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ALGEBRAIC AND ETALE A-THEORY

BY

WILLIAM G. DWYER AND ERIC M. FRIEDLANDER1

Abstract. We define etale /(-theory, interpret various conjectures of Quillen and

Lichtenbaum in terms of a map from algebraic A"-theory to etale AT-theory, and then

prove that this map is surjective in many cases of interest.

1. Introduction. The purpose of this paper is to study the etale K-theory of a

commutative noetherian Z[l//]-algebra A. Etale A-theory is relatively easy to

compute, and it is related to algebraic A-theory by a natural, highly nontrivial map

<j>. One stimulus for this work has been the conjecture that for many rings A the map

</> is close to an isomorphism; this conjecture is a common generalization of several

distinct conjectures made by Lichtenbaum and Quillen [19, 33]. The main computa-

tional result below is Theorem 8.7, which (roughly) states that the map <J> is surjective

for suitable subrings of an algebraic number field.

By definition, the etale A-theory of A depends upon the etale homotopy type [14]

of Speoi in a very classical way; for instance, there is a spectral sequence of

Atiyah-Hirzebruch type (§5) which relates the continuous etale cohomology of A

with certain local coefficients to the etale A-theory of A. From this point of view,

etale A-theory is a (twisted) generalized cohomology theory on the etale homotopy

type of Spec A, a theory which bears the same relationship to etale cohomology as

the complex topological A-theory of spaces does to singular cohomology. From a

pragmatic point of view, the main achievement of etale A-theory is to manufacture,

for a fairly general ring A, some plausible analogue of the space im J (or F\pq) used

by Quillen to identify the algebraic A-theory of a finite field [30]. The present study

of etale A-theory is an extension to more general rings of the work in [12, 13].

Some of the topological and algebro-geometric material below may be interesting

in its own right, for instance, the notion of "geometric function space" (§2), the

general construction of continuous cohomology (§2), and the association of a

secondary cohomological transfer homomorphism to a finite cyclic covering map

(§7). A little more speculative is the hope that, as a new algebraic tool, etale A-theory

may prove useful in the study of various questions in algebraic geometry which are

seemingly unrelated to A-theory.

Because of the long gestation period of this paper, there have already been a few

publications which make use of the machinery developed here. In collaboration with
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248 W. G. DWYER AND E. M. FRIEDLANDER

V. Snaith and R. Thomason, we showed that etale A-theory satisfies "etale cohomo-

logical descent" and proved a general surjectivity theorem for a modified form of the

map <j> [8]. R. Thomason proved that the natural transformation from algebraic to

etale A-theory satisfies a theorem of Riemann-Roch type [42]; he has also used etale

A-theory in several other recent papers [41, 43]. In [39], C. Soule constructed

operations in etale A-theory.

We acknowledge a great debt to C. Soule, whose provoctive paper [37] led directly

to the present work. Just as important is the pervasive influence below of the ideas

of A. K. Bousfield and D. M. Kan (especially [3]).

Outline of the paper. §2 contains a technical description of various function spaces

and spectral sequences. Many of our constructions are formulated in terms of

(topological) spectra rather than of spaces or homotopy groups, and §3 describes the

categorical machinery needed to produce these spectra. The definition of the etale

A-theory spectrum and the definition of the map from algebraic to etale A-theory

appear in §4, while §5 contains the specializations to etale A-theory of the spectral

sequences of §2. §6 discusses the A-theory transfer homomorphism, and §7 an

analogous secondary transfer homomorphism for cyclic covering maps. §7 also

contains the proof (by descent) of a surjectivity result for the etale A-theory

secondary transfer. The surjectivity theorems for rings of 5-integers in global fields

and for fields of Z/7-cohomological dimension < 2 are proved in §8, as well as an

isomorphism theorem for finite fields and a divisibility theorem for the Borel classes

in the algebraic A-theory of a ring of integers in a number field. The proofs in §8 use

product, transfer, and secondary transfer to reduce all of the questions to low-degree

calculations. The appendix contains a result which is needed in §4 in order to

recognize a construction of algebraic A-theory. An overview of our specific conclu-

sions for algebraic A-theory is given in [7].

Notation and terminology. Throughout the paper, / denotes a fixed prime number

and l" an arbitrary power of /. The word spectrum is always used in the sense of

algebraic topology [25], and space is a synonym for simplicial set [22]. We will

ordinarily make no distinction in notation between a commutative ring A and the

associated affine scheme Spec A. All schemes are locally noetherian by assumption;

the contraction sscheme then stands for (locally noetherian) simplicial scheme. One

background reference for the theory of simplicial schemes is [14], though we have

deviated from some of the usages there in the interests of economy. In particular, the

word hypercovering is used below to stand for what in [14] is called "rigid hyper-

covering."

If A and B axe objects of some category with a simplicial structure, then

hom(^4, B) will denote the set of maps from A to B in that category, and

HonruM, B) the corresponding space (= simplicial set) of maps from A to B. For

instance, if A and B are sschemes, then Hom(y4, B) is the simplicial set with

Hom(A, B)n = hom(A <S> A[n], B) [14, p. 124]. If A and B axe provided with

structure maps A -* C and B -» C for some C, then hom(A, B)c (respectively

Hom(A, B)c) stands for the set (resp. space) of maps from A to B in the category of

objects over C.
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2. Function spaces and spectral sequences. The purpose of this section is first of all

to construct various spaces of functions between pro-spaces and between sschemes.

If S —> V, T —> V axe maps of pro-spaces, there is a space Homes', T) of topologi-

cal functions, a space Hom,(S, T)v of relative topological functions, and a space

Horni(S, T)y of relative /-adic functions. If A -» R, Y -* R are maps of sschemes,

there is a space Horn (A, Y)R of relative geometric functions, as well as a map from

Homg( A, y)^ to an associated space of /-adic functions (see 2.4).

The second part of the section contains the construction of a homotopy spectral

sequence associated to Horn,(S, T), Horn,(A, T)v, or Homl(S,T)v (see 2.10).

There is a formula for the E2-texm of this spectral sequence in terms of the

"continuous cohomology" (see 2.8) of a pro-space with local coefficients.

2.1 Definition. Let S = {Sa} and T = [TR] be pro-spaces with each Tp a Kan

complex [22, p. 3], For any n > 0, let Hom<">(S', T) denote the space

holim   lim  Hom( Sa,TB(n))

a
where TR(n) is the «th stage in the simplicial Postnikov tower of TR [22, p. 32].

Define the space of topological functions from S to T by

Horn,(S, T) = holim Hom<">(5', T).

n

It is clear that Horn,(S, T) is natural with respect to all maps S' -* S and all

strict maps T -» T'. (A map of pro-spaces is said to be strict if it is given by a

natural transformation with respect to a functor on indexing categories [14, §4].) If S

and T are singleton pro-spaces (i.e., indexed by the trivial one-object category) then

Horn,(5, T) is homotopy equivalent to the standard function space of maps from S

toT.

There is also a relative version of (2.1).

2.2 Definition. Let {7^ -» VR) be a pro-object of Kan fibrations [22, p. 25] and

S = {Sa} -» V = [VB] some specified map of pro-spaces. For any n > 0, let

Hom<,">(5, T)v denote the space

holim   lim  Hom(Sa,TR/VR{n))v ,

where TR/VR(n) is the nth stage of the simplicial Moore-Postnikov tower of TB -* VB

[22, p. 34]. Define the space of relative topological functions from S to Tover Kby

Horn,(5, T)v= holim Hom<">(5, T)v.

n

It is convenient to use the notation of (2.2) in a slightly larger setting. Let g:

T = {Ty)yeT -* V = (I^JgeA be a strict map determined by a functor $: A -> T.

