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A RELATION BETWEEN INVARIANT MEANS ON LIE GROUPS

AND INVARIANT MEANS ON THEIR DISCRETE SUBGROUPS1

BY

JOHN R. GROSVENOR

Abstract. Let G be a Lie group, and let D be a discrete subgroup of G such that the

right coset space D \G has finite right-invariant volume. We will exhibit an injection

of left-invariant means on lx(D) into left-invariant means on the left uniformly

continuous bounded functions of G. When G is an abelian Lie group with finitely

many connected components, we also show surjectivity, and when G is the additive

group R" and D is Z", the bijection will explicitly take the form of an integral over

the unit cube [0,1]".

1. Introduction. This paper grew out of an attempt at the still unsolved problem of

parametrizing invariant means on /°°(Z), where Z is the discrete additive group of

integers. This led to the more general problem of relating left-invariant means on

lx(D) and left-invariant means on the left uniformly continuous bounded functions

of G (UCB,(G)), where G is a Lie group and D a (not necessarily normal) discrete

(hence closed) subgroup, where the coset space G/D (or D\G) is compact. In fact,

in §3 it will be shown that if G is a locally compact, second countable topological

group (in particular, a Lie group), and the right coset space D\G has right-invariant

finite volume, we can construct an injection of left-invariant means (LIM's) on

l°°(D) into LIM's on UCB,(G). In §4 we consider the case where G = R" and

D = Z" and prove that the injection of §3 from invariant means on /°°(Z) to

invariant means on the uniformly continuous bounded functions of R" (UCB(R")) is

also surjective, showing that every invariant mean on UCB(R") can be constructed

from one on lx(Z") and conversely. Thus, if the parametrization problem for /°°(Z)

is solved, the analogous problem for UCB(R) will also be solved.

Using the result of §4, we show, in §5, that there is a bijection between invariant

means on l°°(D) and invariant means on UCB(G) when G is an abelian Lie group

with finitely many connected components. Finally, in §6 we examine the problem of

generalizing the surjectivity proof for R" to the general Lie group.

I am deeply indebted to my dissertation advisor, Professor Leonard L. Scott, Jr.,

for the many hours he devoted to me in this undertaking and to the referee for

arguments used in the proofs of Lemma 3.1 and Theorem 3.2.
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2. Preliminaries and notation. Let G be a locally compact topological group with

fixed left Haar measure. The vector space of equivalence classes of essentially

bounded real-valued functions on G is denoted by L^G), and the set of real-valued

functions <i> on G for which /c|<#>(g)|^g < oo is denoted Ll(G). For <¡> G Ll(G),

define <i>(x) = <i>(x_1). It is easy to see that if /: G -» R is essentially bounded, so are

the convolutions <i> * / and / * <i> defined by

(*•/)(*)- ( f(t-ls)<b(t)dt
JG

and

(/*4>)(s) = / f(t)~4>(t~ls) dt={ f(t)$(s-h) dt.
G G

Define P(G) tobe {<f> g L^G): <f> > 0 and/c </>(*) ¿' = !}•

The left and right actions of G on L°°(G) are denoted by, respectively, x ■ f(y) =

f'(x~ly) and /• x(y) = f(yx~x) for x, y g G and /g L°°(G). A function/g L°°(G)

is left [resp., right] uniformly continuous if, given e > 0, there is a neighborhood

(7(e) of the identity element of G such that \\x ■ f - f\\x < e [resp., \\f ■ x — f\\K < e]

for all x g Í7(e). (Note that Greenleaf's definitions [5, p. 21] are the reverse of the

above.) The left and right uniformly continuous bounded functions on G are

denoted by, respectively, UCB,(G) and UCBr(G). The set of uniformly continuous

bounded functions on G, UCB(G), is defined to be UCB,(G) n UCBr(G).

