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RESTRICTED RAMIFICATION

FOR IMAGINARY QUADRATIC NUMBER FIELDS

AND A MULTIPLICATOR FREE GROUP1

BY

STEPHEN B. WATT

Abstract. Let K be an imaginary quadratic number field with unit group EK and let

( be a rational prime such that (k \EK\. Let S be any finite set of finite primes of K

and let K((,S) denote the maximal ¿extension of K (inside a fixed algebraic closure

of A") which is nonramified at the finite primes of K outside S. We show that the

finitely generated pro-¿group ü(i, S) = Gal(/f(/, S)/K) has the property that a

complete set of defining relations for Q(t?, S) as a pro-#group can be obtained by

lifting the nontrivial abelian or torsion relations in the maximal abelian quotient

group Q(t?, S)ab. In addition we use the key idea of the proof to derive some

interesting results on towers of fields over K with restricted ramification.

Introduction. If L/K is a Galois extension of fields and F is a Galois extension of

K containing L, then F is said to be a central extension of L/K if Gal(E/L) is a

subgroup of the centre of Gal(E/K). The study of central extensions of Galois

extensions of number fields leads to several arithmetic applications (see [4, Chapter

3]) many of which stem from an early paper of Fröhlich [2]. In particular a theorem

of Fröhlich [4, Theorem 4.11] gives a complete description in terms of topological

generators and relations of the Galois group of the maximal ¿extension of Q (iany

prime, Q the field of rational numbers) which is nilpotent of class two with

ramification restricted to a finite set of primes. This, in turn, leads to another result

of Fröhlich [4, Theorem 5.2] which characterizes, in rational terms, all abelian

¿extensions L of Q for which /does not divide the narrow class number of L.

Taking the previous discussion as motivation we see that it is important to

consider the pro-¿group ß(/, S) = Gal(ÄX<f, S)/K), where S is a finite set of finite

primes of the number field K, and K(¿', S) is the maximal ¿extension of K (inside a

fixed algebraic closure of K ) which is nonramified at the finite primes of K outside

S. The main difficulty in describing fi(<f, S) is the determination of a complete set of

defining relations for ñ(¿f, S) as a pro-¿group. When K = Q Fröhlich shows that a

complete set of defining relations can be obtained by lifting the nontrivial abelian or

torsion relations of the maximal abelian quotient group Í2(<f, S')ab. We explain this

idea more precisely in §1.

Our main result shows that B(¿, S) also has the lifting property when K is an

imaginary quadratic number field, S is any finite set as above and £\ \EK\, where EK
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is the group of units of K. In addition we are able to derive some interesting results

on towers of fields over K with restricted ramification. For example, we show that if

L is a finite ¿extension of an imaginary quadratic number field K such that i\ \EK\

and Gal(L/K) has ¿rank at least 4, then there is a strictly increasing infinite tower

of ¿extensions K c L c F, c F2 c • • • such that for each n the only primes of K

ramified in En are ramified in L. As a corollary we obtain easily the known result

that K has an infinite ¿class-tower if its ideal class group has ¿rank at least 4.

We note here that the other main approach to the determination of relations for

pro-¿groups is a cohomological one based on the fact that the relation rank of a

pro-¿group fi is the dimension of the F^-vector space 772(fi, Fy), where Ye denotes

the field of /elements and fi acts trivially on Y{. This approach is discussed briefly in

[3, p. 609] and in detail in [5].

In §1 we review the structure of finitely generated abelian pro-¿groups and define

the torsion relations. We also define the term " multiplicator free" and introduce the

important notion of the realizability of the Schur multiplicator. The main result is

proved in §2 and the key idea in the proof is then used in §3 to prove some results

on towers as mentioned above.

1. Preliminaries. Suppose fi is a finitely generated pro-¿group. Then fiab is a

module over the ring Z( of ¿adic integers and we write

\ti      = £j¿Xx ©    • • •  © íífiXn.