Construct the associated levelwise fibration [TB -* VR)ReB as follows: B is the

category in which an object is a triple (y, 5, y -> $(5)) and a map a pair (y' -» y,

8' -» 8) determining a commutative square; TB -* VR is then the mapping fibration

of Ty —* Vs for B = (y, 8, y -* $(8)). Any specified map S -> V = (Vs} determines a

map 5 -» (1^} and therefore a relative function space Horn,(5, {TB}){Vi]. As in

Definition 2.2, the notation for this relative function space is Horn,(S, T) v.
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The Bousfield-Kan fibrewise (Z/7-) completion of a fibration E -* B appears in

one of its forms as a tower of fibrations {(Z/l)'„E -» B)a>Q [3, I, §8]. If T = {Ty}

-» K = (Fs} is a strict map of pro-spaces, define the fibrewise completion Ty -> V to

be the pro-space {(Z/l)'nTB -» I^}^,,, where {7^ -» 1^} is the associated levelwise

fibration.

2.3 Definition. Let T -» V be a strict map (of pro-spaces) and S -* K some

specified map. Define the space of relative l-adic functions from 5 to T over K to be

the space

Homl(S,T)v= Hom,(S,TyA)v.

These definitions apply to sschemes through the etale topological type functor,

which passes from the category of (locally noetherian) sschemes to the category of

pro-spaces and strict maps. If A is a sscheme, its etale topological type Aet is the

pro-space {ir • U}v indexed by the hypercoverings U of A, where ir ■ U is the

diagonal of the bi-simplicial set obtained by applying the Zariski connected compo-

nent functor to each bi-dimension of U [14, §4].

2.4 Definition. Let X -* R, Y -» R be maps of sschemes. Define the space of

relative geometric functions from A to Y over R by

Homg(A, Y)R =  lim  Hom(U,Y)R,

u

where the direct limit is indexed by the hypercoverings U of A and Hom(U, Y)R

signifies Hom(diag£/, Y)R. Define the space of relative l-adic functions from A to Y

over R by

Hom/(A,y)«=  hm  Hom,(l/et, Yel)Ra

u

where the direct limit is again indexed by the hypercoverings U of A and Uct denotes

the etale topological type of diag U.

If U is a hypercovering of A, the natural map diag U -» A of sschemes induces a

weak equivalence t/e, -» Aet (cf. [14, 8.11]) and therefore a homotopy equivalence

Horn,(Xet, Yet)R -» Horn,(Uet, Yel)R . This indicates that the direct limit in the

above definition of Horn, (A, Y)R has no homotopy function. The purpose of this

direct limit is to simplify the following proposition.

2.5 Proposition. Given maps X -» R, Y -» R of sschemes, there is a natural map

Homg(X,Y)R->Hom,(X,Y)R.

Proof. For each hypercovering fi of A there is a natural map Hom(£/, Y) ->

Hom(c/et, Yel) constructed in [14,13.2]; it is easy to see that the same procedure gives

a map Hom(c7, Y)R -* Hom(C/et, Tet)«01- Given any two maps S -» V, T -> V of

pro-spaces, there is an obvious associated map Hom(S, T)v-* Horn,(S, T)vas well

as a map Horn,(5, T)v -» Horn,(5, T)v induced by the fibrewise completion

morphism {TB -» iZ/l)'„TB}B n. Putting these together produces for each hypercover-

ing U of X a natural map Hom(c/, Y)R -* Hom,(Uex, Tet)«ei. The proof is finished

by taking a direct limit over U.
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2.6 Remark. Suppose that A -» R is replaced by a "geometric map" U -» A,

where £/ is a hypercovering of A. In this case it is natural to define

Homg(A, Y)R=  lim Hom(V,Y)R,    Hom,(X,Y)R=  lim Hom,(Vel,Yel) Ret,

v v

where V runs through all hypercoverings of A which refine U. The construction of

Proposition 2.5 again leads to a natural map Homg( A, Y)R -> Hom^ A, Y)R.

The remainder of this section is devoted to the definition of continuous cohomol-

ogy and the construction of a homotopy spectral sequence associated to Horn,(S, T)

or Hom^S, T)v.

2.7 Definition. A groupoid G is a small category in which every morphism is

invertible. A G-module M is a functor from G to the category of abelian groups. A

pair J(=(G,M) consisting of a groupoid G and a G-module M is called a

coefficient system. A morphism Jt' = (G, M) -^ Jt' = (G', M') of coefficient sys-

tems is a functor/: G -* G' together with a natural transformation M' -» Af °/. If

^ = (G, Af), the relative Eilenberg-Mac Lane space K(Jt, n), n ^ 0, is the natural

Kan fibration over NG with fibre over x cz Obj(G) equal to the simplicial Eilenberg-

Mac Lane space K(M(x), n) [22, p. 99].

The nerve NG of a groupoid G is the disjoint union of Eilenberg-Mac Lane spaces

of the form K(ir, 1) [34]. Relative Eilenberg-Mac Lane spaces come up naturally in

twisted cohomology theory and also in the Postnikov decomposition theory of

non-simply-connected spaces [9].

2.8 Definition. Let A be a pro-space, Jt = {Jtj) = {(Gj, Mf)} a pro-object of

coefficient systems, and /: S -» AG = {NG-} a specified map. For each n > 0,

define the «th continuous cohomology group of S with (local) coefficients^by

//c"ont(S, Jt) = WoHom,(S, K(Jt, n))NC.

If Jt = (G, M) is a constant pro-object and S = {Sa}, then

Hc"onl(S, Jt) = tr0 hm  HormX, K(Jt, n))NC

a

=   lim H"(Sa,Jt) = H"(S, Jt),

a

where H"(S, Jt) and H"(Sa, Jt) denote the usual local cohomology groups of S or

Sa with respect to the coefficient system Jt and the twisting maps Sa -* NG. For a

genexalJt = {Jtj}j^j, there is a more complicated relationship between continuous

cohomology with coefficients^ and ordinary cohomology:

2.9 Proposition (cf. [40, 2.2]). With the above notation, there is a convergent first

quadrant spectral sequence

Ep-« =  hm PH"(S, Jt,) =* Hp:j(S, Jt)

j

in which the rth differential dr has bi-degree (r,l — r).
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p
Remark. Here limy is thepth right derived functor of the inverse limit functor on

/-diagrams of abelian groups [3, XI, §6].

Proof. Pick n > 1 and apply Hom,(.S, -)NG to the homotopy fibre square:

K(Jt,n)     -> AG

i J,

AG ->     K(Jt,n + l)

What results is a homotopy fibre square of spaces in which two of the corners are

contractible—this leads to the conclusion that Hom,(S, K(Jt, n))NC is homotopy

equivalent to the loop space ft Horn,(S, K(Jt, n + 1))NC. It follows by induction

that for any n > 0 there are natural isomorphisms

irqUom,(S, K(Jt, n)) Nc * H£?(S, Jt).

