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THE BIDUAL OF THE COMPACT OPERATORS

BY

THEODORE W. PALMER1

Abstract. Let Í be a Banach space such that A'* has the Radon-Nikodym

property. If X* also has the approximation property, then the Banach algebra

B(X**) of all bounded linear operators on A"** is isometrically isomorphic (as an

algebra) to the double dual BK(X)** of the Banach algebra of compact operators

on X when BK( X)** is provided with the first Arens product. The chief result of

this paper is a converse to the above statement. The converse is formulated in a

strong fashion and a number of other results, including a formula for the second

Arens product, are also given.

1. Introduction and results. The approximation property was defined by Alexandre

Grothendieck [7]. A readable modern treatment is given by Lindenstrauss and

Tzafriri [12, §l.e]. The excellent book by Diestel and Uhl [3] contains all the

information on the Radon-Nidokym property needed here. Related results are

included in [13], and any undefined notation in this paper follows Dunford and

Schwartz [5]. In this paper all linear spaces and algebras have scalar field F, where F

may be either the real or complex field.

Let X and Y be Banach spaces. We use X* to denote the Banach space dual of X

and B(X, Y) to denote the Banach space of all bounded linear operators from X

into T. The following are linear subspaces of B( X, Y):

BF(X,Y) = (finite rank operators},

BA(X, Y) = BF(X, Y)'= (approximableoperators},

BK(X, Y) = (compact operators},

BN(X, Y) = (nuclearoperators},

B,( X, Y) = {integral operators} .

The last two spaces (which will be defined below) are Banach spaces in their own

norms, || • |] N and || • ||/5 respectively. If Y equals X, we write B( X), etc. in place of

B(X, X), etc. The injective and projective tensor products of X and Y will be

denoted by X ® Y and X ® Y, respectively. The following result is implicit in [7,

1.4.2, Théorème 8].
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Theorem (Grothendieck). If either X** or Y* has both the Radon-Nikodym

property and the approximation property, then the following natural isometric linear

isomorphisms exist:

BK(X,Y) = BA(X,Y) = Y® X*,

BK(X, Y)* = B,(X*, Y*) = BN(X*, Y*) = Y* ® X**,

BK(X,Y)** = £(***, y**).

A proof of this result can be pieced together from [13, 10.3.1 and 3, VI.4, VIII].

The special case in which X = Y is a Hubert space is well known. In this case

BN(X*) can be replaced by the space of trace class operators on X. If X = Y is a

reflexive Banach space with the approximation property, then BN(X*) and BN(X)

are both linearly isometric to X ® X*. Hence, in this case

BK(X)* « BN(X);       BK(X)** « BN(X)* ^B(X),

where both dualities are induced by

(P,T) = Tr(PT) = Tr(TP),       P g BN(X), T^B(X),

where Tr represents the trace on BN(X) which is well defined since X has the

approximation property. Reference [3, pp. 218, 219] gives a long list of Banach

spaces which have the Radon-Nikodym property. The only naturally occurring

Banach space which is known to lack the approximation property is 5(77), where 77

is an infinite-dimensional Hilbert space [14].

If X is a Banach space such that its dual has both the Radon-Nikodym property

and the approximation property, then X satisfies condition (a) in Theorem 1 (cf. [3,

Theorems VIII.4.1, VIII.4.6]). However, J. Diestel has pointed out the following

example which shows that condition (a) of Theorem 1 does not imply that X* has

the Radon-Nikodym property. Let X be any Banach space such that X* lacks the

Radon-Nikodym property, but X** has both the Radon-Nikodym property and the

approximation property. (The James Tree space, JT [3, p. 214], is a specific example

since it has a boundedly complete basis and its double dual is isometrically linearly

isomorphic to JT ffi 77, where 77 is an inseparable Hilbert space. This space and its

even numbered duals appear to be the only known examples.) Then both X** and

X* have the metric approximation property [3, VIII.4.1, VIII.3.9]. If Q is an integral

operator on X*, its dual Q* is an integral operator on X** [3, VIII.2.1] and, hence,

is nuclear [3, VIII.4.6]. But then Q itself is nuclear [3, VIII.3.7]. Hence, every integral

operator on X* is nuclear. Since the integral and nuclear norms agree on X* [13,

10.3.1], BF(X*) is dense in B,(X*).

