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CONNECTED SIMPLE SYSTEMS AND

THE CONLEY INDEX OF ISOLATED INVARIANT SETS

BY

DIETMAR SALAMON1

Dedicated to the memory of Charles C. Conley

Abstract. The object of this paper is to present new and simplified proofs for most

of the basic results in the index theory for flows. Simple, explicit formulae are

derived for the maps which play a central role in the theory. The presentation is

self-contained.

1. Introduction. Some dynamical processes in physics, chemistry and biology can

be described by differential equations depending on parameters which cannot be

determined with an arbitrary degree of precision. For the study of such systems it is

important to determine those structural properties which remain invariant under

(small) perturbations. Many of these properties can be described in terms of an

index theory which has been developed by Conley [3]. Although the basic ideas have

been developed over many years, complete proofs for some of the central theorems

are only recently available (see e.g. Kurland [6, 7, 8], Conley and Zehnder [4] and

Franzosa [5]).

The object of this paper is to present new and simplified proofs for a number of

the basic results in the index theory for isolated invariant sets in flows. Furthermore,

explicit and simple formulae are derived for those maps which play a central role in

the theory, in particular for the identification map between index spaces (formula

(4.3)), for the connection map in the coexact sequence (formulae (5.9) and (5.6)) and

for the homotopy equivalence in the continuation theorem (formula (6.19)). In

previous papers only the existence of these maps has been proved and the available

proofs are widely spread in the literature and much more complicated. For the

purpose of completeness, this paper gives a self-contained presentation of the basic

results in the index theory for flows.

In two preliminary sections we collect some elementary notions and results from

homotopy theory (§2) and from the general theory of flows on topological spaces

(§3). In the main part of this paper we introduce the fundamental concepts in the

index theory for isolated invariant sets (§4), prove the existence and uniqueness of a
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2 DIETMAR SALAMON

long coexact sequence associated with an attractor-repeller pair (§5) and establish

the basic continuation results for the Conley index (§6).

The starting point for this work was an essential simplification of the proof that

any two index pairs for a given isolated invariant set are homotopically equivalent

after collapsing the exit set (Lemma 4.7). This result allows a very simple proof of

the fact that the Conley index of an isolated invariant set is a connected simple

system (Lemma 4.8 and Theorem 4.10) and leads to further simplifications in the

§§5 and 6.

A unique coexact sequence for an attractor-repeller pair can be obtained in two

steps. The first step is to show that any index pair can be transformed into an

NDR-pair (§5.1) so that general results from homotopy theory can be applied to

obtain the existence of a long coexact sequence of index spaces. The second step is

then to show that all the maps in this sequence induce morphisms of connected

simple systems which are independent of the choice of the index pair (Theorem 5.7).

In §6 we begin with some general results on parametrized local flows X X A and

in particular we make precise what we mean by a continuous family a(A) of isolated

invariant sets in X X A (§6.1). The continuation theorem is then phrased for such a

family a(\) and consists of three parts. The first part is to show that the injection

map of an index space for a(A) in X X A into the corresponding index space for the

global isolated invariant set S = UAeAa(A) in X X A induces a morphism between

connected simple systems which is independent of the choice of the index pair

(Proposition 6.5). The second step is to show that this injection map is locally a

homotopy equivalence and the corresponding morphism of connected simple sys-

tems is therefore an isomorphism (Theorem 6.7). This local result allows a global

continuation of the Conley index in every compact connected component of the

parameter space A by means of a sequence of compact subsets of A to each of which

the local continuation theorem applies. However, different sequences may lead to

different identifications between " far away" index spaces. We show that any two of

these connecting equivalences between index spaces are in fact homotopic if A is

simply connected. This means that the "global Conley index" I(a, X, A) consisting

of the index spaces for a(X) in ZxX together with the above connecting equiva-

lences is a connected simple system provided that A is simply connected (Theorem

6.9). Finally, things are put together to obtain a long coexact sequence for the global

Conley index associated with an attractor-repeller pair in the case that A is simply

connected (Theorem 6.10).

2. Homotopy theory. In this preliminary section we recall some basic concepts and

results from homotopy theory. We will work in the category of pointed topological

spaces and continuous, base point preserving maps. In order to avoid unnecessary

complications, we will assume that all the spaces under consideration are metrizable

and therefore in particular compactly generated. Standard references are Spanier

[12] and Whitehead [13].

For any pair (X, A) of topological spaces with A c X we denote by

X/A = ((X\A)U[A],[A])
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the pointed space which is obtained by collapsing^ to a single point denoted by [A].

A set U c X/A is open if either U is open in X and U n A = 0 or the set

(U n (X\A)) U A is open in X.

For any two pointed (metric) spaces (X, x0) and (Y, y0) the product space X X Y

is understood as a pointed space with base point (x0, y0). Furthermore, we denote

the sum and the smash product of X and Y by

XV Y= XXy0U x0X Yd XX Y,

X A Y = XX Y/X V Y.

For any two maps f: X -* A", g: Y -* Y' between pointed spaces, the sum / V g:

JT V Y -* A" V F' and the smash product f A g: X A Y -» A" A 7' are defined in

an obvious manner. The (unique) constant map between pointed spaces (X, x0) and

(W, vv0) will always be denoted by c: X -» IF, c(x) = w0 for all reJf, and the

identity map by lx: X -» X or simply 1: A' -» X

The suspension 2X of a pointed space (X, x0) is defined by

2X = A' X [0, lJ/A' X 0 U x0 X [0,1] U X X 1.

Hence 2* = A'A 2\ where S1 = [0, l]/{0,1} is the pointed circle. The pointed

«-sphere is given by 2" = 22"_1 = 21 A • • • A 21 (n times). The suspension 2qp of

a map <p: X —> Y between pointed spaces is defined by 2<p = <p A 1: ~2.X -» 2Y.

For any two pointed spaces (A', x0) and (IF, vv0) we denote by [X; W] the set of

homotopy classes of continuous, base point preserving maps from X to W. Then

[X; W] is a pointed set, the distinguished point being the class of the constant map.

We denote by [/] the homotopy class of the continuous, base point preserving map

/: X -* W and by [X] the homotopy type of the pointed space X. If two maps

f0: X -» Wand/,: X -* Ware homotopic we denote this by/0 ~ /,.

For any two pointed spaces (X, x0), (Y, y0) and any continuous, base point

preserving map <p: X -* Y the mapping cone T^ is given by

Tv = X X [0,1] U „ Y/X X 0 U x0 X [0,1],

where the topological space X X [0,1] U Y is obtained from the disjoint union of

X X [0,1] and Y by identifying the pair (x, 1) e X X [0,1] with <p(x) e Y for every

x g X. Note that there is a natural injection of Y into T . The importance of this

concept is based upon the following simple observation.

Remark 2.1. Let <p: X -* Y and g: Y -+ W be continuous, base point preserving

maps between pointed spaces. Then g°<jp~c:A'->IFif and only if the following

lifting problem has a solution:

g
Y      -+      W

n     ,'-Y

T "

Now let (X, jc0), (Y, >>(,), (IF, w0) be pointed spaces and let q>: X -> Y be a

continuous, base point preserving map. Then the induced map

<p*:[Y; W]^[X; W]
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is defined by <p*[g] = [g°<p] for [g] e [Y; IF]. The sequence

(2.1) A^Y^Z

of continous, base point preserving maps between pointed spaces is said to be

coexact if for every pointed space (W, w0) the induced sequence

[X; W]^[Y; W]t [Z; W]

is exact. This means that ker<p* = range \p*, where

kertp* = { [g] e [Y; IF]|g°<j> ~ C: A1 ̂  IF},

ranged* = {[h°>p] e [Y; JF]|[/;] e [Z; IF]}.

Choosing IF = Z and h = lz or, respectively, W = Tv and g = j: Y -* Tv the

canonical injection, we obtain the following useful characterization for the sequence

(2.1) to be coexact.

Proposition 2.2. The sequence (2.1) is coexact if and only if the following two

conditions are satisfied.

(i) xp o (p ~ c: X -* Z, i.e. the lifting problem

Y      ->      Z

n      '

T '
f

has a solution.

(ii) T/iere exists a map h: Z -» T 5«c/i r/?ar h° \p — j: Y -> T , j being the

canonical injection of Y into T .

Now let the pointed space (A', x0) be a closed subspace of (Y, x0), let i:I-»y

denote the canonical injection and 77: Y -> Y/X the canonical projection map, and

consider the sequence

(2.2) A'-W^Y/A'.

Then 77 ° 1 = c: X -» Y/X. Hence it follows from Proposition 2.2 that a sufficient

condition for the sequence (2.2) to be coexact is that the map t: X -» Y is a

cofibration in the sense that the lifting problem

7X0UIX[0,1]      -i      IF

(2-3) n ^^

Yx[0,lp^

has a solution for every topological space W and every continuous map

g: Y X 0 U X X [0,1] -» IF. Equivalently, (A', Y) is an NDR-pair in the following

sense.
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Definition 2.3 (NDR - pair). Let X be a closed subset of the metric space Y. Then

(X,Y) is said to be an NDR-pair if there exist continuous maps r: Y X [0,1] -» Y and

a: Y -» [0,1] such that

l.a(y)= 0»je/V,

2.r(y,0) = yVyd Y,

3. r(x, j) = xVxeI,Va£ [0,1],

4. r(y,l)d XVy € IwrtAafj') < 1.

In fact, if X, Y is an NDR-pair and the continuous maps r: Y X [0,1] -» Y and

a: Y -» [0,1] satisfy the conditions of Definition 2.3, then the map

G: YX[0,1] -> YX 0 U AT X [0,1],

defined by

((r(y,l),o-2a(y)), 0 < a(y) < a/2,

(2.4) G(y,o)=l(r(y,2-2a(y)/o),0),    a/2 < a(y) < a,

\iy,0), a<a(/)<l,

for ^ g Y and a e [0,1], is continuous and satisfies G(y, 0) = (j>, 0) and G(x, a) =

(x, a) for all^ e Y, x e AT, a e [0,1]. Therefore we have the following result.

Proposition 2.4. Let (X, x0) be a closed subspace of the pointed metric space

(Y, x0). Then the following statements are equivalent.

(i) t: X —> Y is a cofibration.

(ii) There exists a continuous map G: Y X [0,1] -> Y X 0 U X X [0,1] such that

G(y, 0) = (y, 0) and G(x, a) = (x, a) for ally e Y, x e X, a e [0,1].

(iii) X, Y is an NDR-pair.

If these conditions are satisfied, then the sequence (2.2) is coexact.

The map G: Y X [0,1] -» Y X 0 U X X [0,1] defined by (2.4) gives rise to a

connection map 8: Y/X —> "2.X which leads to a long coexact sequence. More

precisely, we have the following important result (see e.g. Whitehead [13, Theorem

III.6.22]).

Theorem 2.5. Let (X, x0) be a closed subspace of the pointed metric space (Y, x0),

suppose that X, Y is an NDR-pair and let the maps r: Y X [0,1] -» Y and a:

Y -» [0,1] satisfy the conditions of Definition 2.3. Let the connection map 8: Y/X -» 2 X

be defined by

fory e Y. Then the sequence

(2.6) X-* Y^ Y/X^2X-*2Y-+2Y/X-* ■■■

is coexact.
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Proof. Let px: Y X 0 U X X [0,1] -* 2 A" be the natural projection which col-

lapses Y X 0 U x0 X [0,1] U X X 1 to a single point. Thenpx°G provides a homo-

topy between c: Y ^> 2 AT and 8 ° tr: y^EX Now let the maps

j: 2A- -» Tw = Y X [0,1]/Y XOUx0x[0,l]uXxl,

k:Y/X^T„,       k([y]) = [y,l],

be the natural injections. Theny ° 8 - k: Y/X -* Tn via the homotopy

77: 7/*x[0,l]-»7;

which is defined by

l[r(y,l),l-2a(y)], 0 < a(y) < a/2,

H([y],o) = I [r(y,2 - 2a(y)/a), 1 - a],       a/2 < a(y) < a,

\[y,l -a], a<a(^)<l.

IT S

Hence it follows from Proposition 2.2 that the sequence Y -» Y/X -* 2A^is coexact.

Now let pY. T„ -» 2Y be the natural projection which collapses Y X 1. Then the

map pY° H: Y/X X [0,1] -» 2Y provides a homotopy between c: Y/X -» 2Y and

2t ° 8: Y/A; -» 2Y. Finally let us define the map

rf:2Y- Ts= Y/X X [0,1] Us2Ar/[Ar] x[0,l] U 7/1x0

by

l[[y],2 - 2a] e Y/A" x [0,1],      1/2 < o < 1,

rf(l>,<*])= < [r(>>,l),2a-2a(j0] eM,        0 < aiy) < a < 1/2,

([y/IX0], a^a(y) < l,0<a^ 1/2,

for [_y, a] g 2Y Then the map d ° 2t: 2Ar -» Ts is given by

a   v (\       \\      /tx'2a]' 0<a<l/2,
a o 2t(Lx, a ) = { r

u       J;      \[Y/XX 0],       otherwise

for [x, a] g 2A". This map is homotopic to the canonical injection /: 2X -> Ts via

the homotopy 3>: 2 AT X [0,1] -» Ts which is given by

/[x,(l + r)a],      0<(1 + t)o<1,
9(\x, o\,t) = { r

u       j.   )     \[y/Xx 0], otherwise

for [x, a] g 2A^ and t g [0,1]. Hence it follows from Proposition 2.2 that the

sequence

S 2t

Y/A'^2A'^2Y

is coexact.