In light of this calculation, the Bousfield-Kan spectral sequence [3, XI, §7] associated

to the homotopy inverse limit formula

Homt(S,K(Jt,n))NC=  holim   lim  Hom(Aa, K(Jtp «)) NC

J a

can be re-indexed to give a (suitably fringed) first quadrant spectral sequence

l 0 p + q > n,

which converges to Hp0\\q(S, Jt) foxp + q < n. It is not hard to produce for each n

a map Ep,q(n + 1) -* Ep,q(n) which in total degree < n gives an isomorphism on

£2-terms. The spectral sequence of the proposition is then lim n Ef>(n).

If TB is a space, let TTB denote the fundamental groupoid of TR and for n > 1 (and

n = 1 if ir, is abelian), let irn(TB, -) be the TT^-module whose value on a vertex a of

TB is ir„(TR, a). Let n„7^ be the coefficient system {TTR, irn(TR, -)} and, finally, if

T = {TB} is a pro-space, let IIn(T) denote {HnTB}.

2.10 Proposition. Let f: S —* T = {TB} be a map of pro-spaces in which each TB is

a connected Kan complex with abelian fundamental group. Then there is a natural

fourth quadrant spectral sequence

Ef'q = Hponl(S, H_qT) =* ir_{p + q)(Hom,(S, T), f)

in which the differential dr has bi-degree (r,l — r). This spectral sequence converges

completely in positive degrees if lim   Ef-q vanishes for allp > 0, p + q > 0.

Proof. This spectral sequence is a re-indexed form of the one associated by [3, IX,

4.2] to the tower of fibrations (Hom<">(S, T)}„>0. Let S = {Sa}. It follows from

the functorial approach to obstruction theory [9] that there is a natural homotopy

fibre sequence

Hom(Sa, K(U„TR, «))OT7- - Hom(Sa, TB{n)) - Hom{Sa, TB(n - 1»

for any a, B and any n > 0. This determines fibre sequences

Horn,(A, K(YlnT, n))NTT - Hom<">(S, T) -» Hom<n-1>(5, T).
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The identification of

E2p-q = ^(p + q)Hom,{s, K(U_J,-q)) NTT

with Hfom(S, U_qT) is a consequence of the initial remarks in the proof of

Proposition 2.9. The convergence criterion is that of [3, IX, 5.4].

There is also a relative version of the spectral sequence. Suppose that gB: TB

-* Vp is a fibration which has a connected fibre with abelian fundamental group.

Denote by ir„(TB/VB,-) the TT^-module which assigns to each vertex x of Tp the

group irn(gplgp(x), x), and by YlnTp/Vp the corresponding coefficient system

(TTp,ir„(Tp/Vp,-)).

2.11 Proposition. Let {gR: Tp^> VB} be a pro-object of fibrations each of which

has connected fibre with abelian fundamental group, and let f = S -* T be a map. Then

there is a natural fourth quadrant spectral sequence

W = HpOM(S, U_qT/V) =* ir_(p + q)(Hom,(S, T)v, f)

in which the differential dr has bi-degree (r, 1— r). (Here T1_T/V denotes

{U_ Tp/Vp}.) This spectral sequence converges completely in positive degrees if

lim J Ep-q vanishes for all p Ss 0, p + q ^ 0.

Proof. This is identical to the proof of Proposition 2.10, except that it uses

relative obstruction theory fibration sequences

Hom(so, K(UnTp/Vp, n))NTT/) - Hom(Sa, Tp/Vp{n))Vf>

-* Hom(Sa, Tp/Vp(n - \))Vf    (where S = {Sa}).

3. Categorical constructions of spectra. One way to construct a spectrum [35] is to

pass from a permutative category to an J^space (see 3.3) and then from the J^space

to a spectrum (see 3.2). This section sketches that procedure and then recapitulates

the first step with all of the spaces involved replaced by sschemes. For instance,

Proposition 3.4 associates an ^sscheme to a particular permutative-category-

sscheme made up of general linear groups. §4 will combine this J^sscheme with the

function space constructions of §2 to obtain A-theory J^spaces and A-theory spectra.

3.1 Definition [35]. Let J^be the category of finite pointed sets together with

basepoint-preserving maps and let n denote the set {0,1,...,n} pointed by 0. If ^"is

any category, then an ^-object of 'Sis a functor $: J^—> (€; such a functor amounts

to a collection of objects $(n), n ^ 0, together with a map $(n) -* 4>(m) for each

pointed map n —> m. An J^object in the category of spaces is called an tF-space. The

J^space $ is special if the natural map $>(A V B) -* <b(A) X $(B)isan equivalence

for every pair of finite pointed sets A and B.

3.2 Proposition [35, 24, 25]. There is a natural functor which associates to each

tW-space <& an Q-spectrum Sp(O). // 3> is special, then the zeroth space Sp($)0 of

Sp(O) has the homotopy type of a group completion [23, 26] o/$(l).
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If $ is special, the folding map 1 V 1 —> 1 determines the //-space structure on

$(1) which figures in the above group completion. The pre-spectrum which gives rise

to Sp($) is determined by the canonical maps S1 A (f>(S") ^> <b(S" + 1), where S1 is

the standard simplicial model of the circle, S" is the «-fold smash power of S1, and

$(5'") is the diagonal of the bi-simplicial set obtained by applying $ to each

dimension of S".

A permutative category is a small category P together with a strictly unital, strictly

associative, coherently commutative "sum" operation, denoted □. A morphism

between two permutative categories is a functor which strictly respects both the units

and the appropriate sum constructions [24, Definition 1]. The nerve [34] of a

category P is denoted NP.

3.3 Proposition [35; 24, Const. 10]. There is a natural way of passing from a

permutative category P to an ^-object P of permutative categories, with P(\) = P. The

associated JF-space NP is special, and Sp(NP)0 has the homotopy type of CIB(NP),

where the classifying space B(NP) is formed by using the monoid structure on NP

induced by the sum operation of P.

The categories P(n), n > 0, are defined as follows: An object of P(n) consists of

an object Ps of P for each subset S < n containing 0 (with P(0) the unit object of P)

together with compatible isomorphisms PSuT -> PsO Pr whenever Sn T = {0}; a

morphism of P(n) consists of a collection of maps/s: Ps -* P$ (with/{0) the identity)

such that each of the following diagrams commute:

fsuT
P —> PrSUT rSUT

i i

Ps UPT        - PsOPf

It is not hard to see that P(n) is categorically equivalent to (but not in general

isomorphic to) the n-fold cartesian power of P, and that NP(n) therefore contains

NP X  • • • x NP as a simplicial deformation retract [24].

Fix a sscheme R, and let 'She the category sschemes/R of sschemes over R. For

each n > 0 the general linear group sscheme GL„ (= GLnZ xzR) gives rise in the

spirit of [21, p. 75] to a category in # with object "set" the sscheme GL„, and

composition law the matrix multiplication map GL„ X «GLH -» GL„. This category

in "^is denoted @£n.

3.4 Proposition. The disjoint union \Ak>Q'&c,k= <§£+ has the structure of a

permutative category in ^ in which the sum operation □ is determined by the external

sum maps

GLmXRGL„^GLm+n.

The proof is immediate.

3.5 Proposition [11, 9.1]. Let R be a sscheme and @f * the permutative category in

sschemes/R described in Proposition 3.4. Then there is a naturally associated ^-object

B~Wn : F -» sschemes/R
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such that

BW^(0) = R,       BW*~(1) = JJ BGLk,
k>0

and B@S *(n) contains the n-fold fibre power of B&t *(1) over R as a simplicial

deformation retract.

