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HOMOMORPHISMS BETWEEN GENERALIZED

VERMA MODULES

BY

BRIAN D. BOE1

Abstract. Let ß be a finite-dimensional complex semisimple Lie algebra and t> a

parabolic subalgebra. The first result is a necessary and sufficient condition, in the

spirit of the Bernstein-Gelfand-Gelfand theorem on Verma modules, for Lepowsky's

"standard map" between two generalized Verma modules for a to be zero. The main

result gives a complete description of all homomorphisms between the generalized

Verma modules induced from one-dimensional p-modules, in the "hermitian sym-

metric" situation.

1. Introduction. Let g be a finite-dimensional complex semisimple Lie algebra and

p a parabolic subalgebra. A generalized Verma module (GVM) is a left g-module

^(g) ®^(t)) E, where £ is a finite-dimensional irreducible p-module. A study of the

g-homomorphisms between GVM's was begun by J. Lepowsky [10-12] and the

purpose of the present work is to continue this study.

Suppose that G is a real Lie group with complexified Lie algebra g and P a

parabolic subgroup corresponding to p. There is a close connection between the

representations of G induced from finite-dimensional P-modules and the con-

tragredient duals of algebraically induced modules for g (i.e. GVM's). For example,

P might be a "minimal" parabolic subgroup, and the representations of G the

nonunitary principal series. Homomorphisms between generalized Verma modules

give rise, upon dualizing, to differential operators intertwining the representations of

G.

In the main situation discussed in the present paper, this duality can be seen quite

concretely. Suppose that G/K is a hermitian symmetric space, where A' is a maximal

compact subgroup. Take p to be the associated parabolic subalgebra of g (cf. §4).

Denote by r and u+ the reductive and nilpotent parts of p, and let u" be the

opposite nilradical. Then u" is abelian. By the Poincaré-Birkhoff-Witt theorem, a

homomorphism between generalized Verma modules is given by a certain matrix

with entries from <%(\\~) — y(u~). Replacing each x e u" by d/dx and transposing

the matrix, gives the associated differential operator.
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The g-module homomorphisms between (ordinary) Verma modules (where p is a

Borel subalgebra), have been completely characterized by Verma and Bernstein-

Gelfand-Gelfand (B-G-G): all nonzero maps are injective, the space of homomor-

phisms is at most one-dimensional, and there is a necessary and sufficient condition

for a nonzero map to exist (cf. [1, 2, 5, 17]). However, in the case of generalized

Verma modules, there are nontrivial homomorphisms which are not injective.

Because of this, the argument used to prove multiplicity one for Verma modules

does not carry over to GVM's. On the other hand, no example has been found to

support the alternative conclusion, and it is one of the main unsolved problems to

show that the space of maps is always at most one-dimensional (cf. [13]).2

Generalized Verma modules are highest weight modules, and hence are quotients

of Verma modules. The existence of a nonzero map between GVM's implies

containment of the corresponding Verma modules; conversely, such an inclusion

induces a map between the GVM's, called the "standard map" [9]. But the standard

map may be zero, and even when this happens, there might be some other

" nonstandard" map. Thus the theory of Verma modules is not particularly useful in

determining all homomorphisms between GVM's. Nevertheless, the standard maps

can be described completely. Theorem 3.3 gives necessary and sufficient conditions

(in the spirit of the B-G-G theorem) for the standard map to be nonzero.

The problem, then, is to understand the nonstandard maps. One tool which can be

used is invariant theory. Suppose Ex and E2 are finite-dimensional irreducible

r-modules. Every r-module homomorphism from ^(g) ®*(p) Ex to ^(g) ®^(p) E2 is

determined by an r-invariant element of <%(u~) ®c E* <8>c E2. In general this tensor

product is very difficult to decompose; however, when Ex and E2 are one-dimen-

sional (the "scalar" case), one need only determine the r-semi-invariants in ^¿(W).

In the hermitian symmetric context described above, this has been done by W.

Schmid [16]. Our main result is a complete characterization of when such an r-map

is actually a g-map (Theorem 4.4). It should be noted that the proof given here is

based on a result of N. Wallach [18], and is different from the one in the author's Ph.

D. thesis [3], which involved case-by-case computations.

In §2, we introduce the notation used in the remainder of the paper. §3 is a

discussion of standard maps, and §4 is devoted to the proof of Theorem 4.4.

This article is a summary of work done for my thesis at Yale University. I wish to

thank my advisor, Gregg Zuckerman, for his guidance and encouragement.