Finally, Proposition 2.2 shows that if any sequence of the form (2.1) is coexact,

then so is the sequence

2*->2Y->2Z

of the suspensions.   □



CONNECTED SIMPLE SYSTEMS 7

At the end of this section we introduce the extremely useful concept of a connected

simple system which is due to Conley [3]. A connected simple system is a subcategory

of the category of pointed spaces and homotopy classes of maps between these with

the additional property that for any two objects there is a unique morphism between

these (in each direction). More precisely, we make the following definition.

Definition 2.6 (connected simple system). A connected simple system consists of

a collection 70 of pointed spaces along with a collection Im of homotopy classes of maps

between these such that

(i) hom(A', A') = ([/] g [X; X]\[f] e/m} is nonempty and consists of a single

element for each ordered pair X, X of spaces in 70,

(ii) ifX, X, l£/0 and [/] g hom(Ar, X), [/] g hom(A7, X), then [/"«/] g

hom(Ar, X),

(iii) hom(X, X) = {[lx]} for all X e 70.

Note that each morphism in a connected simple system is necessarily the homo-

topy class of a homotopy equivalence. Morphisms between connected simple sys-

tems are defined as follows.

Definition 2.7. A morphism $: 7 -> 7 between the connected simple systems

I = (I0, Im) and J — (70, Jm) is a collection of homotopy classes of maps between

spaces in 70 and spaces in J0 such that

(i)for every Ie/0 and every Y G 70 the set $(X, Y) = {[<p] G [X; Y]\[<p] G $}

is nonempty and consists of a single element,

(ii) ifX, X g 70 and Y, Y g 70 and if [<j>] g <b(X, Y), [/] G hom(A7, X), [g] G

hom( Y, Y), then [g ° <p » /] e $(X, Y).

Of course, any single map <p: X -» Y, Ie/0, Y g 70, induces a morphism

between the connected simple systems I and 7 via property (ii) in the above

definition. If a morphism $: 7 -» 7 consists of homotopy equivalences, then the

homotopy inverses of these maps induce a morphism O-1: 7 -» 7. Finally we

mention that the suspension functor 2 associates with any connected simple system

I — (70, Im) the connected simple system 27 = (2/0, 2/„.) which is defined by

2/0= {2X|A:g/0},       2/m= {[2/]|[/]e/m}.

3. Flows. In this section we collect some elementary properties of flows. Although

the results are known we indicate at some places the main ideas of the proofs. Basic

references are Birkhoff [2], Bhatia and Szego [1] and Conley [3].

Let T be a Hausdorff topological space and let the continuous map (y, t) -* y ■ t

from T X R into T be a flow, that is y ■ 0 = y and y ■ (t + s) = (y ■ t) • s for every

y g T and all t, s g R.

We point out that the Hausdorff property for the flow T is too strong for some

dynamical systems. In particular the space of curves y: 7 -* X from an open interval

I c R into a metric space X is not Hausdorff in the compact-open topology, even if

one considers only those curves whose graph is closed in R X X. The whole theory

can also be developed in the more general situation that T is not a Hausdorff space,

but this causes some technical difficulties such as the definition of w-limit sets

relative to a subset X c T. In order to avoid these difficulties and to make the main
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ideas more transparent, we restrict ourselves to the case that T is a Hausdorff space.

A set S c T is said to be invariant if S • R = S. The maximal invariant subset of a

set N c r is given by

I(N) = [y g T\y Re N).

If N is closed then so is I(N), since the closure of any invariant set is invariant. The

w-limit sets of a set Y c T are given by

w(Y) = 7(cl(Y-[0,oo)))= fl cl(Y-[r,oo)),
r>0

w*(Y) = /(cl(Y-(-oo,0])) = fl cl(Y-(-oo,-*]).
/>0

Now let S c T be a compact invariant set and let Y c S". Then w(Y) and w*(Y)

are compact invariant subsets of 5 and they are connected if Y is. Furthermore, if U

is a neighborhood of w( Y), then there exists a t > 0 such that Y • [t , oo) c U. A

similar statement holds for w*(Y). A compact invariant set A c 5 is said to be an

attractor in S if there exists a neighborhood U of A in S such that A = u(U). A

compact invariant set A* cz S is said to be a repeller in S if there exists a

neighborhood 17 of A* in 5 such that A* = io*(U). The following lemma gives a very

useful characterization of attractors.

Lemma 3.1. Let S c T be a compact invariant set. Then a compact invariant set

A c S is an attractor in S if and only if there exists a neighborhood U of A in S such

thaty ■ (-oo , 0] <£ Ufor ally g U\A.

Proof. The necessity of the condition is clear since y • (-oo , 0] c U implies

y g u(U). If U is a compact neighborhood of A in S such that y • (-oo , 0] <£ U for

all y e U\A, then there exists a(*>0 such that y ■ [-t*,0] <£ U for all y G Un

cl(5\ U). Now choose a neighborhood V of A such that V • [0, t*] c U. Then

V • [0 , oo) c J/ and therefore a(V) = A.   □

Lemma 3.2. Ler S c T be a compact invariant set and let A be an attractor in S.

Then the following statements hold.

(i) Ify G S and w*(y) n A # 0 , f/zev? y£l

(ii) 7/y G S andu(y) n A i= 0, then u(y) C ^.

(iii) /f* = {yG5|(o(y)nyf= 0} «a repeller in S, called the complementary

repeller of A.

(yw)A = {y G 5|w*(y)n^* =0).

(v) // V is a compact neighborhood of A in S with V n A* = 0, then A = oj(V).

(vi) 7/y G S, then u(y) U w*(y) cz A V A*.

(vii) 7/,4' is an attractor in A, then A' is an attractor in S.

Proof. Let U be an open neighborhood of A in S such that w(C/) = A.

(i) If u*(y) n ^ # 0, then y • (-?„) G [/ for some sequence tn tending to oo and

hence y g u(U) = A.

(ii) If w(y) n A + 0, then y • t g U for some r > 0 and therefore co(y) =

u(y ■ t)cz u(U) = A.
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(iii) Choose t* > 0 such that cl(U ■ [t* , oo)) c U and define

U* =S\cl(U-[t*,oo)).

Then S = U U U*. Furthermore U* ■ (-00 , -?*] c 5\ U and therefore t/* is a

neighborhood of u*(U*) cz S\U cz U*. Hence u*(U*) is a repeller in S.

If y G u*(U*), then w(y) c «*(£/*). This implies <o(y) n^ = 0 and therefore

y g A*. If y G A*, then y • R n C/ = 0 since otherwise w(y) c w(£/) = A. Hence

y • R c U* and therefore y e /({/*) = w*(t/*). We conclude that /I* = u*(£/*) is a

repeller.

(iv) The dual arguments of the preceding ones show that A = u(U) =

(y g S\u*(y)nA* = 0).

(v) Let U* be an open neighborhood of A* in S such that A* = w*(C/*) and

U* n V= 0. Choose f* > 0 such that U* • (-00 , -t*] cz U* cz S\V. Then

V ■ [t* , 00) c S \ U* and therefore w(F) c S \ U*. By (iv), this implies w(F) = ,4.

(vi) Follows from (i)-(iv).

(vh) Let U' be a neighborhood of A' in 5 such that U' cz U and w(t/' n A) = A'.

Let y G U' such that y • (-00 , 0] c {/'. Then y • (-00 , 0] c {/ and therefore

y g w(£/) = .4. Hence y • (-00 , 0] c U' n A and therefore y g u(U' n A) = A'.

By Lemma 3.1, this implies that A' is an attractor in S.    □

Let /lj and ^42 be attractors in a compact, invariant set S czT. Then it follows

from Lemma 3.1 that Ax n A2 is an attractor in 5 and from Lemma 3.2(iii) that

A\* U A\ is its complementary repeller. By duality, Ax U A2 is an attractor in S and

A\ n A\ is its complementary repeller.

We are now going to introduce the concept of a Morse decomposition of an

invariant set 5. This concept serves as a tool to generalize the classical Morse theory

for gradient flows on compact manifolds with finitely many critical points to

arbitrary flows and isolated invariant sets. One of the essential features of the

general approach is the continuation theorem which cannot be derived in the context

of the classical theory. Also, in the classical theory there are no means to define an

index for invariant sets other than critical points such as periodic solutions or

invariant tori.

Definition 3.3 (Morse decomposition). Let S cz T be a compact, invariant set.

Then a finite collection {M(tr)[ir G P) of compact invariant sets in S is said to be a

Morse decomposition of S if there exists an ordering ttx,. ..,irnofP such that for every

y g S\\J„eP M( rr) there exist indices i,j G {!,...,n) such that i < j and

u(y) c M(t7,),       w*(y) c M(vj).

Every ordering of P with this property is said to be admissible. The sets M(tt) are called

Morse sets.

If S is a compact, invariant set in T and (M(77)|t7 g P) a Morse decomposition

of S, then for 77,77* g P we define tt < w* if w ¥= 77* and 77 comes before 77* in every

admissible ordering of P. This defines a partial order on P. Clearly, any total

ordering of P is admissible if and only if it preserves the partial order on P. A subset

I cz P is said to be an interval if

77', 77" e I,    77 g p,    77' < 77 < 77" => 77 g /.



10 DIETMAR salamon

For any interval I we define the set

Mil) = iy G 5|«(y) U co*(y) C  IJ M(ir)\.
*■ we/ '

In the following proposition we collect some basic properties of the partially ordered

set(P, <).

Proposition 3.4. Let S cz T be a compact invariant set and let { M(77)|t7 g P) be a

Morse decomposition of S with the associated partial order " < " on P. Then the

following statements hold.

(i) If I cz P is an interval, then there exists an admissible ordering irx,...,iTn of P

andije [1,... ,n}, i ^j,such that I = {77,,... ,77.}.

(ii) // {77,77*} c P is an interval, then m < m* if and only if there exists a y G S

such that w(y) c M(77) and w*(y) c M(tt*).

(iii) Let tr, it* g P. Then tr < it* if and only if there exist sequences tt0 = 77,

irx,...,TTk = 77* G Pandyx,...,yk G S\U{A7(77)|77 G P) such that

w(y,) c M(itj_x),   o*(yj) c M(ttj),      j=l,...,k.

(iv) Let I c P be an interval. Then M(I) is an attractor in S if and only if

(3.1) 77' G P,   it el,   77' < 77 => tt' g /.

In this case M(P\ I) is the complementary repeller of M(I) in S and I is said to be an

attractor interval and P\I a repeller interval.

(v) If I cz P is an interval, then M(I) is a compact invariant set, {M(77)|77 g 7} is

a Morse decomposition of M(I) and {Af(7r)|7r g P\I) U (M(I)} is a Morse

decomposition of S.

Proof, (i) Let / c P be an interval. Then the sets 7 = {77 g P\3tt' g / with

77 < 77'} and K = P\(I U J) are intervals and can be ordered in the form J, I, K,

preserving the partial order on P. Now choose an ordering of P which preserves the

ordering of the sets 7,1, K and the partial order on P.

(ii) Let (77, 77*} be an interval and suppose that 77 < 77*. Then, by (i), there exists

an admissible ordering on P such that tt* follows immediately on 77. Hence there

exists a y g 5 with w(y) c M(rr) and w*(y) c M(77*), since otherwise one would

get another admissible ordering by interchanging tt and 77*, contradicting ir < tt*.

(iii) Suppose that 77 < 77* and construct a sequence 770 = 77 < 77, < • • • < rrk = tt*

such that there is no 77 g P and noy g {l,...,k} with 7r_1 < m < m,. Then the sets

{"TTj-x, iTj) cz P are intervals and therefore (iii) follows from (ii).

(iv) If I cz P does not satisfy (3.1), then there exist 77 g P\7, 77* g 7 such that

{77,77*} is an interval and tt < tt*. Hence it follows from (ii) that M(I) cannot be an

attractor.

In order to prove the converse implication, let 77* g P satisfy

(3.2) 77* < tt   V77 g P.

Then I = P\ {tt*) is an interval with the property (3.1). Let U* be a neighborhood

of M(t7*) in S with d(U*) n M(tt) = 0 for all 77 g 7 and let y g U* \M(tt*).
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Then it follows from (iii) and (3.2) that w(y) n cl(U*) = 0 and therefore

y • [0, oo) ct U*. Hence the dual result of Lemma 3.1 shows that M(w*) is a

repeller in S. The complementary attractor of M(tt*) is given by M(I) = {y g

S|w*(y) ct M(77*)}. Therefore M(I) is an attractor in S and in particular a compact

invariant set. Now statement (iv) follows by induction with S replaced by M(I).

Statement (v) is a direct consequence of (iv) and (i).   □

The notion of an attractor-interval as well as the proof of the previous proposition

are due to Franzosa [5].

The following concept has turned out to be very useful for the development of a

theory which covers a wide range of applications.

Definition 3.5 (local flow). A locally compact subset X cz T is said to be a local

flow if for every y g X there exists a neighborhood Uofy in T and an e > 0 such that

(Xn U)-[0, e)c X.

Whenever Y c X we denote from now on by cl( Y) its closure relative to X and by

int( Y) its interior relative to X.

Definition 3.6 (isolated invariant set). Let X cz T be a local flow and let

S cz X be a compact invariant set. Then S is said to be an isolated invariant set if there

exists a compact neighborhood N of S in X such that S = I(N). In that case N is said

to be an isolating neighborhood (for S in X).

If Ax and N2 are isolating neighborhoods for the isolated invariant sets Sx and .S2,

respectively, in the local flow X cz T, then Sx n S2 is an isolated invariant set in X

with the isolating neighborhood Nx n N2. Figure 1 shows that there is no corre-

sponding statement for the union of isolated invariant sets.

Lemma 3.7. If N is an isolating neighborhood for the isolated invariant set S in the

metric local flow X cz T, then there exists a neighborhood N of N in X which is still an

isolating neighborhood for S.