The Arens products and the Arens representations, defined below, are used in the

following theorem to ensure that the maps 9 of B(X) into BA(X)** or 0 of B(X**)

onto BK(X)** are reasonable. Presumably there might be a Banach space X and a

completely unnatural isometric linear isomorphism of B( X**) onto BK(X)** which

has nothing to do with the structure of X. The need for some condition to ensure

that the maps are reasonable prevents us from stating a converse to Grothendieck's

result for B( X, Y) with Y different from X.
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Throughout this paper we use k: X -* X** to denote the canonical injection of

any Banach space X into its double dual. Of course, this map is defined by

k(x)(t) = t(x) for all x G A" and t g X*. A subscript 1 on the symbol for any

normed linear space denotes the closed unit ball of that space. In Theorem 2 we also

used Tj g B(B(X**)) for the canonical projection of B(X**) onto B*(X*) = {R*:

R g B(X*)} ç B(X**). This projection is defined below. We can now state our

converse to Grothendieck's result.

Theorem 1. The following are equivalent for a Banach space X:

(a) The dual, X*, of X has the metric approximation property and BF(X*) is dense

inB,(X*).

(b) The natural map of the projective tensor product X* ® X** into B(X*) is an

isometry onto B,(X*).

(c) There is a left approximate identity for Br(X*) bounded by one and consisting of

finite rank operators.

(d) There is a net {La}aeA ç BF(X)X such that {L*}aeA is a left approximate

identity for B,(X*).

(e) There is a left identity element of norm one for BA(X)** with the first Arens

product.

(f) The natural inclusion k: BA(X) ~* BA(X)** extends to an isometric algebra

homomorphism 0: B(X) -* BA(X)** with respect to both Arens products which agree

when the first factor is in the range of 6.

(g) The first Arens representation ofBA(X)** on X** is an isometry onto B(X**).

(h) The ideals BA(X) and BK(X) are equal, and there is an isometric algebra

isomorphism 0 of B(X**) onto BK(X)** with respect to the first Arens product which

satisfies ®(K**) = k(K) for all K G BK(X).

The class of Banach spaces which enjoy these equivalent properties has many

additional desirable features. We collect a few in the next theorem. Notice that in (b)

and (c) no continuity requirement whatsoever is imposed on the maps 0 and 0. The

fact that they are continuous (indeed even isometries) follows from Eidelheit's

theorem [6], the oldest of all automatic continuity results.

Theorem 2. Let X be a Banach space which satisfies the conditions of Theorem 1.

(a) The algebra BK(X) has a two-sided approximate identity bounded by one.

(b) Any surjective algebra isomorphism 0: B(X**) -» BK(X)** with respect to the

first Arens product which satisfies €>(K **) = k(K) for all K G BK(X) is the inverse

of the first Arens representation and satisfies

0(5)-0(7) = @(rt(S)T)   VS,Tg77(A**)

with respect to the second Arens product.

(c) Any map 0: B(X) -» BK(X)** which extends k: BK(X) -► BK(X)** and

which is an algebra isomorphism with respect to at least one Arens product satisfies

6(R) = 0(7?**)/or all R G B(X), where 0 is the inverse of the first Arens representa-

tion.
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(d) The pairing

oc

(7>,S)= }ZS(Fn)(on)    VP<=Bn(X*),VS^B(X**),
n=\

where P = E"_iff„ ® F„ is a nuclear expansion, establishes isometric linear isomor-

phisms:

BK(X)* = BN(X*);        BN(X*)* ~ B(X**).

(e) The Banach algebra BK(X) is Arens regular if and only if X is reflexive.

These theorems extend to a large class of Banach spaces a number of construc-

tions which have been widely used for Hilbert spaces. They also extend and clarify

results in [8 and 9]. The first reference defines an isometric embedding of B{ X) into

BK(X)** when A has a shrinking, unconditional, monotone basis. However, when X

has a shrinking basis, A* has a boundedly complete basis so that A* has both the

Radon-Nikodym and approximation properties [12, l.b.3, l.e.13; 3, VII.7], In the

same paper this embedding was shown to be surjective if A is uniformly convex. The

theorems given above extend both these results, since they show that the embedding

is surjective if and only if Ais reflexive.