Suppose the torsion submodule of fiab is generated by x¡, i = l,...,r (r < n), and

that x, has order /"'. We call the equations xf =1 (/' = l,...,r) the torsion

relations of fiab. For each i = l,...,n choose a lift, w„ of x, to fi. Nowx,,...,xn is a

minimal set of generators for fiab so av... ,u„ is a minimal set of generators for fi by

the Burnside Basis Theorem for pro-¿groups [7, Proposition 24, p. 73]. Furthermore

(1.1) »f'e(Q,Q)       (i = l, ...,r).

(If A and 77 are subgroups of a profinite group fi, we write (A, 77) to denote the

closure of the commutator subgroup generated by A and 77.) The relations in fi given

by (1.1) are the relations lifted from the torsion relations in fiab.

Now suppose T is a finite group. We denote its Schur multiplicator, 772(T, Z), by

M(T). A profinite group fi is said to be multiplicator free if and only if for each

open normal subgroup 77 of fi the canonical surjective homomorphism (see [4,

Proposition 3.1])

•*>">- s&
is an isomorphism. The importance for us of multiplicator free groups stems from

the following result.

Proposition 1.2 [4, Proposition 4.3]. Let fi be a finitely generated pro-tf-group. If

fi is multiplicator free, then a complete set of defining relations for fi as apro-£-group is

obtained by lifting the torsion relations o/fiab.



IMAGINARY QUADRATIC NUMBER FIELDS 853

Our aim then is to prove that fi = fi(¿ S) is multiplicator free when K is an

imaginary quadratic number field such that /l IF^I and 5 is any finite set of finite

primes of K, and then appeal to Proposition 1.2.

Next we discuss the important notion of the realizability of the Schur multiplica-

tor. Henceforth L/K will be a finite Galois extension of number fields with Galois

group T. Fix an algebraic closure, Kac, of K and let fi = Gal( Kac/K). Suppose E/K

is a Galois extension such that L ç E Q KàC. Let A = Gal(ATac/L) and 77 =

Gal(K*c/E). Then [4, Proposition 3.1] we get the canonical commutative diagram:

A n(fi,fi)

(A,fi)

(1.3) M(T) i

Sh \

A/77n(fi/77, fi/77)

(A/77,fi/77)

The map g of (1.3) is an isomorphism [4, Theorem 3.3]. We say that F realizes M(T)

if gH is also an isomorphism.

Proposition 1.4 [4, Proposition 3.2]. If L/K is a finite Galois extension of

number fields and T = Gal(L/K), then there exists a central extension E of L/K such

that E is of finite degree over K and E realizes M(T). Furthermore, if L/K is an

¿extension and E realizes M(T), then the maximal ¿extension of K in E also realizes

M(T).

Now let X(CL) denote the torsion subgroup of the Pon try agin dual of CL, the

idele class group of L. Give CL its usual left T-module structure [6, p. 152]. Then

X(CL) is a left r-module with (y<b)(a) = <b(y~la) for y g Y, c/> g X(Cl), and

a g CL. Let X(CL)r denote the fixed points of X(CL) by T and if E/L is finite

abelian let <S>(E/L) denote the finite subgroup X(CL/NE/L(CE)) of X(CL). Now we

can state the test we will need to determine whether a given central extension of

L/K which is of finite degree over K realizes M(T). There is an exact sequence [4,

(3.11)]

(1.5) X(CK) Z*X(CL)T - X{H l(T, CL)) -* 1,

where NL/K is the dual of the norm map NL/K: CL -* CK.

Proposition 1.6 [4, Proposition 3.4]. Suppose E/L is finite abelian and E/K is

Galois. Then E is a central extension of L/K if and only if <&(E/L) ç X(CL)r.

Furthermore, E realizes M(T) if and only ifr(<S?(E/L)) = lm(r).

2. The main result. We prove the following theorem.

Theorem 2.1. Let K be an imaginary quadratic number field and ¿a prime such that

¿+ \EK\. Then the pro-f-group Gal(A^(/, S)/K) is multiplicator free for any finite set S

of finite primes of K.



854 S. B. WATT

First we consider a local question. Let f be a finite prime of K and let L* = Y\Lp,

where P runs over all primes of L above p and LP denotes the completion of L at P.

