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BIFURCATION FROM A HETEROCLINIC SOLUTION

IN DIFFERENTIAL DELAY EQUATIONS

BY

HANS - OTTO WALTHER

Abstract. We study a class of functional differential equations x(t) = af(x(t - 1))

with periodic nonlinearity /: R -> R, 0 < / in ( A, 0) and / < 0 in (0, B ), /( A ) = /(0)

= /( B) = 0. Such equations describe a state variable on a circle with one attractive

rest point (given by the argument £ = 0 of/) and with reaction lag a to deviations.

We prove that for a certain critical value a = a0 there exists a heteroclinic solution

going from the equilibrium solution / -» A to the equilibrium / -> B. For a - a0 > 0,

this heteroclinic connection is destroyed, and periodic solutions of the second kind

bifurcate. These correspond to periodic rotations on the circle.

Introduction. Consider a state variable on a circle with one attractive rest point,

and with a delayed reaction to deviations. A simple differential equation for such a

system is

y(s)=f(y(s-a)),       a>0,

or equivalently

(af) x(t) = af{x{t-l)),

where the function /: R -> R is periodic with minimal period -A + B, A < 0 < B,

f(A) = 0 = f(0) =f(B),0<f in (A, 0) and / < 0 in (0, B). We regard the delay a
in the original equation as a parameter to be varied.

There are many interesting and complicated phenomena of bifurcation, partly

understood or still to be studied, which occur in the set of solutions with values in

(A, B)—where / satisfies the condition £/(£) < 0 for £ =£ 0 for negative feedback

with respect to the zero solution. The aim of the present paper, however, is different.

Several years ago, T. Furumochi [5] proved that, under additional hypotheses on /,

there exists a parameter interval / such that, for all a e I, equation (af) has a

periodic solution of the second kind; that is a solution x: R -» R which satisfies

x(t) = x(t + p) - (-A + B)    for every t e R,

with some minimal " period" p > 0. This corresponds to a periodic rotation of the

state variable on the circle. Such solutions cannot arise in local bifurcation from

equilibria.

In the theory of O.D.E.'s, say for vector fields on a cylinder, creation and

destruction of periodic solutions which wind around the cylinder are well known.
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214 HANS-OTTO WALTHER

Loosely spoken, they are due to the fact that the one-parameter family considered

crosses the set of vector fields with homoclinic orbits around the cylinder. We refer

the reader to [1, Chapter VIII and 3, Chapter 10]. For an interesting method in R",

n > 2, see Sil'nikov [10].

We prove in this paper that for suitable functions / the same type of bifurcation

exists for the functional differential equation (af): There is a parameter a0 = a0(f)

with a heteroclinic solution x°: R -» R of (a0f) in the (one-dimensional) unstable

manifold of the equilibrium t-* A, lim,^+00x°(i) = B. For a - a0 > 0 small

enough, the heteroclinic connection is destroyed, and in every neighbourhood of

(a0, x°|[-l,0]) there exist pairs (a, <i>) with a > a0 so that <j> is the initial condition

for a periodic solution of the second kind of (af).

The precise result is stated in Theorem 2 at the end of §4. The assumptions on /

are given at the beginning of §2. They are designed in such a way that the proofs for

existence and destruction of the heteroclinic solution do not become too lengthy.

The final section, §5, shows that equations discussed by Furumochi [5] satisfy our

assumptions. They describe a phase-locked loop for the control of a high frequency

generator. Generalizations of our approach on how to find heteroclinic solutions are

very well possible.

Existence of heteroclinic solutions of retarded functional differential equations

was also proved by Hale and Rybakowski [8]. An entirely different idea, applying to

a local problem of this type, is sketched in a report of Chow and Mallet-Paret [4].

For proofs possibly related to this idea see a paper in preparation of Mallet-Paret

and Nussbaum [9].

The bifurcating periodic solutions of the second kind are obtained from a fixed

point argument. For parameters a close to a0 we construct a self-mapping Pa of a

subset Da of a hyperplane transversal to the local unstable manifold of the equi-

librium t —* A so that fixed points define the desired periodic solutions. This

construction requires information on solutions close to the equilibria given by A and

B. In our case these equilibria are hyperbolic. Estimates of the type we need were

proved by Chafee [2], but for a slightly different situation with a center manifold at

the critical parameter. We collect the analogous properties in Theorem 1 in §3. A

proof will not be given since it is too close to Chafee's. But we choose notation

similar to the one used in [2] in order to facilitate writing it down.

The crucial assumption for Pa to become a self-mapping is that attraction to B in

the local stable manifold is stronger than repulsion in the local unstable manifold.

The corresponding property of the characteristic equation for the linearization of

(af) at B should also imply that the periodic solutions which we obtain are stable

and attractive. A proof would require more detailed knowledge on the local

hyperbolic behaviour of the semiflow of (af). For reasons of length we have not

attempted to include this in the present paper.

1. Preliminaries. Let C and Cc denote the Banach spaces of continuous real and

complex functions on the interval [-1,0], with supremum-norm. For the constant

function on [-1,0] with value f, we shall sometimes write 4>t. B(8) stands for the

closed ball of radius 8 > 0 in the space C.
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Define x, by x,(0):= x(t + 6) for 6 e [-1,0] whenever x is a real or complex

function on some set D c R with [t - 1,1] e D,t e R. Let a continuous fonction g:

R -> R be given. Let a > 0. A solution of the functional differential equation

(ag) x(t) = ag(x(t - 1))

is either a differentiable function x: R -» R which satisfies (ag) everywhere, or a

continuous function x: [-1, oo) -* R which is differentiable on R+ := (0, oo) and

satisfies (ag) for every t > 0. In the linear case g = id, complex-valued solutions of

equation

(a id) x(t) = ax(t - 1)

are defined in the same way.

For every <j> e C, a and g as above, there is a unique solution x = x(<j>, a, g):

[-1, oo) -> R of (ag) with x0 = <p. To prove this and the next statements one may

use the formula

x(t) = x(0) + a f'g{x(s - 1)) ds = x(0) + a ('    g°<f>
Jo J-i

for t e [0,1], and iteration on the intervals [n, n + 1], n e N.

We have continuous dependence on initial values and parameters: Let T > 0,

<p e C, a > 0 and g be given. Then for every e > 0 there is 8 > 0 with

sup    \x(<¡>, a, g)(t) - x(<f>', a', g)(t)\ < e
te[-l,T]

for all <¡>' and a' with \<¡> - <j>'\ < 8 and \a - a'\ < 8.

Proposition 1. Suppose g satisfies a Lipschitz condition and A0 e R+ is bounded.

Let T > 0. r/zezz there exists a constant k = k(A0, g, T) with \xT(<f>, a, g) —

xr(</>', a, g)\ < /c|</> - <¡>'\for all <¡>, <p' e C and all a e A0.

We recall a few facts about the linear equation (a id) (see [6] for proofs). The

relation Ta(t, </>) = x, for t > 0 with the solution x: [-1, oo) -» C of (a id), x0 = </>,

defines a strongly continuous semigroup Ta: [0, oo) X Cc —> Cc of bounded linear

operators. The spectrum of the infinitesimal generator Ga coincides with the zeros of

the transcendental function Aa: X -* X — ae~x. Every such zero X is an eigenvalue of

Ga, and the algebraic multiplicity is equal to the order of X as a zero of A0.

Proposition 2. (i) For every a > 0 there is precisely one positive zero u(a) of Aa.

u(a) is a simple zero.

(ii) The map a -* u(a) is analytic and strictly increasing with lim^o u(a) = 0.

(iii) Re X < log a for every a > 0 and for every zero X # u(a) of Aa. In particular,

lima^0sup{Re A|tz(a) *Àe A;1^)} = -oo.

Proof of (iii). Let Aa(X) = 0, X # u(a). There are no real zeros except u(a).