If W(G) is a closed subspace of L°°(G) containing the constant function e(x) = 1,

an element m of W(G)* is called a mean if m is positive and m(e) = 1. It is a

left-invariant mean (LIM) [resp., right-invariant mean (RIM)] if, given / g W(G),

m(x •/) = m(f) [resp., m(f ■ x) = m(f)] for all x g G, and it is a topological

left-invariant mean (TLIM) [resp., topological right-invariant mean (TRIM)] if,

given/G W(G), m(<b*f) = m(f) [resp., m(f * <j>) = m(f)] for all 4> G P(G). It is

well known that if there is a LIM on one of L°°(G), CB(G) = continuous bounded

functions of G, UCB,(G), or UCB(G), there is a LIM on any of the others [8, p. 26].

In such a case we say G is amenable.

The following well-known results [5, pp. 24, 27] are stated here for later quota-

tions:

Lemma 2.1. 7//gL°°(G) and <J> g P(G), then <í>*/gUCB(G) and /*<í>g

UCBr(G). If g G UCBr(G) [ras/;., g g UCB,(G)], then <¡>*g [resp., g*4>] is in

UCB(G).

Lemma 2.2. If m is a LIM on UCB,(G), then it is also a TLIM on UCB,(G). The

same result is true for UCB(G) or for m any left-invariant continuous linear functional

on UCB,(G)orUCB(G).

Because dim UCB,(G) is infinite, the kernel of each of these invariant means has

infinite dimension. The following corollary actually describes the functions con-

tained in the intersection of all these kernels.
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Theorem 2.3. Let Nc be the set of all left-invariant means on UCB,(G). Then

f]„,eAf ker m is the closure (f' — x ■ f) of the space spanned by the differences

f-x°-f, with f g UCB,(G) and x g G.

Proof. Let / be a left-invariant continuous linear functional on UCB,(G). Extend

/ to a left-invariant continuous linear functional le on L°°(G) by letting le(f) =

l(<p * /), where <j> g P(G) is fixed. By Theorem IV 16 of [4], le(f) = ¡cfdv, where v

is a bounded, finitely additive set function. Since le(f) = le(x ■ f) for each/and all

x g G,

/ f(y) dv(y) = f (x-f)(y) dv(y) = / f(x^y) dv(y) = f f(z) dv(xz);
JG JC JC JG

in particular, for /= Xe, the characteristic function of the set E, we get v(E) =

v(xE). By the Jordon decomposition Theorem III 8 of [4], v = v+— v~, where v+, v~

are positive, v+(E) = supFc£ v(F), and V (E) = -infFcEv(F) so that

v + (xE) =  sup v(F) =    sup   v(F) =    sup   v(x~lF) = v + (E).

F^xE a-'Fc£ x^FcE

Similarly, v~ (xE) = v~ (E); thus,

Uf) = / fdv+- / /^-= ¡t(f) - /;(/),

with l+, l~ positive and left-invariant, so they are scalar multiples of LIM's.

Now let

g G   fl   ker m.

Suppose / g UCB(G)* vanishes on

(f - x •/>/eUCB,(0;

then 1(g) = l(x ■ g) and, by Lemma 2.2 and the above,

'(*)r/(♦■•*)-/.(*)-/;(*)-/;(?),

and since l+e , /; are scalar multiples of means, l+e(g) = 0 = l~(g), so /(g) = 0. By a

corollary to the Hahn-Banach theorem, g g (/ — x ■ f). Since each ker m is closed,

it is clear that (/ - x ■ f) c DmeA, ker m.

Theorem 2.4. Let W be the subspace of those functions in UCB(R) whose antideriva-

tives belong to UCB(R). Then W c DmeA, ker m.

Proof. Let m be any LIM on UCB(R), so by Lemma 2.2, m is also a TLIM. Let

/ g W, and let X[o,i] De me characteristic function of the interval [0,1]. Then

(X[o,i] */)(*) = /o/(*- Odt.Lets- t = rand get

f    f(r)dr = F(s)-F(s-l) = (F-l- F)(s),
Js-1

where F ' = /, so

m(f) = m(X[0,x]*f) = m(F-l-F) = m(F) - m(l ■ F) = 0

by left invariance of m. Since m was arbitrary,/ g C\m(EN ker m.

