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ON DERIVATIONS ANNIHILATING
A MAXIMAL ABELIAN SUBALGEBRA

BY

GEOFFREY L. PRICE1

ABSTRACT. Let A be an AF C*-algebra, and let 6 be a closed »-derivation

which annihilates the maximal abelian subalgebra C of diagonal elements of

A. Then we show that 6 generates an approximately inner C*-dynamics on

A, and that 6 is a commutative »-derivation. Any two closed »-derivations

vanishing on C are shown to be strongly commuting. More generally, if 6 is a

semiderivation on A which vanishes on C, we prove that 6 is a generator of a

semigroup of strongly positive contractions of A.

1. Introduction. Let 8 be a densely-defined »-derivation on a C*-algebra A.

One of the central problems in the theory of unbounded derivations is to determine

whether a derivation is a generator, i.e., whether there exists a one-parameter group

of *-automorphisms {ßt: t E R} of A such that for all x E D(8), the domain of 8,

8(x) = limt_o(lA)(/3t.(z) - x), and such that D(8) coincides with the set of all

x for which the limit above exists. Recently a number of articles have appeared

considering this situation for the case where 8 commutes with a group {ag: g EG}

of automorphisms of A, i.e., ag: D(8) —► D(8), all g E G, and ag o 8 = 8 o ag. For

example, Bratteli and J0rgensen have shown in [1] that a closed »-derivation must

be a generator if it commutes with a compact abelian group of automorphisms of A

and annihilates the fixed point algebra Aa of A. Roughly speaking, their strategy

is to decompose the algebra into spectral subspaces which are invariant under G

(and also 8), to show that 8 acts as a generator on each of these subspaces and to

piece these results together to show that 8 is a generator.

In this paper we consider an AF-algebra A, A — \Jn An, a certain maximal

abelian C*-subalgebra C and a closed »-derivation 8 which annihilates C. For n E N,

we construct conditional expectations $„, mapping A onto the C*-algebra (An, C)

generated by C and the finite-dimensional subalgebra An of A. These maps are

shown to respect the action of 8 in the sense that 3>n: D(8) —> D(8) and 8(<bn(x)) =

$n(r5x), all x E D(8). Using these techniques, we show that 8 is a generator, and

that any two derivations satisfying the above conditions are strongly commuting.

Moreover, we exhibit a dense »-subalgebra of analytic elements of A. We also show

that 8 is an approximately inner normal »-derivation which is commutative in the

sense of Sakai [9]. Finally, we show that our techniques may be applied to prove

analogous results in the more general case where 8 is a »-semiderivation of A.

Received by the editors November 19, 1984.
1980 Mathematics Subject Classification. Primary 47B47.
Key words and phrases. Derivation, AF-algebra, maximal abelian subalgebra, approximately in-

ner, generator.

Supported in part by NSF Grant No. MCS-8202290.

©1985 American Mathematical Society

0002-9947/85 $1.00 + $.25 per page

843



844 G. L. PRICE

In a recent paper, [11], A. Kumjian uses somewhat different techniques to study

similar questions on a class of C* -algebras which includes the continuous trace

AF-algebras. He shows that if 8 is a closed »-derivation on a continuous trace

AF-algebra which annihilates the diagonal subalgebra, then 8 must be a generator

[11, Theorem 5.2]. Moreover, a dense subalgebra of analytic elements for 8 is also

exhibited.

We have benefited from numerous comments and suggestions from F. Goodman,

P. E. T. J0rgensen and R. T. Powers. It is a pleasure to thank them for their

interest and help. We also thank G. Elliott for bringing [11] to our attention.

2. Diagonalization of an AF-algebra. In this section we introduce some

notation which shall be needed in the proofs of our main results, and we also recall

some facts and notation from [10] on the diagonalization of an AF-algebra. To

begin, suppose that Ai Ç A2 Ç ■ ■ • is an ascending union of finite-dimensional C*-

algebras, with common identity 1. Let A be the unital AF-algebra formed as the

uniform closure of the union \Jn An- For any subsets Si, S2,... of A, let (|Jn Sn)

denote the smallest C*-subalgebra of A containing each of the Sn- In particular,

A = (\JnAn)- Furthermore, if S is a C*-subalgebra of A, denote by B' the C-

subalgebra of A given by {x E A: xy = yx, all y G S}.