Nonreal zeros occur in complex conjugate pairs. Therefore we may assume X = u + iv

with u e R, v > 0. Then 0 < v = ae~usin(-v). log a < u would imply ae'u «£ 1, or

0 < v < sin(-iz) = -sini;, a contradiction.

For proofs or methods on how to derive the results in the next part of this section

the reader should consult e.g. [6 and 2]. We consider compact parameter intervals
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A0 e R+ such that for every a e A0 there is no zero A of Aa with nonnegative real

part except u(a). Proposition 2 shows that max A0 < 1 is sufficient for this.

It follows that for every a e A0 there is a decomposition C = Pa ffi Qa into closed

linear subspaces which are invariant with respect to the operators Ta(t, ■), with

Pu = R$a, <ba(6) = eu{a)e for 6 e [-1,0]. The projection/^ onto Pa associated with

the decomposition is explicitly given by pa<j> = (tya, 4>)¿&a for <j> e C, where

(%, <t>)a - *„(0)*(0) + a [°%(6 + l)<t>(6) dB

and

%(ß) = [1 + ae-uWXxe-uW<>   for 6 e [0,1].

Solutions with segments x, in Qa tend to zero as / -* + oo, and nontrivial solutions

with segments x, in Pa increase exponentially. In fact, the latter are multiples of

We come to the saddle point property for nonlinear equations. Suppose for

simplicity that g: R -» R is continuously differentiable, g(f) = 0 for some real

number f, and g'(f ) = 1. Then one can prove, for a parameter interval A0 as above:

There exist positive constants 8 = 8(A0, g), 8' = 8'(A0, g), L = L(A0, g), K =

K(A0, g), y = y(A0,g) and two families of maps uag: Pa n B(8) -► Qa, sag:

Qa n B(8) -* Pa, a e A0, such that for every a e A0 the following holds true.

(i) uag(0) = 0, sag(0) = 0.

(ii) uag and sag satisfy a Lipschitz condition with Lipschitz constant L.

(iii) The graph of w is tangent to Pa at <¡> = 0, the graph of sag is tangent to Qa at

<i> = 0.

(iv) For every <p e Pa n ß(o) there exists a solution x* = x*(<i>, a, g), defined on

R, of (ag) with xj = (¡>j. + <f> + uag(<p) and with

|xf - ^1 < Key'\<t> - 4>t\    for all t < 0.

Figure 1
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(v) If x: R -» R is any solution of (ag) with \x, - <f>f| < ô' for ail t < 0, then there

exists <f> g Pa n B(8) with x0 = <t>( + $ + "a^(<í>), and x = x*(<>, a, g).

(vi) For every § e Qa n B(5), the solution x: [-1, oo) -» R of (ag) with x0 = <j>t

+ <t> + sa (tj>) satisfies

|x, - 4>s\ < Ke-y'\{te + <t> + sag(4>)) - 4>{\   for all t > 0.

(vii) If x: [-1 , oo) -» R is any solution of (zzg) with |x, - <j>t\ < 5' for all t % 0,

then there exists <i> g ga n 5(ô) with x0 = <i>? + <> + iag(<>).

Moreover, for every 5 g (-§', 5'), the map ^a«-» uag(8$a) e C is continuous.

The sets t/ag(f ) := {^ ^ C|t// = <i>f + <¡> + uag(c¡>) for some <f> e Pa n fi(S)} and

Sojíí)'^ {»i' e C|»/> = </>r+ <í> + Jag(*) for some <i> g ßa n B(8)} are called local

unstable and local stable manifolds of £, or of <f>f.

Let K denote the open convex cone of positive continuous functions in C. The

representation of pa given above shows

Proposition 3. paK c Kfor every a e A0.

Part of U (Ç) is contained in <f>t + (K U {0} U -K). This follows from tangency

property (iii) above and from Pa e K U {0} U -K, but we do not need this here and

the proof is omitted.

2. Equations with heteroclinic solutions. We specify a nonlinear function /: R -> R

and a parameter interval Ax: Let a continuously differentiable function /: R -> R

and real numbers A < 0, B > 0, r > 0, £,, £2 be given with A + 2r < £x < £2 < -r

< r < B - r so that the following conditions are satisfied.

Figure 2
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(Hl) fis periodic with minimal period -A + B.

(H2)f(A) = 0, 0 < /in (A,0),f(0) = 0,/ < 0 in (0, B).
(H3) |/| < r/2 in (A - r, A + r) U (-r , B - r].

(H4) There exists q e (0,1) with |/(£)| < ?|£ - A\ for all £ g (A - r, A + r).

(H5) a+ := f'(A) is positive with logtz + < -u(a+), where tz = u(a+) satisfies

tz = a + e~".

(H6) <¡> g C, A < $ < £lf <|)(0) = £t imply £j + //°<i> < £2, and «// g C, £,<>/, <

£2, ^(0) = £2 imply B + r<£2 + jf°^.

We define /(£):= /(£)/a+ so that f'(A) = 1. We choose a" in (0, a+) with

|a~/| < ron all of R, and we setAf := [a~, a+\.

Proposition 2 and a~< a < a+ imply log a < log a + < -w(a+) < -zz(a). It follows

that Af is a compact parameter interval in R+ such that for every a e Af there is no

zero X of Aa with nonnegative real part except u(a). Also, / satisfies a Lipschitz

condition. Therefore all the results of the preceding section apply to g:= / and to

Ax. f and Af will be kept fixed from now on. We shall omit the argument /. For

example, we write x(<¡>, a) and ua instead of x(<¡>, a, f) and ua¡, and we consider

solutions of equation

(a) x(t) = af(x(t - 1)).

Proposition 4. For a e Ax and for every solution x: R->Ro/ equation (a) with

limr__00x(i) = A and with \x(t) — A\ < r for all t < 0, either xt e <j>A + K on

(-oo,0], or x, = <j>A on (-oo,0], or x, e <j>A - K on (-oo,0].

Proof, (a) The sign conditions on /, the uniqueness property for the initial value

problem and the fact that equation (a) is autonomous imply that in case x, = <pA

(x, e 4>A + K) ((x, g ^ - K)) for some t<0,x, = 4>A (xs e <¡>A + K) ((xs e <¡>A

- /O)on[/,0].

(b) Let x, = <¡>a f°r some t < 0. Assume xs =£ <f>A for some s < t. Then there exists

t* < t - 1 with x = A on [z*,0] and x(t* + 0) i- A for some 0 e [-1,0). Hence

x(t* + 0 + 1) ¥= 0 which leads to a contradiction.

(c) Let x, ¥= <j>A for some t < 0. (b) shows xs # <pA on (-oo,0]. In order to prove

xs g <¡>A + (K U -K) on (-oo, 0], assume xs & <pA + (K U -K) for some s < 0. Let

r' := sup0<J|x0 - ^1 = sup0<J|x(a) - A\. Then 0 < r' < r. Choose s* < s with qr'

< \x(s*) - A\ < r'. We have 0 * xs, - <t>A Í K U -/(T(otherwise xs - <j>A e K U -K

because of (a)). Therefore x(s* + 6) = A for some 6 e [-1,0], and

x(s*) = A + f *   x = A + T*   iz/(x(a - 1)) ¿a.
•'i' + e ■/5*+9

Using (H4) we find

qr' < \x(s*) - A\ < F    q\x(a - 1) - A\ da < qr',
Js*+e

a contradiction.

(d) Altogether: x, = <j>A for some z < 0 gives x = A on (-oo,0]. x, =£ ̂  for some

t < 0 gives x5 g ^ + (Ä" U -K) on (-oo,0] (see (c)). In case x0 e <pA + K there is

no s < 0 with xä G ^ - iT since this would imply x0 g <f>A - K (see (a)). Therefore,
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xs g tj>A + K on (-oo,0]. In the same way we obtain xs e <pA - K on (-00,0] if

X0 G <t>A  -  K-

We choose positive constants 8X = 8(AX, /), 82 = S'(AV /), Lx = L(AX, /), kx =

K(Af, f) and yx = y(Ax, f) such that the saddle point properties stated in §1 hold

true for f = A, and moreover ô2 < 8X, kx > 1. Set

ô3:= (2(LX + l)(kx + l))"1min{52,z-}.

