The reason is that we needed

s0 G (0, L) such that/i(i0) = 0. In this section we shall study the Weinstein integer

(cf. [2, Theorem 2.21, p. 59, and 13]) of the compact Riemannian manifold M which

admits a helical minimal embedding of order 4 into a unit sphere 5(1) and show that

if the Weinstein integer i( M) of M is equal to that of a compact rank-one symmetric

space, then a > 0. Here we recall the definition of the Weinstein integer. If (N, g) is

an «-dimensional C2 ¿-manifold (a manifold all of whose geodesies are periodic

geodesies with the same length 2L), then the ratio

Vol(N,g)

Vol(5",can) (Í)'
is an integer i(N, g) called the Weinstein integer, where can denotes the standard

metric with curvature 1 and

2      (H + D/2

Vol(5",can) = ——-—r.
'    r((« + i)/2)
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In the present situation, we have

Vol(5 ,can)

Since

Vol(M)=  f      fLs"'le(sX)dsda
JUxMJ0

= Vol(5"-1,can) /V"1©» ds,
Jo

where o denotes the canonical measure on the unit sphere UXM, we have from (6.1)

77 '   1 (M/2 •'O

,w,      ?„-ir((n + l)/2)r(g/2)    /» n + e \

w1/2r((« + e)/2)       V2 2 /

r(«/2)
Proposition 6.1. The Weinstein integer i(M) of M is given by

n^T((n + l)/2)T(e/2) j n   ^   n±^

ir1/2r((#i + e)/2)

where F(-, -, •, • ) denotes the hypergeometricfunction (cf. [14]) and

x= {(e + 2)-(n + 2)a}/2(l-a).

Proof. From (3.2) we have

(log*-1©»)' = (nF(s) -/í(í))/A(í) - co».

Thus we have

snl@(s) = Cexp f u(u) du,

C being a certain constant. If we put / = vu, then by Lemma 5.6

1  I" n(3a- 5 + 8»

"(")" 2v|_2(l - a)sini +(l + a)sin2f

4(1 - a)(n - »cos/ +(1 + a)(n - 4»cos2i

2(1 - a) sin/ +(1 + a) sin 2/

A long but routine calculation shows

s""1©» = C|l - a +(l + a)cos/|~x(sin(//2))""1(cos(i/2))f'"1|,=„.

Since 0(0) = 1, we see that

(6.3) i""1©» = (2/f)"_12x{(1 + a)cosvs + 1 - a}'x

■(»¡ii(w/2))""1(oos(m/2))'"1.

Here we note that if a > 0, then a = (e + 2)/(n + 2), and hence x = 0. Substitute

(6.3) into (6.2). Then we have

T((n + l)/2)
i(M)

■nl/2Y(n/2)

■2"-1+xf{(l + a)cosr + 1 - a}~xfsin|]      (««4]'    dt-
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Noting that

(1 + a)cos? + 1 - a = 2(cos2(r/2) - asin2(//2)),

we integrate by substitution u = sin2(//2). Then we obtain

TTw T(n/2) Jo

Thus, the formula

F(a, b, c, z) = —-^-r/V-l(l - »)C_a_1(1 - »)"**.
r(a)r(c - a) Jo

where a, b, c and z are complex numbers such that^c > ^a > 0 and |z| < 1 (cf. [14,

p. 293]) gives the assertion.   Q.E.D.

If a > 0, then x = 0. Since F(n/2,0,(n + e)/2, a + 1) = 1, the condition a > 0

implies that

i(M) = 2"-1r((« + l)/2)T(e/2)/<nl/2T((n + e)/2).

We can see that this number is equal to the Weinstein integer of a compact rank-one

symmetric space. For instance, if e = 2, then

i(M) = 2-i T(m + V2)    = 22m-i_(2#^_ = (2m-l\

■nl/2Y(m + 1) 771/2(w!)222'"       I w - 1 /'

which is the Weinstein integer of CPm with the canonical metric (see [2, p. 60]).

Conversely, we have

Theorem 6.2. Assume that a compact n-dimensional Riemannian manifold M admits

a helical minimal embedding of order 4 into a unit sphere. If i(M) = i(RP",can)

(e = 1), then M is isometric to RP" of constant curvature n/4(n + 3). If i(M) =

i(CPm,can) (e = 2), ¿(QP"\can) (e = 4) and /(CayP2,can) (e = 8), then M is

isometric to CPm,QPm and CayP2, respectively, with standard metrics of maximal

curvature n/(n + e + 2).

Proof. If a < 0, then x > 0, and hence

F(n/2,x,(" + e)/2,a + l)>l,

where we note that a > -1. By Proposition 6.1 we see that

l(M)>2-r(^±l)r(f)Av2r(ZL+£

This contradicts the assumption. Thus we have a > 0. The assertion follows from

Theorem 5.7.    Q.E.D.

Unfortunately, at present we can not prove a > 0 without condition i(M) = i

(compact rank-one symmetric space).

Remark. Since M is a globally harmonic manifold, if e — 1, then we see from [2,

Proposition 5.57, p. 142 and Corollary D.3, p. 236] that M is isometric to RP" of

constant curvature. Thus in Theorem 6.2 the condition i(M) = /(RP") is redundant.
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