In the above proposition, BGLk is the diagonal of the bi-simplicial sscheme AGL^

[14, 1.2, §2]. The construction of B'St\ is carried out by formally imitating the

construction of NP in (3.3). This involves first building a functor,

&£*: J5"-* (permutative categories in sschemes//?)

and then obtaining B&tf*(ri) as the diagonal of the nerve of <§e *(n). (See [14, 5.2,

8.3, 9.1] for more details.)

The following pairing on B@fm will induce a product structure on A-theory. Let

A: J^x J*"-> J*"denote the smash product functor on pointed sets sending (m, n) to

mn [25, p. 303].

3.6 Proposition [13, 1.4]. The ^-object B^e * of (3.5) admits a natural pairing

derived from the external tensor product maps GLm X, RGLn -> GLm„. In particular,

there is a functor B^t „: J^x JF-» sschemes/A together with natural transformations

_        /_g     _ _
B &t?m ° A <- B &S* -> B &<?* XRB <$e *

such that for any (m, n) in&X 5Fthe induced map

g(m,»y BWl(m,n) - BW*~(m) XrbW~*(xx)

is a simplicial equivalence. In the appropriate sense [25, p. 339] this pairing is

associative and commutative.

The assertion that g(m n) is a simplicial equivalence means in this case that the map

has a right inverse r(m n) such that the composite r(m n) ° g(mn) is simplicially homo-

topic to the identity as a map of simplicial schemes over R. The above pairing is

obtained by reproducing the constructions of [25, Appendix] in the algebraic

category.

4. Algebraic and etale A-theory. From this point on in the paper, R will denote the

ring Z[l//]. In this section we will define the algebraic A-theory of an affine scheme

over R (see 4.1) as well as the etale A-theory of a general sscheme over R (see 4.3);

the fundamental similarity between these two definitions provides a natural map <f>

from algebraic to etale A-theory (see 4.4). Proposition 4.2 verifies that the algebraic

A-theory of Definition 4.1 agrees with Quillen A-theory [32], while Proposition 4.5

shows that in most cases etale A-theory has a straightforward homotopy-theoretic

interpretation. The last part of the section deals with properties of the natural

transformation <j> in degrees 0 and 1.

Here and in what follows, B@e + is the J^sscheme over R defined in Proposition

3.5 and B^e* the associated J^X J^sscheme of Proposition 3.6. The mod /" Moore

spectrum S° U ,. e1 with bottom cell in stable dimension zero is denoted M(v).
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4.1 Definition. For any A-algebra A, the algebraic K-theory spectrum of A is the

ring spectrum

KA = Sp(rlomg{A, bW*~)r)

with ring structure provided as in [25, p. 339] by the J^X J^space Homg(A, B&e *)R

and the associated maps involving it (see Proposition 3.6). The algebraic K-theory

space KA is the ring space KA = (KA)0. The algebraic K-groups of A are defined for

i > 0 by

Ki(A) = iriKA,       Kl(A,Z/r) = ir,(KAAJt(v)).

Remark. To obtain the above ring structure, [25] requires that the natural map

(see 3.6).

Homg(,4, bW^)r -* Homg(^l, BW*~)R X Homg(A, BW*~)r

he an equivalence. This follows from Proposition 3.6 and the fact that a simplicial

homotopy Y ® A[l] -» Z induces a homotopy Homg( A, Y) X A[l] -» Homg( A, Z).

4.2 Proposition. For any R-algebra A, the ring •nifKA = ir*(KA) is naturally

isomorphic to the Quillen K-theory of A [32] with its usual ring structure [20].

Proof. By Proposition 3.2, KA is a group completion of the space

LJ Homg(^, BGL„)R = Homg{A, bW^)r(1)
«3»0

with respect to the external direct sum operation. By results in the appendix, this

union of geometric function spaces is equivalent (in a way which preserves the sum

operation) to UPBlso(P), where P runs through the set of isomorphism classes of

vector bundles over A ( = finitely generated projective ^-modules). The first part of

the proposition now follows from [16, p. 228 and 26]. A crucial point [16, p. 226] is

that every epimorphism of vector bundles over A can be split—this is false in

general for a nonaffine scheme. The statement about products follows as in [25, p.

302].
4.3 Definition. For any (locally noetherian) sscheme A over R, the etale K-theory

spectrum of A is the ring spectrum

K% = Sp(Hom;(A, BWl)r)

with ring structure provided as in [25, p. 339] by the J^x J^space Hom^ A, B^e*)R

and the associated maps involving it (see Proposition 3.6). The etale K-theory space

Kf is the ring space A^! = (K<3j-)0. The etale K-groups of A are defined for i > 0 by

K?(X) = ir,K%,        K?(X,Z/I") = ir,(K« AJt(v)).

4.4 Proposition. For any noetherian R-algebra A, the map of Proposition 2.5

determines a natural map of ring spectra <f>: KA -» KCA. This map induces homomor-

phisms

4>*: K*(A) - Ke:(A),       **: Km(A,Z/l') ^ K$(A,Z/F),

which are ring homomorphisms for l" 4= 2. Moreover, the rings involved are associative

for lv + 3 and commutative for l" ¥= 4,8.
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Proof. This follows immediately from the naturality of (2.5), the naturality

properties of the pairing construction in [25], and the results of [1].

Remark. The natural transformation (4.4) can be extended from neotherian

A-algebras to schemes quasi-projective over such algebras by "Jouanalou's device"

[13, proof of 1.3]. However, this construction has the disadvantage of being natural

only up to homotopy.

Assuming finite cohomological dimension, we give a more explicit formula for the

etale A-space.

4.5 Proposition. Let X be a connected sscheme over R with (etale) Z/l-cohomologi-

cal-dimension [28, VI.1] equal to d < oo. Then for any n > 1 there is a natural

homotopy class of maps Z X Hom^A, BGLn)R -» A" which is a (2n — d)-

equivalence. In addition, for any n > 1 there exists a natural homotopy class of maps

(Y,«)„^ rlom,{X, BWl(S"))R

such that the induced map

K% -» 0"Hom,( A, BWl(S"))R

is a weak equivalence on the connected component of the base point.

Proof. Recall from [14, §8] that the homotopy fibre of B¥e~*(n)^ Rex is

equivalent to [(LI^o^GL^C))*"] A, where BGLk(C) is the classifying space of the

Lie group GLA.(C). It follows that Hom,(X, B@e*)R is a special J^space. Since

(5GL„)£-> (BGLn + x)R is a fibrewise (2n + Inequivalence for each n > 0, the

induced map

Hom/( A, BGL„)R -» Hom,( A, BGLn + x)R

is a (2n — d )-equivalence (see the proof of 2.10 for the obstruction theory that leads

to this conclusion). Therefore A", as a group completion of

Homl(X,BWm~(l))R= U Hom,(X,BGLk)R,
k>0

is equivalent to Z X lim^, Hom^ A, BGLk)R [26]. The first part of the lemma

follows.