Choose ô G (0, o3). The map Ax 3 a -> <#>a:= ̂  + S$a + t/a(5$a) G C is continu-

ous, with

l<Î'a-^l<ô + L1Ô<min(51,Ô2,r}/(/c1 + 1).

(Recall |*B| = 1.)

For a e Ax, let x": R -» R denote a solution of equation (a) with x" = (¡>a and

with \xf - <¡>A\ < V1','l(í,a - 4>A\ for all í < 0. Clearly \xat - <¡>A\ < min{r, 82) for all

/ ^ 0, and liml^_aoxa(t) = A.

Proposition 5. x, e <j>A + Kon (-00,0], i.e. x" > A on (-00,0].

Proof. pa(x% - 4>A) = 8<&u # 0 yields xg =£ ̂ . Proposition 4 now shows xr" g <¡>a

+ K on (-oo,0], or xf g ^ - K on (-00,0]. xg g <¡>a - K would imply 5$a =

/za(Xo - <i>/4) g -^(see Proposition 3), a contradiction.

Note that the last argument also justifies a part of Figure 1: It proves that the set

{</> g Ua(A)\<¡> = <¡>A + \p + «„(»//) with t// g Pa n A: and \\p\ < 83} is contained in

<j>A + K. In §4 we shall make use of

Remark 1. xf e Ua(A) for every t < 0.

Proof. For every t < 0, there exists a solution x: R —> R of equation (a) with

x0 = x," and |x| < ô2 = 5'(^i»/) on (-°°,0]—namely, x(s) = xa(s + t) for all

j G R.

We want to single out a set H c Ax such that lim(^00x"(i) = B for all a e H. We

define ,4+ := (zz g ^Jx," > B for some í > 0}, A~ := {a e Ax\-r/2 < x, < B -

r/2 for some t > 0}. A + and A _ are open subsets of Ax. The next results show that

both are nonempty.

Proposition 6. (i) For every a e Ax there exists t(a) > 0 with A < x" < -r/2 in

(-00, t(a)) andxa(t(a)) = -r/2. We have x" > 0 in (-00, t(a) + 1].

(ii)xa"< r in [0, 00).

(iii) 77zere exz'i/j / > 0 with xa*> B on[t - 1, t].

Proof, (i) Let a e Ax. We have </>a g <f>A + K and \<pa - <$>A\ < r, and A < x" < A

+ r on (-oo,0]. A < <f>a < A + r and equation (a) show that x" is increasing on

[0, 00) until it reaches the value -r/2 at some time t(a) > 0. On [t(a) - 1, t(a)],

A < xa(s) < -r/2. Hence xa > 0 on [t(a), t(a) + 1].

(ii) Set x := xa . Then x0 < A + r < r. Suppose there exists s > 0 with x(s) = r

and x < r on [-1, s). It follows that x(s) > 0. \a~f\ < r implies |x| < r. Therefore

0 «g x on [s — 1, s].

Case I: 0 < x(s - 1). Then x(s) < 0, a contradiction.

Case II: x(s - 1) = 0. Then x(s) = 0 + //_, x < r, a contradiction.
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(iii) Set x := xa . We have A < x < -r/2 on (-00, t(a+)), liml^_ccx(t) = A and

x(t(a+)) = -r/2, andO < xon(-oo, t(a+)). It follows that there exist tx < t2< t(a+)

with x(tf) = £1; x(z2) = £2. |x0 - <f>A\ < r and A + 2r < £j give 0 < tv (H6) yields

x(tf + 1) = Í, + F + 1f{x(s - 1)) ds < £2,
J'i

therefore tx + 1 < z2 and £: < x < £2 on [z2 — 1, t2]. Furthermore,

x(t2 + 1) = £2 + F2 + lf{x(s - 1)) ds > B + r
Jt2

(see (H6)). (H3) shows -r/2 < x, and we obtain B < B + (r/2) < x on the interval

[t2 + l,t2 + 2).

Corollary 1. a + e A+, a~e A~.

Proposition 7. A ~n A + = 0.

Proof, (a) Let a e A +. Then xf > B for some t > 0. Assume there exists s > t

with xa(s) = B, xa > B on [t - 1, s). Then xa(s) < 0. -r/2 < x" gives (B <)

x" < B + r/2 in [s - 1, s). Hence x"(s) > 0, a contradiction. It follows that

xa > Bon[t - l,oo).

(b) Let a e A ~. Then -r/2 < x" < B - r/2 for some / > 0. Assume there exists

s > t withx°(i) G {-r/2, ß},and -r/2 < xa < Bon[t - 1, s).

Case I: xa(i) = -r/2. Then xa(s) < 0. -r/2 < xa implies x° < 0 on [s - 1, s];

-r/2 < x"(s - 1) < 0; 0 < xa(s), a contradiction.

Case II: x"(i) = B. Then xa(i) > 0. There exists s' e (t, s) such that x"(s') = B

- r/2 and B - r/2 < x" < B in (i', s). If s' + 1 < s, then xa(i) = a/(xa(s - 1))

< 0, a contradiction. If s e (s', s' + 1), then a - 1 g [t - 1, s) for all a e [s', s]

which gives -r/2 < x"(a — 1) < B, and x"(a) < r/2. This implies r/2 = xa(s) —

x"(s') = //xa < r(s — s')/2 < r/2, a contradiction.

It follows that -r/2 < x" < B on [Z, 00).

(c) (a) and (b) imply A ~ n A + = 0.

Corollary 2. The set H:= Ax - (A ~U A +) is not empty and compact.

For the proof of Proposition 14 in §4 we also need

Remark 2. For every solution x: R -> R of equation (a), a e Ax, with x, > B for

some t e R, x(s) does not converge to B as s tends to + 00.

Proof. We may proceed as in the proof of Proposition 7 and find x > B on

[Z — 1, 00). Suppose limJ_+00x(i) = B. Then there exists s g R with fi < x < B + r

on [s, 00). But now, x > 0 on [5 + 1, 00) which leads to a contradiction.

Proposition 8. For every a e H there exists z(a) e R such that x" < 0 in

(-00, z(a)) and xa(z(a)) = 0. We have 0 < x" in [z(a), z(a) + 1) and B - r < x"

< B + rin [z(a) + 1, 00).

Proof, (a) a e H implies xa(t(a) + 1) > B - r/2: In case xa(t(a) + 1) < B -

r/2, -r/2 < x" < B - r/2 on (t(a), t(a) + 1], and there exists s > t(a) + 1 with

-r/2 < xas < B - r/2, or a e A ~.
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(b) We have x" > 0 in [t(a), t(a) + 1] so that there exists z(a) e (t(a), t(a) + 1)

with xa(z(a)) = 0 and xa < 0 on [t(a), z(a)). It follows that A < x" < 0 on

(-oo, z(a)). Hence x" > 0 on [z(a), z(a) + 1), and xa(z(a) + 1) > xa(t(a) + 1) >

B - r/2.

(c) Assume x"(t) > B + r for some? > z(a) + l.Thenx" > B + r/2on[t, t + 1],

or a e A +, a contradiction.

(d) Assume x"(t) < B - r for some í > z(a) + 1. There exists s > z(a) + 1 with

xa(s) = B - r and x" > B - r on [z(a) + 1, s). We have xa > 0 on (z(zz), z(a) + 1].

Therefore x" > 0 on (z(a), s). -r/2 < x" implies x" < B - r/2 on [s - 1, s]. It

follows that a e A ~, a contradiction.