Theorems 2.3 and 2.4 are due to the author. Combining the results of these two

theorems, we see that a uniformly continuous bounded function on R having a
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bounded antiderivative is a uniform limit of functions of the form L*=1 a¡(f¡ — x¡ • /),

where each/ g UCB(R). For example,

f(x) = sin x = Ksm x ~(-'rr/2) • sin x) + ^(cosx —(-<n/2) ■ cosjc).

3. Injecting LIM's on l°°(D) into LIM's on UCB,(G). Let G be a locally compact,

second countable (hence a-compact), amenable topological group and D a discrete

(hence countable) subgroup of G. Then there is a Borel measurable transversal K

(which can be taken to be a-compact) for the right coset space D\G with cross-sec-

tional transformation r: D \G -» K. By definition, DK = G. K can be taken so that

(K°) d K, where K ° denotes the interior of K.

If D \ G has finite right-invariant volume ;' (which will be taken to be normalized),

let v0 be the measure on K preserved by r. Let CC(G) denote the continuous

real-valued functions on G with compact support. Let h g CC(G) c UCB(G) be a

symmetric function for which h > 0, supp h c K°, and fKh(x) dv0(x) = 1.

Lemma 3.1. Given /g l°°(D), the function Tf defined by

77(g) =   E   /(dMdog-1)
d0<ED

/s/m UCB,(G).

Proof. Let Í7 be a symmetric neighborhood of the unit in G such that (U ■ supp h)

is contained in K°. If x g t/ and g g G, then

\Tf(xg) - r/(g)| = E /KW^g)"1) -   E f{do)h{dQg-1)
dneD

E /(¿oXaKs-1*-1)-^,,*-1));
</0eD

however,

h(dQg~lx-1) * 0 « ¿og"1.*-1 g suppA <=» g"1 g í/q1 supp/i • i/c J0_1ä:,

possible for only one J0* g D. All terms except for one vanish, and the sum is thus

\f(dS){h ■ x(d¿g-1) - h(d*g-lj))\ <||/U|A • * - All».

By further restricting the size of U this can be made as small as desired.

Theorem 3.2. Let m be a LIM on l°°(D), where D\G has right-invariant finite

normalized volume v. If me(f)= fKm((t • f)T) dv0(t) for f G UCB,(G), then m -»

me is an injection of LIM's on lx(D) into LIM's on UCB,(G).

Let 4>(Dt) = m((t ■ f)T) = 4>0(t). Then <f> is well defined, because if Dtx = Dt2 we

have

t2txl^D => <t>(dtx) = m((tx ■ f)r) = m(t2tx1 -(tx • f)r)    by left invariance

= m{(t2tx-ltx-f)i) = m(t2-f) = <p(Dt),

so

f m((t-f)T) dv0(t) =  [ <b0(t) dvG(t) =  f      4>(Dt) dv(Dt),
JK JK JD\C
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m

somfisa mean and left-invariant because, given/g UCB,(G), for any x g G we

have

,(*•/) =  f m((t -(x ./)),) dv0(t) =  f m((tx-f\) dv0(t)

=  f      <¡>(Dtx) dv(Dt) =  f      <b(Dtx) dv(Dtx)    (by right invariance of v)
JD\G JD\C

=  f      (b(Ds)dv(Ds)        (s = tx)
JD\G

=   f m((s-f)!)dv,(s) = me(f).
JK

Now, if/g UCB,(G) consider the function 7/ of Lemma 3.1. Note that by the

support condition on h, if t g K and d0 g D, then h(d0t) =£ 0 => d0t G K => d0 is

the identity by the definition of A". Thus,

(t ■ Tf)t(d) = Tf(rld) =   E   f(d0)h(d0d-h).
d0<ED

Letting d0d~l = c0, we have d0 = c0d, and as d0 ranges over D, so does c0, giving us

E f(c0d)h(c0t)=f(d)h(t) = (A(0/)U),
c0«eD

since all terms vanish except for c0t g K; i.e., c0 = the identity. This gives

m((t-Tf)I) = m(h(t)f) = h(t)m(f),

so

mr(7/) = / m((t ■ Tf\) dv0(t) - / «(/)*(/) ^0(0
•'AT •'AT

= «(/)/ A(/)^0(0 = «(/)•
•'if

It thus follows immediately that m -* me is injective.   Q.E.D.

