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THE DE BRANGES THEOREM

ON UNIVALENT FUNCTIONS1

BY

CARL H. FITZGERALD AND CH. POMMERENKE

Abstract. We present a simplified version of the de Branges proof of the Lebedev-

Milin conjecture which implies the Robertson and Bieberbach conjectures. As an

application of an analysis of the technique, it is shown that the method could not be

used directly to prove the Bieberbach conjecture.

1. Introduction. Let S denote the class of all functions

00

(1.1) f(z) = z+   £«„*"
n = 2

that are analytic and univalent in the unit disk 3). Louis de Branges recently proved

[3-5] the following inequality which implies the Bieberbach conjecture.

De Branges Theorem. Suppose f g S and define ck:

(1.2) log &1 =  £ ckzk   forzin®.
z *-l

Then, for n — 1,2,...,

(1.3) ¿*(« + l-*)M2«4¿-"-
k=\ k-i        k

The inequality (1.3) was conjectured by N. A. Lebedev and I. M. Milin [10] in

1971. The Lebedev-Milin exponentiation inequality [9, 10] (see e.g. [11, Lemma 3.3])

shows inequality (1.3) implies a conjecture made by M. S. Robertson [12] in 1936: If

/is an odd function in 5, then

"' 2

(1-4) Y, \a2k-\\   <w    form = 1,2,....
£ = i

An elementary application of inequality (1.4) to the odd function y/(z2) proves a

conjecture made by L. Bieberbach [2] in 1916: If/is a function in S, then

(1.5) Kl<«-
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Furthermore, Robertson [13] (see e.g. [11, Corollary 2.2]) has shown that inequal-

ity (1.4) proved by de Branges has the following consequence.

Corollary. Iff(z) = axz + a2z2 +  • • ■ satisfies

(1.6) \f(z)\<\g(<p(z))\,   where \<pii)\<\z\,

for z G 2) and g G S, then (1.5) holds.

In short, de Branges has proved the Bieberbach conjecture in its most general

form. The proof was announced by de Branges in lectures he gave in the Leningrad

geometric function theory seminar. A distillation of his argument by E. G. Emel'anov,

G. V. Kuz'mina and I. M. Milin was circulated; he published a similar version [3]. A

more formal presentation is to appear [4].

The proof of de Branges is surprisingly short in light of the great effort that has

gone into trying to prove the Bieberbach conjecture. His argument [3] was made in

two steps. First he proves a more general result on bounded univalent functions by

the ordinary Löwner differential equation which describes a contracting flow on the

unit disk. Then he applies this result to prove his inequality (1.3).

We shall give an even shorter version of that proof by making a technical change.

We will use the linear partial differential equation of Löwner that describes an

expanding flow in the plane. One result is that certain approximations in the first

step can be dispensed with. De Branges independently makes a similar change in the

proof [4].

We can also settle the case of equality. (With some effort, the same conclusion

follows from de Branges's method of proof [3], and the result appears explicitly in

[4].)

Theorem. /// g S and

(1.7) f(z) m---   for some fe C with |?| = 1,
(1 - Ùf

then strict inequality holds in (1.3).

It follows that if / g S and inequality (1.7) holds, then \an\ < n for « = 2,3,...,

that is, the only functions of S for which equality holds in the Bieberbach estimate

for some n are rotations of the Koebe function.

Finally we make some remarks about the proof. It is pointed out that the more

general inequality of de Branges follows by a slight change of our proof. Then the

choice of weight functions is motivated. Since they are essentially unique, it becomes

possible to ask whether the de Branges method of proof could be directly applied to

the Bieberbach conjecture. The answer shows the important role of the Lebedev-Milin

conjecture.

2. The special function system of de Branges. To avoid interrupting the proof, we

will first make some observations about a system of functions introduced by

de Branges.