If y has the metric approximation property then B(X, Y) has an isometric

embedding into BK( A, Y)** [11, Lemma 2]. In [9] it is shown by example that this

embedding (with X = Y) need not be a homomorphism with respect to either Arens

product. Reference [9] goes on to prove that there is an isometric algebra isomor-

phism of B(X) into BK( A)** if BK(X) has a two-sided weak approximate identity

bounded by one. A Banach algebra with a one- or two-sided weak approximate

identity bounded by one has a norm approximate identity of the same kind

according to [10, Proposition 1.6]. In order to record these approximate identity

conditions we state three simple results which are all essentially known.

Proposition. Let X be a Banach space and let B be either BA(X) or BK(X).

(a) A net {Ka}a<BA ç Bx is a left approximate identity for B if and only if it

converges to the identity operator in the strong operator topology on B( A).

(b) A net {Ka}aeA ç Bx is a right approximate identity for B if and only if

{ K* }a6/i converges to the identity operator in the strong operator topology on B(X*).

Corollary 1. The following are equivalent for a Banach space X.

(a) A has the metric approximation property.

(b) BA( X) has a left approximate identity bounded by one.

(c) There is a left approximate identity for BK(X) included in BF(X)X.

Corollary 2. Let X be a Banach space. If BA( X) has a right approximate identity

bounded by one, then A* has the metric approximation property.

In general the compact operators are of more interest than the approximable

operators. Hence, it would be preferable if conditions (e), (f), and (g) of Theorem 1

referred to BK(X) instead of BA(X). We know of no example which demonstrates

that this change could not be made, although we conjecture that Banach spaces exist
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for which the first Arens representation of BK(X)** is an isometry, while that of

BA( A)** is not. If BA( A) is a proper subspace of BK( X) so that A and a fortiori A*

do not have the approximation property, then the natural map of the projective

tensor product A* ® A** into B( A*) has a nonzero kernel. This is the kernel of the

map of A* ® A** into Bf(X*) = BA(X)*. Hence, it seems perfectly possible for

X* ® A** to be mapped isometrically onto 77^ (A)* and for this kernel to be

identified with BA(X)L in BK(X)*. We state a final theorem to cover this case at

least for reflexive Banach spaces. The main question which we leave open is the

existence of a Banach space satisfying Theorem 3 but not Theorem 1.

Theorem 3. The following are equivalent for a reflexive Banach space X.

(a) The natural image of X* ® A is dense in BK(X)*, and there is a two-sided

approximate identity for BK(X) bounded by one.

(b) The first Arens representation ofBK(X)** on X is an isometry onto B(X).

(c) The natural injection k: BK(X) -* BK(X)** can be extended to a linear isometry

0 of B(X) onto BK(X)**, which is an algebra isomorphism with respect to at least one

of the Arens products.

When these conditions hold, the two Arens products on BK(X)** are equal and any

algebra isomorphism 8 of B(X) onto BK(X)** which extends k: Bk(X) -» ^(A)**

is the inverse of the first Arens representation.

2. Further definitions and proofs. We begin by proving Theorem 1, giving

definitions as needed. First we show that (a) implies (b).

For any x g A and t g A* define x ® t g Bf( A) by

x®t(v) = t(v)x   Vf g A.

Then any element L of BF( A) can be written in the form
m

(2.1) L = £ Xj. ® Tj
7 = 1

for some m g N, x g A, and r, g A*. In this way we identify BF(X) with the

algebraic tensor product A ® A* of A and A*. Since the operator norm on BF( A)

agrees with the weak tensor norm ( = least tensor norm = injective tensor norm) on

A® A* under this identification, the closure BA(X) of BF(X) in 77(A) can be

identified with the injective tensor product A ® A* of A and A*.

If to is any element of BA{X)*, then for each t g A* the map x >-* co(x ® t) is

continuous and linear. Hence, it is an element of A*, which we denote by Q(r).