Then X(L*) can be identified with YlX(Lp) and is a left T-module. Thus, if

«r» = (<t>p)p e ^(¿-p) and Y G T. then (y^),, = y • <¡>y-iP as functions on Lp. Now let

A^Plp denote the dual of the local norm map NPlp: Lp -» K{¡. The proof of the next

result is straightforward. (Use [4, (3.14)] and Hubert's Theorem 90.)

Proposition 2.2. Let p be a finite prime of K which is nonramified in L. If

(<I>p)p g X(L*)r, then there exists a character Xp in X(K*) such that <bP = NP^(Xp)

for all P above p.

Now suppose 5 is any finite set of finite primes of K that contains all the finite

primes which ramify in L. The set S could be empty. The group X(CL) is a left

T-module and Xf(CL), its ¿torsion subgroup, is a T-submodule. We define a

T-submodule of Xf(CL) by

Xf(CL)s = { <J> g X¿(CL)\<¡>pis nonramified for all

finite primes P of L above primes of K outside S}.

(Recall that if we view a character <b in X(CL) as a character on JL, the idele group of

L, and denote its F-local component, the restriction of (#> to Lp, by <$>P, then we say

that <¡>P is nonramified or that <¡> is nonramified at P if <bP(UP) = 1, where UP is the

group of local units in Lp.) We also define a subgroup of X((CK) by

A^cT/f)   = Í </> g -X^ (C^ ) |^)p is nonramified for all p in 5 j.

Now we can state and prove the main result we need to prove Theorem 2.1. It is an

extension of [4, Theorem 3.13] to an imaginary quadratic basefield.

Theorem 2.3. Let K be an imaginary quadratic number field and let ¿be a prime

such that ¿ \ \EK\. Let L/K be a finite Galois extension with Galois group T and let S

be any finite set of finite primes of K that contains all those primes of K ramified in L.

Then

(2-4) X,(CL)T = X((CL)l ■ ÑL/K{X((CK)S).

Further, if ¿does not divide the class number of K, then

XÂCL)1 n ÑL/K(x,(CK)s) = l

so that if (2.4) holds then the product is direct.

Proof. First note that the dual norm map ÑL/K maps X((CK)S into X¿(CL)r for

any 5 (see (1.5)) and so X¿(CL)T contains the two groups on the right-hand side of

(2.4). Now suppose </> G Xe(CL)T. We show that there is a character \p in Xf(CK)s

such that

<s>-NL/K(rl)^xÂcL)l.

Then <í> = [<í> • ÑL/K(^-l)][Ñl/K(^)], which proves (2.4).

We begin by defining a character 0 of Uf(K), the subgroup of finite unit ideles of

JK consisting of unit ideles with 1 at the infinite prime of K. Let p be a finite prime
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of K. First note that $ g Xe(CL)T implies (<t>P)PlP g X(L*)t. Now suppose p £ S.

Then p is nonramified in L so, by Proposition 2.2, there exists a character \p in

X(K¿) such that

(2.5) iv>|t (\p) = <f>P   for all P above p.

Define 0 as follows.

0| y = 1   if p g S or <bp is nonramified for all F|p.

öl,, = A„|„    if both p <£ S and ó P is ramified for some P\p.
I dp pI Cp ^

(We note that if p £ S and $P is ramified for some P above p, then (2.5) implies that

<j>p is ramified for all P above p.) The condition that <bP is nonramified for all P

above p holds for almost all p of AT so 0\u = 1 for almost all p. Thus [1, p. 324], 0 is

a well-defined character of UAK). We want to lift 0 to an appropriate character \p,

as specified earlier.

Note that if (xp)p g Uf(K), then

(2-6) 0((*p)p) = llM*p),

where p runs over the finite set

T = [ p|p £ S and <bP is ramified for some P above p j.

In order to lift 0 to a character in X(CK) it is sufficient [4, (2.28)] to show that

0(Xf) = 1 for all x in EK, where x,is the idele in U^(K) with 1 at the infinite prime

and x elsewhere. Thus, we must show that nXp(x) = 1 (p g T) for all x in EK. We

do this by showing that Xp(x)= 1 for all x in EK and all p in T.