Fix a positive integer n. For k = 1,2,..., n, let

(2.1)   rM-t"£'(-D-(2t*'*1\f+2;+*>-'-.-.,
„_o ik + v)v\in - k - v)\



THE DE BRANGES THEOREM ON UNIVALENT FUNCTIONS 685

where (a)„ denotes aia + l)(a + 2) • • • (a + v - 1). Let t„+1(í) = 0. Direct calcu-

lation shows

/-)  T\ /,\ ft\ 7k(t) Tk+l(t)

(2-2) **(') ~ Vn(0 = —t;-fc + !   ■

Let Pj(a, ß) denote the Jacobi polynomials (see e.g. [14]). It is easily deduced [1,

p. 717] from (2.1) that

n-k

(2.3) j'k(t) = -Are"*' £ P/2*-°>(l - 2e~').
j = o

Since P/a0)(-l) = (-l)J [14, p. 59], it follows that j'k(Q) = -k it n - k is even and

t¿'(0) = 0 if « — k is odd. Hence equality (2.2) implies rk(0) - tA:+1(0) = 1; and

descending induction shows that

(2.4) t,(0) = n + l-k.

It follows from (2.3) by the result of Askey and Gaspar [1, Theorem 3] that

(2.5) -r'k(t) < 0    forO < t < +oo.

Gasper [7] has recently given a different proof of inequality (2.5) where (2.3) is

formulated in terms of generalized hypergeometric functions instead of Jacobi

polynomials.

3. Proof of the de Branges Theorem. In 1923 Löwner [8] (e.g. [6, Chapter 3])

proved the following representation theorem: If/is a function in S such that

(3.1) f(£d) = C\J,    where J is a Jordan arc entending to infinity,

then there is a parametrized family of univalent functions

(3.2) f(z, t) = e'z +  ■ ■■     forz g PandO < / < -Fco

such that /( z, 0) = /( z ) and

(3-3) c^'')=1^40^/(Z'0'

where \k(í)\ = 1 and k(í) is a continuous function on [0 , oo). The functions / that

satisfy (3.1) are dense in 5 with respect to uniform convergence on compact subsets

of 2. Hence it is sufficient to prove inequality (1.3) for these functions.

For 0 < r < oo define ck(t) by

(3.4) log^1-^—  f>,(/)z*    forzG^
e'z k = x

so that ck(0) = ck by (1.2). The following equations are obtained by the application

of 8/3/ to (3.4), the use of (3.3) and the application of 9/3z to (3.4):

(3.5) 1 +  E c'k(t)zk = l +K\'K\¡-f(2, t)]/f(z, t)
k = \ 1 ~ K(0Z   Ldz J

-(l+2Ë((0V|l+  íkck(t)z^.
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From (3.5) we obtain

(3.6) c'k(t) = 2ZjCj(t)K(t)k-J + kck(t) + 2K(t)k.

7 = 1

Let b0(t) = 0 and

(3-7) bk(t)= ÍjCjit)KÍt)-J
7-1

for A: = 1,2,_Equation (3.6) can be simplified to

(3.8) c'k(t) = K(t)k[bk(t) + bk^x(t) + 2].

Let « be a fixed positive integer. Define

oo.(3.9) <p(/) = l(fcM/)|2-|)T*(/)    forO</< +

We now suppress the variable t. By (3.7), kck = (bk - bk_x)Rk. By using (3.8) and

differentiating (3.9), we conclude that

tp' = ¿ 2Re[(fc, - bk_x)ibk + bk_x + 2)]t,
k = \

+ ¿(1^-Vil2-4)r;.
A-l

NoteRe[ ] = \bk\2 - \bk_x\2 + 2Rebk - 2Rebk_x, and recall b0 = Oandrn + 1 = 0.

By partial summation we obtain

(3.10)    <r/ =  ¿ (2\bk\2 + 4Rebk)iTk - rk+1) + ¿ (\bk - bk_xf - 4)^
Tk

K\uk~uk-i\   -•*)•

A=l' fc-1

Now it follows from the differential equation (2.2) that the first summation in

(3.10) is

k = l

- - £ (2|»»|2 + 4Re», + 2IV.I2 + 4Rs»»-i)f ■
*-l

Hence we see from (3.10) that

(3.11) <p'it) = -í\bk-At) + bk(t) + 2\2T-íjp-.