4. LIM's on /°°(Z") and on UCB(R"). The first step in constructing a bijection

between LIM's on l°°(D) and on UCB(G) when G is a connected abelian Lie group

and D a discrete subgroup for which G/D (= D\G) has right-invariant finite

volume (hence is compact, since G/D is a group) is to prove that the relation

m -* me of the previous section is bijective when G = R" and D = Z".

Theorem 4.1. Let m be a LIM on /°°(Z") and, for f G UCB(R), define

me(f)=  i       m(((tx,...,tn)-f\)dtx ••• dtn.
y[o,i]"

Then m^> meisa bijection between LIM 's on lx(Z") and LIM 's on UCB(R").

Proof. We can take K to be  [0,1)" in the proof of Theorem 3.2, in which case

¡K m((t ■ /)r) dt is the above integral. Thus, m -> me is injective.

To show surjectivity, fory' = 0,... ,n — 1, we prove that u -» fi{J + l), where

M°+1>(/)  =/%((',+ !   •/)>, + !
■'n
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is a surjection of LIM's on UCB(R^ © Z"~J) onto LIM's on UCB(RJ + 1 © Z""^1),

where t/ + x denotes tj + x g R in the (j + l)st position, 0 elsewhere. It is clear that

fiu + l) is a mean when u is. To see that fi(J+1) is invariant, let

(ux,...,Uj,uJ + x; fc,,.;.,^.,) g R'+1 © Z"-J-\

and let («,,... ,Uj) = t/, (A;,,.. .,£„_,_,) = AT, so that

rt<' + 1»((/7; «,+1; K)-f)=£ ,x(((<7; uJ + x; K) • r,+1 •/),) <fc,+1

= f\{{{U;uJ+l + tj+1;K)-f\)dtJ+1

= ^{{(uJ + x + tJ + x)-f)r)dtJ+x

by invariance of ¡i; letting uJ+x + ej+x = vJ+1, the integral becomes

p- + \((vJ+i-f)t)dvJ+1=f°   +f + f^ + 1 = f-p- + p- + \

Letting vJ+x = sJ+x + 1 in the third integral, we get

¡J l Ál '(Vi •/)r)<fay+i =fJ"li{(sj+i-f)t)dsj+1

by left invariance of u. This integral cancels with the previous integral, so we are left

with

/   /»((»y+i -/)r)*y+i =M0 + i)(/);

thus, u(y + 1) is left-invariant.

Let v be a LIM on UCB(R>+1 © Z"^_1). If ft is any LIM on L°°(Ry+1 © Z"^"1),

define ¡i(J + X) on UCB(R' © Z"~J) by u(j+X)(g) = ¡i(gu+X)), where

g(jclt...,*,.; xy+1; w1,...,»jn_7.) = g(xx,...,xJ; [xJ+l]; m1,...,m„_J),

[Xj+X] denoting the greatest integer less than or equal to xJ+x. Since kj + x ■ gij+i) =

(kJ+x ■ g)0+i), M(7 + i) is invariant. Furthermore, v, defined by v(h) = KX[o,ip+1 * A)>

gives a TLIM on L°°(R^ + 1 © Z"-'-1) (hence, a LIM, by [5, p. 25]). Now, if

/G UCB(R^+1 © Z"-^-1), we have

■'o

= /o1K(iy+l-/)r,7 + l,)^+l

= JÍ    "(X[O,ir'*(0+l-/)rO + l))d0+l

= v(^{x[0,ir'*{<j+l ■ f)r(j+l)) dtj + l),



INVARIANT MEANS ON LIE GROUPS AND THEIR SUBGROUPS 8ig

where the last integral is the weak vector-valued integral (see [5, p. 101]). Now,