2. Notation and preliminaries. Let g be a finite-dimensional complex semisimple

Lie algebra, fa a Cartan subalgebra, A c I)* the set of roots of g with respect to fa,

A + c A a positive system, and alf...ta¡ the corresponding simple roots. Set p

= lE„ei+a. Define subalgebras

n + =   E   8„,    rr=   £   fl-„,    and    fa = h © rt+.
«eA* aeA+

"Added in proof. R. Irving has recently discovered a pair of generalized Verma modules (having

singular infinitesimal character) for which the space of fl-homomorphisms is two-dimensional.
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Denote by ( , ) the Killing form on g, and also the form on fa * induced by it. For

a g A+, let ha be the unique element of [g„, gj such that a(ha) = 2. We will write

h, for h a , 1 < / < /. Also, let sa be the reflection in the root a. We have the Weyl

group IF of g with respect to fa, and the length function /(•••) on W. For w,

w' g W, write w -> w' if there exists y g A + such that w = syw' and l(w) = l(w') +

1; the Bruhat order < is defined to be the transitive closure of -» . Denote by P+

the set of regular dominant integral weights of g. For a a simple root, let ua be the

corresponding fundamental weight.

If À g fa *, we denote by Cx the one-dimensional fa-module on which fa acts by the

form X, and rt+ acts trivially. Define the Verma module

M(\) = <2r(s)®*rt)Cx_p.

Recall that M(X) has a unique irreducible quotient L(X), and admits an infinitesi-

mal character 0X for the center 3?( g ) of ^(g); furthermore, 0X = 0^ if and only if

a^ W-X.

We shall now describe the construction of generalized Verma modules (GVM's).

Because we need a rather explicit description of the parabolic subalgebras of g

containing the Borel subalgebra fa, we must introduce some additional notation.

Let 5 be any subset of (1,...,/}, fas the (complex) span of the hi with / g S, and

qs the subalgebra of g generated by fas and the g ± with i g 5. Set As = An

£,esZa,., AJ = A + n As, nj = IaeAJga and n~s = EaeA¿g_„. Then gs is a semi-

simple Lie algebra with Cartan subalgebra fas, root system As, positive roots AJ and

simple roots {a¡\i g S} (when these elements of fa* are restricted to fas); we have

gs = ns © fas© nj.

Define u + = EaeA+XAJga, ""= EaeA+NAJg_a, r = fa + gs and p = ps = r © u+.

Then u+ and u" are nilpotent subalgebras of n+ and n", respectively, and r is a

reductive subalgebra of g with derived algebra gs and center *(r)c fa. Since

[ r, u+] c u +, p s is a subalgebra of g : it is the most general' parabolic subalgebra

containing the Borel fa. If S = 0,p = fa; if 5 = {l,...,/},p = g. When|S| = / - 1,

we say that p is a "maximal parabolic".

We note the following decompositions:

g = u"© p,        r = gs©*(r),        fa=fasffi¿(r),

n + = nj © u+,       n"= n¿ © u".

Set ps = iLaeAja, ps = îEaeA+\Aja. Then p = ps + ps. We-Temark, for later use,

that ps| fas = 0 while ps * 0 (if |S| * I).

Let Ps+ = {X g fa*|A(/¡,) g N, all i6s}. Then Ps+ parametrizes the set of

(isomorphism classes of) finite-dimensional irreducible r-modules which remain

irreducible under gs: to X g Ps+ we associate the r-module E(\) with highest weight

X - p (relative to gs, hs, and nj). We make E(X) a p-modûle by letting u+ act

trivially. Define the generalized Verma module

(2.1) Ms(X) = ^/(q)^^s)E(X).

When S = 0, MS(X) is just the Verma module M(X); if \S\ = /, then X g P+ and

MS(X) = L(X).
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The basic properties of generalized Verma modules can be found in [5 or 9]; we

recall here only that MS(X) is a quotient of M(X).

To conclude this section, we define the subset Ws of W which parametrizes the

generalized Verma modules having a given regular integral infinitesimal character.

Let Ws be the subgroup of W generated by the s, = sa with i g S. When restricted

to b*, IFjisjust W(qs, bs). Put

(2.2) Ws = {w^ W\l(s¡w) = l(w) + I, all/g S),

the set of minimal length right coset representatives of Ws in W. (Note that some

authors use left coset representatives.) Another characterization of Ws, which

follows from [7, Corollary 10.2C], is

(2.3) Ws = [w g W\w-lH.+s c A+}.

This description leads readily to the following proposition.