Following [10], we construct a maximal abelian C*-subalgebra (m.a.s.a.) C, the

diagonal subalgebra of A. C is defined inductively as follows: let An = C • 1, and

for each n G N U {0}, choose a m.a.s.a. Dn+i of A'n P An+i. Set Co = C ■ 1 and

define Cn+i = (Cn,Dn+i)- Then Cn is a m.a.s.a. of An. Moreover, if I and J

are index sets such that {pi\i E I}, {qj'-j E J} are the minimal projections of

Cn, Vn+i, respectively, then {piÇj'.i E I,JE J} is the set of minimal projections

of C„+i. A straightforward argument now shows that C = (\Jn Cn) is a m.a.s.a.

of A- More generally, one also obtains that, for fixed n, and for any k G N, the

abelian C*-algebra A'n P Cn+k is a m.a.s.a. of A'n P An+k, and the uniform closure

{{Jk(A'n P Cn+k)) of the union is a m.a.s.a. of the AF-subalgebra A'n of A. We refer

the reader to the exposition in [10] for details.

In [10] a conditional expectation $ from A to its m.a.s.a. C is constructed. By

conditional expectation it is meant that $: A —► C is a positive linear mapping which

satisfies (i) $ o $ = <&, and (ii) <b(xy) — <b(x)y and <&(yx) = y<fr(x) for x E A and

y E C. In particular it follows that $|c is the identity mapping. These properties

determine $ uniquely. We now derive a slight generalization of this notion.

PROPOSITION 2.1. Let A — \JnAn be a unital AF-algebra. Then for any
n G Nu{0} there exists a conditional expectation $n from A onto the C* -subalgebra

of A generated by An o,nd the (diagonal) m.a.s.a. C of A, i.e., $„: A —> (An,C).

Moreover, if y E A'n, then $„(y) G A'n P C.

(REMARK. Observe that $o coincides with the conditional expectation $ de-

scribed above.)

PROOF. Fix positive integers m > n. We begin by defining a conditional ex-

pectation $mn from A onto (An,A'n P Cm,A'm). First recall (see, e.g., [5]) that

for any x G A there exist elements u¿ G An, i>¿ G (A'n P Am) and Wi G A'm,

i — 1,2,... ,r, such that x = YH=i UiViWi. Now let {pj\ j G J}, some index set J,

be the minimal projections of A'n P Cm- Consider the linear map $m,n defined by
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®m,n(x) = T,jeJPjxpj. Then

r r

$m,n(x) =Y^J2P3UiVlWlP3 = HX) Ui(PjViPj H
jeJi=i jeJi=i

r r

= ^2^Ui(pjViPj)wi = ^u¿($m,„(vi))«;¿.

i=lj€J i=l

Observe that for each i, $mj„(u¿) G A'nPAm, and furthermore, $m,„(t>t) commutes

with A'nPCm- But iî^nCm is maximal abelian in A'nPCm [10], so that $m,n(vi) G

(A'n P Cm)- Hence $m>Tl(x) G (An, A'n P Cm, A'm). Moreover, one checks easily that

the latter algebra is fixed by $m,n, so that $m,„ is a conditional expectation onto

\J\n, An P Cm, nm).

It is straightforward to verify that for x E Ar and for q > m > r, $m,n(a:) =

$9>n(x). To see this, note that since

A'nPCq = AnP (Cm, Dm+1, ■ ■ ■ , Dq) = « P Cm, Vm+1, - - ■ , Dq),

there exist minimal projections ei,...,es in (Dm+i, ■ ■ ■, Vq) such that {pjek:j E

J, 1 < k < s} is the set of minimal projections of A'n P Cq. But since ek E A'r, all

k, we have

$q,n(x) = ^2 ^PjekXPjek = ^ ^PjXPjofc

¿e.7

Similarly, one may show that for q > m > n, $m)„ o $q „ = $qin.

We now use the results above to establish that for all y G A, and for all fixed

n, the sequence {$mjn(y):m > n} converges uniformly. For, iî y e A, and £ > 0,

there exists an index r and x E Ar such that ||y — x|| < e/2. Using ||$m,n|| = 1, all

m > n, we have for q > m > r,

\\$q,n(y) - *m,«(î/)||  < ||*9,n(î/ ~ x)ll + ll$q,n(x) - $m,„(x)|| + ||$m,n(j/ " x)|

< ||y - x|| + 0 + ||y - x|| < s.