(/' Xio,i]J+i*(tj+i •f)TU+i)dtj+1j(s1,...,sj+1;m1,..:,mn_j_1)

/.i

= j   X[o,ir'*(0-fi • f)T(j + i)(si'- ■ ■ >sj+i> mi'- • • 'ffl»-ri) dtJ+x

= /   /    >+i (*J+1 '/")r(y+11(^1 ~ ui>--->sj+i - uj+i - uj+i> J) dUdtJ + x

(wheredU = dux ■■■ duj+x,J = mx,...,mn_j_x)

= f    f {tj + i-f){si-ux,...,sj-ui;[sJ+x-uJ+x];j)dUdtj+x
J0    J[0,l]J + l

= f    f f{si-ux,...,Sj-Uj;[sj+x-uj+x]-t+x\j)dUdt+x
J0    J[0,1]J+1 J J       J J J J

= I f f{si - "i>-••,•*, - »j\ l'j+i - uj+x] - tJ+1; J) dt +xdU
J[r,,\Y + l   J0 J J        J J

by Fubini's theorem, and this becomes

j [f (tj+x-f)dtj+x\(sx-ux,...,sJ-uj;[sj+x-uJ + x];j)dU

(note that if « = 1 andy = 0, j (tJ+x •/) dtj+x is just x[0,i] */)

= /        ,    f (O+i "/) dtj+i)       (*i - ux,...,Sj - Uj\ sJ + x - uJ+x; J) dU
J[0,\y + 1\J0 '(7 + 1)

= [X[o.i]'+I*(/ Oj+i • f) dtj+ij _    j(si,..-,Sj+1;m1,...,m„_j_l);

thus,

(»0«>)"+1>(/)->'(xlui<—(£('/♦■ •/)■";..
O + i)

Now,

[f ({j+i ■ f) dtj+i)       (sx,...,sJ+x;mx,...,mn_j_x)

= /   (O+l 'f)('l-- ■ >Sj'> [SJ + l]> mV -'Wn-j-l) dtj + x

= f f(sx,...,Sj\[sJ + x]- tj+x;mx,...,mn_J_x)dtJ+x.
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du.

Let 5 = (sx,... ,Sj) and [sJ+x] - tJ+l = u. Then

f[Sj + ,]~1f(S;u;J)(~du)= ([Sj+l]   f(S;u;J)du
J[sJ+i] JlsJ+1]-i

= r+1_1 f(S;u;J)du+ r+I    f(S;u;J)du+ (lSj+l] f(S; u; J) du.
•/[^ + 1l-i Vi"1 sj*i

Substitute vj+x = sJ+1 - u in the second integral and get

(***)

fSj+1~l f(S; u; J) du + C f(S; sJ + x - vJ+x; J) dvJ + x - fJ+l f(S; u; J)
J[sJ+l-\] J0 J[Sj + l]

Let Tj(S; sj+x; J) = /$+' j f(S; u; J) du. 7}is easily seen to belong to

L°°(R^ + 1 © Z"-^-1),

and (***) is

Tf(S; sJ + x - 1; J) + ( £ (vJ+x •/) <fo,+1)(S; sJ+x; j) + Tf(S; sJ+x; J)

= (f\vJ+i •/) dvJ+x +(1J+X ■ Tf) - 7})(S; sJ+x; J),

so

»((.flVi •/) *y+i) .  J = i>(jT1(^+i •/) *,+, +(l,+i • 7}) - 7})

= f(/o'(vi •/) *y+i) + KVi • r/) - H?}).

By left invariance of i>, the second and third terms cancel, and we get

"(x[o,i]>+1*/ (oj+i -f)dvJ + xj = vyj (vJ+x -f)dvJ + xj

= f   "(vj+i -f)duJ + x = v(f),

so v(j+, ) is the preimage of v. Thus, if M is a LIM on UCB(R") we have

M(/) = (Mwr(/) = (((MM)(;1))("-1f

-(•■■((AcX-J"-«)""00^)

= iir('"((M<"))(-1))"'^((('1'---'íJ'/)r)íi/l'"^

-{(-((*(-))("-»)-U(/);
thus,  (•••((■W(„))(ll_i)),--)(i) 1S me preimage of A/,  so m -* wc is surjective.