Then the map Q: t >-> Q(r) belongs to 77( A*) and satisfies
m

(2.2) W(L) = £ Ô<7))(xy)    VLG77F(A),
y-l

where L is defined by (2.1). Thus we have associated with each element « g Ba( A)*

an element Q g 7i( A*). Suppose now that Q is an arbitrary element of 77(A*). The

universal mapping property of the algebraic tensor product shows that (2.2) can be

used to define a linear functional on BF(X). This linear functional will not usually

be continuous in the operator norm on 7iF(A). It will define an element of BA(X)*

if and only if it is continuous. Hence, we give a definition.
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Definition. The set of all Q g B(X*) such that the linear functional on BF(X)

defined by (2.2) is continuous in the operator norm will be denoted by B,( A*), and

its elements will be called integral operators on A*. For each integral operator Q on

A*, the integral norm \\Q\\r of Q is the norm of the element Q of BA( A)* defined by

(2.2). For future refence we repeat

m m

(2.3) Q(L) = £ ß(T,)(x,.)    VL = £ xj ® t, g 77F(A).

7-1 7-1

This is not quite Grothendieck's original definition of an integral operator and its

norm. He defined these concepts in terms of the action of Q G 77,(A*) on

X* ® A** = BF(X*) instead of on BF(X) [7]. Nevertheless, the set 77,(A*) and

the norm \\Q\\, defined above are the same as those described by the original

definition [3, VIII.2.6, VIII.2.12]. We note that 77,(A*) is an ideal in 77(A*) which

is complete in its own norm. Furthermore, this norm satisfies ||ß||,> ||ß|| and

II^Ô^II/<l|5||||Ô||/||r||forallÔG5/(A*)and5,rG77(A*).
The projective tensor product A* ® A** of A* and A** is defined (up to the

obvious notion of isomorphism) by the usual universal mapping property in the

category of Banach spaces and contractive linear maps. Then it is easy to check that

the completion of A* ® A** in the projective tensor norm ( = greatest cross norm),

¡mm \

(2.4) 11*11,, = inf   £ ||tJ llT^II : t = £ r) ® F] for m G N, t, g A* and F} G A** \,
ly=l 7=1 I

is a representation of A* ® A**.

It is easy to show that any element of A* ® A** may be represented (in many

ways) in the form E"=, on ® Fn, where the sequences {a„}„eN Q A* and { Fn}„eN ç

A** satisfy E"=i||a„||||F„|| < oo. Hence, there is an obvious map of the projective

tensor product A* ® A** into 7i(A*), which extends the map of the algebraic

tensor product A* ® A** onto BF( A*). It is also easy to see that the range of this

map is included in 7i,( A*). The set of nuclear operators is defined to be the precise

range of this map.

Definition. An operator P g B( A*) is said to be nuclear if there exist sequences

KUn Ç ** and {Fn}„eN ç A** satisfying

(2-5) £kllW<oo
n = l

and

00

(2.6) P = £ on ® F„.
n = l

Sequences satisfying (2.5) and (2.6) are said to give a nuclear expansion of P. The set

of all nuclear operators on A* is denoted by 7i^(A*) and the nuclear norm is

defined by

\\P\\N = inf/ £ Kllll/J: (2.5) and (2.6) hold
I „ = i
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It is straightforward to check that BN( A*) is complete in its norm and is an ideal

in 77(A*) included in 77,(A*). Moreover, the norm satisfies 11^11/ < H-^lt/v aim<

\\SPT\\N < ||S'||||7>|U|r|| for all P g BN(X*) and SJe B(X*). The map of the

projective tensor product onto the nuclear operators has a nonzero kernel unless A*

satisfies the approximation property [12, l.e.4(iv)]. Nevertheless, since we generally

assume this condition, we will not make any distinction in notation between an

element of the projective tensor product and its image in 77^ A*) ç 77,(A*).

(Without care, this could lead to difficulties.)