From inequality (2.5) we conclude

(3.12) tp'it) > 0    for0«s/<+oo.

This inequality is the key.

Now we use that e~'fiz,t) belongs to S; (3.2) shows the normalization conditions

are satisfied. Since S is compact, if k is fixed, |c*(/)| remains bounded as / -» +00.

Also note that (2.1) implies that rk(t) tends to zero as t tends to infinity for each k.

From (3.9) it follows that <p(+ 00) = 0, and from inequality (3.12),

"   / 2      4 \ /-00

(3.13) I (*k(0)|   -£)(/! +l-*) = -jf    *>'(/)<//*0.
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Since/(z, 0) = f(z), inequality (1.3) is proved for functions of S satisfying (3.1) and

therefore for all functions in S.

4. Equality. Now we prove the theorem stated in the first section. We assume

inequality (1.7) holds. Then \a2\ < 2 as Bieberbach [2] (see e.g. [11, Theorem 1.5])

has shown. We choose a sequence of functions /neS which satisfy (3.1) and

converge to / uniformly on compact subsets of 3). We add the subscript to the

corresponding coefficients. From (1.1) and (1.2), for some number a,

(4.1) h.J = k.J<«<2
at t = 0 for large m.

The Löwner differential equation is used in the form given by (3.6). It follows that

K J = k„,(0 + 2k„,(0| < k.„,(0l + 2 < 4.
Hence from (4.1), we see that cx m(t) < a + 4t. From (3.10) and inequality (2.5),

<p'Jt) > \cUmit)Kjt) + 2|Vi(')) > (2 - « - 4r)2(-Tl'(0)

for 0 < t < (2 - a)/4 and m large. Hence by (3.13)

i (k\ckJ- |)(» + 1 ~k)

/•(2-a)/8     ,   ,   ,    . j 2 - a\2 rt2-a)/8     ,.   .
i <P'»Mdt<(—    f r[(t)dt

2- a -i(V^) =o.
Letting m tend to infinity, we conclude strict inequality holds in (1.3) and conse-

quently in the Bieberbach estimate.

5. Remarks. (1) De Branges has proved a more general inequality; specifically, if

/G Sand|/(z)| < eT, then

(5.1)

tk(n + l- k)\ck + qf <   t k\pk\2rk(T) + ¿ Un +T - k - r,(P)),
A=l k-\ k=\

where thepA are arbitrary complex numbers and the qk are determined by

OO 00

(5-2) Hqkzk=  zZpke-kTfiz)k.
k: = 1 A = 1

His inequality (1.3) follows by lettingpk = 0 and T tend to oo. By a slight change in

(3.4), our proof also gives inequality (5.1). Use the coefficients of the expansion of

%^+Êp**-*7(*,/)jlog
e'z a = i

to define tp. Integrate -<p' ^ 0 from 0 to P.

(2) The choice of the weight functions rk made by de Branges can be motivated

and shown to be unique in a certain sense.
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For the Koebe function/(z) = z(l + z) 2 we have

2
(5.3) (c(/)sl    and   ck(t) = (-1) =■    for k = 1,2,....

K

Hence the contribution T.(4/k)rk(t) in (3.9) cannot be changed if we want to obtain

an estimate that is sharp for the Koebe function.

Now consider the properties of univalent functions used to prove <p'(0 > 0. The

proof uses Löwner's differential equation (3.3) only as it prescribes the motion of

cx(t), c2(t),. . . ,cn(t) as given in the differential equation (3.6). Whether

cx(t),.. .,cn(t) actually arise from a univalent function related to the choice of k(í)

is not considered.

If we agree that only (3.6) is to be used to show cp'(t) > 0, we are free to prescribe

cx(t0),.. .,cn(t0) and a continuous x(t) with \x(t)\ = 1. Then (3.6) has local solutions

and the inequalities resulting from <p'(i0) > 0 give requirements of the functions rk.

