TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 290, Number 2, August 1985

ON DERIVATIONS ANNIHILATING
A MAXIMAL ABELIAN SUBALGEBRA

BY
GEOFFREY L. PRICE!

ABSTRACT. Let A be an AF C*-algebra, and let § be a closed *-derivation
which annihilates the maximal abelian subalgebra C of diagonal elements of
A. Then we show that § generates an approximately inner C*-dynamics on
A, and that § is a commutative *-derivation. Any two closed x-derivations
vanishing on C are shown to be strongly commuting. More generally, if § is a
semiderivation on A which vanishes on C, we prove that § is a generator of a
semigroup of strongly positive contractions of A.

1. Introduction. Let § be a densely-defined *-derivation on a C*-algebra A.
One of the central problems in the theory of unbounded derivations is to determine
whether a derivation is a generator, i.e., whether there exists a one-parameter group
of *-automorphisms {3::t € R} of A such that for all z € D(6), the domain of §,
6(z) = lim¢—0(1/t)(Bt(z) — ), and such that D(6) coincides with the set of all
z for which the limit above exists. Recently a number of articles have appeared
considering this situation for the case where 6 commutes with a group {ag:g € G}
of automorphisms of 4, i.e., ag: D(6) — D(6), all g € G, and ag 06 = 6 0 og. For
example, Bratteli and Jgrgensen have shown in [1] that a closed x-derivation must
be a generator if it commutes with a compact abelian group of automorphisms of 4
and annihilates the fixed point algebra A“ of 4. Roughly speaking, their strategy
is to decompose the algebra into spectral subspaces which are invariant under G
(and also §), to show that § acts as a generator on each of these subspaces and to
piece these results together to show that 6 is a generator.

In this paper we consider an AF-algebra A, A = (J,, An, a certain maximal
abelian C*-subalgebra C and a closed *-derivation § which annihilates C. Forn € N,
we construct conditional expectations ®,,, mapping A onto the C*-algebra (4,,C)
generated by C and the finite-dimensional subalgebra A, of 4. These maps are
shown to respect the action of § in the sense that ®,,: D(§) — D(é) and §(®,(z)) =
®,(6z), all z € D(8). Using these techniques, we show that é is a generator, and
that any two derivations satisfying the above conditions are strongly commuting.
Moreover, we exhibit a dense *-subalgebra of analytic elements of A. We also show
that 6 is an approximately inner normal *-derivation which is commutative in the
sense of Sakai [9]. Finally, we show that our techniques may be applied to prove
analogous results in the more general case where § is a x-semiderivation of A.
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In a recent paper, [11], A. Kumjian uses somewhat different techniques to study
similar questions on a class of C*-algebras which includes the continuous trace
AF-algebras. He shows that if § is a closed *-derivation on a continuous trace
AF-algebra which annihilates the diagonal subalgebra, then é must be a generator
(11, Theorem 5.2]. Moreover, a dense subalgebra of analytic elements for § is also
exhibited.

We have benefited from numerous comments and suggestions from F. Goodman,
P. E. T. Jgrgensen and R. T. Powers. It is a pleasure to thank them for their
interest and help. We also thank G. Elliott for bringing [11] to our attention.

2. Diagonalization of an AF-algebra. In this section we introduce some
notation which shall be needed in the proofs of our main results, and we also recall
some facts and notation from [10] on the diagonalization of an AF-algebra. To
begin, suppose that A; C A2 C --- is an ascending union of finite-dimensional C*-
algebras, with common identity 1. Let A be the unital AF-algebra formed as the
uniform closure of the union |J,, A,. For any subsets Si, Sa,... of 4, let (U, S»)
denote the smallest C*-subalgebra of A containing each of the S,. In particular,
A = (U, An). Furthermore, if B is a C*-subalgebra of A, denote by B’ the C*-
subalgebra of A given by {z € A:zy = yz, all y € B}.