Proof. If the statement were false, then there would exist a sequence yk & X\N

such that d(yk ■ t, N) < l/k for all k e N and t e R. A limit point y of y^ would

then satisfy y g cl( X\ N) n 7( N), a contradiction.   □

If S is an isolated invariant set in a local flow X cz T and {M(77)|77 G P) is a

Morse decomposition of S, then the Morse sets M(tt) are also isolated invariant sets

in AT.

The following compactness result has been established in Conley and Zehnder [4,

Lemma 3.1]. For the sake of completeness we present a slightly simplified proof.

(3)
Figure 1
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Lemma 3.8. Let N c X be an isolating neighborhood for the isolated invariant set S

in the metric local flow X cz T, let { M(tt)[tt g P) be a Morse decomposition of S and

let " < " be the associated partial order on P. Then the following statements hold.

(i) 7/y • [0 , oo) c N, then there is a tt g P with co(y) c Af(77). Ify • (-oo , 0] c

N, then there is a tt* g P with <o*(y) c M(tt*).

(ii) If I cz P is an attractor interval, then the sets

M~(I) = {y G /V|y -(-oo,0] c N and tc*(y) cz Mirr) for somen g /},

M + (P\I) = {y G A|y -[0,oo) c Nandu(y) cz M(tt) for some tr G P\I)

are compact.

Proof. Proposition 3.4 allows us to reduce both statements to the case P =

{77,77*}, where {77} is an attractor interval, that is 77* ■£ 77.

In order to prove statement (i), let us assume that y • [0 , 00) c N and w(y) ct

M(tt) and w(y) <t M(tt*). Since w(y) is connected, this implies that w(y) ct M(-rr)

U M(tt*) and hence there exists a y' g w(y) c 5 with y' <£ M(tt) U M(77*). There-

fore w(y') c M(77) and w*(y') c M(77*). Making use of the fact that y' • R c w(y),

we obtain that A7(t7) n co(y) + 0 and M(tt*) n w(y) ¥= 0. Now let us choose an

open neighborhood U of M(tt) in N such that cl(U) n M(tt*) = 0. Then there

exists a sequence tn > 0 tending to infinity such that y • tn G U, y0 = lim,,^^ y • r„

g M(tt) and y • [f„, tn + x] ct U. Hence there exists a sequence t'n cz [tn, tn + l] with

Y " Un' 'nl c CK^0 and y • f,', £ [/. Let y, be any limit point of y • t'n. Then yx g

N\U and y, g w(y) c 5. Furthermore the sequence t'n — tn has to be unbounded

since otherwise y, g y0 • R c M(tt). But this implies that y, • (-00 , 0] c cl(t/) and

therefore w*(y,) c /([/) = M(tt). Since yx £ A7(77) we conclude that w(y,) c

M(77*), contradicting the fact that 77* < -rr. This proves the first assertion in (i). The

second assertion in (i) can be established by analogous arguments.

For statement (ii) it is enough to show that the respective subsets of N are closed

since A is a compact Hausdorff space.

M+(P) is closed: Let y g A\ M+(P). Then by (i), there exists a / > 0 such that

y • t £ N. This implies that y' ■ t G N for all y' in some open neighborhood of y in

N. Hence N\M+(P) is open in N and therefore M+(P) is closed.

M+(t7*) is closed: Let yn g M+(t7*) c M+(P) converge to y g M+(P) and sup-

pose that y £ Af+(77*). Then w(y) c M(7r) and <o(yJ c M(7r*) for all n g N. Now

let U be an open neighborhood of Af(77*) in X such that cl(U) n M(tt) = 0. Since

ox(y) c M(tt), there exists a j > 0 such that y • t £ cl(<L/) and therefore yn ■ t € cl(U)

for every sufficiently large n g N. For each of these n g N there exists a /„ > 0 such

that yn ■ (tn, 00) c U n N and y„ • t„ € U. Let us choose a subsequence such that

y„ • r„ converges to y*. Then y* € U and y* • [0 , 00) c cl(U) n N which implies

that co(y*) c M(tt*). Moreover, the sequence tn has to be unbounded since other-

wise y* g y • R and thus o>(y*) c M(7r). Hence we obtain that y* ■ t = limn^ocy„ •

(tn + t) G N for all t G R and thus y* g 5. Recalling that y* £ <7, we conclude that

w*(y*) <£ M(t7*) and therefore w*(y*) cz M(tt). But this is a contradiction to

77* ft 77.
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The closedness of M~(P) and M~(tt) can be established by analogous arguments.

□

At the end of this section we establish an important consequence of the local flow

property.

Lemma 3.9. Let X cz T be a local flow and suppose that y ■ [0, T] c X. Furthermore,

let W be a neighborhood of y ■ [0, T] in X. Then there exists a neighborhood Uofy in T

such that (UnX)- [0, T] c W.

Proof. Let W0 be a compact neighborhood of y ■ [0, T] in X and define V = W

n W0. Then dV = cl(F) n cKA'X V) is a compact set. Therefore 3F is closed in T

and y • [0, T] n dV = 0. Hence it follows from the continuity of the flow together

with the compactness of [0, T] that there is a neighborhood U of y in T such that

UnXczV,       (UnX)-[0,T]czT\dV.

Now let y' g UnX and suppose that y' • [0, T] ct V. Then

t' = sup{ t > 0|y' • [0, t] cz V} g [0, T]

and y' • t' g cl(F) c X. Since A' is a local flow, there exists an e > 0 such that

y' ■ [f , t' + e) C X. But the definition of t' implies that y' ■ [t', t' + 8) ct V for

any 8 > 0 and therefore y' • t' g W. This contradicts the definition of U. We

conclude that (UnX)- [0, T] c V c W.   □

4. Index theory.

4.1. Existence of index pairs. The concept of an index pair plays a crucial role in

the definition of the Conley index for isolated invariant sets. For the introduction of

this concept we need the notion of positive invariance. Let A be a compact subset of

a local flow X czT. Then a subset K cz N is said to be positively invariant in N if

y g K,    t^0,   y -[0, t] c A => y • t G K.

Definition 4.1 (index pairs). Let X c T be a local flow and let S c X be an

isolated invariant set. Then a pair (A,, A0) of compact sets in X is said to be an index

pair for S in X if N0 c Aj and

(i) Nx \ N0 is a neighborhood of S in X and S = I(cl( Nx \ A0)),

(ii) A0 is positively invariant in Nx, and

(iii) // y G A, and y ■ [0 , oo) ct A,, then there exists a(>0 with y ■ [0, t] C Nx

and y ■ t g A0.

The crucial property (iii) of an index pair (A,, A0) says that every orbit which

leaves Aj in forward time has to go through the exit set A0 before leaving Nx.

For any subset K cz N we define the minimal positively invariant set in A which

contains K by

P(K,N)= [y G A|3/> 0 withy -[-/,0] c A, y •(-?) G £ }.

The whole difficulty for proving the existence of index pairs lies in the fact that

P(K, N) need not be closed, even if K is closed, and that its closure need not be

positively invariant. This is illustrated by Figure 2 in which the (positively invariant)

exit set N~= {y G A|y • [0 , e) ct A for every e > 0} is not closed.
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This difficulty can be overcome by means of the following lemma which is due to

Conley and Zehnder [4, Lemma 3.2]. However, there is a mistake in the proof of this

result in [4]. We present a (hopefully) correct proof using an argument in Conley [3,

p. 47].

Lemma 4.2. Let X cz T be a metric local flow, let N c X be an isolating neighbor-

hood of the isolated invariant set S c X and let {M(7r)|7r cz P) be a Morse decomposi-

tion of S with the associated partial ordering " < " on P. Then the following statements

hold.

(i) IfKczNisa compact set with K n M +(P) = 0, then P(K, N) is compact.

(ii) For every attractor interval I cz P and every open neighborhood U of M~(I) in T

there exists a compact neighborhood N, of M~(I) in A such that N, c U and Nr is

positively invariant in N.

Proof, (i) Let y„ g P(K, N) converge to y and let tn > 0 be chosen such that

yn * [-*«>0] c A and y„ • (-t„) G K. Then the sequence tn has to be bounded since

otherwise any limit point y* of y„ ■ (-tn) satisfies y* g K and y* • [0 , oo) c A,

contradicting K n M+(P)= 0. Hence the sequence t„ has a limit point t > 0 and

we get y • [-t, 0] c A, y • (-t) g K, and therefore y g P(K, A).

(ii) We prove this statement in four steps. Let us first choose any compact

neighborhood W of M(P \ I) in A such that W n M~( I) = 0.

Step 1. If K c A is a compact set such that M'(I) cz P(K, A) c U n(N\ W),

then P(K, N) is compact.

Proof. Let y„ g P(K, A) converge to y and choose r„ > 0 such that y„ • [-r„,0]

c A and y„ • (-*„) g K. Then yn ■ [-t„,0] c P(K, N)czUn(N\W) for all n cz

N. If r„ is an unbounded sequence, then we obtain y • (-oo , 0] c cl(U n (N\ W))

which implies w*(y) c Af(7r) for some 77 g / and therefore y g M~(I) cz P(K, A).

If the sequence tn is bounded and t ^ 0 is a limit point of t„, then we conclude that

y • [-t,0] c A, y • (-t) G AT and therefore y g P(K, A).

Step 2. There exists a t * > 0 such that

y.[-t*,0] ccl(A\IF)=»y G Un(N\W).
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Proof. If this implication would not hold, then there would exist sequences

y„ g A and tn > 0 such that tn tends to infinity, y„ • [-t„,0] cz cl(A\ W) and

y„ G U n(N\ W). Any limit point y of yn would then satisfy y G U n (A\ W)

and y • (-00 , 0] c cl(A\ W). But this would imply co*(y) cz M(I) and therefore

y cz M~(I) cz U n (N\W) which would be a contradiction.

Step 3. Construction of Nr. Let us define the sets

A = {y G M"(/)|y -[0,/*] c A},        fi = {y G AT(/)|y -[0,/*] <£ A }.

Then for every y cz A there exists an open neighborhood U(y) of y in T such that

£/(y) • [0, ?*] c 1/ n (T\ IF). For every y g fi there exists a r(y) > 0 such that

y • [0, t(y)] c U n (T \ W) and y • r(y) £ A which enables us to choose an open

neighborhood U(y) of y in T such that U(y) ■ [0, t(y)]cz U n (T\W) and

U(y)' l(y) n N = 0. Since M~(I) is compact, there exist finitely many yx,...,yk

g M~(I) such that the sets (7(yy),y = 1,. ..,&, cover M~(I). We choose a compact

neighborhood A: of M~(I) in A such that K cz U*=1 [/(y,.) and define A, = P(A:, A).

Step A.N, c (/n (A\ IF).

Proof. Let y g A, and let / > 0 with y • [-t,0] c A and y ■ (-f) G A". Then

y ■ (-r)G [/(y,) for somey" G {1,...,&}. Suppose that y £ U n (T\ W). If y, g ^,

then y • [-t, t* - t] cz U n (T\ W) and therefore t* < t. Hence there exists a

t' G [0, t - t*] such that y ■ [-t , -t') c U n(N\W) and y • (-*') e <7 n

(A\ W). This implies y[-t' - t*, -t'] c cl(A\ IF) and y • (-?') C f/n(A\IF),

contradicting Step 2. If y7 g fi, then y • [-t, t(yj) - t] c U n (T \ W) and

y ■ (?(Y/) - t) & N. From y • [-?,0] c A we obtain /(yy) > / and from y £ U n

(T\ W) we obtain t(y ) < t, a contradiction. We conclude that y g A n t/ n

(T \ IF) = [/ n (A \ W) which proves Step 4.

By definition, the set A, constructed in Step 3 is a neighborhood of M~(I) in A

which is positively invariant in A. Furthermore N, = P(K, N) cz U n (N\W)

(Step 4) and hence A, is compact (Step 1).    □

Now we are in the position to establish the following important existence result

for index pairs (compare Conley and Zehnder [4, Lemma 3.3]).

Theorem 4.3 (existence of index pairs). Let X cz T be a metric local flow, let

A c X be an isolating neighborhood of the isolated invariant set S c X and let U be

any neighborhood of S in T. Then there exists an index pair (A,, A0) for S in X such

that Ny and A0 are positively invariant in A and c\(Nx \ A0) c U.

Proof. By Lemma 3.7, the sets

M+= (y G A|y -[0, oo) C A},        M~= {y G A|y -(-oo,0] c A}

are compact and 5 = M + n M~. Hence there exist open neighborhoods U+ of M+ in

A and UofMinN such that

cl(U+n U~)cz Un int A.

By Lemma 4.2 there exists a compact, positively invariant set N[ in A such that

A( c U~ and N[ is a neighborhood of A7~ in A. Now define

N0 = PiN\U+,N),        NX = N[UN0.
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Then A0 and A, are positively invariant in A and A, \ A0 c U+n U~ and hence

cl(A,\A0)c U. Furthermore A0 is compact (Lemma 4.2(f)) and N0 n S = 0.

Therefore A,\A0 is a neighborhood of S. Clearly S = I(cl(Nx \ A0)), since S c

cl( A, \ A0) c A. It remains to show that A0 is the exit set of A,.

For this purpose let y G A, such that y • [0 , oo) <2 At and suppose that y <£ A0.

Define f* = sup{r > 0|y • [0, t] c NX\N0). Then

y ■ t* g cKAjXAq) c cl((7+n U~) cz int A.

Since A' is a local flow there exists an e > 0 such that y • [t*, t* + e] c int A. Since

y • t* G At we conclude that y • [/*, /* + e] c Ax and y • [t*, t* + e] n A0 # 0.    □

The next result shows the existence of a filtration of index pairs associated with a

Morse decomposition of S (compare Conley and Zehnder [4, Theorem 3.1]).