Up to this point we have not used condition (a). If A* satisfies the metric

approximation property, then the projective tensor norm, nuclear norm, and integral

norm all agree [13, 10.3 or 3, VIII.3.8(v)], so that the embedding of the projective

tensor product A* ® A** into B,(X*) is an isometry. Since A* ® A** is the

completion of the algebraic tensor product A* ® A** = BF(X*) with respect to

this common norm, 77,(A*) and A* ® A** are isometrically linearly isomorphic if

and only if BF( A*) is dense in 77,( A*). Hence, (a) implies (b).

Next we show that (b) implies (g). In order to do this we need to define the Arens

products and Arens representations which were first introduced in [1, 2]. They are

defined in three stages. Let A be a Banach algebra. For any a g A and w g A* we

define u<o and coa in A* by

(2.7) au(b) = u(ba),    ua(b) = u>(ab)        Vb G A.

For any to g A* and/ G ,4** we definefu and w,in A* by

(2.8) /«(*)-/(««),    «/(«)-/(«»)        Vaeyf.

Finally, for any/, g g A** we define fg and/ • g in A** by

(2.9) /g(co)=/(gu),   /•*(«)-*(«/)       V,e#.

It is easy to check that each of the elements defined above does belong to the stated

space, and that A** is a Banach algebra under either product fg or/- g. These are

called the first and second Arens products, respectively. The following results are

also straightforward.

QlOl "(«)td=«'0'    "««,)=<>>« Va G.4; V<o G/l*,

k(û)/ = K(a) •/,   //c(a)=/-ic(a)     Vae^;V/e^**.

In [1 and 2] Arens not only defines two products on the double dual of a Banach

algebra A, he also defines two extensions of a continuous representation T: A -*

77(A) to representations:

f: A** (first Arens product) -» 77( A**),

f:A** (second Arens product) -» 77(A**).

We give these definitions, which are in three stages, again. For all t g A*, a g A,

and x G A define ra g A* and / e i* by

(2.12) ra(x) = r(Ta(x))    Vx g A;        xr(a) = r(T.(x))    Va^A.

For all t g A*, F g A**, and/ g A** define ft g A* and rf g A* by

(2.13) Ma) = F(ra)    \/a œ A;        rf(x) = f(xr)    Vx G A.
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Finally, for all/ g A** and F g A** define TAF) and TAF) in A** by

(2.14) Tf(F)(r)=f(FT),    2}(F)(t) = F (t,)        VtgF

It is again easy to check that all the elements defined above are in the asserted

spaces and T and f are representations bounded by ||F||.

Taking A to be BA( A) and T to be the given representation of 77^ A) on A, we

will compute the first Arens representation. For t g A*, K g Ba( A), and x G A, we

find t^(x) = t(K(x)) = K*t(x), so tk is just K*t. For F g A**, in addition, we

find

Fr(K) = F(rK) = F(K*(t)) = (t ® fY(K).

Hence, ft is just the linear functional in BA(X)* defined by the finite rank (or

nuclear, or integral) operator t ® F in 77(A*). Finally, for/g Ba(X)** we get

7}(F)(t)=/((t®FK>.
Under assumption (b), 77^(A)*, which is always the isometric linear image of

77,(A*) (under the map Q •-> Q), can also be identified with the projective tensor

product A* ® A**. However, an argument based on the universal mapping prop-

erty of the projective tensor product, and similar to that used to determine the dual

space of BF(X) = X ® A*, shows that the dual of A* ® A** is precisely 77( A**).

Hence, under assumption (b) we may define 0: B( A**) -» BA( A)** by

(2.15) @(S)(P) = S(P)    VSg B(X**);\fPeBN(X*).

For future reference, note

(2.16) @(K**)(P)=  ÍFn(K*(on)) = P(K)    VK^BA(X);yP^BN(X*).
n=\

For 5 G 77( A**), F g A**, and a g A* we now find

T@{S)(F)(o) = 0(5)((a ® F)') = S(F)(a),

which implies T@(S) = S. Since 0 is an isometric linear isomorphism onto 77^( A)**,

the first Arens representation T is also a surjective isometry. This concludes the

proof that (b) implies (g).