Hence the sequence {$m,n(y): m > n} has a uniform limit $n(y). From the identity

®m,n °$q,n = $q,n, q > m > n, it is straightforward to show that $m,„ o$n = $„,

and therefore, for all y G >?,

®n(y)E f) (¿?„,<nCm,iim).
m>n

We show (^„,C) = nm>J4iJl!1 n Cm,A'm). First, we have, for all m > n and

q> n,

« n C,) c (íí; n Cm)   Hm>q,

and

« n Cq) = (A'n P Cm, Dm+i,- ■ ■, Dq+i)

ç(A'nPCm,A'm)   iîm<q,
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so that, in either case, we have (A'n P Cq) Ç (An, A'n P Cm, A'm), and therefore,

(An, C) = (An, A'nPC) = I An, \J (A'n P Cq)\    (from [10])
\ q>n I

ç f| (An,A'nPCm,A'm).
m>n

For the reverse inclusion, suppose x E (A'n P Cm,Am), all m > n. Then clearly

x E A'n and x E (A'n P Cm)', all m, hence A'n P [(A'n P C)'\- But A'n P C is maximal

abelian in A'n [10, Proposition 1.1.3], so that x E A'n P C. The equality

f) (An, A'n n Cm, A'm) = (An,A'n PC) = (An, C)
m>n

now follows immediately. Therefore $„ is a conditional expectation from A to

(An,C), as asserted.

Finally, observe that if y G A'n, then for m > n, $m,n(y) — Y^j&jPjyPj a^so ues

in A'n- Since $n(y) = limTO$min(y), the last statement of the proposition must

hold.    D

3. Derivations annihilating C. We now apply the preceding results to show

that any closed »-derivation 8 on A which vanishes on the diagonal m.a.s.a. C must

necessarily be a generator. Our techniques will enable us to construct explicitly

a dense »-subalgebra of analytic elements for D(6) (Proposition 3.2). Moreover, a

direct application of our results shows that the set of closed »-derivations annihi-

lating C forms a family of strongly commuting generators (Corollary to Theorem

3.3).

LEMMA 3.1. Let 8 be a closed *-derivation vanishing on C. For n E N U {0},

let $„ be the conditional expectation onto (An,C) constructed in §2. Then for any

x E D(8), $n(x) is also in D(8) and 8(<&n(x)) = <bn(Ôx).

PROOF. For m> n, recall that $m)„(x) = Y2jejPjxPj> where {pj'.j E J} is the

set of minimal projections of A'n P Cm- Hence if x E D(8), then $m,n(x) G D(8),

and

(1) 8($m,n(x)) = ^8(pjXpj) = ^2pj(8x)pj = $m,n(8x).

jeJ jeJ

By Proposition 2.1, $n(x) and $„(¿x) are the uniform limits of {$m,n(x): m > n}

and {$m,n(8x):m > n}. Combining this result with (1), we conclude from the

closedness of 8 that $„(x) G D(8) and that ¿($n(x)) = $n(¿x).    D

PROPOSITION 3.2. Let 8 be a closed *-derivation vanishing on C- Then D(8)

contains a dense *-subalgebra of analytic elements. In fact, if x E \Jn An, then x is

an analytic element for 8.

PROOF. Fix n E N U {0}. Since An is finite-dimensional, it is isomorphic to a

direct sum Ya~i ^rk oïrkxrk matrix algebras MTk over C. Hence, for 1 < k < pn,

one may choose matrix units ekx- E An (1 < k < pn, 1 < i,j < rk) satisfying the

identities (i) e£-e£q = 8]Pe\q, and (ii) for k ^ I, ^lj^lpq = 0. Furthermore, we may

assume that the matrix units have been chosen so that the diagonal elements e^ lie
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in C. To show that An consists of analytic elements for 8 it clearly suffices to show

that the ejf are analytic.

We begin by showing that each matrix unit ekj lies in D(8). For, if 1 > e > 0,

there exists x G D(8) such that ||x-e£L|| < s. But then e^xe^  G D(8) and we have

\\e^xe^ - 4|| = \\e%(x - ekj)ekj\\ < \\x - e$|| < £•

Hence we may assume, without loss of generality, that x = e^xe^-. Therefore,

x admits a decomposition x — e£ y, where y G A'n (see [5]); whence 3>„(x) =

$n(e^y) = e^$n(y). Let di = $„(y); then di G (^ n C), from Proposition 2.1, so

that
\\ek..d, - ek-\\ = \\ek-(ekd, - ekM\ < \\ekd, -p^-ll

= |{$n(x)-*n(e^)tl<lk-4ll<£.
Since e < 1, the inequality above implies that di is invertible in the commutative

C*-subalgebra ekjC, i.e., there exists d2 E ekjC such that dio¡2 — &¡-  But d2 E

D(8), *„(*) G D(8), so that e% = $„(x)d2 G D(8).