Following [10], we construct a maximal abelian C*-subalgebra (m.a.s.a.) C, the
diagonal subalgebra of A. C is defined inductively as follows: let Ag = C - 1, and
for each n € N U {0}, choose a m.a.s.a. D41 of A, N Ant1. Set Co = C -1 and
define Cry1 = (Cn,Dnt1). Then C, is a m.a.s.a. of A,. Moreover, if I and J
are index sets such that {p;:¢ € I}, {g;:5 € J} are the minimal projections of
Cny Dn41, respectively, then {p;q;:7 € I,5 € J} is the set of minimal projections
of Cnt1. A straightforward argument now shows that C = (|J,, C») is a m.as.a.
of A. More generally, one also obtains that, for fixed n, and for any k € N, the
abelian C*-algebra A/, N C, 1k is a m.a.s.a. of A}, N A,k, and the uniform closure
(Ui (A, N Cptk)) of the union is a m.a.s.a. of the AF-subalgebra A, of A. We refer
the reader to the exposition in [10] for details.

In [10] a conditional expectation ® from A to its m.a.s.a. C is constructed. By
conditional expectation it is meant that ®: 4 — C is a positive linear mapping which
satisfies (i) ® o ® = @, and (ii) ®(zy) = ®(z)y and ®(yz) = y®(z) for z € A and
y € C. In particular it follows that ®|¢ is the identity mapping. These properties
determine ® uniquely. We now derive a slight generalization of this notion.

PROPOSITION 2.1. Let A = |J,, An be a unital AF-algebra. Then for any
n € NU{0} there ezists a conditional expectation ®,, from A onto the C*-subalgebra
of A generated by A, and the (diagonal) m.a.s.a. C of A, i.e., ®p: A — (An,C).
Moreover, if y € A, then ®,(y) € A, NC.

(REMARK. Observe that ®( coincides with the conditional expectation ® de-
scribed above.)

PROOF. Fix positive integers m > n. We begin by defining a conditional ex-
pectation ®,, , from A onto (An, A% N Cm, Al,). First recall (see, e.g., [5]) that
for any z € A there exist elements u; € A, v; € (A, N Ay) and w; € A,
1=1,2,...,r, such that z = }_;_, u;v;w;. Now let {p;:7 € J}, some index set J,
be the minimal projections of A}, N C,,. Consider the linear map @, ,, defined by
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D, n(z) = ZjeJ p;zp;. Then

r r
Bpn(z) =D D pjwviwips = Y Y ui(pjvip;)w;

jeJi=1 jeJi=1
T T
=30 wilpvip)wi = Y (B, (i) 0.
i=1jeJ i=1

Observe that for each 7, @, n(v;) € A7, N A, and furthermore, @, ,(v;) commutes
with A, NCp. But A/, NC,, is maximal abelian in A}, NC,, [10], so that &, ,(v;) €
(A%, N Cp). Hence @ n(z) € (An, Al N C, AL,). Moreover, one checks easily that
the latter algebra is fixed by ®,, ,, so that ®,, , is a conditional expectation onto
(An, An N Crm, A

It is straightforward to verify that for z € A, and for ¢ > m > r, ®p, n(z) =
®,.»(z). To see this, note that since

A;; N Cq = ﬂ;; n (cm7 Dm+1a-' . ,Dq) = ("q;z n CmaD'rrH-l,' . '1Dq),

there exist minimal projections ey,...,es in (Dm41,...,D,) such that {pjex:j €
J, 1 < k < s} is the set of minimal projections of A;, N C,. But since e € A, all

k, we have
8 8
Q4 n(z) = Z E Dj€kTPj€k = Z Z PjTPjek

jeJk=1 jeJ k=1
= ij:cpj = Oy n(2).
JeJ
Similarly, one may show that for g > m > n, @, 0 ®gn = B¢ .
We now use the results above to establish that for all y € 4, and for all fixed
n, the sequence {®,, »(y):m > n} converges uniformly. For, if y € 4, and € > 0,

there exists an index r and z € 4, such that ||y — z|| < ¢/2. Using ||®m .|| =1, all
m > n, we have for ¢ > m > r,

4,0 (¥) = Bmn(¥)ll < [1g,n(y — 2)|| + [ B,n(2) = P (@) ] + |Pm,n(y — 2|
Sly—zl+0+ly -zl <e.
Hence the sequence {®,, ,(y): m > n} has a uniform limit ®, (y). From the identity

D0 0®gn = By n, ¢ > m > n, it is straightforward to show that ®,, , 0 ®, = ®p,,
and therefore, for all y € 4,