If A is a space and T* a simplicial space, there is a natural map

diagHom(S, T*) -> Hom(S,diag T»)

which sends a /c-simplex S X l\[k] -* Tk to the composite S X t\[k] -> Tk X A[/c]

-* diagT*. Since B^e*(S")R receives a map over Ret from the diagonal of k >->

BlZe *((Sn) k)R ,    this    construction    determines    a    map    (Ke^)„   -*

Hom,(X, B@e*(S"))R. Looping n times produces the stated equivalence because

the natural map

2"/A A   Z X   lim   (BGLk)R    -> B&e*(S")R

k

has an adjoint which is a weak equivalence on each connected component. (Here

~S.n/R A (-) is the n-fold fibrewise suspension functor over Aet.)
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In [13] the groups A,e,(*) and A,et( A, Z/l") axe defined in terms of the homotopy

groups of the space lim Horn,(A, BGLn F), where A is a sscheme defined over a

complete discrete valuation ring F over R with separably closed residue field and

BGLnF=BGLnxRF

4.6 Corollary. // A is as above and has finite Z/l-cohomological dimension, the

etale K-groups Kf(X) with i > 0 and Kf\X, Z/l") are isomorphic to those defined in

[13].

Proof. For A,e,(A) with i > 0 and K]\X,Z/l") with j > 1, it suffices by

Proposition 4.5 to prove that the natural maps

Hom,(A, BGL„F) -> Horn,(A-, BGLn)R

axe equivalences for each n ^ 0. Since Fel is contractible and since the structure map

Aet —> Aet  factors through Fel,  these equivalences are implies by the  fibration

sequence (£GLn F) A-> (BGLn)R-> Rel. Foxj = 0 or 1, apply the argument of [13,

1.2] in conjunction with the above equivalences.

Let GrassOTM denote the projective A-scheme representing locally free coherent

sheaves of rank n generated by m global sections, According to [10] there are natural

maps (in the category of sschemes over R)

Grassm,„ «- fi(GLm/GLm_„,GL„,,) -» BGL„

such that on /-adic etale topological types the left-hand map induces a fibrewise

equivalence over Aet and the right-hand map a fibrewise (2m — 2n + Inequivalence.

4.7 Proposition. // A is a connected sscheme over R of finite Z/l-cohomological

dimension, there is a natural isomorphism

80: Kq(X) -> Z X   lim    hm w0Hom/(A,Grass„+it „)R.

n

Moreover, if X = Specv4 is affine and P is a rank n projective A-module, then 80<j>([P])

is represented by the pair (n, tpa : Ael —> (Grass„, „)R) where tp: A -> Grassm n is the

classifying map associated to some surjection A®m -» P.

Proof. The existence of 80 follows from Proposition 4.5 and the above remarks.

For the second statement, choose a splitting A®m = P © Q for some surjection

A®m _, p if u _» a is an etale hypercovering such that the restriction of P to U0 is

trivial, then a choice of trivialization for P on U0 determines gP: U -* BGLn (as in

the appendix) while the splitting A ®"'= P ® Q determines a lift gP: U -»

5(GLm/GLm_„,GL„»). By construction, <t>([P]) is represented by the homotopy

class gf: Uet -> (BGLn)R in ir0Hom,(U, BGL„)R, so to prove the proposition it is

enough to check that the following square commutes:

U     5      /?(GL„,/GLm_„,GL„J

i i

A      i     Grass,,,,

This follows from an explicit calculation with gP and rP.

There is a similar result in the case of dimension 1.
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4.8 Proposition. // A is a sscheme over R of finite Z/l-cohomological dimension,

there is a natural isomorphism

6X: Ke,l(X) =   lim TToHom^A.GLj^.

n

Moreover, if X = Spec^4 is affine and a e GL„(,4) is an invertible nXn matrix over

A, then 8,§(a) is represented by the map a A: Aet -» (GL,?)^.

Proof. Let £GL„ denote B(GLn, GL„,) [14, 1.2], so that for each « > 0 there is a

pullback diagram (of sschemes over R):

GL„     -.     EGLn

i i

R       ->     BGLn

This becomes a homotopy fibre square of /-adic etale topological types and so gives

a fibration sequence

Hom^A.GLjj, -> Horn,(A, EGL„) R -> Horn,(A, BGL„)R.

Since EGLn is simplicially contractible to R, the space Hom,(X, EGLn)R is

contractible and so the isomorphism 8X can be constructed from Proposition 4.5 and

the long exact homotopy sequence of a fibration.

In the case A = Spec<4, the natural maps of Proposition 2.5 determine a com-

mutative diagram

GL„(A) ~»      Hom(A,EGLn)R      - BGL„(A)

-4/ ^ ^

¥Lom,(A,GL„)R     -»     Hom,(A, EGLn)R     -»     rlom,(A, BGLn)R

in which the rows are fibration sequences. By the argument of 4.5, the map $:

KX(A) -* Kxl(A) is equivalent to the abelianization of the direct limit of maps

itx(BGLn(A)) -* irx Hom,(A, BGLn)R induced by the right vertical arrow above. It

follows that 8X o $ is induced by the left vertical arrow above.

5. Relationship to cohomology. The purpose of this section is to construct a

spectral sequence relating etale A-theory to etale cohomology. One of the major

attractions of etale A-theory is the fact that in many cases it can be computed, either

with the spectral sequence or by some other technique. Theorem 5.6 contains a

periodicity statement for mod /" etale A-theory, which is proved by working with

spectral sequence product structures.

As usual, R denotes Z[l//]. Since adjoining an /-primary root of unity to an

A-algebra A determines a finite etale extension, the sheaf pr of /"th roots of unity

[28, II.2.18] is locally isomorphic to the constant sheaf Z/l" for the etale topology on

R. In particular, pr determines a coefficient system (see Definition 2.7) on Ret,

which for brevity is also denoted pr. Let Z//"(0) denote the constant coefficient

system Z/l" and, for any k > 0, let Z/l"(k) he the coefficient system given by the

/c-fold tensor power of pr. In addition, for any k > 0 let Z,(k) he the pro-object of

coefficient systems on Rel given by {Z//"(/c)}„>0. To simplify the statements that

follow, we will use the convention that Z/l"(k/2) and Zt(k/2) axe the zero

coefficient systems unless A: is a nonnegative even integer.
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5.1 Proposition. Let X be a connected sscheme over R of finite Z/l-cohomological

dimension. Then there is a natural, strongly convergent, fourth-quadrant spectral

sequence

E2p--q = npoM(Xct, Z,(q/2)) => A«_,(A).

Remark. Continuous cohomology was defined in Definition 2.8. Note that the

natural summand of Z in Kq(X) is /-adically completed in the abutment of this

spectral sequence; in all other respects there is strong convergence in the ordinary

sense.

Proof. Using Proposition 4.5, interpret A*(A) as ^^Hom^A, B&e*(S"))R

for some n > 0. It is clear from the proof of 4.5 that this involves the abovemen-

tioned /-adic completion when * = 0. Consider the spectral sequence of Proposition

2.10

'Erq = H^Dt(Xei, UqBW;(S")^/Rel)

~irq_pHoml(Xet,BWm~(S")Z)R,

where the basepoint is provided by the natural map A -> R -* B@e*(S"). Define

the spectral sequence £*•* by Ep~q ='Ep-~q~". To identify the £2-term, observe

that the fibre of B^e\(S")R -* Ret is equivalent to the n-fold connective delooping

of Z/(0) X 5GL00(C)A, so that the homotopy pro-groups of this fibre are abstractly

isomorphic to {Z//"}1,>0 in degrees of the form n + 2k, k > 0, and zero otherwise.

The action of irxRel on the pro-group in dimension n + 2k is induced via delooping

and the Hurewicz homomorphism by the action of 77jAet on the 2/c-dimensional

fibre cohomology in the fibration

/?GL,(C)A^(/?GL,)^Aet.