Q.E.D.

5. The general abelian Lie group case. Let G be an abelian analytic (i.e., connected

Lie) group. Then G is the direct product R" X (Sl)m, where S1 is the circle, i.e., the
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multiplicative group of complex numbers with modulus 1 with the topology in-

herited from R (Exercise XIII 2: (i) => (ii) of [7] followed by Corollary 4.2 of [7]). If

D is a discrete subgroup of G such that D \G has finite right-invariant volume, then

D \ G is compact, being a topological group and equal to G/D. D is a finitely

generated abelian group (by the corollary to Proposition 3.7 of [8]) and is thus

isomorphic to some Z" X (a,,... ,am), where each a, is a primitive root of unity. By

applying the following lemma twice, we get a bijection between LIM's on l°°(D) and

LIM'sonUCB(G).

Lemma 5.1. Let G be the direct product of two locally compact amenable topological

groups N and C, with C compact. For f G UCB,( N X C), define

™e(f) = ( m((c-f)r)dc.
Jc

Then m -» meis a bijection between LIM 's on UCBX(N) and UCB,(N X C).

Proof. me is easily seen to be a mean on N X C. If (k, S) g N X C, we have

me((k,ô)-f)= f m((c-(k,S)-f)r)dc= f m(((k,cS)-f)r)dc
jc jc

= f m(((k,l)(l,cô)-f)T)dc= [ m((c8-f)r)dc
Jc Jc

by left invariance of m. Let cS = b. Then dc = db and fcm((b - /)r) db = me(f).

Thus, m e is left-invariant.

Now, define fe(k, 8) = f(k). If / g UCB^A7) it is easily seen that

/eG UCB^WX C).

Let mx and m2 be LIM's on UCB^A') such that mXe(g) = m2e(g) for each g g G.

For / g UCB,(AO and c g C, n g JV, we have c • fe(n, 1) = fe(n, c"1) = /(«), so

(c-/e)r=/.Thus,

«i(/)= Í mx(f)dc= f mx(c-fe)dc = mXe(fe) = m2<,(/,)
•'c •'c

= /" m2(c-fe) dc= f m2(f) dc = m2(f),
jc jc

so m -+ we is injective.

To show surjectivity, let M be a LIM on UCB,(G) and define, for / g UCB,(AO,

M0U) = MUeY Since

(n   f)e(k,8) = n-f(k)=f(n-1k)=fe(nik,ô) = n-fe(k,8),

M0(n -f) = M((n •/)J = M(n ■ fe) = M(fe) = M(f),

so M0 is a LIM on UCB,(AO. If g g UCB,(G), then

|/c(c-g)r<íc)   (A:,o)=(/c(c-g)rú?c)(A:,l)=/cC-g(/c,l)£/c

= f gí/cc"1)^.
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Let c = 8 lb. Then dc = db, and the integral becomes

j g(k, b-l8) dc = f^b-g(k,8)db=lj(b-g) db\(k, 8)

= ^jc(c-g)dc\(k,8).

Hence,

M)e(g) = fc M0((c ■ g)r) dc = M0|/c(c • g)r<fc) = m|(/c(c • g^dc^  J

= mIJ(c ■ g) dc) = j M(c -g)dc = M(g),

so M0 is the preimage of M, and m -* me is thus surjective.

Theorem 5.2. Let G be an abelian analytic group and D a discrete subgroup of G

such that G/D is compact. Then there is a bijection between LIM's on lx(D) and

LIM's on UCB(G).