2.4. Proposition. Let X g P+. Then wX g Ps+ if and only ifw g Ws.

Thus the GVM's having infinitesimal character 0X are precisely the Ms(wX) with

w g Ws.

3. Standard maps. Let X, ju g Ps+, and suppose there is a nonzero g-map from

MS(X) to Ms(fi). Then L(X) is a composition factor of Ms(¡x), hence of M(¡x). Now

by the B-G-G theorem, M(X) c M(jti). Thus a necessary condition for the existence

of a map between generalized Verma modules is containment of the corresponding

Verma modules. Conversely, suppose there is a nonzero map/: M(X) -* M(¡i), with

X and u as above. Denote by K(X) the kernel of the projection M(X) -* MS(X).

Then Lepowsky has shown [9, Proposition 3.1] that f(K(X)) c À'(jti), and hence/

induces a g-module map/: MS(X) -» Ms(fi).

3.1. Definition (Lepowsky). The map/is called the standard map from MS(X) to

Ms(¡i).
By the uniqueness of embeddings of Verma modules, the standard map is unique

up to scalar multiples. At first sight, then, there appears to be an exact correlation

between the existence of maps between GVM's and the existence of maps between

the corresponding Verma modules. Unfortunately, the standard map can be zero.

On the other hand, even when the standard map is zero, a nonzero homomorphism

may exist. We shall call such maps "nonstandard". The author has discovered many

examples of nonstandard maps, some of which are obtained from well-known

differential operators such as the Laplacian, the Dirac and the Hodge star operators.

For a more complete discussion, the reader is referred to [3].

The existence of nonstandard maps appears to make the theory of Verma modules

relatively useless in the study of general homomorphisms between GVM's. However,

the situation is much improved if we restrict our attention to standard maps.

3.2. Definition (B-G-G). Let X, ¡x g fa* and Yi»---.Yr G A+- Set Mo = I1 and

iu,■ = sy ■ ■ • sy¡ii, 1 < i < r. We say that the sequence (y,,... ,yr) links n to X (and

that jti is linked toX)iî

(i) jur = X, and

(ii) /x, = ju,_i - n¡y¡ with n: g Z+, l</<r.
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The following theorem is a refinement of Lepowsky's work.

3.3. Theorem. Let X, u g Ps+, and assume that M(X) c M(¡i). The following are

equivalent (notation as in Definition 3.2):

(i) The standard map MS(X) —> Ms(fi) is zero.

(ii) There exists a sequence (y,,... ,yr) which links fitoX, with ¡ix £ P§ .

(iii)  There exists a sequence (y1,...,yr) which links ju to X, and an integer i,

1 < /' < r, with n¡ <£ Ps+.

Proof, (i) =» (ii). Assume that the standard map MS(X) -» Ms(¡x) is zero. Then

by [9, Proposition 3.3], M(X) c M(SjH) for some/ g S. Hence (by B-G-G) there is a

sequence (y2,... ,yr) of positive roots linking iyju to X. Put yx = at. Then fi(hy) g N

since jti g Ps+, and (Sjfi)(hj) = -¡x(hj), so iyJu <£ Ps+. Thus (y^... ,yr) satisfies (ii).

(ii) =» (iii). Obvious.

(iii) =» (i). Assume (iii). Then we have the commutative diagram

M(X) ~-> M(/i)

wx 1 •!• ̂

Ms(» - Ms(a)

where 77x and w^ are projections, and / is the standard map. But since jti, £ P£,

■n^ ° h = 0 by [9, Proposition 3.1]. Hence f ° irx = w^o f = ■nli° h ° g = 0. But irx is

surjective, so/= 0.     Q.E.D.

In the regular integral case, the theorem can be stated in terms of the Bruhat

order.

3.4. Corollary. Let X g P+ and w, w' g Ws, with w < w'. The following are

equivalent:

(i) The standard map Ms(wX) —» Ms(w'X) is zero.

(ii) There exists wx G W\ Ws such that w < wx -» w'.

(iii) There exists w, G H/\ H^5 iwc/t z/¡crZ w < vfj < tv'.

3.5. Remark. The implication (ii) =» (i) is Proposition 3.9 of [9], while the

equivalence of (ii) and (iii) also follows from Lemma 3.3 of [4].

The above result is most useful when applied to the following situation.

3.6. Corollary. Let X,w, w' be as above. Then the standard map Ms(wX) ->

Ms(w'X) is nonzero // there exist distinct wx, w2 e Ws with w —> wx —> w' and

w —» w2 -» w'.