Let p g T. Then p £ S so p is nonramified in L. Therefore NP^(UP) = t/p for

each P above p. Let xp G <7p. Then xp = NP^(yP) for some yP in t/P so Xp(xp) =

$p(yP). But </> has ¿power order so <bP also has ¿power order and hence

(2.7) Xp (xp ) has ¿power order for all xp in U9 and p in T.

It follows from (2.6) and (2.7) that 0 has ¿power order. In addition, if x g Ek, then

Ap(x) has order dividing \EK\. Therefore Xp(x) = 1 for all p in T, as required. Now

we can lift 0 to a character \p in X(CK). Furthermore, we can write ip = ip^'y where

t/v and \p' are in X(CK), $( is of ¿power order and >// is of order prime to ¿. Thus,

we may replace ^ by $e and call this \p again. Now we have yp g X{(Ck) and

^\u (K) = &■ Also, if p g S, then t//|,y = 0\v = 1, by definition of 0. Therefore t/> is

nonramified at each p in 5 and so \b g Xf(CK)s. This character is the \p announced

at the beginning of the proof.

Next we show that <¡> ■ NL/K(\(/^1) g Xf(CL)Ts. The character \p has ¿power order

and so, therefore, does NL/K($~l). Also, <b has ¿power order since $ g X¿(Cl).

Therefore <j> ■ ÑL/K(\L~l) g Xe(CL). Now let p be a finite prime of K not in S. We

show that <b ■ NL/,K(yp~1) is nonramified at each prime of L above p. There are two

cases to consider.

Case Llii S and <bp is nonramified for all P above p. In this case, t//^ = 0\v = 1,

by definition of 0. Therefore ^-1|[/ = 1, so ÑL/K(\p~1) is nonramified at each P
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above p. But 4>P is nonramified for all P above p by hypothesis. Therefore

<j> • NL/K(\¡/~1) is nonramified for all P above p.

Case II. p <£ S and <¡>P is ramified for some P above p. We have ÑP^(XP) = <¡>P for

all P above p. Let xP g Up. Then an easy calculation shows that

[<*> • ÑL/K(rl)\ P(xp) = 4>p(Xp)Mnp\p(*p))] _1 = 1

for all P above p. Thus </> • Á^¿/A:(>/'~1) is nonramified at each P above p in Case II

also.

We have shown that <f> ■ NL/K(ii~l) g X((Cl)s. But <i> • NL/K(^~l) is fixed by

each element of T since both <i> and NL/K(\p^1) are. Therefore <i> • ÑL/jK(\p~1) G

X({CL)VS- This completes the proof of the first part of the theorem.

Now let h K denote the class number of K and suppose that ¿ + h K (although not

necessarily that ¿\ \EK\). Suppose \p g X¿(Ck)s and that ÑL/K(ip) G X((CL)TS. We

first show that \p is nonramified at each finite prime p of K. Certainly \p e X¿(CK)S

implies \p is nonramified at each p in S. Now suppose pi S and choose P above p.

Then P is nonramified so Uv = NP^(UP). But NL/K(\p) g X((Cl)ts implies ÑL/K(\p)

is nonramified at P and hence \p is nonramified at p. Therefore tp is nonramified at

all finite primes of K. But \p is an idele class character of finite order so, viewing \p as

a character on JK, yp(KxJK(l)) = 1, where JK(1) denotes the connected component

of the identity in JK. Therefore i(KxJK(l)Uf(K)) = 1. Let Cl(^) denote the ideal

class group of K. Now JK/KxJK(l)Uf(K) s C1(ü:) [6, p. 141]. We identify these two

groups. Then i> g Xf(Cl(K)). But ¿\ hK so Xe(Q\(K)) = 1. This completes the

proof.