Corollary 4.4. Let X cz T be a metric local flow, let S cz X be an isolated invariant

set and let { M(tt), tt cz P) be a Morse decomposition of S with an admissible ordering

77j,... ,77„ of P. Furthermore let (Nn, A0) be an index pair for S in X. Then there exists

a filtration A0 c Nx cz ■ • • cz Nn_y cz Nn of compact sets such that (Nk, Nj_x) is an

index pair for

Mkj = iy cz S\o>(y) U u*(y) cz \J M(tt,)\

whenever 1 ^j^k^n.

Proof. Define A = cl(A„\ A0). Then, by Lemma 3.7, for anyy g {1,... ,n) the

sets

M/ = (y G A|y • [0, oo) c A, <o(y) c Mnj),

Mr = (y g A|y -(-oo,0] c A, w*(y) c MjX)

are compact. Now let N'n = N n Nn and define Nj c A recursively such that Nj is a

compact neighborhood of M~ in A which is positively invariant in Nj+, and satisfies

AJ n M/+1 = 0 (Lemma 4.2), j = n - !,...,!. Then the sets A; = NJ U A0 satisfy

the requirements of the corollary.    □

Remark 4.5. A very nice refinement of the previous result has recently been

established by Franzosa [5]. Let A c X be an isolating neighborhood of the isolated

invariant set S in the metric local flow X czT and let {Af(77)|77 g P) be a Morse

decomposition of S with the associated partial order " < " on P. Let^denote the set

of attractor intervals in P. Then Franzosa has shown in [5] that there exists a family

(A(I)\I czj^} of compact, positively invariant sets in A such that

(i) (A(7), A(/)) is an index pair for M(J\I) for all /,7g/ with 7 c 7, and

(ii) A(7 n 7) = A(7) n A(7), A(7 U 7) = A(7) U A(7) for all I, J czjf.

The proof is not easy. The essential difficulty is the requirement that both the

intersection and the union property have to be satisfied simultaneously.

4.2. Equivalence of index pairs. The most important property of index pairs is that

the homotopy type of the pointed space Nx/N0 is independent of the choice of the

index pair and therefore depends only on the behavior of the flow near the isolated
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invariant set S (Conley and Zehnder [4] and Kurland [6]). We present a highly

simplified proof of this fact. More precisely, we will show that for any isolated

invariant set S in a local flow X the collection

{Ny/NQ\iNy, A0) is an index pair for 5 in X}

along with a certain collection of homotopy classes of flow induced maps is a

connected simple system in the sense of Definition 2.6. The proof consists of the

following three lemmas.

Lemma 4.6. Let A be an isolating neighborhood for the isolated invariant set S in the

metric local flow X cz T and let U be a neighborhood of S in X. Then there exists a

t > 0 such that y • [-/, t] c A => y G U.

Proof. If there would exist sequences yk cz- X\U and tk > 0 such that tk tends to

infinity and yk ■ [-tk, tk] c A for all k cz IS, then any limit point y of y^ would

satisfy y G cKA'X U) and y • R c A. This would imply y cz S n cKA'X U), a

contradiction.    D

The next lemma defines a flow induced map from Nx/N0 into A,/A0 for any two

index pairs (A,, A0), (A,, A0) of S in X.

Lemma 4.7. Let (A,, A0) and (A,, A0) be index pairs for the isolated invariant set S

and choose T > 0 such that the following implications hold for t > T:

(4.1) y[-t,t]czN1\N0=>yczNy\N0,

(4.2) Y-Kr]cAAA0=»yGA1\A'o-

Then the map f: A,/A0 X [T , oo) -» Nx/N0 defined by

(4.3)

fix   l   0=/'([Y])-(lY'3r1'     ,/Y'IO'2/lcJVl\JV»''ir'[''3'lC^\^'
( [A0], otherwise,

for y G Aj and t > T, is continuous.

Proof. 1st case, y ■ [t,3t] ct cl(Nx\N0). In this case y ■ t* € cl(Nx\N0) for

some t* with t < t* < 3t. Hence there exists a neighborhood U of y • t* in T such

that U n cl(Aj \ A0) = 0. By the continuity of the flow, this implies the existence

of a neighborhood W of (y, t) in T X [T , oo) such that, whenever (y',t') cz W,

then y' • t* e U and t' < t* < 3t'. We conclude that y' • [t',3t'] ct NX\N0 and

hence f([y'], t') = [A0] for every (y', /') g IF with y' g Aj.

Note that the case y • [0,2t] ct cl(Nx \ A0) can be treated in a strictly analogous

manner. Hence we can assume from now on that

(4.4) y[0,2t]czC\{Nx\N0),       y ■ [t,3t] c cl( A, \ A0).

2nd case, y ■ [t, 3t]n N0= 0. In this case it follows from (4.4) that y • [t, 3t] c

Aj \ A0. By (4.2), this implies y ■ 2t cz NX\N0 and hence y • [0,2?] c NX\N0.

Therefore/([y], t) = y • 3? G AJ \ A0.
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Now let U be a neighborhood of y • 3? in T. Then, by the continuity of the flow,

there exists a neighborhood W of (y, t) in T X [T , oo) such that, whenever

(y\ t') G W, then

y'-[0,2/'] n A0= 0,    y'■[t',3t']nNQ= 0,       y' ■ 3t' G U.

If y' G Aj, then we obtain y' • [0,2/'] c Aj \ A0 which, by (4.1), implies y' ■ t' cz

Aj \ A() and hence y' • [/', 3?'] c A, \ A0. Therefore f([y'], t') = [y' • 3/'] = y' ■ 3t'

G U for every (y', ?') G IF with y' G Aj.

3rd case, y ■ [t,3t] n A0 =£ 0. In this case it follows from (4.4) that y • 3/ G A0.

Now let [U] be any neighborhood of f([y], t) = [ A0] in Ny/N0 and define

l/=([l/]nAj\A0)u(r\Aj)uA0.

Then U is a neighborhood of A0 in T and

[{/] = ((7nAj\A0)u[A0].

By the continuity of the flow, there exists a neighborhood IF of (y, t) in T X [T , oo)

such that, whenever (y', t') cz W, then y' ■ 3t' G U. This implies that

/([y'L '') ^{W- 3?'], [No]} c (t/n Aj\A0) U [A0] = [U]

for every (y', /') G IF with y' G Aj.    D

Lemma 4.8. Let (Nx, A0), (Aj, A0), (Nx, A0) 6<? /Wex y7a/« for S. Choose T > 0

shc/i (Ziar (4.1) arcd (4.2) are satisfied for t > T and suppose that the implications

(4.5) y[-t,t]czNy\N()=>yczNy\N0,

(4.6) y •[-/,?] GAjXAo-yGAjXAo

hold for t > f. Finally, let f:_Nx/N0 X [T , oo) -> Aj/A0 fte ^e/(«e<7 /jy (4.3) W

/: Aj/Aq X [T , oo) -» Aj \ A0 analogously. Then the following equation holds for

t > max{T, T}:

//r/r   n    ,    .       f[Y-6/],       Y-tO^rlcAjXAo.y^.erlcAjXAo,
/(/([y],0.0=     r = i

I I A0 I, otherwise, y G Aj.

Proof. We have to show that

y[0,2r]cAj\A0,   y[t,5t] cz Ny\N0,   y[4t,6t] cz NX\N0

is equivalent to

y[0,4r]c Aj\A0,    y[2r,6/]c Aj\A0.

But this follows immediately from (4.1), (4.2) and (4.5), (4.6).    □

Now we are in the position to define the index of an isolated invariant set.

Definition 4.9 (index). Let X cz T be a metric local flow and let S be an isolated

invariant set in X. Then the homotopy type h(S) = [Aj/A0] of the pointed space

Ny/N0, (Aj, A0) being an index pair for S in X, is said to be the homotopy index of S

in X.
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The Conley index of S in X is the pair I(S) = I(S, X) = (I0, Im), where

IQ = {Aj/A0|( Aj, A0) is an index pair for S in X),

Im ={[/'] WN0, Ny/NQ g I0 andf: Nx/N0 - Nx/N0

is the map defined in Lemma 4.7}.

Theorem 4.10. Let X cz T be a metric local flow and let S be an isolated invariant

set in X. Then h(S) is independent of the choice of the index pair and I(S, X) is a

connected simple system.

Proof. The existence of a homotopy class of maps in /„, between any two spaces

N\/N0, N\/N0 m A) follows from Lemma 4.7. Lemma 4.8 shows that the composi-

tion of any two morphisms in Im is still in Im. Finally, it follows from Lemma 4.7

with Aj = Aj, A0 = A0, T = 0 that [lNl/No] e lm for every Aj/A0 G IQ. This shows

that I(S, X) is a connected simple system. Therefore the morphisms in Im are

homotopy equivalences and hence h(S) in independent of the choice of the index

pair.    □

Note that the previous theorem summarizes the paper [6] of Kurland and one of

the main results in Conley and Zehnder [4, Theorem 3.2].

The Conley index is a very powerful and elegant tool for studying the structure of

isolated invariant sets. A first conclusion is formulated in the corollary below.

Corollary 4.11. Let X czT be a metric local flow and let S cz X be an isolated

invariant set such that h(S) # 0 (the homotopy class of the one point pointed space).

Then S * 0.

Proof. If (Nx, A0) is an index pair for S = 0, then for every yeJV, there exists

a t > 0 such that y • [0, t] <t cl( Aj \ A0). Since Ajis compact, this implies that there

exists a T > 0 with y [0, T] n A0 ± 0 for all y G Nx. Hence the map/': Aj/A0 ->

Aj/A0 given by

/'([yl)=/[Y"']'     ^-[M^A^o,
\ [-WoL       otherwise,

for y g Aj and t cz [0, T], defines a homotopy between the zero map fT and the

identity/0 (Lemma 4.7). This shows that h(S) = 0.    □

5. A coexact sequence for attractor-repeller pairs. The purpose of this section is to

establish a coexact sequence for the Conley index of an attractor-repeller pair along

the lines of Theorem 2.5. The first step in this direction is to show that any given

index pair can be modified in such a way that it becomes an NDR-pair (§5.1).

Secondly, we have to show that all the maps between index pairs which are involved

in the coexact sequence induce morphisms between the corresponding connected

simple systems which are independent of the choice of the particular filtration of

index pairs (§5.2).
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Figure 3

5.1. Regularization of index pairs. We will show that an index pair is an NDR-pair

if it is regular in the following sense.

Definition 5.1 (regular index pair). An index pair (Nx, A0) for an isolated

invariant set S in a local flow X cz T is said to be regular if the function t: Ny —> [0, oo]

defined by

(5l) t(   )== fsup{r>0|y[0,r]cAj\A0},      yGAj\A0,

'     \0, yGA0,

is continuous.

Figure 3 illustrates an index pair which is not regular.

The next lemma gives a sufficient condition for an index pair to be regular. We

were not able to prove that this condition is also necessary and leave this as a

conjecture.

Lemma 5.2. Let (Nx, A0) be an index pair for the isolated invariant set S in the local

flow X cz T and suppose that

(5.2) y[0, e] <2 cl(Aj\A0)    VyGA0,Ve>0.

Then the indexpair(Nx, A0) is regular.

Proof. Let t: Aj -» [0, oo] be defined by (5.1) and let y g Aj be given.

First assume that 0 < r(y) < oo and choose T g (0, t(y)). Then y • [0, T] c

Aj \ A0 and thus there exists a neighborhood U of y in T such that U ■ [0, T] n N0

= 0. Hence y' • [0, T] cz Nx \ A0 for all y' g U n Aj and therefore r(y') > T for

all y' cz U n Aj.

Secondly, suppose that 0 < r(y) < oo and choose T g (r(y), oo). Then it follows

from (5.2) that y t <£ cl(Nx\N0) for some t cz [T(y), T]. This implies that there

exists a neighborhood U of y in T with U ■ t n cl(Nx\N0) = 0. We conclude that

T(y') < t < T for all y' G U n Nx. This proves the continuity of t.    □

In order to transform a given index pair into a regular one we prove the existence

of a Lyapunov function (compare Conley [3, p. 33]).

Lemma 5.3. Let (Nx, A0) be an index pair for the isolated invariant set S in the

metric local flow XczT. Then there exists a continuous (Lyapunov) function

g: Aj -> [0,1] such that
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(5.3) g(y) = 1 «y[0,oo)c Aj    and   «(y) c S,

(5.4) g(Y) = 0~yGAo,

(5.5) t>0,    0<g(y)<l,    y[0,t]czNy^g(yt)<g(y).

Proof. Following the lines of Conley [3, p. 33] we construct the Lyapunov

function g: Aj -» [0,1] in three steps.

Step 1. The function /: Ax -» [0,1] defined by

djy, A0)

lM = diy,N0) + diy,S)>       ***'

is continuous and satisfies A0 = l~x(0) and S = /_1(1).

Step 2. The function k: Nx -> [0,1] defined by

kiy) = sup(/(y t)[t > 0,y [0, t] c Aj}

is continuous and satisfies

£(y) = 1 **y[0,oo)c Aj,co(y)c5,

/c(y) = 0«yG A0,

y[0,/]cAT1=»A:(y t)^k(y).

Proof. The only nontrivial property of k is the continuity.

Let y g Aj be given, assume first that 0 < k(y) < 1 and choose e G (0, k(y)).

Then there exists a t > 0 such that y • [0, t] c Nx and /(y-r)>A:(y)-e. Then, of

course, y ■ [0, t]cz NX\N0 and hence there exists a neighborhood U of y in T such

that U ■ [0, t] n A0 = 0 and /(y' ■ ?) > k(y) - e for all y'G(/n Aj. This implies

k(y') > k(y) - e for all y' g U n Aj.