From Lemma 3.1,

6(*n(x)) = 8(^>n(eklxekn)) = 8(ekl^n(x)ekJ) = ek^n(8x)ekr

Hence ¿(i>n(x)) has the form ¿($n(x)) = e^d3, d$ E A'nPC. Then writing d = d3d2

(eA'nPC),
8(ek3) = 8[$n(x)d2] = [¿(*„0))] d2 = e£,d.

Iterating, we have, for any r G N, 8r(ekj) = ekj(dr), so that e*- is easily seen to be

an analytic element of D(8).    D

REMARK. We note that a somewhat similar analysis to the foregoing is carried

out in [8], where 8 is a closed »-derivation on a UHF algebra A of Glimm type

n°°. There it is shown that if 8 vanishes on the natural embedding of 5(00) into A

(S(oo) is the group of finite permutations on countably many symbols) and satisfies

T08 = 0, where t is the unique trace on A, then 8 admits an extension to a generator

on A.

From the proof of the proposition it is clear that (An,C) Q D(8), all n E N,

and that <5: (An, C) —► (An, C). Indeed, for 1 < k < pn, let dh, 1 < j < rk, be the

diagonal elements satisfying 8(ekj) = ekjdk. Consider the (skew-hermitian) element

^« = EEKfci)¿(eU
k=ij=i

Then we have the well-known identity 8\¿n = Ad(ihn)\An, i.e., for x G An, x =

[ihn,x] = x(ihn) — (ihn)x (see [5]). But

fc=lj=l

Pn     rk p„     rk

k=lj=l k=lj=l
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so that hn G C. Extending to (An, C), it is straightforward to show that ¿|(xn,c) =

Ad(z7in)|(¿nic) as well. From this identity it now follows easily that 8\^n,c) ¡s a

generator, with corresponding one-parameter group {a[   :t E R} given by

cit(x) = exp(-ithn)(x)exp(ithn),        x E (An,C).

Applying [4, Theorem 3.2.51] one shows that the closure ¿o of the derivation

8\[ij„(An,C)] is an (approximately inner) derivation on A with corresponding one-

parameter group {at:t E R} satisfying

at(x) = \imexp(-ithn)(x)exp(ithn),        x E A.
n

We show that ¿o coincides with 8. Clearly D(8o) Ç D(8). To verify the re-

verse inclusion let x G D(8). Then x = lim„$n(x) and 8(x) — lim„$„(<5x) =

limn6($n(x)). Since $„(x) G (An,C) Ç D(8o), the result holds. Hence we have

the following.

THEOREM 3.3. Let 8 be a closed ^-derivation vanishing on the diagonal

m.a.s.a. C of A. Then 8 is a generator. In fact there exists a sequence (hn) Ç C

of hermitian operators such that 8 generates the approximately inner dynamics

{at:t E R}, where at(x) = lim„ exp(-¿í/in)(z)exp(¿í/i„), x E A.

REMARK. Since the sequence (hn)neN lies in C, the hermitian operators are

mutually commuting. Hence 8 is a commutative »-derivation in the sense of Sakai

(see [9]).

We recall the following notion.

DEFINITION 3.1. Let 8, 8' be generators on a C*-algebra A. Then 8,8' are said

to be strongly commuting if their corresponding one-parameter groups {at: t E R},

{a't: t E R} satisfy at ° a'tl = a'ti o at, t, ti E R.

COROLLARY. The set of generators which vanish on the diagonal m.a.s.a. C of

A form a family of strongly commuting derivations.

PROOF. Let 8, 8' be two such derivations, and let {at}, {a't} be their cor-

responding one-parameter groups. Then from the preceding theorem there exist

operators hn, h'n E C for n E N such that

c*t\(An,C) = Ad(exp(-ithn)),    a't\/AniC) = Ad(exp(-ith'n)).

Since hn, h'n commute it is straightforward to verify that at(a'ti(x)) = a^a^x))

for x E (An, C) and t, ii G R. The result now follows by continuity.    □

4. Applications to semiderivations. Let A be a C*-algebra. A linear oper-

ator 8: D(8) —> A is said to be a semiderivation (or, alternatively, a dissipation) if

it satisfies the following properties:

(a) D(8) is a uniformly dense »-subalgebra of A,

(b) 8(x)* = 8(x*), all x G D(8), and

(c) 8(x*x) > 6(x*)x + x*(8x) for x E D(8).