Modulo decomposable elements, this fibre cohomology is generated by the kth

Chern class ck; it follows from the fact that this class is algebraic that the dual

homotopy pro-group affords the ^ A ̂ -representation Z,(k). See [12, 5.5] for more

details. The fact that A has finite Z//-cohomological dimension implies that 'E{-q = 0

for p sufficiently large, and so the convergence criterion of Proposition 2.10 is

satisfied.

There is a similar spectral sequence for mod /" etale A-theory.

5.2 Proposition. Let X be a connected sscheme over R of finite Z/l-cohomological

dimension. Then there is a natural, strongly convergent, fourth-quadrant spectral

sequence

Ep-~q = Hp(Xel,Z/r(q/2)) => Kq%(X,Z/P).

Proof. According to Definition 4.1, §3, Proposition 4.5 the spectrum W = Ke^

can be constructed from the collection of spaces W,,i^ 0, given by

W,= Homl(X,BWl(S,))R.

For each n > 0, let W(n) be the spectrum constructed from the collection of spaces

W(n)„ i > 0, with

W(n), = Hom,(Xet,(BWt;(Sl)Z)/Rjn + i)) R.
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It follows from the various definitions that the spectral sequence of 5.1 for tr*kcy is

exactly the homotopy spectral sequence associated to the tower of spectra {W(n)}„>0

by the procedure of [3, IX, 4.2]. In particular, the £2-formula in 5.1 is equivalent to a

calculation of it* fibre (W(n) -> W(n - 1», n > 0, in terms of H*nt( Ae„ Z,(n/2)).

The spectral sequence of this proposition is defined to be the homotopy spectral

sequence of the tower {W(n) A Jt(v)}n>0; it is straightforward to calculate

the E2-texm by showing that for each n > 0 the homotopy groups of the fibre

of the natural map W(n) AJt(v) -* W{n - 1) AJt(v) are given in terms of

H*(XeVZ/r(n/2)).

The spectral sequences referred to in the following lemma are the spectral

sequences of Proposition 2.10 in the special case in which all of the pro-spaces

involved are trivial, i.e., are actual spaces.

5.3 Lemma. Let g: V —> B and h: W -> B be Kan fibrations with given sections and

let g A h: V ABW -* B denote the mapping fibration of the fibrewise smash product of

g and h. For any f: U -> B, consider the associated smash product pairing of function

spaces

Hom(U, V)B A Hom(t/,W)B-> Hom(<7, V ABW)B,

where the function spaces are pointed by the given sections. Then this pairing induces a

pairing of homotopy spectral sequence

p:Erp--q(U,V) ® Ep'--q'( U, W) -> Ep+p'--q-q'(U,V ABW)

with the following properties:

(1) On E2, this pairing is induced by cup product in cohomology and smash product in

homotopy of the fibres

H"(U, UqV/B) ® Hp\U, Llq.W/B) -* Hp+p'(U, Uq+q,V ABW/B).

(2) For v e Ep--"and w e £/•"«',

dr(piv ® w)) = p(dr(v) ® vv) +(-l)pp(v ® dr(w)).

(3) The pairing on Er+ x for r > 2 is induced by that on Er, and the pairing on Ex is

induced by that on Erfor all r > 2.

(4) The pairing on Ex is compatible in the usual sense with the smash product pairing

irq_pUom(U,V)B®irq._p,lLom(U,W)B-*irq+q,_p_p,(U,VABW)B.

Proof. We will sketch the construction of a pairing satisfying (3) and (4), and

omit the verification of (1) and (2) (see, for instance [4]).

For any fibration Z -» B with given section and any pair i, j with 0 < i < j, let

Z(i,j) denote the relative (i - l)-connected cover of theyth Moore-Postnikov stage

of Z -> B. More precisely, Z(i, j) lies in the pullback square (see 2.2)

Z(i, j)     -        Z/B(j)

1 I

B -+     Z/B(i - 1)
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in which the lower horizontal map is induced by the given section B -> Z. By

definition, the homotopy spectral sequence for Hom(U, Z)B is the spectral sequence

associated to the exact couple:

0 v„Hom(£/, Z<°<<7»b -  ® ^-pHom(U, Z(0, q-l))B

/
/

/

®irq_pHom(U,Z(q,q))B

The Ef~ q-gxoup in this spectral sequence is isomorphic to

image { 77^ Hom(f/, Z(q,q + r - 2)) B -> irq^pHom(U, Z(q - r + 2,q))B).

The pairing asserted in the lemma can therefore be derived in a straightforward way

from the natural maps

V(q, q + r-2) ABW(q', q' + r - 2> -* (V ABW)(q + q', q + q' + r - 2).

5.4 Proposition. Let X be a connected sscheme over R of finite Z/l-cohomological

dimension. Then for /" # 2 there are natural bilinear pairings on the spectral sequences

of Propositions 5.1 and 5.2. These pairings have the following properties:

(1) On E2, the pairings are induced by cup product

#£,„,(*e,.Z/(<7/2)) 9 Hpml{Xe{,Z,(q'/2)) -> H£?{Xel,Z,(q/2 + q'/2)),

Hp(Xel,Z/r(q/2)) ® Hp\Xel,Z/r(q'/2)) - Hp+p\Xet,Z/r(q/2 + q'/2)).

(2) and (3) As in (5.3).

(4) The pairings on E^ are compatible with the pairings of §4,

Ar(A)®A;'(A) -+kr+j(X),

Kfl(x,z/r) ®Kf(x,z/v) -+ Kfl+J(x,z/r).

Proof. The ring structures of §4 are derived from the object B@e* of 3.6. There

are maps

bW^(s")x2^- bW*~(s" x sn) -* B~¥T*(s2n)

of sschemes over R which determine (up to homotopy) pairings

BW~*(sn)R a RabW~*(s")r - bW*~(s2")r

of pro-spaces over ReV These pairings pass to maps

Hom,(A, BW*~(Sn))R A Hom,(A, bW7,(S"))r -> Hom^A, B <$e * (S2")) R

which (see 4.5 and [25, Appendix]) determine the ring structure of A* (A). Conse-

quently, the natural extension of 5.3 to pro-spaces over Rei gives a product structure

on the spectral sequence of 5.1. The corresponding product structure on the spectral

sequence of 5.2 can be obtained formally by working in the stable category (proof of

5.2) and using a suitable product map Jt(v) A Jt(v) -* Jt(v) [1].
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Let f be a primitive /"th root of unity (if / = 2 assume v > 2) and let Bv e

K2(R($), Z/l") be the image of 1 mod /" under the map

z//" - ir2(BZ/r,z/r) -* K2(R($),z/r)

induced by the homomorphism Z/l" -» R(l)* = GLX(R(^)) sending 1 to f.

Remark. O. Gabber has pointed out that the proof of 8.4 below proceeds from an

implicit assumption that the above map Z/l" -» K2(R(l),Z/l") is a group homo-

morphism. This can be verified if /" =£ 2 by a straightforward calculation which

compares homotopy to homology by the Hurewicz map.

We recall that, since /" + 2, /?[f ] has finite Z//-cohomological dimension [37,

III 1.3].

5.5 Lemma. The image of Bv in K2(R(l),Z/lv) maps under the edge homomor-

phism of the spectral sequence of Proposition 5.2 to a generator of the cyclic group

H°(R(Oet,z/r(i)).