Secondly, suppose that 0</c(y)<l and choose e g (0,1 — k(y)). Furthermore,

assume that there is a sequence y„ G Aj such that y = lim„^00y„ and A:(y„)>A:(y)

+ e for all n g N. Then there is a sequence t„ > 0 such that y„ • [0, tn] cz NX\N0

and /(y„ • r„) > fc(y) + e. The sequence tn has to be bounded since otherwise

y • [0 , oo) c Aj\A0, contradicting A:(y) < 1. Hence the sequence /„ has a limit

point t and we obtain y • [0, t] c cl(Aj \ A0) and /(y • /) > &(y) + e, again a

contradiction. We conclude that there exists a neighborhood U of y in T such that

fc(y') < k(y) + e for all y g U n Aj. This proves the continuity of £.

5re/7 3. The function g: Aj -» [0,1] defined by

giy)= f'(y)e-tkiy £) d$,        /(y) = sup{r>0|y[0,;]cAi},
•'o

satisfies the requirements of the lemma.

Proof. The conditions (5.3) and (5.4) are obviously satisfied. In order to establish

(5.5), let y g Aj satisfy 0 < g(y) < 1 and suppose that

0 < t *it* = sup{£> 0|y -[0, £] c Aj\A0} < oo.

Then

g(y • t) = r~'e-*k(y  (t + 0) <*t < T" e"^(y • f) di

< re-ikiyi)di = giy).
Jo
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Now we prove the continuity of g at y g Aj. If y g A() this follows from the fact

that g(y') < A:(y') for all y' g Aj. If y • [0 , oo) c JV, \ A0, then the continuity is a

consequence of the inequality

rT r°°

|g(Y')-g(Y)l< /  \k(y'-£)-k{y£)\di + 2\   e-Ul

for T large and y' • [0, T] cz Nx \ A0. If y g Aj \ A0 and y [0 , oo) n jV0 # 0, then

for every e > 0 there exists a T > 0 such that y ■ [0, T] cz Nx \ A0 and k(y ■ T) < e.

Hence the following inequality holds for all y' g Aj with y' ■ [0,T] cz NX\N0 and

k(y' ■ T)< 2e:

Is(y') - g(y)\ < fT\k(y' ■ I) - k{y ■ |)K + 3e.

Thus the continuity of g follows from that of k. This completes the proof of Lemma

5.3.    □

Remark 5.4. Let (Aj, A0) be an index pair for the isolated invariant set S in the

metric local flow X cz T and let g: Aj -» [0,1] be the Lyapunov function of Lemma

5.3. Then we can replace A0 by Af = (ye Aj|g(y) «s e} and it follows from Lemma

5.2 that (Aj, AJ is a regular index pair for 5 in X in the sense of Definition 5.1.

5.2. A coexact sequence. Let S be an isolated invariant set in the metric local flow

A"cr, let A be an attractor in S" and let A* be the complementary repeller. Then it

follows from Corollary 4.4 that there exists a filtration N0 cz Nx cz N2 of compact

sets in X such that (A2, A0) is an index pair for S, (Nx, A0) is an index pair for A

and (A2, Aj) is an index pair for A*. By Remark 5.4, we can assume without loss of

generality that the index pair (A2, Aj) is regular. Hence the function t: A2 -» [0 , oo)

defined by

/sup{r>0|y[0,/]cA2\Aj},       YgA2\Aj,

(5-6) T(Y)=\0, yGAj,

for y g A2, is continuous and the pair A2/A0, Nx/N0 of pointed spaces with the

natural inclusion i: Nx/N0 -» A2/A0 is an NDR-pair. In fact, the functions

r: A2/A0 X [0,1] -* A2A0 and a: A2/A0 -> [0,1] defined by

,,,x n   i      x      j[yor(y)],        0<t(y)<c,
(5-7) '■([y].«')=     r l ^    i   \ ^

\ [y • oc], c < r(y) < oo,

(*z\ (\   W      jT(y^c'       0<r(y)<c,
(5-8) a([y\) =    j ^   i   \ ^

\1, c < t(y) < oo,

for y G A2 and a g [0,1], satisfy the requirements of Definition 2.3 (the constant

c > 0 is merely a scaling factor). With these functions the connection map

8: A2/Aj -» 2Aj/A0 defined by equation (2.5) takes the form

,SQv .«   n     /[yr(y),l-r(y)],      0 < r(y) < 1,

(5-9) 5(M)=([A0XO], Kr(y)<oo,

for y g A2 (we have chosen c = 2). Hence Theorem 2.5 yields the following result.
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Corollary 5.5. Let A, A* be an attractor-repeller pair for the isolated invariant set

S in the metric local flow X cz T. Furthermore, let N0 cz Nx cz N2 be a filtration of

compact sets in X such that (N2, A0) and (Nx, A0) are index pairs for S and A,

respectively, and(N2, Nx) is a regular index pair for A*. Finally, let i: Nx/N0 -» A2/A0

and tt: A2/A0 -» N2/Nx be the natural maps and let 8: A2/Aj -» 2Aj/A0 be defined

by (5.9) and (5.6). Then the following sequence is coexact:

(5.10) Aj/A0 A A2/A0 ̂  A2/Aj I 2 Aj/A0 5 2 A2/A0 ̂  • • • .

Remark 5.6. Given an index pair (Nx, A0) for the isolated invariant set S in a

local flow X cz T, the pointed space 2Aj/A0 can be identified with the space Nx/N0,

where

Aj    =    Aj    X[-l,l], Aq   =   AQ    X[-l,l]    U   Aj    X{-1,1).

These two spaces define an index pair for the isolated invariant set S = S X 0 in the

local flow A>=A'xRcf = rxR, where the flow on f is defined by (y, £) • t =

(y ■ t, £<?') for y g T and £, t g R.

Note that each of the maps in the sequence (5.10) induces a morphism between

the corresponding connected simple systems. We denote these morphisms still by

i: 1(A) -> I(S), tt: I(S) -> I (A*) and 8: I(A*) -> 11(A), respectively. Hence we get

the following coexact sequence of connected simple systems:

(5.11) 1(A) -i I(S) ^ I (A*) ^ 11(A) 5 2/(5) ^ • • • .

The whole point in this section is that this sequence is independent of the choice of

the particular index filtration. More precisely, we prove the following theorem

(compare Kurland [7]).

Theorem 5.7. Let A, A* be an attractor-repeller for the isolated invariant set S in the

metric local flow X cz V. Furthermore, let A0 c Aj c A2 be a filtration of compact sets

in X such that (N2, A0) and (Nx, A0) are index pairs for S and A, respectively, and

(N2, Aj) is a regular index pair for A*. Then

(i) the injection t: Nx/N0 —> A2/A0 induces a morphism between I(A, X) and

I(S, X) which is independent of the choice of the filtration,

(ii) the projection tt: N2/N0 -* A2/Aj induces a morphism between I(S, X) and

I (A*, X) which is independent of the choice of the filtration, and

(iii) the connection map 8: N2/Nx -* 1NX/N0 defined by (5.9) and (5.6) induces a

morphism between I(A*, X) and 1I(A, X) which is independent of the choice of the

filtration.

Proof. Let N0 cz Nx cz N2 be another filtration of compact sets in X such that

(A2, A0) and (Nx, N0) are index pairs for S and A, respectively, and (A2, A,) is a

regular index pair for A*. Furthermore, let i: Nx/N0 -» A2/A0, 77: A2/A0 -» N2/Nx,

8: A2/Aj -» 2Aj/A0 denote the associated maps and let f: A2 -» [0, 00] denote the

"entrance-time" for the subset Aj, defined analogously to (5.6).
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In order to prove statement (i), choose T > 0 such that the implications

(5.12) y[-T,T] cAj\A0-yGAj\A0,

(5.13) y[-T,T]czNx\N0~y<=Nx\N0,

(5.14) y[-T,T]czN2\NQ~yczN2\N0,

(5.15) y[-T, T]jzN2\N0=>y<zN2\N0

are satisfied and let/': Nx/N0 -» Nx/N0 and g': A2/A0 -» A2/A0 be defined by

^i^    ,<"   n     /[Y-3r],      y [0,2*] c Aj \ A0, y [*,3r] c A, \ A0,
(5.16) / (iy]) =   r-i

( [A0J, otherwise, y cz Nx,

(517)    g'([Y])=/[Y'3']'      Y-[0,2/]cA2\A0,y[/,3?]cA2\A0,

\ [^o]' otherwise, y g A2,

both for r > T. Then we have to show that g'°i°/': Nx/N0 -* A2/A0 is homotopic

to the canonical injection i: NX/NQ -» A2/A0. In fact, it follows from (5.12)—(5.15)

that for every y g Aj and every t > T

y[0,2f]c Aj\A0,       y[t,3t]czNx\N0,

y[3t,5t]czN2\N0,       y [4t,6t] c A2\A0

is equivalent to y • [0,6r] c A2 \ A0. Hence

<o-of'(\   ])=/[v'6']'     T-[0,6?]cA2\A0,

g°i°J ([Ji)      \[Nq]^ otherwise, y G Aj.

It follows from Lemma 4.7 that this map is homotopic to i: Nx/N0 -» A2/A0. Thus

we have established (i).

In order to prove (ii), suppose that the implications (5.14), (5.15) and

(5.18) y[-r,T]cA2\Ai=»YGA2\Aj,

(5.19) y[-T, T]c A2\Aj-yGA2\Aj

are satisfied, let g': A2/A0 -> A2/A0 be defined by (5.17) and h': N2/Nx -> N2/Nx

by

,*^    ,ut   n      /[y-3'L       y[0,2r]cA2\Aj,y[?,3/]cA2\Aj,
(5.20) h ([y]) =    r _,

( [ Aj], otherwise, y G A2,

both for ? > T. Then we have to show that h' °rr ° g': A2/A0 -» A2/Aj is homotopic

to the canonical projection tt: A2/A0 -» N2/Nx. In fact, it follows from (5.14), (5.15)

and (5.18), (5.19) that for every y g A2 and every t > T

y[0,2f]c A2\A0,       y[t,3t]czN2\N0,

y[3t,5t]czN2\Nx,       y[4t,6t] c N2\NX

is equivalent to y • [0,6f ] c A2 \ Aj. Hence

,n  n,     /[Y-6r],      y[0,6r]cA2\Aj,
h °77 °g (lyj) = < r _ j _

( [ Aj], otherwise, y G A2.
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It follows again from Lemma 4.7 that this map is homotopic to 77: A2/A0 -» N2/Nv

This proves statement (ii).

In order to prove statement (iii), choose T > 0 such that the implications

(5.12)-(5.15) as well as (5.18), (5.19) are satisfied, let h': N2/Nx -> N2/Nx be defined

by (5.20) and/': Aj/A0 - Aj/A0 by

(5 21)   /'([y])= /[y'3/]      y[^2t]czNx\N0,y[t,3t]czNx\N0,

\ [ J%) ] > otherwise, y G Aj,

both for / > T. Then we have to show that 2/'°S°/V: A2/Aj -» 2Aj/A0 is

homotopic to 8. First of all, it follows from Lemma 4.7 that the map 8 = 8° is

homotopic to the map 8': N2/Nx -* 1NX/N0 which is defined by

([y -(6/ + r(y ■ 3/)), 1 - r(y 3/)],    if y [0,3/] c N2\NX,

8'i[y]) = I 0 <r(y 3/) < landy [0,6/ + r(y 3/)] c A2\A0,

|[JV0XO],    otherwise, y g N2.

A homotopy between 1f'°8°h' and 8' is given by the family of maps

F": A2/Aj -> 2Aj/A0, 0 < a < 1, defined by

([y -(6/ + r"(y)), 1 - r°(y)],    ify[0,2/] c A2\A,,

F°([y])=l 0<T°(y)<l,andy[0,6/ + T°(y)] c A2\A0,

([ A0 X 0],    otherwise, y g A2,

where

Ta(y) = (1 - o)riy t) + ar(y /) -2/,        y[0,2r] c A2\Aj.

Note that f(y ■ /) makes sense since y • [0,2r] c A2\ Aj implies that y • : G A2 \ Nx.

Of course, F1 = 8'. Furthermore it follows from (5.13)-(5.15) and (5.18) that for all

y g A2 and all / > T

y[0,2/] c A2\Aj,       2/<f(y/) < 2/ +1,

y[0,6/ + f(y3/)] cA2\A0

is equivalent to

y[0,2/]c A2\Aj,       y[/,3/]c A2\Aj,

0<f(y 3/)<l,       y[3/ + f(y 3/),5/ + f(y 3/)] cAJ\A0,

y [4/ + f(y • 3?), 6/ + f(y • 3/)] c Nx\ A0.

This implies that F° = If °8° h'. Hence it remains to show that F" is continuous

on the domain N2/Nx X [0,1]. We prove this for the case t > 2T and / > 1 in seven

steps.

Step 1. If y • [0,2/] c A2\Ajand/> 2T, then|T(y • /) - r(y ■ /)| < T.

Proof. First, y [0 , / + r(y /)) c A2 \ Nx and hence y [T , t - T + T(y /))

c A2 \ Aj, by (5.18). This implies f(y • /) > r(y t) - T > T. Furthermore,

y [T , t + f(y /)) c N2\NX and hence y [2T , / - T + f(y /)) c N2\NX, by

(5.19). This shows that r(y • /) > f(y • /) - T.
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Step 2. If / > 2T, y ■ [0,2t] cz N2\NX and 0 < t"(y) < 1, then

2/-(l - a)T< r(yt)<2t+(l-o)T+l,

2/ - oT < f(y /) < 2/ + oT+ 1.