Proof. By the remarks preceding Lemma 5.1, G = R" X (S1)"1 and D = Z" X

(ax,... ,cxm). If D n R" = Z" is N in the preceding theorem, and C = (ax,.. -,am),

then jc(c ■ f)Tdc is (l/\C\)Ljl,x-'",(cl • f)t, where jk is the order of ak and c, = a'xl

■ ■ ■ ct'¿¡, 0 < ik ^jk. Lemma 5.1 gives a bijection between LIM's on /°°(7)) and

LIM's on /°°(Z"). Theorem 4.1 gives a bijection between LIM's on UCB(R") and

LIM's on UCB(R"). Lemma 5.1 again gives a bijection between LIM's on UCB(R")

and LIM's on UCB(G). Composing these bijections gives the desired bijection

between LIM's on /°°(7>) and LIM's on UCB(G).   Q.E.D.

Corollary 5.3. Let G be an abelian Lie group having finitely many components,

and let D be a discrete subgroup of G such that G/D is compact. Then there is a

bijection between LIM's on l°°(D) and LIM's on UCB(G).

Proof. Let G0 be the connected component of the identity in G. By 24.45 of [6], G

is the direct product G0 X G/G0. If D is a discrete subgroup of G such that G/D is

compact, then G0/D n G0 is compact, being isomorphic to the closed subgroup

GÜD/D of G/D. By the corollary to Proposition 3.7 of [8], D n G0 is finitely

generated. Since D/D n G0 = G0D/G0 c G/G0, D/D n G0 is finite, hence finitely

generated. This implies that D is finitely generated, since if {ax,...,aj} generate

D n G0, {bx(D n G0),...,bk(D n G0)} generate D/D n G0, and d g 7),

¿(D n G0) = />',' ■ • • b'¿(D n G0) ^> d&j'' • • • ¿¿'* g 7) n G0

=> ífcí'1 • • • bl'" = ai"' • • ■ ap =>d = ap ■■■ af>b'{ • ■ • b'¿

=> {al5...,ay, í»!,...,^}

generate D => 7) is finitely generated. By the fundamental theorem of abelian

groups, D = Zk © (®"=1Zm ), where ©"_,Zm is a finite direct sum of integers

mod m¡ for various integers mt. D n G0 is thus = Z* © (®i<7=1Zm ), where q ^ n.

The exponent on Z is the same for D and 7) n G0, as 7)/73 n G0 is finite.
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Lemma 5.1 gives a bijection between LIM's on lx(D) and LIM's on /°°(Z) n G0).

Theorem 5.2 gives a bijection between LIM's on l°°(D n G0) and LIM's on

UCB(G0). Lemma 5.1 again gives a bijection between LIM's on UCB(G0) and

LIM's on UCB(G). Composing these bijections gives the desired result.    Q.E.D.

By Theorem 5.1 of [1] there are at least 2C LIM's on CB(G) for any locally

compact, noncompact amenable group, where c = card R = cardinality of R. If G is

an abelian Lie group with finitely many components, we can be more precise about

LIM's on UCB(G).

Corollary 5.4. Let G be a noncompact abelian Lie group having finitely many

connected components. Then there are exactly 2C LIM 's on UCB(G).

Proof. Let D be a discrete subgroup of G such that G/D is compact, (e.g., since

G = R" X (Sl)m X G/GQ, we can let D = Z"). By Theorem 1 of [2], the cardinality

of the LIM's on l°°(D) is 2C, since c = 2cardfl. The conclusion thus follows from

Corollary 5.3.    Q.E.D.

6. Remarks. We are unable to generalize the proof of Theorem 4.1 to the general

Lie group case or even to the solvable case. It is conceivable that the proof could be

extended to at least the simply connected solvable case, using the fact that such a

group is (isomorphic to) semidirect products of R. The difficulty lies in showing the

means constructed are invariant at each stage.