A central problem in the theory of semiderivations is to determine when 8 is the

generator of a strongly continuous one-parameter contraction semigroup {ott'.t G

R+ } of positivity-preserving maps. For semiderivations vanishing on C we have the

following analogues to Theorem 3.3 and its corollary. (We thank P. E. T. J0rgensen

for suggesting this extension of our original results.)
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THEOREM 4.1. Let 8 be a closed semiderivation annihilating the m.a.s.a. C

of A ■ Then 8 is the generator of a strongly continuous one-parameter contraction

semigroup {at:t E R+} of symmetric, strongly positive maps, i.e., at(x*) = at(x)*

and at(x*x) > at(x)*at(x) for all x E A, t E R+.

PROOF. We preserve the notation of Proposition 3.2. Since C Ç D(8) and

8\c = 0, we have, by [3, Lemma 1.1],

(2) 8(xy) = (8x)y,    8(yx)=y(8x),        y E C, x E D(8).

Now using (2) we may employ the "averaging" argument of Lemma 3.1 to conclude

that for all n E N U {0} and x G D(8), $„(x) G D(8) and 6[$n(x)] = $„(<5x). This

implies that (An, C) Ç D(8) for all n, and

8:(An,C)^(An,C).

We consider 6\iArttQ. Since 8 is everywhere defined on (An,C) it follows from [6,

Theorem 1] that <S|(^„,c> is both dissipative and bounded. In particular, (An,C)

consists of analytic elements for 8. Now, let x G (An, C). Then x may be decom-

posed as
Pn       rk

X = ¿^   Z^  eijCij' Cij £ C.

k=li,j=l

Following the proof of Proposition 3.2, there exists for each matrix unit e¿j e An

an element dk- G C such that 8(ek.) = ekAkj. Then using (2) repeatedly we have,

for ckj e C and r G N,

(3) 6'(x) = £ £ (44)(d£.)r.
k=nj=i

Define ¿o to be the semiderivation ¿o = <5|d(ó0)> where D(8o) = [jn An- Then ¿o is

a dissipative semiderivation whose domain contains a dense »-subalgebra of analytic

elements. Hence ¿o is closable, and its closure 8q is a generator of a contractive

semigroup {att'-t E R+} [2, Theorem 5]. Now applying an argument identical to

the one in the last paragraph of the proof of Theorem 3.3, we conclude that ¿o

coincides with 8.

We now consider the semigroup {at}. Since 8(x)* = 8(x*) for x G D(8), it

follows immediately that at(x*) — at(x)*, all x E A. We show that the maps at are

strongly positive. For n G N, consider any x G (An, C). Then since 8 is a bounded

dissipative semiderivation on (An, C) with 8(1) — 0, it follows from [7, Corollary

3] that {o¿t\(An¡c)'-t E R+} is strongly continuous and that at(x*)at(x) < o¿t(x*x).

Using the strong continuity on (An, C) for each n E N, it follows immediately that

the semigroup of contractions is strongly continuous on A. Now, using continuity,

it is straightforward to show that at(x*)at(x) < at(x*x), all x G A, so that the

semigroup is strongly positive.    O

COROLLARY. Let 8, 8' be any two semiderivations on A which annihilate C.

Then 8 and 8' are strongly commuting generators of contraction semigroups.

PROOF. From the theorem we deduce that 8 (respectively, <5') are the genera-

tors of the strongly continuous contractive semigroups {at:t E R+} (respectively,
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{ct't:t E R+}). Fix n G N, and consider x G (An,C). Then, by the theorem, x is

an analytic element for both 8 and 8', i.e.,

oo / oo

at(x) = £[(tó)r(a:)]/(n!)       respectively, a't(x) = £[(tô')r(x)]/(n!)

n=0 \ n=0

Using the formula in (3) for 8r(x), r E N (and a similar formula for (8')s(x),

s E N), it is trivial to verify that \8r o (8')3\(x) = [(8')s o (8)r}(x). But from this

identity it follows immediately that for t,ti G R, ott(cx't (x)) = a't (at(x)). By

continuity this equation holds for all x G A, so that 8, 8' are strongly commuting

semiderivations.    D
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