Proof. Since r(y ■ t) < f(y • /) + T(Step 1), we have

0 < t°(y) < (1 - o)f(y • /) + a(T+ f(y • /)) - 2/

= f(y ■ /) + oT - 2/

and

1 > T°(y) >(1- a)(r(y • /) - T) + ar(y • /) - 2/

= r(y /) -(1 - a)T- 2t.

Since r(y ■ t) > f(y ■ /) — T, we get

1 > t"(y) > (1 - a)f(y ■ t) + a(f(y ■ t) - T) - 2/

= f(y • /) - 2/ - oT

and

0 < T°(y) < (1 - a)(r(y • /) + T) + OT(y • /) - 2/

= r(y /)+(l - o)7"- 2/.

Step 3. If r(y) < 3/ - (1 - a)T, then F°: A2/A, -> 2Aj/A0 is continuous at

([Y],a).

Proof. Choose a neighborhood IF of (y, a) in A2 X [0,1] such that, whenever

(y', a') g W, then r(y') < 3/ - (1 - a')T. Then it follows from Step 2 that either

y' ■ [0,2/] <t N2\Ny or t°'(y') £ (0,1). Hence F"'([y']) = [A0 X 0] for all (y\ a') g

IF.
Step 4. From now on we can assume that r(y) > 3/ — (1 — a)T and hence

(5.22) y[0,2/]c A2\A,.

If (5.22) is satisfied and T°(y) £ (0,1), then the function F is continuous at ([y], a).

Proof. First note that F°([y]) = [A0 X 0]. Secondly, note that the function T°(y)

is continuous on the domain {(y, a) g A2 X [0, l]|y • [0,2/] n Aj = 0}. Hence for

every e > 0, there exists a neighborhood W of (y, a) in A2 X [0,1] such that,

whenever (y\ a') G W, then y' ■ [0,2/] n Nx = 0 and Ta'(y') <£ [e,l - e]. This

proves Step 4.

Step 5. From now on we can assume that (5.22) is satisfied and

(5.23) 0<T°(y)<l.

If moreover y • [0,6/ + T°(y)] ct cl(A2 \ A0), then Fis continuous at ([y], a).

Proof. There is a /* < 6/ + T°(y) such that y • /* ^ cl( A2 \ A0). Hence there is a

neighborhood IF of (y, a) in A2 X [0,1] such that, whenever (y\ a') G IF, then

y' ■ [0,2/] c A2\ Aj, 0 < T°'(y') < 1, /* < 6/ + Ta'(y'), and y' • /* ^ cl(A2\A0).

Hence Fa'([y']) = [ A0 X 0] for all (y', a') g IF.

Step 6. If (5.22) and (5.23) are satisfied and if y • [0,6/ + Ta(y)] c A2 \ A0, then F

is continuous at ([y], a).
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Proof. First note that, by Step 2, r(y) < 3/ + (1 - a)T + 1 < 4/ + 1 and there-

fore y • (6/ + T°(y)) g Aj (recall that / > 1). Now let U be a neighborhood of

y ■ (6/ + t°(y)) in T. Moreover, choose a neighborhood V of y • (6/ + t"(y)) in T

and an e > 0 such that

V[-e, e] cz U,        y -[0,6/ + T°(y) + e] c A2\A0,

[To(y)-£,r"(y) + e]c(0,l).

Then there exists a neighborhood W of (y, a) in A2 X [0,1], such that, whenever

(y', a') g IF, then

y'-[0,2/]cA2\Aj,       y'-[0,6/ + T°(y) + e] c A2\A0,

|t0'(y')-t°(y)|<£,        y'-(6/ + r°(y))G V.

Then we get y' • [0,2/] c A2\ Nx, 0 < t"'(y') < 1, y' • [0,6/ + T°'(y')] c A2\ A0

and y' • (6/ + t°'(y')) g U, |t°'(y') - Tu(y)| < e for all (y', a') g IF and hence -

F°'([y']) = [y'-(6/ + T"'(y')),l-r0'(y')]

g (U n Aj) X [l - T°(y) - e, 1 - r°(y) + e].

This proves Step 6.

Step 1. If (5.22) and (5.23) are satisfied and if y ■ [0,6/ + ra(y)] c cl(A2\A0),

y • (6/ + T°(y)) G A0, then Fis continuous at ([y], a).

Proof. Note that F°([y]) = [A0 X 0] and choose a neighborhood [U] of [A0] in

Aj/A0. Then

C/=([t/]nAj\A0)uA0u(r\A1)

is a neighborhood of A0 in T and satisfies

[t/] = ([/nAj\A0)u[A0].

Now choose a neighborhood V of A0 in T and an e > 0 such that V ■ [-e, e]cz U.

Then there exists a neighborhood W of (y, a) in A2 X [0,1] such that whenever

(y', a') G IF, then

y'-[0,2/]cA2\Aj,       0 < t"'(y') < 1.

|t"(y) - t"'(y')I < e,        y' -(6? + T°(y)) G V.

Hence we obtain y' • [0,2/] c A2\ A1( 0 < t"'(y') < 1, y' - (6/ + T°'(y')) g U and

therefore

^°'([y']) e {[y' -(6/ + r"\y')), 1 - t"'(y')] , [ A0 X 0]}

c (UnNy\N0) X[0,1] U[A0X 0]

= [U]X[0,1]

for all (y', a') cz W. This proves Theorem 5.7.   □

The final result of this section shows an interesting relation between the coexact

sequence (5.11) and the structure of the isolated invariant set S (see Conley [3, p.

62]).
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Theorem 5.8. Let A, A* be an attractor-repeller pair for the isolated invariant set S

in the metric local flow X cz T and suppose that S = A U A*. Then h(S) =

h(A) V h(A*) and the connection map 8 defined by (5.9) and (5.6) is homotopic to the

constant map.

Proof. If S = A U A*, then there exist index pairs (Nx, A0) and (Af, A0*) for A

and A*, respectively, such that Nxn N* = 0. In this case (Aj U Nx*, A0 U A,*) is

an index pair for S and hence

h(S) = [A, U A*/A0 U A*] = [Aj/A0] V[A*/A*] = hiA) V h(A*).

Now let A0 c Aj c A2 be a filtration of compact sets in X such that (A2, A0) and

(Aj, A0) are index pairs for S and A, respectively, and (A2, Aj) is a regular index

pair for A*. Then there exists a T > 0 such that

(5.24)        y[-T,0] ccl(A2\Aj),       y e Nx =» y [0, T] n A0 # 0 .

Otherwise, there would exist sequences y„ g Aj, /(i > 0, such that /„ tends to infinity

and y„ • [-/„,0] c cl(A2\ Aj), yn ■ [0, /„] n A0 = 0. Any limit point y of y„ would

then satisfy y • (-oo , 0] c cl(A2\ Aj), y • [0 , oo) c cl(Aj \ A0) and therefore

w*(y) c A*,u(y) c A,y R c cl(A2\A0). But this would imply y g S\(A U /I*),

contradicting S = A U y4*.

Now let 5: N2/Nx -* 1NX/N0 be given by (5.9) and (5.6) and let us define the

maps 8,: A2/Aj - 1NX/N0,f- NX/NQ -» Nx/N0 by

8(\   ])= /^'T^)'' + : ~t(y)].       /<r(y)</+l,

\[A0XO], otherwise,

t(\   n=/[Y'/]'    ifY-[0,/]cAj\Ao,
\[A0],       otherwise,

for 0 < / < T. Then 80 = 8, f0 is the identity map, and it follows from (5.24) that

1fT ° 8T is the constant map. Hence the continuous family of maps 2/, ° 8,,

0 < / < T, defines a homotopy between 8 = 2/0 ° 6() and c = 2/^ ° 8T.    □

6. Continuation. The aim of this section is to establish the invariance of the Conley

index for isolated invariant sets under (small) perturbations of the flow. For this

purpose we first collect some elementary properties of parametrized flows and, in

particular, make precise what we mean by continuation of isolated invariant sets

(compare Conley [3, Chapter IV.l]).

6.1. Parametrized flows. Throughout this section we shall assume that A is a

compact, locally contractible, connected, metric space and A' is a locally compact

metric space. Furthermore, we assume that T is a flow and X X A c T is a local

flow with the property that if (x, A) • / G X X X, then (x, A) • / e X X A for all

x g X, X g A, / g R. Then, of course X X X c T is a local flow for every A g A.

We will always denote by

77^: X X A -> X,       77A: X X A -» A

the canonical projection maps.
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Lemma 6.1. For a«y compact set N cz X the set A(A) = {A g A|A X A is an

isolating neighborhood in X X X} is open in A.

Proof. Suppose that there is a A g A, a sequence Xk cz A converging to A and a

compact set A c X such that A X A is an isolating neighborhood in A' X A but

N X Xk is not an isolating neighborhood in A' X A^. Then there exists a sequence

xk G A n cl(X\N) such that (xk, Xk)-Rcz A xXk for all k g N. Any limit point

x g A n cl( AT\ A) of xk satisfies (x, A) • R c A X A, contradicting the fact that

A X A is an isolating neighborhood in A' X A.    □

Let us now introduce the set y= {S X A|A g A, S cz X compact, S X A is an

isolated invariant set in A'X A} of isolated invariant sets in X X A. For every

compact set A c X let us define the map

aN:A(N)^y,       oN(X) = I(N X X).

Then we consider on the space y the topology which is generated by the sets

[oN(U)\N c X compact, U c A(A) open). Note that 5^is not necessarily Haus-

dorff as Figure 4 shows.

Lemma 6.2. Let A, A be compact subsets of X and let U c A( A) and U cz A( A) be

open. Then the following statements hold.

(i) A(A, A) = (A g A(A) n A_(A)|/(A X A) = /(A X A)} is open in A.

(ii) aN(U) n aN(U) = aN(U nUn A(A, A)).

(iii) aN: A( A) -> Zfis continuous.

Proof, (i) Let A g A(A) n A(A) such that I(N X X) = I(N x X) and suppose

that there exists a sequence A^ converging to A with Xk cz A(N) n A(N) and

/(A X Xk)cz /(Ax Xk). Letx^ G A' such that (xk, X k) g /(Ax Xk)\I(N X Xk).

Let /£ g R such that (x^, A^) ■ tk £ N X Xk. Lety g Xbe chosen such that (y, X) is

a limit point of (x*, A*) • tk. Then (y, X) ■ R c A x A and hence (^, A) • R c A X A

since /(A X A) = /(A X A). But since (xk, Xk) ■ tk £ A X AA, we have y cz N n

cKA'X A) contradicting A g A(A).

(ii) Follows from the definitions.

(iii) If A c AT is compact and U cz A( A) open, then

°n(°b(U))- UnAiN,N)

is open in A.    □
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The previous lemma shows that the canonical projection map 77A: 5"-> A is a local

homeomorphism. If S X A g yand A X A is an isolating neighborhood for S X A in

X X X, then the map aN: A( A) -» yis an inverse of the restriction of 77A: 5?-> A to

the neighborhood aN(A(N)) of S X A in^.

Remark 6.3. Let a: A ->ybe a continuous map with 77A ° a = 1A and let A c X

be a compact set. Then the set

A(A, a) = a'lioNiAiN))) = {A G A(A)|a(A) = /(A X A)}

= (AGA|AxAisan isolating neighborhood for a( A) in X X X)

is open in A.

Whenever A c X X A and K cz A are compact sets we define

A(A") = An XX K.

If A is an isolating neighborhood for the isolated invariant set S in X X A, then

A( K) is an isolating neighborhood for S( K) iii X X K.

Lemma 6.4. (i) Let the function o: A —* if satisfy tta ° a = 1A. Then a is continuous if

and only if

(6.1) S=   IJ "(a)

is an isolated invariant set in X X A.

(ii) Let a: A —* y and t: A —».S^ be continuous functions with 77A°a = 1A and

77A ° t = 1A. Then the function a n t: A —» £fwhich sends X cz A into a(A) n t(X) g y

is continuous.

(iii) Let a: A —> Sfand a: A —> ype continuous functions such that ttx ° a = 1A a«d

a(A) is aw attractor in a(X). Furthermore, let a*(A) denote the complementary repeller

of a(X) in a(X) and let S c X X A be defined by (6.1). Then a*: A —> y/s continuous

and the sets

(6.2) A =   IJ a(X),        ̂ * =   U «W
XeA XeA

form an attractor-repeller pair in S.

Proof, (i) Let us first assume that S is an isolated invariant set, let A be an

isolating neighborhood for S in X X A and let A0 X A() be an isolating neighborhood

for a(A0) in X X X0 such that A0 X A0 c (X X A)\cl((Af X A)\A). Then there

exists a compact neighborhood K0 of A0 in A such that A0 X K0 cz A and K0 cz

A(A0). Furthermore we can choose K0 small enough such that S(K0) c A0 X K0

since otherwise there would exist a sequence (xk,Xk)czS such that A^, converges to

A0 and xk cz X\N0 which would imply that (x0, A0) g a(A0) n cl(A\A0 X A0)

for any limit point x0 of xk. We conclude that A0 X A is an isolating neighborhood

for a(A) in A' X A whenever A g K0 and hence a(A) = aN (A) for all A g K0. Now

the continuity follows from Lemma 6.2(iii).

Conversely suppose that a: A ^5^is a continuous function with 77A ° a = 1A.

Then there exists an isolating neighborhood A(A) X A for a(A) in A" X A for every

A g A. Furthermore, it follows from Remark 6.3 that the set

A(A(A), o) = {p. G A(A(A))|a(M) = l(N(X) X M)}
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is open in A for every A g A and hence there exists an open neighborhood U(X) of

A in A such that A(A) X p is an isolating neighborhood for a(ju) in X X p whenever

p G cl(U(X)). Since A is compact, there exists a finite subcover U(Xy),...,U(Xn) of

A. Now define the set

A= {(x,p) g XX A|itiG UiXj) => x g A(Ay)}.