Proposition 9. lim,^ + 0Ox"(i) = B/or euerj a e H.

Proof. Let a e H. Set x := x", z := z(a). We have x > 0 in [z, z + 1).

(a) x(z + 1) > B. Proof: x(z + 1) «s B and equation (a) imply that either 0 < x

< B on (z + 1, oo), or that there is a zero z' > z + 1 of x with -r/2 < x < 0 on

(z + 1, z' + 1). In the first case, x(t) decreases to 0 as / goes to + oo. In both cases

one obtains a e A~,a contradiction.

(b) It follows that there exists bx e (z, z + 1) with x < B on (z, ¿>,), x(bf) = B,

B < x < B + ron (bx, z + 1). On (z + 1, bx + 1), x < 0.

(c) x(bf + 1) < B. Proof: Assume B < x(bf + 1). Then B < x < B + r on (bx,

bf + 1), and consequently 0 < x in (bx + 1, bx + 2). We find some t > bx + 1, t

close to bx + 1, with ¿?<xon[r,f + l]. But this means a e A +, a contradiction.

(d) It follows that there exists b2 e (z + 1, bx + 1) with B < x < B + r in

[z + 1, bf), x(b2) = B, B - r < x < B in (b2, bx + 1]. Obviously, 0 < x in (bx +

1, b2 + 1).

(e) B < x(b2 + 1) < B + r. Proof: Compare the argument in (a).

(f) Proceeding by induction one finds a sequence (bn) with the following proper-

ties:

bx< z + 1 <b2< bx + 1,

B < x < x(z + 1) < B + r   in (bx,b2),

b„<bn + i<b„+l< bn + 2   for all zz g N,

B - r < x(b„ + 1) < x < B) , i^j
/ , in(bn + x,bn + 2)forneN{odd

B < xtzx(bn+ 1) < B + r K "+1*   n+iJ Wen.

(g) The local extrema x(bn + x + 1), n > 2, satisfy

\x(bn + x + 1)-B\ = \x(b„ + x + 1) - x(bn+2)\

(K+\        ,  , _    fh„+i
ÍÍ P+i ^|/-4</   d\fx\

t
q\x(s)-B\ds    (with/3„</>„ + 2-l)

< q\x(bn_x + 1) - B\
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B + r
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same
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'n+l *» + l

'n + 2

length 1

K+x + 1

Figure 3

Here we have used (Hl), (H4) and |x - B\ < r in [bx, oo), a < a+. The inequalities

obtained above imply lim,_ + 00x(i) = B.

We set a0:= max H < a+. Then a e A+ for every a g (a0, zz+]. We shall prove

that for a > a0 sufficiently close to a0 there exists a periodic solution of the second

kind which is close to the union of the orbits of the heteroclinic solutions xa° +

j(B-A),jeZ.

3. Convergence to the unstable manifold. It is convenient to represent the sets

Ua(A), Sa(A) for a close to a0 as graphs of maps which are defined on fixed

domains in the spaces P0 '■= Pa and Q0 := Qa . For this, and for several estimates

which we need, we adapt results of Chafee [2] to the equation

(ah) w(t) = ah(w(t - 1))

with the shifted nonlinearity h, /z(£) =/(£ + A) =/(£ + B) for £ G R, so that

h(0) = 0.

We write uQ, <E>0, %,p0, q0,(-, -)0 instead of u(a0),...,(-, •)„„. Setx(#):= 0 for

-1 < 6 < 0 and x(0):= 1, Y0:= (%, x)0 = %(0).

Theorem 1. There exist positive constants ¡j., «,, u2, u3 and k2 > kx, a continuous

function h : R -» R with h = h on [-/x, ju.], an open interval A2 with a0 e A2 c Ax,

and continuous maps u: R X A2 -* Q0, s: Q0 X A2 -* R such that for every a e A2we

have:

(i)u(0,a) = 0and\u(y,a)- u(y',a)\ < \y - y'\ for ally,y' e R, s(0, a) = 0 and

\s(4>, a) - s(<t>', a)\ < |^- <¡>'\for$, <j>' e Q0.

(ii) For every <j> e Ua:= {y<b0 + u(y, a)\y e R) there exists a solution w* =

w*(4>, a): R -» R of equation

(zz/zj w(t) = ahll(w(t-l))

with w0 = (¡> and w, e Ua for every t e R. Moreover, wf = y(t)Q>0 + u(y(t), a) for

every t e R with the solution y: R -» R of the initial value problem

y = u0y+ Y0X(y% + u(y, a), a),       y(0) = (%, ^,

where X($, a) = a$(-l) - a^(-l) + ah ($(-!)) - a$(-1) for every $ e C.
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(iii) u0 < ux < u2 < «3 < -log a, and

\z(t,<p,a)-u(y(t,^,a),a)\<k2e-u^'\<í>\

for all t ^ 0 and all <p e C, where z(t, <p, a) := qQwt, y(t, (f>, a) := (^0, wf)0 with the

solution w: [-1, oo) -» R of(ahf) with w0 = <p.

(iv) |w,| < k2e'"3'\w0\ for every t > 0 and every solution w: [-1, oo) -* R of (ah^)

with w0 e Sa:= {s(<¡>, a)% + 4>\<t> S Q0).

We write U0 := Ua , S0 := Sa . Statement (i) for u and statement (ii) of Theorem 1

are proved in the same way as Theorem 4.1 of [2]. The proof of (iii) parallels the

proof of Lemma 4.2.1 and of the resulting Theorem 4.2 of [2]. Part (i) as regards s,

and part (iv) correspond to [2, Theorem 6.1].

Note that (iii) tells the rate of convergence of solutions to the "graph" of u(-, a):

The left-hand side of the estimate equals

\w,-(y(t, <p, a)% + u(y(t, 4>, a), a))\.

Corollary 3. There are constants k3 > k2 and 84 e (0, 83) and an open interval

A3 e A2, a0 e A3, such that for all a e A3, all <t> e Ua n B(8f) and all t < 0,

!<(</>, a)\ < k3eu°'/2\<¡>\.

Proof. Choose S4 > 0 and an open interval A3 3 a0inyl2so small that

\Y0X(y%+ u(y,a),a)\^(u0/2)\y\

for all a e A3 and all y e (-84, 8'f). Let y0 e (-8f Ô4), a e A3. Consider the maxi-

mal solution y of the initial value problem

y = u0y+ Y0X{y% + u(y, a), a),       y(0) = y0.

For / < 0 with |_y| < Ô4 in [/,0] and for t < s < 0, the variation-of-constants formula

yields

Lv(*)l < e"°>\y0\ + [°e^'-^(Uo/2)\y(a)\da,

and Gronwall's lemma implies |.y(s)| < e"°j/2|j>0| < \y0\. It is now easy to obtain

I.K0I < e"°'/2\y0\Jor all t < 0. Choose ô4 > 0 with |(%, </>)0| < ô4 for \<p\ < 54,

84 < 83. For <p g Ua O B(84) andy0 = (%, <»0, we find

|>KOl<e"0'/2Ly(o)|<e"°'/2|(*o,<rOol

< e»°'/2(l + a0)%(0)\cp\

for every t < 0. Finally, we may use \wf(<j>, a)\ < 2\y(t)\ for all t e R.

In order to avoid a reference to a result with a lengthy proof in [2] we show

Corollary 4. There exist 8S e (0,axin{n, 54}) and an open interval A4 c A3 with

a0 e A4 such that for every ae A4 and for every solution w: [-1, 00) -» Rof(ah) with

\w\ < 85, we have w0 e S .
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Proof, (a) The definition of h and the properties of equation (a) imply that for

every a e Af and for every solution w: [-1, oo) -» R of (ah) with |w| < 82, w0 = <¡> +

sa(<¡>) for some <¡>e QaC\ B(8f).