Remarks, (i) If K is an imaginary quadratic number field it follows from Theorem

2.3 and the Primary Decomposition Theorem that

X'(CL)T = X'(CL)l ■ ÑL/K{X'(CK)S),

where X'(CL) denotes the subgroup of X(CL) of characters of odd order if K i=

Ö(\/—3 ) and of order prime to 6 if K = Q()/ — 3 ).

(ii) The second part of Theorem 2.3, which is not used in the sequel, holds in

general. That is, if K is a number field and ¿does not divide the narrow class number

of K, then X,(CL)TS n NL/K(X,(CK)S) = 1. In fact we have the following result.

The proof is easy and we omit it.

Proposition 2.8. If L/K is a Galois extension of number fields, then the following

are equivalent.

(a) X,(CL)rs n NL/K(X,(CK)S) = 1.

(b) The maximal ¿extension of Kin its narrow Hilbert class field is contained in L.

We are now almost ready to prove Theorem 2.1. The following easy result will be

useful. We omit the proof (which is shorter than the statement).

Lemma 2.9. Suppose r is a homomorphism from an abelian torsion group G onto the

group G. Suppose also that Gx and G2 are subgroups of G such that G = GXG2 and

G2 çz Ker(r). If H is a finite subgroup of G such that r(H) = G, then there exists a

finite subgroup 77, ofGx such that r(Hx) = G.
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Proof of Theorem 2.1. Let fi = Gal(Kac/K) and A = Gal(Kac/K(¿, S)). Then

Q/A = Gal(K(¿, S)/K) as topological groups. We need to show that Ü/A is

multiplicator free. Let A/A be an open normal subgroup of Q/A, where A is an

open normal subgroup of fi which contains A. Let L be the fixed field of A so F is a

finite ¿extension of K contained in K(¿, S). Let T = Gal(L/K). Then fi/A = T

and by Proposition 1.4 there is a central ¿extension F of L/K which is of finite

degree over K and realizes M(T). From (1.5) we have a map

r:Xe{CL)V -* X{H-l(V,CL))-

Now Xe{CL)T = X((CL)l ■ ÑL/K(Xe(CK)s) by Theorem 2.3, and <b(E/L)<z

AV(CL)r since F is a central ¿extension of L/K. Also, r(®(E/L)) = X(H-\T, CL))

by Proposition 1.6. Now apply Lemma 2.9 with G = Xf(CL)T, Gx = Xf(CL)Ts,

G2 = ÑL/K(Xf(CK)s), G = X(H-\Y,CL)) and 77 = $(E/L). Note that G2 c

Ker(r) here since r is just the restriction of characters map

C,   \  r  JKetNL/K

(\ITCL) \    IrCL

where 7r denotes the augmentation ideal of the integral group ring of T. Thus, from

Lemma 2.9 we get a finite subgroup of characters, 77,, in X¿(CL)§ such that

r(Hx) = X(H~\T, CL)). Since 77, is finite we may write Hx = <!>(F/L) for some

finite abelian extension F of L by the classification theorem of global class field

theory [4, p. 5]. Now the inclusion $(F/L) ç X((CL)VS implies F is a central

¿extension of L/K such that F/K is nonramified at all primes of K outside S. Since

r(<S>(F/L)) = X(H-\Y,CL)), F also realizes M(T) by Proposition 1.6. Thus we

have realized M(T) "without additional ramification".

Now let 77 = Gal(^ac/F). Then A ç 77 and we get the canonical commutative

diagram (2.10), where the maps gA and gB are as in (1.3).

A/A n(fi/^,fi/^)

(A/A,Q/A)

gA   S

(2.10) M(fi/A) 4

gB \

A/77n(fi/77,fi/77)

(A/77,fi/77)

We need to show that gA is an isomorphism. All the maps in (2.10) are surjective and

gB is an isomorphism since F realizes M(T). Therefore gA is injective and hence is an

isomorphism. This completes the proof.

Remark. Theorem 2.3 is proved under the hypothesis that K is an imaginary

quadratic number field and ¿ 1 |F^|, but Theorem 2.1 will be valid whenever the

conclusion of Theorem 2.3 holds.
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3. Some applications. The following key result may be extracted from the proof of

Theorem 2.1.