Then A is a closed subset of U"=1 A(A7) X A and therefore A is compact. Moreover,

if (x, p) g S, then

U=       f|      A\l/(Ay)
li€cKU(\j))

is a neighborhood of p in A,

w=   n  n(\j)
^gc1((7(A,))

is a neighborhood of x in A' and IF X U cz N. Therefore A is a neighborhood of S in

X X A. Finally, S = /(A) since (x, p) • R c A and p G t/(Ay) imply that (x, p) • R

c N(Xj) X p and thus (x, p) g a(p).

(ii) Choose compact sets Aj c X and A2 c X such that Ny X X0 and A2 X A0 are

isolating neighborhoods for a(A0) and t(A0), respectively, in A' X A0. By Remark

6.3, there exists a compact neighborhood K0 of A0 in A such that K0 c A( Aj, a) n

A(A2, t). Hence Ny n N2 X X is an isolating neighborhood for a(A) n t(A) in

A' X A whenever A g K0. This implies that a n t(A) = a^, nA, (A) for every X cz K0

and thus the continuity follows from Lemma 6.2.

(iii) It follows from (i) that A is a compact subset of S. We show that cl(A*) n A

= 0. For this purpose let A X A be an isolating neighborhood ofa(A)inA"xA

with A X A n a*(X) = 0. Suppose that there exists a sequence (xk, Xk) G a*(Xk)

converging to (x, A) G a(A) with xk g A, Xk cz A(A, a). Then ce(xk, Xk) n a(Xk)

= 0 and hence (x^., A^) • [0 , oo) ct A X Xk. Let tk > 0 be the maximal time with

(xk, Xk) ■ [0, tk] c A X A^. and let (y, X) g a(A) be any limit point of (xk, Xk) ■ tk.

Then y G int A and hence (y, X) <£ a(X). But if the sequence tk is bounded then

(y, A)g(x, A)-Rca(A) and if the sequence is unbounded then (y, X) ■ (-oo , 0]

c A X A and therefore (y, X) cz u(N X X n a(X)) = a(X), a contradiction. We

conclude that cl(A*) n A = 0. Hence there exists a neighborhood U of A in S such

that cl(U) nA*= 0. If (x, A) • (-oo , 0] c U, then (x, A) g a(X) and w*(x, A) n

a*(A) = 0 and therefore (x, A) g a(X) c ^ (Lemma 3.2). By Lemma 3.1, this

implies that A is an attractor in S. It follows again from Lemma 3.2 that its

complementary repeller is given by

A* =   [J a*(A) = ((x, A) g S|<o(x, A) nA = 0).    □
XeA

In some situations it might be useful to consider general maps t: A -» ysuch that

77A o t: A —> A is not necessarily injective. This can be reformulated within the

framework of this section by considering A" X A as a local flow in FxA, where

(x, |) g X X A is identified with the triple (x, 77A ° t(£), OgATxAxAcTxA.
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Figure 5

Introducing the space

yA = (S X A X ||£g A,S X A Gy,A = 77a°t(£)}

endowed with an analogous topology as y, it is then easy to see that the map

ta: A -* yA defined by ta(£) = t(£) X £ for £ g A is continuous.

At the end of this section we point out that some (global) phenomena cannot be

described within the framework of product flows X X A. An example for such a

situation is the flow on a Moebius strip which is illustrated in Figure 5 and involves

a change of orientation in the space X. In such cases it might be useful to consider a

local flow on a (locally trivial) fibration instead of the product space A" x A. This

could be a problem for future investigations.

6.2. Local continuation. In this section we are going to prove a local continuation

theorem for the Conley index of isolated invariant sets. The result has been

formulated in Conley [3] but the proof is only roughly sketched. A complete but

rather complicated proof can be found in Kurland [8]. We present a simplified proof

which is based on the results in §4.2.

Throughout this section we will adopt the notation of §6.1 and assume in addition

that a: A -» y is a continuous map with 77A ° a = 1A and that the isolated invariant

set S in X X A is defined by (6.1). Note that for any index pair (Nx, N0) for S in

X X A and for any compact set K cz A the sets (NX(K), N0(K)) form an index pair

for the isolated invariant set S( K) in X X K.

The local continuation theorem now consists of two parts. The first and easy part

is to show that for any index pair (Aj, A0) for S in X X A the canonical injection

mapy'(A): NX(X)/NQ(X) -* Nx/N0 induces a morphism between the corresponding

connected simple systems which is independent of the choice of the index pair

(Proposition 6.5). The main part is then to show that this morphism is in fact a local

isomorphism (Theorem 6.7). These facts will then be used to obtain a continuation

result for the coexact sequence of §5 which is associated with an attractor-repeller

pair in S (§6.4).

Proposition 6.5. Let (Nx, A0) be an index pair for S in X X A. Then the canonical

injection mapj(X): NX(X)/N0(X) -* Nx/N0 induces a morphism between the connected

simple systems I(a(X), X X X) and I(S, X X A) which is independent of the choice of

the index pair.
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Proof. Let (Nx, N0) be another index pair for S in X X A, choose T > 0 such

that

(x, p) -[-T, T]czNy\N0=> (x, p) g Aj\ A0,

(x, [x)-[-T, T] c Aj \ A0 =» (x, p) G Aj \ A0

and define the maps/(A)': Aj(A)/A0(A) -> Aj(A)/A0(A) and g': Nx/N0 -» Aj/A0

by

/(A)'[x,A]

_ ( [(x, X) ■ 3/],       (x, A) -[0,2/] c Aj\A0, (x, A) -[/,3/] c Aj\A0,

\[A0(A)], otherwise, (x, A) g Aj(A),

/[(x,p)-3/],      (x,p)-[0,2/]cAj\A0,(x,p)-[/,3/]cAj\A0,
g [x,pj = ( _

([ A0], otherwise, (x, p) G Aj,

for/ > T. Then the composed map g'° 7(A)°/(A)': Ax(A)/A0(A)-> Nx/N0 is given

by

<    -<x\   ,m'r     xi     /[(*•*)-6*],      (x,A)-[0,6/]cAj\A0,

([A0J, otherwise,

for (x, A) g Aj(A) and hence is homotopic to the injectiony'(A): NX(X)/N0(X) -*

Aj/A0.    D

The next lemma provides the crucial step in proving that the injection map

y(A): Aj(A)/A0(A) -» Nx/N0 is (locally) a homotopy equivalence.

Lemma 6.6. Let (Nx, A0) be an index pair for S in X X A and let A0 g A be given.

Then there exists a compact neighborhood KofX0inA and times Ty > 2T0> 0 such

that the following statements hold.

(i) A X K is an isolating neighborhood of S(K) and U X K is a neighborhood of

S(K) in X X K, where the sets A c X and U c X are defined by

(6.3) A = diTrxiNxiK)\N0(K))) = wx(cl(Ni(K)\N0(K))),

(6.4) U=int fl ^(Aj(A)\A0(A))    rel X.
\<eK

(ii) For all x cz X and p, A G K and T > Tx the following implications hold.

(6.5) (x,p) -[-T0,T0] c A X K^> x cz U,

(6.6) (»,((*, p) -[0, T]), A) c cl(Nx(K)\N0(K)),

(x,p)-[T0,T]ct U X K => Mix, >l) ■ T),X) -[0,T] n N0 ± 0.

Proof. In order to prove statement (i) let us choose isolating neighborhoods A

and A for S in X X A such that Aj \ A0 is a neighborhood of A in X x A and A is a

neighborhood of cl(Aj \ A0) in IX A (Lemma 3.7). By Remark 6.3, there exists a

compact neighborhood K of A0 in A such that

A-cA(77x(A(A0)),a)nA(77^(A(A0)),a).
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This implies that

ttx(N(X0))xK,       7Tx(NiX0))xK

are isolating neighborhoods for S(K) in X X K. Furthermore we can choose K small

enough such that

(6.7) ttx(N(X0))xKczNx\N0,

(6.8) 77^(Aj(A)\A0(A))c^(A(A0))    VAgK.

The first inclusion is obvious since A(A0) is contained in the interior of NX\N0

relative A X A. If (6.8) would not hold for any neighborhood K of A0, then there

would exist a sequence(x^, Xk) G Nx \ A0such that AA tends to A0and (xk, A0) £ A.

But then any limit point x0 of xk would satisfy (x0, A0) g cl( A: \ A0), and (x0, A0)

G cl((A X A)\A), contradicting the fact that A is a neighborhood of cl(Aj \ A0)

in A X A. From (6.7) and (6.8) we conclude that

TrxiNiK)) <= ̂ (Aj(A)\A0(A)) c irx(N(\Q))

for all A g K. This proves statement (i).

In order to prove statement (ii), let us choose the compact neighborhood K of A 0

in A as in (i). Then it follows from Lemma 4.6 that (6.5) holds for some T0 > 0.

Furthermore note that once (6.6) is satisfied for some T = Ty > 2T0, then it holds

for all T ^ Ty since the first condition in (6.6) together with (6.5) guarantees that

(x, p) • [T0, T - T0]cz U X K. Now suppose that (6.6) does not hold for any T = Tx

> 0 and any neighborhood of A0 in A. Then there would exist sequences xk G X,

Xk g K, nk cz K, Tk > 2T0, tk cz [T0, Tk] such that Tk tends to infinity, AA. and fxk

tend to A 0 and

(6.9) (^((x„p,)-[0,Tj),Ajccl(A1(A')\Ao(A')),

(6.10) ixk,p.k)-tkeUxK,

(6.11) M(xk, P,) • Tk), Xk)-[0, Tk] c Aj \ A0.

It follows from (6.9) and (6.5) that (xk, fik) ■ [TQ, Tk - T0]cz U X K and therefore

tk > Tk - T0. Now let x0 g A be a limit point of Trx((xk, pA) • Tk) and let r > 0 be

a limit point of Tk - tk. Then it follows from (6.9) and (6.11) that (x0, A0) • R c

cl( Aj \ A0) and hence (x0, A0) g S. But it follows from (6.10) that (x0, A0) • (-t) <£

U X K, contradicting the fact that S(K)cz U X K.   □

Theorem 6.7. Let (Nx, A0) be an index pair for S in X X A, let A0 g A be given

and let K be a compact, contractible neighborhood of X0 in A which satisfies the

conditions of Lemma 6.6 for Ty > 2T0 > 0. Then the injection map

j(X) =/*(A): Aj(A)/A0(A) •-. Ny(K)/N0(K)
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is a homotopy equivalence for every X cz K and the map /(A) = fK(X): NX(K)/N0(K)

-» Aj(A)/A0(A), defined by

(6.12) /*(A)[x,p]

'[(t7^((x,p)-3T),A)-T],    //(x,p)-[0,2T]cAj\A0,

I (77^((x,p)-[T,3T]),A)cAj\A0,

j (77^((x,p)-3r),A)-[0,r]cAj\A0,

\[A0(A)],    otherwise,

for (x, p) g Ny(K), is a homotopy inverse ofj(X).

Proof.   First   note   that   the   composed   map  /(A)° y'(A): NX(X)/N0(X) -*

Aj(A)/A0(A)isgivenby

/(A)oy(A)[x A] = ( [(X' X) ' 4T]'    lf (X' X) '[°,4T] C NlXN°'

\ [A0(A)], otherwise,

for (x, A) g Aj(A) and it follows from Lemma 4.7 that this map is homotopic to the

identity. In order to show thaty(A)°/(A) is also homotopic to the identity we make

use of the fact that K is contractible which means that there exists a function

r: K X [0,1] -> AT such that

(6.13) r(p,0) = p,    r(p,l) = A    Vp G K.

Now we define the map F: NX(K)/N0(K) X [0,1] -» NX(K)/N0(K) by

([(77^((x,p)-3T),r(p,|))-T],    if(x,p)-[0,2T]cAj\A0,

a       i,x      I (^((x,p)-[T,3T]),/-(p,£))cAj\A0,

U*,H,*J (77x((x,p)-3T),Kp^))-[0,T]cA1\A0,

[A0(Ar)],   otherwise,

for (x,p)czNx(K) and £g[0,1]. Then it follows from (6.13) and (6.12) that

F(-, 1) =y(A)o/(A) and that F(-,0): NX(K)/N0(K) - NX(K)/N0(K) is given by

F/r       ,m      |[(x,p)-4T],     if(x,p)-[0,4T]cAj\A0,

Fi[x,p],0)=![[NM)l otherwise>

for (x, p)GAj(AT) and therefore is homotopic to the identity (Lemma 4.7). It

remains to show that F is continuous.

In the following cases the continuity can be obtained by standard arguments as in

the proof of Lemma 4.7 or Theorem 5.7(iii).

1. (x, p) • [0,2T] ct cl(Nx(K)\N0(K)),

2. (ttx((x, p) • [T, 3T]), r(p, £)) ct cl(Nx(K)\N0(K)),

3. (77^((x, p) • 3T), rbi, £)) • [0, T] ct cl(Nx(K)\N0(K)),

4. (ttx((x, u) ■ 3T), r(p, £)) ■ T cz N0.

Therefore we can assume from now on that

(6.14) (x,p)-[0,2T]ccl(Aj(A:)\A0(7:)),

(6.15) K((x,p) -[T,3T]),r(p, £)) c c1(A1(AT)\A0(A:)),

(6.16) (*x((x,n) ■ 3T),riii,i))-[0,T] cz NX\N0.
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Figure 6

Now Lemma 6.7 comes in. First of all, since T > 2T0 it follows from (6.14) and (6.5)

that (x, p) • [T, T + T0] cz U X K, where U c X is defined by (6.4). Secondly, it

follows from (6.15), (6.16) and (6.6) that (x, p) • [T + T0,3T] c U X K. In particu-

lar (x, p) • 27 £ A0. Therefore the conditions (6.14) and (6.15) can be replaced by

(6.17) (x,p)-[0,2T]cAj\A0,

(6.18) (x,n)-[T,3T] cz UX K.