If (g) holds then we may define 0: 77(A**) -» BA(X)** to be the inverse of the

first Arens representation T. Since T is always a homomorphism with respect to the

first Arens product, it only remains to show the equality of 77^( A) and 77,,(A). Let

{°„ Lew Ç A* and {F„ }„eN ç A** be arbitrary sequences satisfying E£L,||a„|| ||FJ|

< oo. Then for the identity element 7 g B( A**) we have

/  °°

0(7)    £(a„®F„)'
W=i

which implies

£ Fn(o„)

£ TSU)(Fn)(on) =  £F„(aJ,
,, = i « = i

£ °„
„=i
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This is a well-known criterion for A*, and hence X, to have the metric approxima-

tion property [12, l.e.l4(iv); 3, VIII.3.9]. Hence, BA{X) and 77^(A) coincide [12,

l.e.4(v)]. Hence, (g) implies (h).

Notice that we have also established (d) of Theorem 2.

It is obvious that (h) implies (e). Indeed (h) shows that BA(X)** has a two-sided

identity of norm one. Next we will establish that (e) implies (d). Goldstine's

Theorem [5, V.4.5] shows that k(Ba(X)x) is BA(X)*- (i.e., weak*-) dense in

77/<(A)f*. Hence, we can choose a net {La}a(EA Q BA(X)X with {K(La)}a<=A con~

verging to the left identity e of BA( A)**. By an elementary argument this net may

be chosen in BF( A),. Then any Q G 77,( A*) and/ G BA( A)** satisfy

f(Q) = ef(Q) = e(fQ) = lim/Ö(Lj = lim/(ßj = hm f{(L*aQ)').

Hence, for any Q g 77,(A*), Q is in the BA(X)**- (i.e., weak-) closure of the

convex set {(L*Q) : L G BF(X)X). Hence, Q is in the norm closure of this set [5,

V.3.13]. Since Q •-> Q is an isometry, this shows that for any Q G 77,(A*) and any

e > 0 there is an L G BF(X)X satisfying ||(7 - L)*ô||, < e. (In particular, this

shows that BF( A*) is dense in 77,( A*).)

(The following argument generalizes one due to J. Wichman (cf. [4, §9]).) Let

{Qx, Q2,..,Q„) be any finite set in 77,(A*) and let e > 0 be given. Successively

choose Lx, L2,.. .,Ln g B,(X)x satisfying

|(7 - Lj)*(l - Vi)*   • • U" Li)*ôJ, < 2^-2e    for/ = 1,2,...,«.

Define K g 77f(A) by 7 - K = (I - Lx)(l - L2) ■ ■ ■ (I - Ln). Then for any j

between 1 and n we get

|(F-/C)*Ôy|,

= |(7 - L„ni -Ln_xT •••(/-L,+1)*(7 -£,)*•••(/

^ 2»-j\{l - Lj)*(l - Lj^Y • • • (7 - L1)*ey|/ < e/4.

Now choose L g BF(X)X satisfying

¡(7 -L)***||,<e/(2max{||ßJ:7= 1,2,. ..,„}).

Then

|(/-L)*eJ/<||L*(/-Jf)*ôJ/ + |(/-L)*if*ôJ/ + |(/-JfiT)*Ôy|

<|(7 - K)*Ql + ||(7 - L)*A-*||,||ç2j + |(7 - K)*Q¡\

< e/A + e/2 + e/4 = e.

Hence, for any finite set ß ç 77,( A*) and any neNwe can find Lß n g Bf(X)x

satisfying \\L%nQ - Q\\, < n~x for all Q G ß. Let 77 be the collection of all finite

subsets of 77,( A*) ordered by inclusion, and let A be 77 X N with the product order.

Then {La}aeA is a net in BF( A), with the desired properties.

LiYQj
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It is again obvious that (d) implies (c). We will next prove that (c) implies (a). Let

{La}alEA g BF(X*)X be the approximate identity postulated in (c). Since each

Q g B,(X*) is the limit of LaQ g Bf(X*), Bf(X)* is dense in 77,(A*). For any

t ® F g BF( A*) ç 77,( A*), the left approximate identity must satisfy

IMt) - t||||F|| = \\(La(r) - t) ® F||, = ||L0t ® F - t ® F||, -* 0.

Hence, {La}aŒA converges to the identity operator in the strong operator topology.