(b) Set S5 := (l/k2)min{n, 82). Let a e A2. We claim [<¡> + s(4>, a)%\<¡> e Q0 n

B(8^)} c {t/> + ia(^)|^ g ga n fi(Ô!)}. Proc-/: The solution w: [-1, 00) -» R of

(a/z^) with w0 = $ + .s(<f>, a)O0, zz g A2, </> g (20 n ,8(65) satisfies |w,| =$ min{/x, 82)

on [0, 00) (see Theorem l(iv)). It follows that it is also a solution to (ah), with

*\) = 4> + Sait) f0r SOme * G ö« n ß(fil) (See (a))-

(c) Choose 55 g (0, min{jti, 84)) with |<70|f55 < 8'5, and an open interval A4 c ^43

with a0 e A4 and |/?a - p0\ < l/(4(Lj + 1)) for a e A4. Let a e A4. Consider

<í> g B(8f) with (p = \f> + sa(\p) for some \p in QaD B(8f). We show <¡> = $ +

s(4>, a)®0jor4>:= q0<j>: First, \<j>\ < \q0\ |<#>| <^. Hence $ + s($, a)% = 4> + sa(^P)

for some $ e Qa n 5(ó\) (see (b)). Suppose t// # i|/. With q0(\p + sa($)) = q0(<t>) =

4 = z?o(í + í(*. a)^) = ?o(í + *<.£)> it follows that \¡> - $ + sa(}) - ja(£) =

Poi'r' + sa(xp)) - p0(yp + s„($)). Hence

* - Í = /»«(* + *.( + )) -/>«(* + '«(*)) +JPo(V' + *„(*)) -/»„(* + *.(*.))

= (Pa - Po)(ï -*)+(pa- Po){sAÏ) - '.(*)),

0 #= |<// — t//| < ||t// — \p\ + \-\xp — \p\, a contradiction. Therefore \p = \p, or $ = \p +

*„(*) = Í + *„(£) = * + *(*, <0*o with 4 g ß0 n B(Ä^).
(d) Let a e A4, and consider a solution tv: [-1, 00) -> R of (ah) with |h>| < 85.

Then |w| < 82, and consequently, w0 = \p + sa(\p) for some \p e Qa n 5(5,). Now

use (c) to complete the proof.

The following series of propositions prepares the application of the inequality

Re X < -u(a) for eigenvalues X ¥= u(a) of Ga, a e Av

Proposition 10. 77zere exist constants k4 Jt k3, ô6 e (0, 8f) and an open interval

A5 e A4 with a0 e A5 such that for every a e A5,for every T > 0 and for every pair of

solutions w, w: [-1, 00) -» R of (ah) with \w\ < ô6 zzzzzi |w| < ô6 on [-1, T], we have

\w, - w,\ < k4e">'\w0 - w0\forallt e [0, T].

Proof. This is an application of Gronwall's lemma to the variation-of-constants

formula for (ah), for a close to zz0. Note that the spectral radius of Ga is given by zz0

so that

|rao(^)| < zV(u°*"1_Wo)/2)'l<i>l

for every t ^ 0, <j> e C, with some constant k4 > 1. It is then convenient to write

a/z(£) = zz0£ + (ai - zz0£ + a(h(£) - £)) for a, £ g R, and to consider £-»(•••)

as a perturbation of a0 id. The details are left to the reader.

Proposition 11. There are positive constants 87, 8& with 8S < 87 and 2\p0\k48s <

87 < 86/2k3 such that for every a e A5 and for every solution w: [-1, 00) —> R of (ah)

with w0 = <j> e B(8f) - Sa there exists T = T(4>, a) > 0 with l^rjWy-l = 57, \p0wt\ < 8-¡

on[0,T),\w\^86on[-l,T].
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Proof, (a) Take 87 and S8 with k48s < 86, 2\p0\k48s < 87 < 86/2k4, 287 + k48$

(b) Let a e As, <p e B(8f) - Sa. ô8 < S6 < 85, and Corollary 4 shows that there

exists T' > 0 with |h>| < Ô6 on [-1, T) and |tvr| = ô6 for the solution w = w(<¡>, a):

[-1, oo) -> R of (ah), w0 = <#>. 86 < 85 < it implies that, on [-1, T'], w coincides with

a solution of (ahf), and Theorem l(iii) gives \q0wr -«((%, wT,)0, a)\ < k28s,

hence Iz/V^vl < k48s + \pQwT.\. Here we have used k2 < k4, \u(y, a)\ < \y\ for

(y, a) e R x A2,p0wr = (%,wr)0%, \%\ = 1.

We claim 87 < \p0wT,\. Proof: Suppose |/>0v*Vl < 87. Then 86 = \wr\ < |/>0wrl +

lio^rl < °7 + ^A + 87 < 86, a contradiction.

(c) We have \p0w0\ = \P&f>\ < \p0\ \<j>\ < \Po\8s < 2\Po\k48& < 87. It follows that

there exists T = T(<¡>, a) e (0, T') such that \p0wT\ = 87 and \p0w,\ < 87 on [0, T).

Finally, T < T gives \w\ < 86 on [-1, T\.

The estimate

1*1 « l?d*l + \Po<t> - *(%<!>, «)*ol + \s(q0<t>, a)®o\

< l9o*l + I Ar* - s(ío<í>. a)*ol + l?ö*l    for (*> a)e CXA2

shows that we can choose ô9 g (0, ô8) and r¡x > 0 so that |<?>| < ô8 for all (<¡>, a) e C

X A5 which satisfy \q0<¡>\ < 89 and \p0<¡> - s(q0<¡>, a)<í>0| < r¡x.

Proposition 12. 77i<?re exists a constant ks > k4 such that for every (tj, <#>, a) e

(0, Tjj) X C X As with \q0<¡>\ < ô9 and 0 < \p$ - s(q0<t>, a)$0l < V, we have \q0wT -

u((%, wT)0, a)\ < /c5t/"2/"' for T = T(<j>, a), with the solution w = w(<j>, a): [-1, oo)

-* R of (ah) and w0 = <t>.

Proof, (a) Let (tj, <i>, a) be given as above. Then |<f>| < ô8. 0 < \p0<j> - s(q0<j>, a)<&0\

gives <i> G Sa, and we may apply Proposition 11 to the solution w = w(4>, a):

[-1, oo) -» R of (ah) with w0 = <¡>.

P0(¡>\ = o7

p0(¡> I = s7

Figure 4
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(b)   Set   »/,:= z70<f> + s(q0<¡>, a)% e Sa.   Then   |<?0i//| = \q0<¡>\ < 89   and   |/>„<// -

s(q04>, a)<E>0| = 0 < tj < tj,, hence \\p\ < ô8. The solution w: [-1, 00) -» R of (zz/z^)

with vv0 = \p satisfies |wr| < k2e~u,'\^\ < k28s for every t > 0. Because of A:258 < ¿c458

< 86 < ¡i, w is also a solution of (ah), and we may apply Proposition 10 to w and w,

on the interval [0, 7"]. We find

87 = \p0wT\ < |/>0|^4e"'r|<i) -xp\+ \p0wT\

^\pQ\{k4e^T\<p - ^\ + k2e-"^\)

< \P0\k^Tv + \Po\k28i < \p0\k4e^Tr, + 87/2,

or

—log-TT-—r < T<     -U2T < —loë—5—•
"1       2/c4|/>0|tj «! 57

On [-1, T], \w\ < ô6 < ju, and w is also a solution of (ah^) so that Theorem 1 yields

\q0wT- u((%,wT)0,a)\ < zt2e-^|*l < k28s(2k4\p0\/87)u^r,^uK

We may also achieve |w| > 0 and \w\ > 0 on [T - 1, T] for w0 sufficiently small

and not in the local stable manifold. This will serve as a transversality condition for

the construction of the Poincaré map in the next section.