But the conditions (6.16), (6.17) and (6.18) together are stable with respect to small

variations in (x, p) G NX(K) and £ G [0,1]. This proves the continuity of F.    D

Since A is a connected space, we obtain as an immediate consequence of Theorem

6.7 that the homotopy index h(o(X)) of the isolated invariant set a(A) in X X X is

independent of A. In fact, it depends only on the path-component of a(A) in y

(Lemma 6.4 together with Theorem 6.7). Furthermore, combining Theorem 6.7 with

Proposition 6.5, we obtain that there is locally a unique isomorphism between the

connected simple systems /(a(A), A X A) and I(o(u), X X p). If A is connected,

then such an isomorphism exists for any two A, p g A. However, we will see in the

next section that globally this isomorphism need no longer be unique.

6.3. Global continuation. We first point out that the global isolated invariant set S

in A X A may have a much richer structure than the isolated invariant set a(A) in a

single fiber A X A. This is illustrated by Figure 6 in which the flow on T = X X A

= R X S1 is given by (x, A) ■ / = (xe', X) for x g R and A g S1. Then the homo-

topy index of a(A) = (0, A) is h(a(X)) = 21 but h(S) = I2 V 21. Hence the global

injection y'(A): NX(X)/N0(X) -» Nx/N0 cannot be a homotopy equivalence in this

case. However, if A is a contractible space, one might expect that this global

injection is indeed a homotopy equivalence. We leave this as an open problem.

In order to obtain an isomorphism between any two connected simple systems

I(a(X), X X X) and 7(a(p), X X p) it is useful to rephrase the statement of Theo-

rem 6.7 as follows.

Corollary 6.8. Let (Ny, A0) be an index pair for S in X X A and let K cz A be a

compact, contractible set which satisfies the conditions of Lemma 6.6 for Tx > 2TQ > 0.

For X, fj.cz K and T > Tx let the map F(X, p) = FK(X, p): Aj(p)/A0(p) -»

Aj (A)/A0 (A) be defined by

(6"19) ([(»*((*, M)-37-), X).r],    //(x,p)-[0,2T]cAj\A0,

^(A,p)[x,p]= Mi^)\T,3T]\X)czNx\NQ,

iTrxiix, p) • 3T), A) ■ [0, T] c Aj \ A0,

[A0(A)],    otherwise,
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for(x, p) G Aj(p). Then for all X, [i,v cz K

(6.20) FK(\,p.)oFK(ii,v)~FK(X,v),

(6.21) FKiX,X)~l.

In particular, FK(X, p) is a homotopy equivalence with homotopy inverse FK(fi,X).

Furthermore, if(Ny, A0) is another index pair for S in X X A with respect to which

K satisfies the conditions of Lemma 6.6 andifFK(X, p): Aj(p)/A0(p) -* NX(X)/N0(X)

is defined analogously to (6.19), then the maps FK(X, p) and FK(X, p) induce the

same isomorphism between the connected simple systems 7(a(p), X X p) and

I(a(X),XxX).

Proof. With the notation of Theorem 6.7 we have FK(X, n) = fK(X)° jK(fi).

Therefore (6.20) and (6.21) follow from the fact thatfK(X)° jK(X) andjK(X)° fK(X)

are homotopic to the respective identity maps for every A g K. The remainder of the

corollary is a consequence of Proposition 6.5.    □

If A is a compact, connected space we can connect any two points p g A and

A g A by a finite sequence of compact sets K each of which satisfies the conditions

of Lemma 6.6. Any such sequence induces an isomorphism between the connected

simple systems I(o(fi), X X p) and /(a(A), X X A). This motivates the introduction

of the following subcategory of pointed spaces and homotopy classes of maps

associated with a continuous function a: A -» ysatisfyingtta° o = 1A. This category

may be considered as the global Conley index of a in A X A and is defined by

(6.22;1) I(a, A, A) = (/0,/„,),

where

(6.22;2)   /0= (Aj(A)/A0(A)|Ag AandAj(A), A0(A) is an index

pair for a(A) in A X A},

(6.22;3)    /„= {[/]|Aj(A)/A0(A)G/0,Aj(p)/A0(p)G/0and

/: Aj(p)/A0(p) -» Aj(A)/A0(A) is a finite composition

of maps defined in Lemma 4.7 and Corollary 6.8}.

The global Conley index I (a, X, A) of a in A X A has to be well distinguished from

the Conley index I(S, X X A) of the global isolated invariant set S in X X A. If A is

connected, then the category I(a, A, A) has the property that there is at least one

morphism between any two objects and that every morphism is an equivalence.

However, I(a, X, A) is in general not a connected simple system since there may be

different isomorphisms between the same objects. This is the case in the parame-

trized flow illustrated in Figure 7. However, if A is simply connected (every closed

arc is homotopic to a constant where the end points are fixed), then we will show

that I (a, A, A) is a connected simple system. This result has first been stated in

terms of the cohomology of the isolated invariant sets and is due to Montgomery [9].

The corresponding theorem in Conley [3] has been phrased in terms of continuation

along arcs.
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Figure 7

Theorem 6.9. Suppose that A is simply connected and let a: A —> tfbe a continuous

map with tta ° a = 1A. Then I (a, X, A) is a connected simple system.

Proof. We have to prove that every morphism in Im with the same domain and

range is in the class of the identity map. Using the second part of Corollary 6.8 one

can first show that every map /: Aj(A)/A0(A) -» Aj(A)/A0(A) with [/] g Im is

homotopic to a finite composition of maps defined by (6.19) and associated with a

single index pair (Nx, A0) for S in A X A. Hence we can assume that there are

finitely many compact contractible sets K0,..., Kk in A satisfying the conditions of

Lemma 6.6 and points Ay g Kj_x n Kj, j = 1,... ,k, A0 = AA + 1 = A e K0 n Kk

such that

/=^(^+1,A,)oJF/t_1(x„A,_1)o ...  °F0(Aj,A0),

where the maps F} = FK are defined by (6.19). Let us extend {K0,...,Kk) to a

collection of compact, contractible sets K0,...,Kn which satisfy the conditions of

Lemma 6.6 for T > T, > 2T0 > 0 and are chosen such that the sets int K =

A \ cl( A \ Kj) cover A. Using (6.20) we can assume without loss of generality that

A g int Kj_y n int A fory" = l,...,k and A0 g int K0 n int Kk. Since the sets Ay

are contractible, there exists an arc ax: [0,1] -» U*=0int Ay such that aj(0) = aj(l) =

A0 and Xj = ax($j), ax([£j, £, + 1]) c int Kj forj = 0,... ,k. Now we make use of the

fact that A is simply connected and conclude that there exists a continuous family of

arcs a,: [0,1] -* A, 0 < / < 1, such that a,(0) = a,(l) = A0 for all / g [0,1] and

a0(£) = A0. With every arc a, we can associate a sequence of maps F„(y)(p7+1, p7),

j = 0,...,/, defined by (6.19) and such that py = a,(f7), 0 = f0 < fx < ■ • • < f/+1

= 1, and «,«?,, fy+iD c mt Kr{J)J = 0,...,l. Let/: Aj(A)/A0(A) ^ Aj(A)/A0(A)

denote the composition of these maps. Then it follows, from (6.20) that the

homotopy class of / is independent of the choice of the points f; and the indices

v(j). This fact together with the continuous dependence of the condition

ot,([£.-, fy+i]) g int Kv( ,j on / shows that [/] is independent of / g [0,1]. Finally, it

follows from (6.20) and (6.21) that/0 is homotopic to the identity on NX(X)/N0(X).

a
6.4. Continuation of attractor-repeller pairs. It is the purpose of this section to

combine the continuation results of §§6.1-6.3 with the coexact sequence of §5

associated with an attractor-repeller pair.
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In addition to the notation and assumptions of §6.1 we will assume throughout

this section that a: A -> yand a: A —> yare continuous maps such that tta° a = 1A

and a(A) is an attractor in a(A). Then the complementary repeller a*(A) of a(A) in

a(A) also defines a continuous function from A intoyand the sets A, A* defined by

(6.2) form an attractor-repeller pair for the isolated invariant set S defined by (6.1)

in A X A (Lemma 6.4).

Now let A0 c Aj c A2 be a filtration of compact sets in A X A such that (A2, A0)

and (Aj, A0) are index pairs for S and A, respectively, and (A2, Nx) is a regular

index pair for A*. Furthermore, let i:Ny/N0 -» A2/A0 and tt:N2/N0 -> N2/Nx be

the natural maps and let the connection map 5: N2/Nx —> 1NX/N0 be defined by

(5.9) and (5.6). For any A G A let the corresponding maps be denoted by

t(A):Aj(A)/A0(A) - A2(A)/A0(A), 77(A):A2(A)/A0(A) -* A2(A)/Aj(A),

5(A): A2(A)/Aj(A) -> 2Aj(A)/A0(A). Then the diagram

(6.23)

Aj/A0-■->■ A2/A0-^ A2/Aj-y 2Aj/A0

T«(X) Ty(A) T*(M Tskx)

Aj(A)/A0(A) -^> A2(A)/A0(A) ^X A2(A)/Aj(A)-^V 2Aj(A)/A0(A)

commutes, where i(X),j(X) and k(X) are the natural inclusion maps. It follows from

Theorem 5.7  and Proposition 6.5  that all the maps in diagram (6.23) induce

morphisms of the corresponding connected simple systems which are independent of

the choice of the index filtration N0 cz Nx cz N2. Therefore we obtain the following

commuting diagram of connected simple systems in which the rows are coexact.

(6.24)

l(AiK))-1-+I(S(K))-^-> liA*iK)) -i-> IliAiK))-► • • •

?'•(*) T/(X) T*(X) Ts/(X)
i(A) nt\) 8<\)

l(a(X))-> I(a(X))-> /(«*(A))-► 2/(a(A)) -► ■ ■ -

Here we have replaced A by any compact subset K c A. If this set is contractible

and satisfies the requirements of Lemma 6.6 for each of the index pairs (Aj, A0),

(A2, A0), (A2, Aj), then it follows from Theorem 6.7 that the vertical maps in

diagram (6.24) are equivalences for every X cz K. The homotopy inverses of these

equivalences define, of course, again morphisms between the respective connected

simple systems and make the (vertically reverse) diagram commute. This implies that

for any two points A, p in the same connected component of A and any connecting

sequence of compact contractible sets Kj c A which satisfy the conditions of

Lemma 6.6 there is a (unique) commuting diagram of the form

(6.25)
i(H) w(/i) S(u)

7(a(p))-W(a(p.))-W(«*(/0)-^2/(a(p))-y.--

iF(\,fi) lG(\,/i) lH(\,n) i2F(A,ji)

i(A) ir(A) S(A)

/(«(A))-W(a(A))-W(«*(A))-^2/(«(A))->---
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where the vertical morphisms are equivalences. Finally, it follows from Theorem 6.9

that the vertical morphisms in (6.25) are independent of the choice of the connecting

sequence Kj if A is simply connected. This proves the following result (compare

Kurland [8]).

Theorem 6.10. If A is simply connected, then the maps i(X):I(a(X)) -* I(a(X)),

77(A):/(a(A))-> 7(a*(A)), 8(A):/(a*(A)) -» 2J(a(A)) of §5 induce the following

coexact sequence of connected simple systems:

(6.26)    I(a, X, A) -i /(a, X, A) ^ l(a*, X, A) -1 2/(a, X, A) ->

7. Conclusions. In this paper we have given complete and simplified proofs for

most of the basic abstract results in the index theory of isolated invariant sets. Of

course, there are many questions left open.

One of them is to develop a continuation theorem for flows on fibrations rather

than product spaces A X A. Another problem is the relation between the global

Conley index I (a, X, A) and the Conley index I(S, X X A) of the global isolated

invariant set S = Ux<=Aa(A) in the parametrized flow A X A. For example, there is

the question whether /(a, A, A) is isomorphic to I(S, X X A) if A is simply

connected.

Several other questions have been indicated by Conley [3]. Among these there is

the observation that information gets lost by collapsing the exit set A0 in the index

pair (Aj, A0). This leads to the question whether a sequence of index pairs which

collapse to S gives more information which can be used in a nice way for the

definition of algebraic invariants. Another possible refinement of the Conley index

might be to consider only special classes of homotopies since all the maps and

homotopies in the theory are given by flow induced maps.

Furthermore, there is a duality in homotopy theory between fibrations (mapping

fibration, loop functor, exact sequence) and cofibrations (mapping cone, suspension

functor, coexact sequence). A very nice presentation of these duality relations can be

found in Whitehead [13]. Since index pairs only give rise to a coexact sequence there

arises the question whether there is some kind of a dual concept.

Of course, there is a big area of open questions when it comes to the point of

applying the index theory to obtain results for concrete differential equations.

Despite the fact that the Conley index has proven to be a very useful tool for many

problems, there is the question under which conditions infinite dimensional systems

can be formulated in the framework of §3. For some cases this has been done, e.g. by

Smoller [11]. If this is not possible then there arises the question what one can do if

A is not locally compact and T is only a semiflow. Some steps in this direction have

been taken by Rybakowski and Zehnder [10]. Another possibility might be to go to

finite dimensional approximations (see for example Conley and Zehnder [4]).

We stop at this place since the list of open questions has no end.
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