The existence of such a net is equivalent to the usual definition of the metric

approximation property on A* by Corollary 1.

This completes the proof of Theorem 1 except for the equivalence of condition (f).

It is convenient to combine the proof of (f) with the proofs of (b) and (c) from

Theorem 2. Hence, assume A satisfies any (hence all) of the conditions of Theorem

1, except possibly (f), and 0 satisfies Theorem 2(b). Let f: BK(X)** -> 77( A**) be

the first Arens representation, which is a surjective isomorphism by (g) and its basic

properties. Then F°0 is an automorphism of 77(A**). However, Eidelheit [6]

showed that any automorphism of the algebra of all operators on any Banach space

is inner. Hence, there is an invertible element W G B( A**) satisfying T° &(S) =

WlSW. Let F g A** and t g A* be arbitrary and choose x g A and o g A* to

satisfy W~1(k(x))(o) = 1. Then we get

W(F)(t) = k(t)(W(F))W~1(k(x))(o) = W~1(k(x) ® k(t))W(F)(o)

= W\x ® r)**W(F)(o) = f °0((x ® r)**)(F)(a) = Fk(x8t)(F)(o)

= k(x ® t)(o- ® F)*= (a ® F)"(x ® t) = a(x)F(r).

Denoting a(x) by À G C, we find W{F) = XF for all F g A**. Hence, any

S g y3( A**) satisfies F° @(S) = W^SW = S, as we wished to show.

We still need to calculate the second Arens product. For any S g 73(A**) define

t/(5) g 5(A**)by

(2.17) n(S) = K*o(S°K0Y*,

where k0: A -» A** and k,: A* -» X*** are the natural maps. We can give another

description of r¡(S). First restrict 5 to k0(A) and then extend this operator by

weak*-continuity in both its range and domain space. Either way it is easy to see

that i) g B(B(X**)) is idempotent and that it is a contractive projection onto

77*(A*) = {R*: R g B(X*)}. We can now calculate the second Arens product.

First we note that for K g BK( A) (even for K weakly compact) K**(F) belongs to

k()(A) for each F G A** [5, VI.4.2]. Let a G A*, F g A**, ATg77^(A), and

5" g 77(A**) be arbitrary, and denote K**(F) by k0(x). Then if t is defined by

t = 5*(K1(a))oK0weget

((a ® F)')&(S)(K) = SK**(F)(o) = S*(kx(o))(k0(x)) = t(x)

= K**(F)(r) = (t® F)'(K).
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Hence, for S, T g B( A**) we have

0(S) • &(T)((a ® FY) = 0(F)((t ® F)') = T(F)(S*(ka(o))°kq)

= (SoKo)**r(F)(Kl(a)) = Kt(SoK0Y*T(F)(o)

= 0(r,(S)F)((a®F)").

This completes the proof of Theorem 2(b).

We now prove Theorem 2(c). If 0: 77(A) -> 77^(A)**, which extends k: 77^(A)

-» BK(X)**, is a homomorphism with respect to the first Arens product, then for

any R G 77( A), w G 77A:( A)*, and K g 77^( A) we get

(2.18)    0(R)(«K) = 0(/O(«o«<*>) = 9{K) ■ 0(R)(u) = k(K) - 0(ä)(«)

= k(A")ö(ä)(w) = 0(K)0R(u) = u(KR).

If 0 were a homomorphism with respect to the second Arens product, the above

argument would be even easier.

Let a G A* and F G A** be arbitrary. If a is nonzero we may choose x g A

satisfying o(x) = 1. Then for any K G BK(X) we find

(o ® F)'x9a(K) = F(x ® K*o)*(o) = a(x)FK*(o) = (a ® F)'(K).

Replacing to by (a ® F)   and K by x ® a in the previous formula gives

0(R)((o ® F)~) = 8(R)((o ® F)^)

= (a ® F)'(x ® a«) = a(x)F(/?*(a))

= F(7î*(a)) = 0(R**)(a ® F)\

Since 77F(A*) is dense in 77,(A*) » 77Ar(A)* (with the linear isometry defined by

the map (")), we conclude that 6(R) = 0(77**) for all 77 g 5(A), as desired.