Proof. Let A = R(£). By naturality there is a commutative diagram

K2(A,Z/P)      -     KX(A)        ^      KX(A)

i<j> |<f> 1<J>

K?(A,z/r)   -*   k?(A)    -    k?(a)

4- -ir v

0 - H°(Ael,Z/r(l)) - Hlconl(Aet,Z,(l)) ^ Hlcom(Aex,Z,(l))

in which the lower vertical arrows are spectral sequence edge homomorphisms and

the left-hand horizontal arrows are Bockstein homomorphisms. The rows in this

diagram are exact (the lower one because H®onx(AeV Z,(l)) vanishes [37, III.1.6]). It is

easy to see that the maps in the center column are part of a commutative diagram:

KX(A)       ^     Homg(A,GL,)R = A*

I <P i
det

K?(A)      -      770Hom/(^,GL1)/? = //c1om(^e.,Z/(l))

Comparing the fibration sequences

/*
Homg(A,pr)R     -»     Homg(A,GL,)R     -»      Hom^^GLj^

Jy J^ Ay

Hom,(A, pr)R     -»     Hom,(A,GL,) R      -»      Homi^GL,)^

now leads directly to the conclusion that the /"-torsion subgroup of K,(A) maps

isomorphically above to the /"-torsion subgroup of H^ont(Aet,Z,(l)). It follows that

if x is an element of K2(A,Z/lv) then the image of x in H°(Aet,Z/l'(l)) is a

generator of this group if and only if the image of x under the Bockstein homomor-

phism is a generator of the /"-torsion subgroup of K,(A). By construction, Bv has

this second property.
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5.6 Theorem. Let I be a primitive l"th root of unity, and let X be a connected

sscheme over R(£) of finite Z/l-cohomological dimension. If I = 2, assume v > 2. Then

the cup product map /?„(-): Kf(X,Z/l") -► Kf+2(X,Z/l") is an isomorphism for

i > 0.

5.7 Remark. It is not hard to prove stronger periodicity results by exploiting the

construction of "Bott elements" in [8]. For example, suppose that / is odd, let K be

an algebraic number field and A the integral closure of R in A. Then if A is a

sscheme over A of finite Z//-cohomological dimension, the groups A,et( A, Z/l") are

periodic of period 2d, where d is the degree of the field extension K(pr)/K.

Proof of 5.6. Let A = R(£), and let />„ be the image (see Lemma 5.5) of Bv in

H°(Aet, Z//"(l)). Since bv is a generator of this group (see 5.5), cup product with b„

gives isomorphisms

bvU -://'(Aet,Z//"(/c)) = //'(Aet,Z//"(/r+ 1)), i,k>0

(see [37]). By 5.3, multiplication by /?„ on K%( X, Z/l") corresponds on the £2-level

of the spectral sequence of 5.2 to the isomorphism given by multiplication by bv.

Inspection of the spectral sequence shows that multiplication by Bv induces an

isomorphism on the associated graded of A*(A,Z/l") and therefore by Bv on

K%\ X, Z/l") itself.

6. The transfer. This section contains a construction of the transfer map in

algebraic A-theory and a parallel construction of the transfer map in etale A-theory.

These transfer maps are induced by naturally defined maps of J^spaces, and they

commute with the natural transformation <£ from algebraic A-theory to etale

A-theory.

Throughout this section, m will denote a fixed positive integer and p: Y —> A an

m-fo\d locally trivial covering of sschemes over R. (This means that p is finite and

etale of degree m in each dimension and that the restriction of p to some hyper-

covering U -* X determines a degree m covering map it ■ (U XXY) —> ir ■ U.)

Let S denote the set {l,...,m} and 2 = 2m the group of permutations of S. Let 2

be the category with object set 2 and exactly one morphism between any two

objects; the nerve of 2 is a contractible space £2 on which 2 acts freely. For any

subgroup p c 2, space A and space (respectively A-sscheme) Z with left p-action,

the symbol A X pZ (resp. A ®pZ) will stand for the quotient of A X Z (resp.

A ® Z) by the diagonal action of p.

6.1 Definition. Let p be a subgroup of 2. A classifying map for p: Y -» A (with

respect to p) is a geometric map (see 2.6)/:A—>£2 ®p/? which can be represented

by an actual map U -» £2 ®p R that fits into a cartesian square:

UxxY     -»     (£2xS)®pA

i I
U -» £2®pfl

Such a classifying map is obtained by choosing a hypercovering U -* X which

trivializes p in each dimension and defining U -» £2 ®p R to be the map over R

induced by any simplicial classifying map tt ■ U -* £2/p of the simplicial covering

77 ■ (UXXY) -> it ■ U.
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6.2 Proposition. Let f: A-~>£2 ®p A be a classifying map for p. Then for any

sscheme Z over R there is a natural commutative square

Homg(A,£2®pZx'")£28^      t      Homg(T,Z)«

I i

Hom/(A,£2®pZx'")£^pR      t      Homl(Y,Z)R

in which the vertical maps are of type in Proposition 2.5 and the map \p is an

isomorphism. Moreover, if the natural map

(Z   m)et -* Zet X „b ■ ■ - xfin Zet

becomes an equivalence after fibrewise l-adic completion over Ret, then \pet is an

equivalence.

Proof. If U -* £2 ®p/? represents / and U' is a hypercovering of A which

refines U, then a r-simplex U' ® A[r] -» £2 ® ZXm is sent by t// to the composite

/ \ h proj
({/' X^F) ® A[f] ^(£2 X 5,)®pZXm -> Z

where /i is defined by the cartesian square

({/' Xxy) ® A[f]      ->      (£2 X A) ®pZXm

I I

c/'®A[r] -> £2®pZXm

and proj is induced by the 2-map (£2 XS)®ZXm-»Z sending (a, i, z„...,zm)

to z,. It is easy to check that this construction gives a bijection.

HonuV, £2 ®pZx'")£28p/? - Hom([/' XXY,Z)R.

The fact that ^ is an isomorphism is deduced by passing to the direct limit in U' and

using the fact that any hypercovering V of 7 is dominated by one of the form

U'XXY.

In the same vein, a map

is sent by t//et to the composite

/ \ r    ■.     *     I . , v      \ A (Pr°j)c,

((/'xxy)tlxA[(]-((nxi)®pzx"')B  -» zRA,

where k is defined by the cartesian square

([/' x,y)cl x A[/]     -     ((£2 X S) ®pZx"')(A£SxW

I I

^XA[/] - (£2®pZx-)£A28pfi
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and (proj)et is derived from the map proj above. There is a map

Hom,(Aet, £2 xp {Zf)*"')^^ -» Hom,(Y, Z)R

defined in the same way as \p, and it is easy to see that this map is an isomorphism.

Moreover, if Z satisfies the stated hypothesis, then by the product properties of the

fibrewise completion functor [3] the natural map

£2XpZX-)£S8p^£2Xp(z;)X

is an equivalence. It follows then that the composition \pcl of the above constructed

maps is an equivalence.

6.3 Proposition. Let f: X— ->£2 St^R be a classifying map for p: Y -» X, and let

B&e * be the SF-sscheme over R of Proposition 3.5. There is a naturally constructed

commutative square of ̂ -spaces.

Homg(A,£2®p/?Wx'")£28^        ^      Homg( A, BW*~)R

1 I

Homi(x,E2®pBW;Xm)E^pR      *      Horn'*, BW*~)R

in which the vertical maps are of the type found in Proposition 2.5.