Proposition 13. There exists 8X0 e (0, 8g) with the following properties.

(i) (4>, a) e B(8X0) X A5 implies \q0<f>\ < 89 and\p0<¡> - s(q0<¡>, zz)í>0| < tj,.

(ii) For (<f>, a) e B(8X0) X As with 0 < \p0<t> — s(q04>, a)<&0\, the solution w =

w(<j>, a): [-1, 00) -» R of (ah) with w0 = </> zzzzJ the number T = T(<p, a) satisfy T > 1

and either w > 0 and w > 0 on [T — 1, T], or w < 0 and w < 0 on [T — 1, T].

(iii) Let a e As. The map [<p e B(8xo)\p04> * s(q0<t>, a)®0) 3 ^> -* T(<j>, a) e R

is continuous.

Proof. Choose fi10 with 0 < (|p0| + \q0\)8x0 < min{ô9, t^}, (1 + q)28xo\p0\ < 87.

This implies (i).

For a solution w = w(<¡>, a): [-1, 00) -» R of (ah) with a e A5, w0 = <p e B(8X0),

0 < \Pçft> - s(q04>, a)$0\ < 1i> tne hypotheses of Proposition 11 are satisfied since

|<70<í>| < 89 and 0 < \p0<¡> - s(q0<¡>, a)%\ < vx, or |<j>| < ô8 and <j> <£ Sa. We obtain

\p0wT\ = 87, \p0w,\ < 87 on [0, T) for T = T(<¡>, a), and |w,| < 86 < r on [0, T] (see

the proof of Proposition 11).

(a) We claim T > 1. Proo/: For t e [0,1],

|w(r)| = w(0)+  fwUá10+   F~l\ah°<ï>\
Jo J-i

= «10 + F   \af(4>(s)+A)\ds < fi10 + q8x0 < 87/\p0\ < |tvr|.
•'-1

Together with |</>| < 510 < 87/\p0\, we find suphul|>v| < \wT\. Hence T > 1.

(b) |w7-_1| > (1 + t;)510since|H'r_1| =s; (1 + q)8X0 would imply

\w(t)\ = w(T - 1) +  F    ah°w
JT-2

<(1 + ö)S10 + z?(l +?)«i

< S7/|/»ol < |wr|

for every ie[i-l, 7"], a contradiction.
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(c) Take s, g [-1, T - 1] with|w(si)| = sup^^^M- Because of (b) and |«/»| < 8l0

there exists s2 e (0, T - 1] with|w(i2)| = sup^-r^MandM < \w(s2)\ on [-1, s2).

We have 1 «s s2 since 0 < s2 < 1 would imply

0 < |w(s2)| = w(0) +  F2' ah ° <í>
•'-i

<ow + q8f0< \wT_f\<\w(s2)\,

a contradiction.

Claim: ws < 0 or ws > 0. Proof: Suppose wSi£ K U -K. Then there is a zero

z g [s2 - 1, s2] of w, z > 0. We find

0<\w(s2)\=\l   w\=   / 2    ah°w
\JZ       I       Kz-1

= \F2   1af(w(s)+A)ds\^¡q    sup    \w\ < fl|w(i2)|,
Kz-l I [-l,i2-l]

a contradiction.

(d) Altogether, 1 < j2 and ws e K U -AT. Assume wS2 e K. Equation (ah) and

the estimate \w\ < r on [-1, T] imply w > 0 on [s2, T - 1]. This shows wT_x g K,

and w > 0 on [7-1,7], finally wT e K. For wS2 < 0, the analogous argument

yields wT < 0, w < 0 on [T - 1, T].

(e) Proof of (iii). Let a e A5 and t// g 2?(ô10) be given with p0\¡/ # s(q0\p, a)<b0.

Set vv:= w(>//, a). Assume Wf e K and w > 0 on [T -1,T] for T = T(4>, a). Let

e g (0,1) be given so that wT+e > wT. On [0, T -e], \p0wt\ < 87, and \p0wT+e\ =

(^0, wT+e)0 > (^0, Wf)0 = 87. Continuous dependence of solutions on initial values

shows that there exists p > 0 so that <p e B(8W) and \<j> - \p\ < p imply \p0wt\ < 87

on [0, T — e] and \p0wf+e\ > °iIor w = w(4>, a)- This yields T(<¡>, a) e [T — e, T +e]

provided p0<¡> # s(q0<¡>, zz)O0. The proof in case Wf e -K is similar.

4. Bifurcation of periodic solutions of the second kind. The initial values for the

desired periodic solutions will arise as fixed points of Poincaré maps which are

defined on subsets of the hyperplane <j>A + 87<&0 + Q0. In order to construct these

maps we rewrite results of §2 on the solutions xa in the unstable manifolds Ua(A)

now in terms of the reparametrized unstable manifolds of Theorem 1.

For a e A5, consider the function

xa: R 3 t -> A + w*(87®0 + u(87, a), a)(t) e R.

Corollary 3 shows \w*( ■ ■ ■ )(t)\ < k3e"°'/2287 on (-oo,0]. We have 2Â:3r57 < ô6 < jx

(see Proposition 11). It follows that x" - A is a solution to equation (ah) for t < 0,

and x.a is a solution to equation (a) on (-oo,0]. Moreover, Xq = <j>A + ô7Î)0 +

zz(r57, a) and lim^.^x^z) = A (Corollary 3). We define x": R -* R to be the

solution of equation (a) with x" = x" on (-oo, 0], and x° := x"°.

Proposition 14. (i) For every a e A5 and every t < 0, x" e <¡>A + K.

(ii) There exists t0 > 0 with x° g </>B + S0 for every t > i0, and hm,^ + x x°(t) = B.

(iii) For every a e A5 with a > a0 there exists t > 0 with x° e <¡>B + K, and

x" <£ <pB+ {</> + s(<¡>, a)%\<p G go n B(ii/2kff) for every s e R.
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Proof, (a) Proof of (x). Let a e A5. We have

\xa(t) -A\ = \w*(---)(t)\^ 2k387e"o'/2 < 86e"a'/2 < reu«'/2

on (-00,0], and Proposition 4 yields Xg g <¡>a + (K U -K); note x^ - <pA e 07<Î>0 +

<20, or Xq ^ <i>4. Xq g tj>A - K would imply o74>0 = /z0(xq - ^) e -K, a contradic-

tion. Therefore Xq e <¡>A + K, and Proposition 4 gives x" e <$>A + K for ail t < 0.

(b) We show that for every a e A5 there exist a < 0 and i < 0 with xf = xf : Let

¿z g A5. |xf - <$>A\ < 52 on (-oo,0] implies xf - <j>A = </>, + zza(<i>,) for every t < 0,

with some 4>t e Pa = R$a (see the statement of the saddle point property in §1 and

the choice of 82 in §2). (i) and the monotonicity of pa (Proposition 3) give

*, = Pa(xf -^)ei for t < 0. Moreover, lim,.,.«,^ = am^.^p^xf - <¡>A) = 0.

Now consider the solutions xa from §2. Remark 1 says that xf — $A — <¡>t + ua(<j>t)

for every t < 0, with <}>, e Pa. Propositions 5 and 3 show <f>, = pa(xf — <¡>A) e K for

all t < 0. Also, </>, = pa(x" - <¡>A) converges to 0 as t tends to -oo. Now Pa = R$a

implies pa(xaa - §A) = <t>„ = </>j = pa(x" - <¡>A) for some a < 0, s < 0. Therefore,

xf = xf, and xa(t + a) = xa(t + s) for all t > -1.

(c) Proposition 9 and (b) show limr_ + 00x°(i) = 2?. There exists t0>0 with

|3c°(j) - B\ < ô5 for y > /„ — 1. Let ? > f0. We may apply Corollary 4 to the

solution -1 < s -* x°(í + í) - 5 of (a0h), and assertion (ii) is proved.