®n(y) € n (A, AN Comy Ar).-

m>n

We show (An,C) = Npon(Ans An N Cm, 4y,). First, we have, for all m > n and
qzmn,
(AnNCq) C(ArNCm) if m>g,

and

(A:’z N Cq) = (‘A'In N Cma Dm+la ey Dq+l)
C(ALNCm, AL) ifm<ag,
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so that, in either case, we have (A}, N Cq) C (An, AL, N Cm, AL,), and therefore,

(An,C) = (An, AL, NC) = <A,,, U Aen cq)> (from [10]))
q>n
C () (Ans A N Com, A7)

m>n

For the reverse inclusion, suppose = € (A, N C,, AL,), all m > n. Then clearly
z € A, and z € (A, NCy)', all m, hence A, N[(A;, N C)’]. But A, N C is maximal
abelian in A}, [10, Proposition 1.1.3], so that z € A/, N C. The equality

() (An, A 0 Con, Al) = (A, A N C) = (A, C)
m>n
now follows immediately. Therefore ®, is a conditional expectation from £ to
(An, C), as asserted.
Finally, observe that if y € 4;,, then for m > n, ®mn(y) = -,y p;yp; also lies

in A,. Since ®,(y) = limy, B, (y), the last statement of the proposition must
hold. O

3. Derivations annihilating C. We now apply the preceding results to show
that any closed *-derivation é on A which vanishes on the diagonal m.a.s.a. C must
necessarily be a generator. Our techniques will enable us to construct explicitly
a dense *-subalgebra of analytic elements for D(6) (Proposition 3.2). Moreover, a
direct application of our results shows that the set of closed *-derivations annihi-
lating C forms a family of strongly commuting generators (Corollary to Theorem
3.3).

LEMMA 3.1. Let é be a closed *-derivation vanishing on C. For n € N U {0},
let ®,, be the conditional expectation onto (A, C) constructed in §2. Then for any
z € D(6), ®n(z) is also in D(6) and 6(Pn(z)) = Pn(é2).

PROOF. For m > n, recall that @ n(2) = ) c ; P;TP;, where {p;:j € J} is the
set of minimal projections of A}, N C,,. Hence if z € D(§), then ®,, »(z) € D(6),
and
(1) 6(®mn(2)) = D_ 6(pszpj) = Y p;(62)p; = Bmn(62).

JjeJ JjeJ
By Proposition 2.1, ®,(z) and &,,(6z) are the uniform limits of {®, »(z):m > n}

and {®, »(6z):m > n}. Combining this result with (1), we conclude from the
closedness of § that ®,(z) € D(6) and that 6(®,(z)) = ®,(6z). O

PROPOSITION 3.2. Let § be a closed x-derivation vanishing on C. Then D(6)
contains a dense *-subalgebra of analytic elements. In fact, if x € J,, An, then z is
an analytic element for 6.

PROOF. Fix n 6 N U {0}. Since A, is finite-dimensional, it is isomorphic to a
direct sum Y 7" by My, of 1 X matrix algebras M,, over C. Hence, for 1 < k < pn,
one may choose matrix units e €A, (1<k< pn, 1 < 1,7 < rg) satisfying the
identities (i) efek, = &;pek,, and (ii) for k # I, efel,, = 0. Furthermore, we may
assume that the matrix units have been chosen so that the diagonal elements e’c lie
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in C. To show that A, consists of analytic elements for § it clearly suffices to show
that the e - are analytic.

We begm by showing that each matrix unit e’c lies in D(6). For, if 1 > ¢ > 0,
there exists z € D(6) such that ||z — ek < e. But then ek fj € D(6) and we have

llek:zek; — ekl = |lef(z — ef;)ek; |l < ||z — ekill < e.
Hence we may assume, without loss of generality, that = = ef;zef;. Therefore,

z admits a decomposition £ = ey, where y € A, (see [5]); whence ®,(z) =
D, (eky) = e ®n(y). Let di = @, (y); then d; € (47, NC), from Proposition 2.1, so
that
lle5;d1 — €551l = lleXi(efdr — eIl < lledr ~ e
= [|®n(z) — 2n(ef)ll < llz el <.

Since € < 1, the inequality above implies that d; is invertible in the commutative
C"‘-subalgebra e" C, i.e., there exists d; € ek C such that didy = e . But dy €
D(6), ®n(z) € D(6), so that ef; = @, (z) dz e D(6)

From Lemma 3.1,

8(®n(z)) = 6(®nlekze)) = 6(ek®u(z)el,) = ek®y(62)ek.