Proof. This is an easy consequence of Corollary 3.4(iii) and [1, Lemma 10.3].

4. Scalar maps: the hermitian symmetric case. Many of the results which have been

obtained concerning generalized Verma modules have pertained only to those

induced from one-dimensional p-modules. Thus, we make the following definition.
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4.1. Definition. A generalized Verma module ^(g) ®<f,,v)E, with E a one-dimen-

sional p-module, is called a scalar GVM. A g-homomorphism between scalar GVM's

is called a scalar map.

We shall determine all scalar maps in the " hermitian symmetric" situation, in the

following sense.

Let G be a simple real Lie group, K a maximal compact subgroup, and assume

that G/K is a hermitian symmetric space. Let g and f be the corresponding

complexified Lie algebras, and g = f © q a Cartan decomposition. If fa is a maximal

abelian subalgebra of f, then fa is a Cartan subalgebra of g. By choosing an ordering

of the roots of fa in g, we obtain a decomposition q = q + ffi a~. Then p = f©q+isa

parabolic subalgebra of g. We shall call such a parabolic p a hermitian symmetric

parabolic subalgebra. The roots whose spaces lie in f (resp. q) are called compact

(resp. noncompact) roots.

The hermitian symmetric parabolic subalgebras of a complex simple Lie algebra g

are characterized by the condition that the nilradical u + of p (and hence also u ") be

abelian. For the remainder of this section, we shall assume that this condition holds.

Now, suppose E and E' are one-dimensional p-modules, having nonzero elements

e and e', and highest weights X and X'. Every g-map

*:«r(fl) •««„£'-»•(fl)«,,0,)£

is determined by the image <i>(l ® e') = u ® e, where we may assume that u g <%( u ").

Since gs is semisimple, and E and E' are one-dimensional, they are trivial as

gs-modules. It follows that u G <%(u~)Ss, the space of gs-invariant vectors in *%(u~).

Similarly, by using the fact that <f> is an fa-module map, one finds that m is a weight

vector of weight X' — X. Hence u is an r-semi-invariant in <%(u ").

Thus, a first step in determining the maps between scalar GVM's is to identify the

r-semi-invariants. Denote by a the unique simple noncompact root. We introduce

the usual order ^ onfa*:X<jaif/x — X is a nonnegative integral linear combination

of the simple roots. Let y,,...,yr be the maximal family of mutually orthogonal

noncompact roots, as constructed by Harish-Chandra [6]. In particular, yx = a and

yx < y2 < ■ ■ ■ < yr. Moore has shown [15] that (y,, y,) = (y, y-) for 1 < i,j < r.

Scth-=I/i = lChy.

Following Wallach [18], we set jti, = -(yx + • • ■ + yy), 1 </ < r. Then, by

Schmid's theorem [16], the r-highest weight vectors of <%(u~) are in one-to-one

correspondence with the weights E,r= ,«,/*,, ni G Z+. Let uJ be a nonzero element of

^(u-)"* having weight p.. Then ^(u-)"^ is the subalgebra of ^(u~) generated by

ux,...,ur.

4.2. Proposition. <%(u~ys is either C[ur] or C.

Proof. Let u g <%(u~) be a weight vector for fa, say of weight X. If u is

g s-invariant, then by Schmid's theorem,
r

X = - Y, mkik-.       mx> m2> • • • > mr.
k = l

Now e%(r)u is a finite-dimensional irreducible r-module; thus, u is gs-invariant if

and only if X|fas = (#
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Moore [15, Theorem 2] has shown that given 1 <y < i < r, there exists ß g A£

such that ß\b~ = Ky, ~ Y,)- Then

0 = A(/^ = jßj) (ï<* - *>• -¿w^)=7^y(^ "m,)-

Hence w, = m , and X = -wE^.iY^ = w/xr, where m is the common value of the

m^'s. Thus u = u™ (up to scalar multiple).

In case (a) of Moore's result, every element ß of AJ has the property that ß\h~

= \(y¡ — y.) for some 1 </ < / < r. In this case, we have ^(u")8s = C\ur\. How-

ever, in case (b), there also exists ß g AJ with /?|fa~= - §yr. Then

forcing m = 0. Thus in this case <^(u ~)ßs = C.     Q.E.D.

4.3. Remarks. 1. It follows from the proof that the cases t%(\x~) = C[ur] or C

correspond to cases (a) and (b), respectively, of Moore's theorem [15, Theorem 2]. A.