Theorem 3.1. Let K be an imaginary quadratic number field and ¿a prime such that

¿ \ \EK\. Suppose L is a finite ¿-extension of K with Galois group Y and S is any finite

set of finite primes of K that contains all primes of K ramified in L. Then there is a

finite central ¿extension E of L/K such that E realizes M(T) and E/K is nonramified

at the primes of K outside S.

Let d(A) denote the ¿rank of A when A is a finite abelian group or a finite

¿group. The next result shows the existence of an infinite "S-class-tower".

Corollary 3.2. Suppose L is an ¿-extension of an imaginary quadratic number field

K with ¿\ \EK\. If d(Gal(L/K)) > 4, then there is a strictly increasing infinite tower of

¿-extensions

K c Lc Exc E2cz ■■■

such that for each n the only primes of K ramified in En are ramified in L.

Proof. First recall [1, Lemma 9, p. 236] that if G is a finite ¿group with relation

rank r(G), then

(3.3) d(M(G)) = r(G)-d(G).

Also [1, Theorem 10, p. 237],

(3.4) r(G) > d(G)2/4.

It follows from (3.3) and (3.4) that d(M(G)) * 0 if d(G) > 4.

Now consider the extension L/K. Let 5 be the set of primes of À' ramified in L.

By Theorem 3.1 there is a finite central ¿extension Ex of L/K such that Ex realizes

M(Gal(L/Ky) and Ex/K is nonramified at the primes of K outside S. Let I\ =

Gal(Ex/K). Now

d(Gal(Ex/L)) > d(M(Gal(L/K))) > 0

so Ex is a proper extension of L. Also,

d(Tx) > d(Gal(L/K)) >4

so we may repeat the procedure starting with the extension Ex/K. Thus, the tower is

constructed by iteration.

We can now get a new and easy proof of the following known result (see [1,

Theorem 3, p. 233]).

Corollary 3.5. If K is an imaginary quadratic number field with ¿\ \EK\, then K

has an infinite ¿-class-tower ifd(Cl(K)) > 4.

Proof. Let L denote the ¿part of the Hilbert class field of K. Then no primes of

K are ramified in L and the result follows from Corollary 3.2.

Now suppose

(3.6) 1 -> A -> fi -> r -» 1
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is a short exact sequence of finite groups. Then there is a surjective homomorphism

M(T) -» A n (fi, fi)/(A, fi). Recall that (3.6) is called a stem extension of T if it is

a central extension and A ç (fi, fi). Then we have a surjective homomorphism

M(T) -» A. If, further, this surjection is an isomorphism of M(T) onto A, then (3.6)

is called a stem cover of T.

Theorem 3.7. Suppose K is an imaginary quadratic number field with ¿\ \EK\.

Suppose L/K is a finite ¿-extension such that K*b(¿, S) Q L ç K(¿, S) for some

finite set S of finite primes of K. (Here Kab(¿,S) denotes the maximal abelian

extension of K in K(¿, S).) Then there is an increasing sequence of subfields of

K(¿,S),

L = F0 ç EXQ E2Q ■■■

such that En is a finite ¿-extension of K and the canonical extension

1 - Gal(F„ + 1/F„) - Gal(En + x/K) -> Gal( En/K) - 1

is a stem cover ofGal(En/K)for each n > 0.

Proof. Let Y = Gal(L/K). By Theorem 3.1 there is a finite central ¿extension F,

of L/K such that F, c K(¿, S) and F, realizes M(T). Now the canonical extension

(3.8) 1 ^Gal(F!/L)-*Gal(F1/A') ^ T-* 1

is a stem extension of T since F, 2 L 2 Kab(¿, S), so there is a surjective homomor-

phism

(3.9) M(T) ^ Gal(Ex/L).

Also, M(T) is isomorphic to a subgroup of Gal(F,/L) since F, realizes M(T).

Therefore the surjection (3.9) is an isomorphism and the extension (3.8) is a stem

cover of T. The procedure may now be repeated starting with the extension Ex/K.
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