Let k(í) = 1 and, for some L — \,...,n and 0 < t0 < oo, let

/(-l)Z-(2 + r,)/P     for* = L,

\(-\)2/k iork^L,

where tj is a complex number of small magnitude.

Equation (3.6) then implies

'0 forÄ:<P,

(-l)Sj       forÄ: = P,

^(-l^Tj     forA:>P,

where the argument t0 is dropped. Hence

9' =  i Re^K +  ¿ (k\ck\2 - 4/k)t'k > 0
A = 1 A = 1

implies that, as tj tends to zero,

Re

Since the argument of tj is arbitrary

4vrL+     I    8(-l)*+V* + ^t
k-L+l U

+ o[\vf) > o.

(5.4) Tl + 2l    (-l)k^Tk+Jf = 0.
k-L+l

If L < n, we also consider (5.4) for P + 1 and add; we obtain

(5-5) Tl_Tl+1 + 1 + _1±1- = o.

If L = n, then (5.5) follows at once from (5.4) where rn + x = 0. Now (5.5) is

equivalent to the differential equation (2.2) of de Branges for (t = t0). The initial

conditions Tk(0) = n + I — k are specified by the inequality to be proved. Equation

(2.2) and the initial conditions determine the function rk uniquely.
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Furthermore, <p' ̂  0 implies each <t'L < 0 at / = t0. To show this fact we construct

ck such that \bk + bk + x + 2\ = 0 for k ¥= L and positive for k = L and use (3.11).

(3) Knowing how to find the appropriate weight functions, we can consider

whether the Bieberbach conjecture could be proved by the de Branges method

applied directly. Let f(z, t) = e'z + a2(t)z2 + a3(t)z3 + • • •. We restrict to the

case n = 3 and look for real-valued weight functions wx(t) and w2(t) with wx(0) = 0

and w2(0) = 1 such that

(5.6) t(t) =\a2\2wx(t) +\a,(t)\2w2(t) -(4wx(t) + 9w2(t))e2'

satisfies \p'(t) > 0 and \p(oo) = 0. Note that the last term in (5.6) is determined by

the requirement that \p(t) = 0 for/(z, t) = e'z(l + z)~2.

The proof that \p' > 0 should use only that

(5.7) a'2 = 2a2 + 2k(/)é>'   and    a3 = 3a3 + 4«a2 + 2kV.

If we use (5.6) and (5.7), it is easy to express \p' as a polynomial in a2 and ay

(5.8) \p' = 4\a2\ wx + \a2\ w[ + Í6|a3|   + Re%Kä~ia2)w2 + |a3| w'x +  ■■-,

where the remaining terms are of lower order. Consider k(/0) = -1 and a2(t0) = 2x

and a3(t0) = 3x for a real variable x. From (5.8),

(5.9) dj' = (low, + 4w'x + 6w2 + 9w¡)x2 + 0(\x\)    asjc-^oo.

Since we can pick x arbitrarily large, \p'(t0) ^ 0 implies the coefficient of the leading

term in (5.9) must be nonnegative.

On the other hand, making small variations from the Koebe function as in the

previous remark, we deduce from ip' > 0, wx(0) = 0 and w2(0) = 1 that wx = 6e"3'

— 6e"4' and w2 = e'4'. Then for r0 = 0, the coefficient of x2 in (5.9) is -6 in

contradiction to the conclusion that it must be nonnegative.

Hence |a3| ^ 3 cannot be proved by this direct approach. What de Branges did

(rewritten in the present context) was to consider

(5.10) \a2\2e-2Wx + 2\a3 - la^-'lV2'^ -(4^ + 2t2)

instead of (5.6). This gives 2\a2\2 + 2|a3 - \a2\2 < 10 which implies

|a3| < \\a2\2 + p -|a2|2 < 3.

Clearly the Milin conjecture has motivated an appropriate combination of coeffi-

cients in expression (5.10).
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