Koranyi and J. Wolf [8] proved that condition (a) is equivalent to the condition that

G/K be a tube domain. Wolf [19] showed that this, in turn, is necessary and

sufficient for the existence of a nontrivial gs-invariant in %(u~).

2. R. Lipsman and J. Wolf [14] have proved that <%(u~) has a nontrivial

g s-invariant precisely when the longest element of W sends a to -a.

4.4. Theorem. Let g be a simple Lie algebra, p = ps a hermitian symmetric

parabolic subalgebra, and a the unique simple noncompact root. Assume that &(u~)®s

# C. Let X, X' g fa * be such that MS(X + p) and MS(X' + p) are scalar GVM 's. Then

Hom^(a)(Ms(X' + p), MS(X + p)) is nonzero if and only if either X = X', or X =

(k - ps(ha))uaandX' = (-k - ps(ha))ua for some k G N.

Proof. Clearly we may assume X =£ X'. Since E(X + p) is a one-dimensional

r-module, it is trivial as a g5-module. Hence X(h¡) = 0 for all / g S. Thus X = zua

for some z e C. Let e, e' be nonzero elements of E(X + p), E(X' + p). If <>:

MS(X' + p) —> MS(X + p) is a nonzero r-module map, then 4>(1 ® e') = u ® e for

some u g l%(u~)Ss having weight X' — X.

Suppose we show that x ■ (u ® e) = 0 for some nonzero x g u+. Since u+ is

abelian, it is irreducible as an (adgs)-module. Now for g g gs,

[g, x] -(u ® e) = g ■ x -(u ® e) — x ■ g -(u <8> e) = 0;

it follows that u ® e is u+-invariant. Hence, by the universal property of induced

modules, <b is in fact a g-map.

Now, by Proposition 4.2, u = ukr for some k g N, and Wallach has computed the

commutator [Ey,ur], where Fy spans gy c u+ [18, Lemma 5.9]. Set x = Ey and

u = ur. Then

x -(uk ® e) =  Y,u'~1[x,u]uk~' ® e

/ = i

=  Y.ui-xi\(yr,yr)ur_xhy/r \(yr,yr)crur_x +    £  x^l«*-''® *,

Ï-1 ^ /SeAJ ^
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where xß g <%(u~), eß g g^and cr= #{ß g A¿"|¿8|íi_= f(yr - y.) for some/ < r}.

Since gs • m = 0 and g5 • e = 0, the third term vanishes. An easy computation, using

the fact that a = yx and (y,, yx) = (yr, yr), shows that cott(/iy ) = 1. Also, since

M,- = -( yx +  ■ ■ ■ + yr) and (y,, y7-) = 0 for / =£ /, ¡J.r(hy) = -2 for 1 < i < r. Hence

x •(«* « e) = I «"{Ht,, Y>r_lv(* - i)M,(*Tr) + *«.(*,,))
1-1

+ i(yr,Y,.)c,.",._1}wA~' ® e

= i*(7„Y,){-2(* - 1) + 2z + cr}Mr_lMA-' ® e.

This is zero precisely when z = k — \ - \cr. Since by hypothesis, g satisfies condi-

tion (a) of Moore's theorem (cf. Remark 4.3.1), a result of Harish-Chandra [6,

Lemma 18] implies that \cr = ps(hy) - \. Now it follows from §2 that ps is a

multiple of ua; since ua(hy) = ua(ha), we have \cr = ps(ha) - 1. Hence x ■ (uk ®

e) = 0 if and only if z = k — ps(ha).

It remains only to compute X'. But X' = X + /cu,. and /xr|fas = 0, so /¿,. is also a

multiple of ua. Since jttr(/¡a) = -2, ur = -2wQ and X' = (-k - ps(/za))wa.     Q.E.D.

4.5. Remarks. 1. Lepowsky has proved [13] that the space of maps between two

scalar generalized Verma modules is at most one-dimensional; the same result—in

the hermitian symmetric case—also follows from the above proof.

2. Note that the proof also describes explicitly all nontrivial scalar maps.

3. One can show, using Remark 4.3.2, that w°(X + p) = X' + p for X ¥= X' as in the

theorem (where w° is the longest element of Ws). Thus Hom,a,(fl)(Aís(w0p)> Ms(p))

¥= 0 if and only if ps(ha) g N (under the hypotheses of the theorem). The same

conclusion applies to Hom^(a)(Ms(w°jU,), Ms(u)) for any ¡u g P+, by the Transla-

tion Principle of Jantzen and Zuckerman.
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