Finally, we are in a position to establish the equivalence of condition (f) with all

the other conditions of Theorem 1. If (h) holds, the definition 6(R) = @(R**) for

all R g B( X) establishes (0- (Here we have used

8(R) ■ ®(S) = 0(7***) • @(S) = ®(r1(R**)S) = @(R**S)

for all R g 77(A) and S g B(X**) to establish that 6 is a homomorpism with

respect to both Arens products which agree when the first factor is in the range of 6.)

Conversely, if (f) holds we find 0(I)f(w) = 0(1) ■ f(oi) = f(ue(I)) for all cog

77^(A)* and / g 77^(A)**. An argument entirely similar to (2.18) establishes

ue(R)(K) = u(RK) for all 77 g B(X) and K g Ba(X). This shows that uHn = co

and, hence (by the above calculation), 0(1) is a left identity for the first Arens

product. Hence, we have shown that (f) implies (e), completing the proof that (a)-(h)

are all equivalent. (Note that we only used the facts that 0 was an isomorphism with

respect to at least one Arens product and 0(1) has norm one and satisfies

0(7)/= 0(7) -/for all/G BA(X)**.)

We have already proved Theorem 2 except for (a). This result follows by

arguments similar to the first part of our proof that (e) implies (d). This is a standard

result whenever one of the Arens products has an identity element.
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Next we give the proof of Theorem 3. The use of x G A rather than k(x) in some

formulas derived earlier changes their appearance. First we establish that (a) implies

(b). Let {Ka}aeA be the two-sided approximate identity in BK(X)X. By Alaoglu's

theorem we may assume (by choosing a subnet if necessary) that {K(Ka))a(EA

converges in the BK(X)* topology to some element of BK(A)**. Let to g T^A)*

and R g 77(A) be given. Then the linear functional Ru: BK( X) -» F, defined by

Ru(K) = u(KR)    \/K(EBK(X),

belongs to BK(X)*. Hence, we may define 0(R) G BK(X)** by

0(R)(u) = limco(KaR) = limK(Ka)(Rü))    Vw G 77^(A)*.

Clearly, we have \\0(R)\\ < \\R\\ for all R g B(X). We again use T: BK(X)** ->

77(A) to represent the first Arens representation derived from the given representa-

tion of 77A-( A) on A. Then

r{ftiR)(x)) = 6(R)((t ® *)*) = lim(r ® xY(KaR)

= limT(KaRx) = t(R(x)),

where we have used (t ® x) to denote the natural image ofr®xGA*®Ain

77^( A)* defined by (t ® x) (K) = r(K(x)). Hence, we have shown Tä(R)= R for

all 7? g 77(A). Clearly, T is also a contractive linear map. Hence, it is enough to

check 0(7}) = /for all/ g BK( A)**. Because of the density of the image of A* ® A

(under the map ) in BK(X)*, it is enough to check the above equation after

evaluation at (t ® x)   for arbitrary x G A and t g A*. However, we have

/((t ® x)") = hm f(K;(r) ® x) = lim K;(r)(ff(x))

= lim(T ® xY(KJf) = 0(7})(t ® x).

This completes the proof of (a) => (b).

If (b) holds we may obviously define 0 to be the inverse of the first Arens

representation and thus conclude that (c) is true.

Let us assume (c) and use it to prove (a). By Goldstine's Theorem [5, V.4.5] there

is a net {Ka}aeA ç BK(X)X satisfying 0(7)(w) = limco(ÂTJ for every « g 77^(A)*.

For any K g Bk(A) and u g Bk(A)* we have

u(K) = tj(/C)(w) = 0(K)(a) = 0(I)0(K)(u)

= e(I)(Ka) = lim, «(IT.) = limo>(KaK)

and, similarly,

cc(K) = 0(K)0(I)(u) = K(K)e(I)(o>) =e(l)o>(K)

= 0(I)(ccK) = lim»(KKa).

Hence, {Ka}alEA is a weak two-sided approximate identity for BK(X) bounded by

one. Hence, there is a two-sided norm approximate identity [10, Proposition 1.6] for

BK( A). This completes the proof of Theorem 3.
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