(d) Proo/ o/ (iii). Let zz g As, a > a0. Then a e A +, and xf > 5 for some t > 0.

(b) shows xf,_a-)+s = xf > B, with a < 0, s ^ 0. The first argument in (a) above says

that x" < A + r < B on (-oo,0]. Therefore (t — a) + s must be positive, and the

first part of assertion (iii) is shown. Remark 2 implies that xa(t) does not converge

to B as t tends to + oo. Assume xf = (¡>B + <j> + s(<j>, zz)O0 with <f> e Q0 n B(tt/2kf)

for some s e R. The solution w: [-1, oo) -» R of (zzA^) with w0 = xf — <j>B = <f> +

í(</>, zz)$0 satisfies |w| < it and lim,^ + 00w(f ) = 0 (see Theorem l(iv)). It follows that

w is also a solution to (ah). Hence w(t) = x"(t + s) — B for all t > 0, and

lim,^ +o0x"(t) = B, a contradiction.

Now we are ready to construct Poincaré maps. Choose 8XX with 0 < 38xx <

min{o10, ix/(2z<3|z70|)} and t > 1 withxf - <j>B in ,S0 n 5(5n). Then

0 = />o(*t° - *b) - i(<7o(*T° - *b). ao)%-

The continuity of the map A5 3 a -» xf g C implies the existence of a, > a0 with

[a0, Of] c /i5 and xf - <i>B e B(28xx) for every zz in [zz0, zzj. Proposition 14(iii) and

the inequality \q0(xf - </>B)| < |<70l2ôn < r1/2^ imply

0 *Po(Xr- 4>b) -s(%(xr-<t>B),a)%    forzz0<zz< ax.

We define i?(a):= |/>0(xf - <¡>B) - s(q0(x!; - <¡>B), a)%\ for zz0 < a < av The

map zz -* tj(zz) is continuous with tj(íz0) = 0 < îj(a) for a0 < a < a,.

We know from Proposition 1, applied to equation (zz), that there exists a constant

k6 > k5 with |xT(<i>, zz) - xf | «; k6\<¡> - x£| for every zz in [zz0, ax] and for every

(f. 6 C. Of course, x(<¡>, a): [-1, oo) -> R denotes the solution of equation (a) with

*o(*> a) = *•

We choose tj2 g (0, tj,) so small that for 0 < tj < tj2, k6k5(3r¡/2)U2/Ui < 8XX and

(IPol + \Qrj[)k6ks(3t)/2)"i/Ui < tj/2. It is here that we exploit zz2 > ux which was a
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consequence of the crucial hypothesis on the characteristic values of the linearized

equation.

Next, we choose a2 e (a0, ax] so that for a0 < a < zz2, tj(zz) < tj2/2. For this

range of parameters a we define

Da:= {* 6 C\p0(<j> - 4>A) = z573>0,|* - xa0\ < /c5(3tj(zz)/2)"2/Ui)

as the domain for a Poincaré map. Clearly Xq e Da. Da is closed, bounded and

convex.

Proposition 15. Let a e (a0, a2\.

(i) We have |xT(<|>, a) — <j>B| < zS10 and

0 < |Po(^x(*> a) - <¡>B) - s{q0{xT(<¡>, a) - <I>B), a)%\ < 3tj(a)/2

for every <p e Da.

(ii) The map Pa: Da 3$ -> xT+T^a)(4>, a) - <¡>B + $A e C, where $ = >//(<?>) =

xT(<t>, a) — 4>B, is continuous.

(iii)Po(^* - *a) - o7%for every <¡> e Da.

Proof, (a) Proof of (i). <i> G Da gives

\xT(4>, a) - xf| < k6\<f> - x"0\ < k6k5(3r,(a)/2)U2M < 8X1,

hence

\xT(4>, a) - <¡>B\ < |xT(<i>, a) - xf| + |xf - <pB\

< 8XX + 28xx < 8l0.

Furthermore,

\[Po(xÂ<l>, a) - *s) - s(q0(xT(<l>, a) - <¡>B), a)%]

- {Po(x" - *b) - i(?o(*? - <Pa)> a)%}\

< \PoM<t>, a) - xf )| + \q0(xT(4>, a) - xf )|

< (iPol + \q0\)k6k5(3V(a)/2)^M < r,(a)/2.

The definition of tj(zz) now implies [ • • • ] # 0, and also |[ ■ • • ]| < 3r\(a)/2.

(b) Proof of (ii). Assertion (i) and Proposition 13(h) show that for <p e Da and \p as

above, T = T(^, a) is defined, with |/?0hyI = 87 and \p0wt\ < 87 on [0, T) for the

solution w = w(\p, a): [-1, oo) -> R of (ah) with w0 = \p. Moreover, wTe K and

w > 0 on [T - 1, T], or wT e -K and w < 0 on [7 - 1, T\. We have w(t/V, a)(z*) =

x(«i>, zz)(t + z) — 5 for every z > -1. It follows that the map Pa above is well

defined, with

Pa<t> = XT+TW.a) - <t>B + *4 = WT(*,a) ( * » «) + *<>

t/V = »H*) = xT((j), zz) - <£B, for all <j> e Z)a. Proposition 13(iii), together with con-

tinuous dependence of solutions on initial values, implies continuity.

(c) We show PaXo - <¡>A e K. Proposition 14 gives xf > 4>B for some / > 0. This

yields x" > B on [t - 1, oo); compare the proof of Proposition 7.

(ca) In case 0 < z < t + T(^(xa0), a),xa>Bon[r+T(--- ) - 1, t + T( ■ • • )],

or Paxl - 4>A = xf+T(..., - <i>fi > 0.

(cb) The case t + T(\j,(x%), a) < t.
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(cba) B < x"(s) for some s e [t - 1, t]. Proof: Suppose xf < B. Then B - r <

xf < B because of xf g <f>B + B(28xx) and 28xx < 8X0 < r.

(cbaa) -r < x" on [t - 1, oo). Proof: Suppose x"(t) < -r for some t > t — 1.

B — r < xf implies that there exists t > r with x" > -r on [t - 1, t) and x"(i) = -r.

Hence x"(t) < 0. On the other hand, x" > -r/2, hence -r/2 > 3f(? - 1) > -r, and

x"(z) = af(x"(i - 1)) > 0, a contradiction.

(cbab) x" < B on [t — l,oo). Proof: Suppose x"(t) = B for some f > t — 1.

xf < 5 implies that there exists f > t with x"(í) = 5 and x" < B on [t - 1, t).

Then x"(f) ^ 0. We have t>T+l since B - r < x" < B on [t - 1, t] gives

x" < 0 on [t, t + 1]. -r < xa ^ B on [f - 2, ? - 1] c [t - 1, oo) shows xa < r/2

on [i - 1, t\. Therefore B > xa(t - 1) > B - r/2, or xa(t) = af(xa(t - 1)) < 0, a

contradiction.

(cbac) The preceding property contradicts xa > B on [t - 1, oo), and assertion

(cba) is proved.

(ebb) We have PaXo - $A e K U -K (see (b)). It remains to exclude

(*) xr+Td,°)<B>   whereto = tHxg),

in the case under investigation. Inequality (*) implies that there is some s0 e (s, r +

T(^, a)) with xa(i0) = B and x" < B in (j0, t + T(ïp, a)], and sQ + 1 < r +

T(ifi, a). xa 3s -r/2 gives B > x" > B - r/2 on (s0, s0 + 1]. As in (cba), we infer

x" < B on (s0, oo). This contradicts x" > B on [t - 1, oo).

(d) Proof of (iii). Pa is continuous with Pa(Da) e (<¡>A + K) U (<}>A - K) (see (b)).