Hence 6(®,,(z)) has the form §(®,(z)) = e¥. d3, d3 € A, NC. Then writing d = d3d,
(e A,nC),
6(€¥;) = 6[®n(z)ds] = [6(®n(z))] d2 = €i;d.

Iterating, we have, for any r € N, 5'(6”) =e; (d') so that e - is easily seen to be
an analytic element of D(6). O

REMARK. We note that a somewhat similar analysis to the foregoing is carried
out in [8], where é is a closed *-derivation on a UHF algebra A of Glimm type
n®. There it is shown that if § vanishes on the natural embedding of S(00) into A
(S(00) is the group of finite permutations on countably many symbols) and satisfies
706 = 0, where 7 is the unique trace on A, then § admits an extension to a generator
on A.

From the proof of the proposition it is clear that (A,,C) C D(§), all n € N,
and that 6: (4,,C) — (A,,C). Indeed, for 1 < k < p,, let d;?, 1 < j < rg, be the

diagonal elements satisfying 6(e¥;) = ef;d%. Consider the (skew-hermitian) element
Pn Tk A .
= E E(ejl)é(elj)'
k=1j5=1

Then we have the well-known identity 6|4, = Ad(th,)|4,, i€, for z € A, z =
[thn, z] = 2(thy) — (thyp)z (see [5]). But

Pn Tk
ho= 35 Sty
k=1j5=1
Pn Tk Pn Tk

=ZE‘3 re1;(dy) = Zzeudf’

k=1j=1 k=1j=1
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so that h, € C. Extending to (4, C), it is straightforward to show that 6|4, c) =
Ad(thy)|(4,,c) as well. From this identity it now follows easily that 6|4, c) is a

generator, with corresponding one-parameter group {aﬁ"):t € R} given by
aﬁ")(z) = exp(—ith,)(z) exp(ithy,), z € (An,C).

Applying [4, Theorem 3.2.51] one shows that the closure &y of the derivation
0][U.(4.,c)) is an (approximately inner) derivation on A with corresponding one-
parameter group {ay:t € R} satisfying

ay(z) = lirrtn exp(—1thy)(z) exp(tthy), z €A

We show that éy coincides with 6. Clearly D(6p) C D(6). To verify the re-
verse inclusion let z € D(6). Then z = lim, ®,(z) and §(z) = lim, ®,(6z) =
lim, §(®,(z)). Since ®,(z) € (An,C) C D(bo), the result holds. Hence we have
the following.

THEOREM 3.3. Let 6 be a closed *-derivation vanishing on the diagonal
m.a.s.a. C of A. Then é is a generator. In fact there exists a sequence (hy,) C C
of hermatian operators such that 6 generates the approximately inner dynamaics
{as:t € R}, where oy(z) = lim,, exp(—ithy,)(z) exp(ithy,), z € A.

REMARK. Since the sequence (h,)nenN lies in C, the hermitian operators are
mutually commuting. Hence é is a commutative *-derivation in the sense of Sakai
(see [9]).

We recall the following notion.

DEFINITION 3.1. Let 8, &’ be generators on a C*-algebra 4. Then §,§’ are said
to be strongly commuting if their corresponding one-parameter groups {a::t € R},
{a}:t € R} satisfy oy o o}, = o, 0 0y, t,t; €R.

COROLLARY. The set of generators which vanish on the diagonal m.a.s.a. C of
A form a famaly of strongly commuting derivations.

PROOF. Let 6, ¢’ be two such derivations, and let {a:}, {a}} be their cor-
responding one-parameter groups. Then from the preceding theorem there exist
operators hy, h;, € C for n € N such that

atlia,,cy = Ad(exp(—ithy)), ofl(4,,c) = Ad(exp(—ith;,)).

Since hy,, hj, commute it is straightforward to verify that a;(o, (¢)) = o, (at(x))
for z € (A,,C) and t,t; € R. The result now follows by continuity. O

4. Applications to semiderivations. Let 4 be a C*-algebra. A linear oper-
ator 6: D(6) — A is said to be a semiderivation (or, alternatively, a dissipation) if
it satisfies the following properties:

(a) D(6) is a uniformly dense *-subalgebra of A,

(b) 8(z)* = 6(z*), all z € D(8), and

(c) 8(z*z) > é(z*)z + z*(6z) for z € D(6).