More generally, if G is analytic and has a faithful, finite-dimensional, continuous

representation, we know G is isomorphic to a semidirect product A' X H, where N is

simply connected and solvable and H is reductive. If G is also solvable so is 77, and

by Theorem XVIII 4.4 of [7], H/Z(H) is semisimple, where Z(77) is the center of

77, but H/Z(H) being solvable also implies it is trivial, so Z(77) = 77. Also, by the

same theorem, 77 is compact, and being abelian implies 77 s (S1)"1. It would seem

that if one could prove that m —> me is bijective for G simply connected and

solvable, a generalization of Theorem 5.1 would produce a bijection between LIM's

on /°°(Z)) and on UCB,(G). The following example illustrates the problem.

Example 6.1. Let G be the semidirect product R2 x^S1, where

r)(e'e)(x, y) = (xcosO + ysinß, -xsinö + vcos#)

(i.e., r¡(e'e) rotates (x, y) clockwise through an angle of 0 radians). Let M be a LIM

on UCB,(G). We would like a LIM n on UCB(R2) such that pe(g) = M(g) for

every g g UCB,(G). If/ G UCB(R2), we have

/(/•)=/ f(r)ds= f  s-fe(r)ds

and

M(fe) = He(fe) = f   ß((s ■ fX) ds
jsi

*m /^ •/*)>) = m(/).
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Thus, u(/) must be defined to be M(fe), but we need to show ju is R2-left-invariant.

Given (/-,, r2) g R2, we would like to have ((/•,, r2) • f)e = (tx, t2; e'4") ■ fe for some

tx, t2, <b so that

MOi, r2) •/) = M(((rl5 r2) ■/) J = Af((ílf í2; e«>) •/.) = M(/J = ,»(/);

however, this is impossible for even r, = <n,r2 = 0. Simple calculations show

(rx, r2; e») ■ fe{xx, x2; e,e) = (tx, t2,1) ■ fe{xx, x2; e'e)

for all <}>.

Now, letf(xx, x2) = ûn(xx + x2). Clearly/g UCB(R2), and simple calculations

show

/v       ('i.'2;i)-/.(*i.*2;«")

= sin((x, — ?,)(cosö + sinö) — (x2 — t2)(smQ — cosö))

and

/    v ((si,s2)-f)e(xx,x2;e,e)
i**i

= sin(x,(cosö + sinö) — Jt2(sin0 — cosö) —(sx + s2)).

Let sx = TT, s2 = 0, and 6 = it. Equating (*) and (**) implies that

(t) fi + t2 = 2nir - 77.

If 0 = 77/2, we get

(ft) h - r2 = 2w'7 + w-

Solving for tx in (f) and (ff) we get 2tx = 2m(n + m), or tx = -rr(n + m), so

t2 = 2nit — 77 — 77(« + m) = tr(n — m) — -n; if 0 = 77/4, equate (*) and (**) and

get

sin(v^(x, - r,)) = sin(v/2x1 - 77) => ¿2(xx — tx) + 2km = Jïxx — it

=> {2tx = 77 + 2rC77 ̂> \/2 (« + w) - 2k = 1,

impossible for n, m, k g Z. Thus, ((tt, 0) -/)e # (tx, t2; e"*) ■ fe. This does not make

surjectivity impossible, since for fi to be R2 invariant for all M we need

M(fe - ((sx, s2) ■ f)e) = 0; i.e., /, - ((sx, s2) ■ f)e is a uniform limit of functions of

the form Lci(gi - x¡ ■ g,) for x, g G, c, g R, g, g UCB,(G) by Theorem 2.3.

If G is any analytic group, G = (Rad G X95)/A, where A is discrete and central,

Rad G = radical of G, and 5 is a maximal semisimple analytic subgroup of G. If G is

amenable, so is S and, being semisimple, is thus compact. If follows that A must be

finite. If Rad G = N XT)(51)"1, it seems reasonable that an appropriate generaliza-

tion of Lemma 5.1 applied twice would yield bijections between LIM's on UCB,(VV),

UCB,(Rad G), and UCB,(G). Thus

Conjecture. If G is an analytic group having a faithful, finite-dimensional,

continuous representation, and D is a discrete subgroup of G such that D\G has

right-invariant finite volume, there is a bijection between LIM's on lx(D) and

LIM's on UCB,(G).
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