Da is connected. <¡>A + K and $A - K are disjoint open subsets of C. (c) shows

Pf\<PA + K) * 0. Then Pfl(<pA - K) - 0, and Pa(Z)a) c fc + JT.
Let <i> G Da. The monotonicity of p0 now implies p0(Pa,t> ~ 'Pa) g ^- We have

iPoW - *i)l - *7 (see (b»' and il follows thatp0(Pa<t> -<t>A) = 87%.

Figure 5
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Corollary 5. For every a e (a0, a2], Pa has a fixed point <j>a, and there exists a

periodic solution of the second kind x(a): R -» R of equation (a) with x(zz)|[-l,0] =

<f>  g D .
Ta a

Proof, (a) We show Pa(Da) c Da: Let <i> e Da. It remains to prove that |Pa<i> -

Xq| < k5(3r}(a)/2)"l/Ul. Proposition 15(i) says that t//:= xT(<f>, a) - <j>B is contained

in B(8X0), and 0 < \p0ip - s(q0ip, zz)$0| < 3tj(zz)/2. We apply Proposition 13(i) and

Proposition 12 and find \q0wT - u((%, wT)0, a)\ < k5(3r\(a)/2)^/u^ for T =

T(\p,a) and for the solution w = w(\p, a): [-1, oo) -* R of (ah) with w0 = ip.

Moreover,

PjP - X0 = WT + <?A  - X0 = P0WT - Po(X0 - *<) + %WT - %(X0 ~ <Pa)

= PoiPa'P - 'Pa) - Po(xo - <Pa)+ <1owt - %{xo - 4>a)

= o73>0 - 87% + q0wT - u((%, xaQ - <pA)0, a)

(see Proposition 15(iii)).

With

(%, wT)0% = p0wT = p0(Pa<t> - 4>A) = 87% = p0(xa0 - <f>A) >-(%, xa0 - <pA)o®o,

we obtain

\Pj? - x"c,\ = \q0wT-u((%,wT)0,a)\ < /c5(3t,(zz)/2)"2/"'.

(b) Pa(Da) is relatively compact: Pa(Da) e Da is bounded, all Pj>, </> g Da, are

differentiable because of T(\p(<¡>), a) + t > t > 1, and the derivatives of the func-

tions Pa<j> are bounded by a maxR|/|.

(c) Schauder's fixed point theorem implies existence of a fixed point <i>a of Pa. For

the solution x: [-1, oo) -» R of equation (a) with x0 = </>a, we have xT+7W a) - <¡>B

+ $A = <¡>a, where \¡/ := xT — <j>B, and it is easy to complete the proof.

Remark on bifurcation. Let e > 0 be given. Then one can choose 8 > 0 so

small that for zz0 < zz < a0 + 8, |3cJ - xgj < e/2 and ¿c5(3Tj(a)/2)"2/"' < e/2. It

follows that |<i>a — Xq| < £ for every fixed point of Pa.

We collect results in

Theorem 2. Let real numbers A < 0, B > 0, r > 0 zzztzz1 zz continuously differentiable

function f: R —> R be given so that hypotheses (H1)-(H6) are satisfied. Then there

exists a parameter interval [a0, af) ¥= 0, a continuous curve [a0, af) 3 zz -* <pa e C

of initial values, and a set valued mapping (aQ, af) 3 a -* Fa c C, Fa ¥• 0 for all

a e (a0, af), with the following properties.

(i) For each a e [a0, a2) there is a solution xa: R -» R of equation

(a) x(t) = af(x(t-l)),

where f (O = f(t)/f'(A)for all £ G R, so that x°0 = 4>a and lim^_xxa(t) = A.

(ii) lim,.^ +xxa°(t) = B and, for every a e (a0, af), x"(t) does not converge to B

as t tends to + oo.

(iii) For every a e (a0, af) and for every <¡>a e Fa there exists a periodic solution of

the second kind x(a): R -* R of equation (a) with x(zz)|[-l,0] = <pa.

(iv) For every given neighbourhood V ofx^0 there exists 8 > 0 such that Fa e Xq° + V

for a0 < a < a0 + 8.
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5. An example. Let p g (tr/2, 77) be given. We set/u(£) := p(sinco - sin(£ + co))

for £ g R and w e [0, tz/2)- The equations (af) with a > 0 and/:= fjf'j(-n - 2co),

co g [0, 77/2), model phase-locked loops for the control of high frequency generators

(see e.g. [5]).

Theorem 3. There exists co0 e (0, tr/2) such that for every co g (co0, 77/2) the real

numbers

A := A„ := -m - 2co, B := Bu:= <n - 2to,

>■■■= ru'-= BJ3 = (77 - 2co )/3,    £t := £, ,w := ¿u + to,    £2 := £2 >t0 := -to

zzzzzi the function f satisfy

(*) ^ + 2r < £j < £2 < -r < r < 5 - r

¿zzzzi conditions (H1)-(H6).

Proof. (*) holds true provided 277/7 < cc < m/2, and (HI) and (H2) are clearly

satisfied.

(a) There exists utx e (2ir/l, 77/2) such that for every to g («x, tt/2), -rw/2 < /w

< rJ2 in (/!„ - ra, A„ + rj U (-r„, Bu - rj. Proof: It is enough to show that

-rJ2 < minfu=fic((ir/2) - co) and that fa(Ba + rj < rJ2 for to sufficiently

close to tt/2. Set (7,(w):= f^((tr/2) - co) = p(sinco - 1), Hf(u):= -ru/2 =

-(77 - 2co)/6, G2(co):= fu(B„ + rj = p(sin co - sin((4(77 - 2co)/3) + co)),

H2(u):= rJ2 = (tz - 2to)/6 for all co G R. Then Gj(tr/2) = 0 = Hj(w/2) and

G'j(it/2) = 0 for j e {1,2}, H{(tr/2) = 1/3, H'2(-n/2) = -1/3. This implies the

assertion.

(b) There exists co2 g (co,, 77/2) such that for every co g (co2, 77/2), /¿ < 1 in

[Aa - ra, Aa + ral Proof: Choose co2 g (uv tr/2) with

B„ + ra = 4(77 - 2co)/3 < (w/2) +(» - 2co)/2 = BJ2 + V2

for all co g (co2,77/2). Then/^ is nonnegative and increasing on [Bu — ru, Bu + ru\.

It remains to show that for co sufficiently close to 77/2, 1 > f¿(Ba + ru) =

-p cos((4(77 — 2co)/3) + co), which is obvious.

(c) There exists co3 g (co2, 77/2) such that for every co e (co3,77/2), zz^ := f^A^)

satisfies log a* < -u(a^). This follows from /^(A^) = -pcos(-tt - co), from

lima^0+ log a = -00 and from lima_0+ tz(zz) = 0.

(d) There exists co4 g (co3, 77/2) such that for every co e (co4,7r/2) we have

£i,„ + //„"*< £2,w provided «Í» G C, Aa < <p < £,,„ = $(0), and Ba + ra < £2l0 +

//„ o \¡> provided t/V g C, £, „ < t// < £2 „ = t//(0). Proo/: Let co g («3,77/2)- For everY

<¡> e C with Au < c6 < £, „ = cj>(0) we obtain

Ex.« +//••♦< ¿„ + « +/.K, + »)

= -77 - co + p (sin co - sin(-77)) < -co = £2 w

because of p < 77. Furthermore,

£2 u + //w o t// > -co + /„(-co) = -co + p(sinco - sin(0)) = -co + psinco
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Figure 6

in case £1>u < »f/ « £2w = t/>(0), t// g C. Recall £„ + rM = 4(tz - 2co)/3. Set

G3(co):= -co + psinco, H3(u):= 4(tt - 2co)/3forco g R. Then G3(t7/2) = -(V2)

+ p > 0 = 7/3(77/2), and the desired estimate follows by continuity for co suffi-

ciently close to 77/2.

(e) Let co G (co4, tt/2). (a), (b), (c), (d) imply (H3), (H4), (H5), (H6), respectively.
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