A central problem in the theory of semiderivations is to determine when 6 is the
generator of a strongly continuous one-parameter contraction semigroup {a;:t €
R} of positivity-preserving maps. For semiderivations vanishing on C we have the
following analogues to Theorem 3.3 and its corollary. (We thank P. E. T. Jgrgensen
for suggesting this extension of our original results.)
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THEOREM 4.1. Let 6§ be a closed semiderivation annihilating the m.a.s.a. C
of A. Then & s the generator of a strongly continuous one-parameter contraction
semigroup {oy:t € Ry} of symmetric, strongly positive maps, i.e., ou(z*) = ay(z)*
and o (z*z) > op(z)*as(z) for allz € A, t R,

PROOF. We preserve the notation of Proposition 3.2. Since ¢ C D(§) and
8|c =0, we have, by (3, Lemma 1.1],

(2) 6(zy) = (6z)y, 6(yz) =y(éz), yeCl, z€D().

Now using (2) we may employ the “averaging” argument of Lemma 3.1 to conclude
that for all n € NU{0} and z € D(6), ®,(z) € D(6) and §[®,(z)] = ®,(6z). This
implies that (A,,C) C D(6) for all n, and

8: (A, C) = (A, C).

We consider 6|4, c). Since 6 is everywhere defined on (4, C) it follows from [6,
Theorem 1] that 6|4, c) is both dissipative and bounded. In particular, (A,,C)
consists of analytic elements for §. Now, let z € (A,,C). Then z may be decom-

posed as
Pn Tk

— k k k
T = E Z eijcij, cij (S C

k=112,5=1
Following the proof of Proposition 3.2, there exists for each matrix unit efj € An
an element df; € C such that §(e;) = €¥;d¥;. Then using (2) repeatedly we have,
forijGCandreN,

Pn Tk

(3) 8 (z) = Y (ekiek)(ak).

k=14,5=1

Define & to be the semiderivation 6y = é|p(s,), where D(&) = |J,, An. Then &g is
a dissipative semiderivation whose domain contains a dense *-subalgebra of analytic
elements. Hence & is closable, and its closure &y is a generator of a contractive
semigroup {a;:t € R, } [2, Theorem 5]. Now applying an argument identical to
the one in the last paragraph of the proof of Theorem 3.3, we conclude that &y
coincides with §.

We now consider the semigroup {a:}. Since §(z)* = 6(z*) for z € D(8), it
follows immediately that o;(z*) = a4(z)*, all z € 4. We show that the maps a; are
strongly positive. For n € N, consider any z € (A,,C). Then since § is a bounded
dissipative semiderivation on (A,,C) with §(1) = 0, it follows from (7, Corollary
3] that {a|(4,.,c):t € R4} is strongly continuous and that a;(z*)as () < og(z*z).
Using the strong continuity on (4,,C) for each n € N, it follows immediately that
the semigroup of contractions is strongly continuous on 4. Now, using continuity,
it is straightforward to show that oy(z*)ot(z) < a¢(z*z), all z € 4, so that the
semigroup is strongly positive. O

COROLLARY. Let 8, §' be any two semiderivations on A which annihilate C.
Then 6 and &' are strongly commuting generators of contraction semigroups.

PROOF. From the theorem we deduce that § (respectively, §’) are the genera-
tors of the strongly continuous contractive semigroups {cy:t € R} (respectively,
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{aj:t € Ry}). Fix n € N, and consider z € (A,,C). Then, by the theorem, z is
an analytic element for both § and &, i.e.,

ar(z) = D [(t6)"(2))/(n!) (respectively, aj(z) = Z[(t&’)’(:)]/@!)) :
n=0 n=0

Using the formula in (3) for 6"(z), r € N (and a similar formula for (8’)%(z),
s € N), it is trivial to verify that [6" o (6")%](z) = [(6’)° o (6)"](z). But from this
identity it follows immediately that for ¢,t; € R, o¢(a}, (7)) = aof, (a:(z)). By
continuity this equation holds for all z € A, so that &, §’ are strongly commuting
semiderivations. O
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