Proof. According to [23, p. 81] there is a 2-equivariant sum functor 2 ® <3effm —>

^4 where 2 acts diagonally on the left and trivially on the right. Passing to the

diagonal of the nerves of these sscheme-categories as in 3.5 gives a 2-equivariant

map £2 ® B¥?i<m -* BW* which induces a map T: £2 ®p5^?Xm -> B~W* of

J^sschemes. The maps 8 and 6el axe induced by T.

Propositions 6.2 and 6.3 lead to the transfer map.

6.4 Theorem. If X and Y are affine, the diagram of ̂ spaces

Homg(Y,BW~*)R      &      Homg(A,£2®pJBWx'")£28pR

^      Homg{X,B&e*<>")R

determines up to homotopy a map of spectra p,: Ky -> K^-. The corresponding diagram

of ̂ -spaces

Hornby, B9t*)R     &     Hom/(A,£2®p/?SrYx'")£2^

*-+      Yfom,(X,BWl)R

determines up to homotopy a map of spectra pf: Key -» Ke^. The maps p, and pf fit

into a homotopy-commutative square:

P\
Ky -» K^

i <t> J. <J>

Ket £fet
v *» v

Y fi
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In addition, p, and pf do not depend up to homotopy on the choice of a classifying map

for p: Y —> A, and the map on homotopy groups induced by p, is the usual transfer map

p,:K*Y^K*X [32,p. Ill],

Proof. The existence of p,, pf and the commutativity statement are immediate

from 6.2 and 6.3. To verify that pf, say, is independent of the choice of the

classifying map for p: Y -* X, consider two classifying maps /, g: X— -»£2 <8><tR,

together with the corresponding transferspf(f),pf(g)- Since/and g axe related by

a simplicial homotopy h: X ® A[l]—>£2 ®^ R, the mapspf (/) and pf(g) are both

deformation retracts of pf (h): Ky8A[1] -» K"0A[1].

Suppose that A = Spec/I, Y = Spec B, and that A' is a finite etale A -algebra such

that B ®A A' is a disjoint union of m copies of B. In this case the maps \p and 8 axe

determined (via descent—see appendix) by maps

GLn{B 9AA') - 2m X GL„(A')Xm - GLmn(A')

where X denotes semidirect product. This is one of the usual constructions of the

Quillen transfer map [32, p. 111].

6.5 Remark. The mapsp, andpf determine maps Ky A Jt(v) ->K^A Jt(v) and

Ky AJt(v) —> Kex A Jt(p). This gives transfer homomorphisms on etale or alge-

braic A-theory with coefficients mod /".

The following lemma is used in §7.

6.6 Lemma. If p: Y -» X is a trivial covering (i.e., Y is isomorphic via p to a disjoint

union of m copies of X), then the above transfer map K%l(Y, Z/l") -* A*(A, Z/l") is

split surjective.

Proof. In this case K%(Y, Z/l") * 0m K%(X, Z/l"), and it follows directly from

the above constructions that the transfer map is the sum homomorphism

® K%(x,z/r) -i K%{x,z/r).
m

7. Galois descent and secondary transfer. Proposition 7.1 shows that etale A-theory

satisfies descent for a general Galois cover. Theorem 7.4 constructs a secondary

transfer map in algebraic A-theory or etale A-theory for a cyclic Galois cover—the

indeterminacy of this secondary transfer map is the image of the (primary) transfer

map constructed in §6. The section concludes with Theorem 7.9, which uses Galois

descent over a tower of cyclic maps to show that the secondary transfer in etale

A-theory is surjective for a cyclic map which belongs to such a tower.

Throughout this section, m is a fixed positive integer and p: Y —> A is a Galois

map of sschemes over R with Galois group T » Z/m; in other words p is finite, etale

and principal with group Y. If T is treated as a subgroup of 2 = 2m via the regular

embedding, then the transfer machinery of §6 applies to this situation with p = T. If

Z is a sscheme over R, then for brevity K" will denote the mod /" etale A-theory

spectrum K" AJt(v).
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7.1 Proposition. There are natural equivalences of spectra

Ke^ holim Kf,       Kex^ holim Kf,

r r

where the action of T on Kf and on Ky is that induced by the action of T on Y.

Proof (cf. [8, Theorem 9]). Let B denote the object (B^e*)R over Aet. Since

smashing with the finite complex Jt(v) commutes with taking stable homotopy

inverse limits, it is enough to verify the following chain of J^space equivalences:

Horn/(A, BW*~)R = Hom,(Xei,B)R[

^ Horn,(YctXrET,B)Rci

^ Homr(£l\ Hornby BW*~) R)

^ holim Horn,(Y, BW*~)R.

F

The first row is the definition of Hom^-, •), the map of the second row is an

equivalence induced by the equivalence Yet xrET -» Aet, the map in the third row

comes from an adjointness construction and the definition of Hom^-, •), while the

map in the bottom row is essentially the definition of holim

7.2 Corollary. Let X be a sscheme over R of finite mod / cohomological dimension.

Suppose that X «- X, «- A2 • • • «- Xn *- • • • is an infinite sequence of maps such

that each Xn is Galois over X, each group Tn = Gal(A„/A) is cyclic, and

lim unorder r„) = oo, where v,(-) is the l-adic valuation. Then the natural map of

spectra

Kex^>   lim  K^

n

is equivalent to the inclusion of the homotopy fibre of the map

1 - y:   lim  Ke^ -+   lim Ke^,

n n

where y is a topological generator of lim   Yn.

Proof. The homotopy fibre of the map 1 — y is

holim  | lim Ke^  ,

Z n

where the generator gGZ acts on Ke^ through Z -> T„ sending g to the image of y.

By Proposition 7.1 it is enough to show that the natural map

lim     holim Ke^    ->  holim    lim Ke^

n r,( Z n
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is a homotopy equivalence. For each n there is a spectral sequence [3]

Ei'-J(n) = H'(T„, Kf(Xn,Z/l")) =» Kf_,(X,Z/l").

This spectral sequence converges strongly—in fact, it can be mapped to the

Atiyah-Hirzebruch spectral sequence (see 5.2)

£<■-; = H'(Xel,Z/l"(j/2)) =* Kf_,(X,Z/l")

in a way which covers the identity map on abutments. This implies that the

Z//-cohomological dimension of A gives a global bound (independent of n) on the

filtration of elements in E**(n). It follows that there is a strongly convergent direct

limit spectral sequence

£<-->(oo) =   hm //<(r„, Kf(Xn,Z/l")) =* A/!,(A,Z//").

n

The proof is completed by comparing this with the spectral sequence

'^•-■'(oo) = //' Z, lim Kf(X„,Z/lv)\ =» «ry_, holim     lim KeAJ

n Z m

and using the fact that Z -» {Tn} is a Z//-equivalence to conclude that E'2 ~7(co) ~

'El>-J(ao).
The construction of the secondary transfer depends upon a choice of homotopy.

The following proposition makes that choice algebraically once and for all.

7.3 Proposition. A choice of generator y e T determines a self-map of ̂ sschemes.

y: £2 ®rfiW^m -* £2 ®r#W x"'

with the property that

0Oy = yoe: Homg(A, £2 ®r/?W x"')E^rR -» Homg(y, SW^,

w/iere y: Homg(y, Z)R -» Homg(y Z)R is induced by the action ofy on Y. Similarly,

8ei ° y = y ° 8et. In addition, there is a natural simplicial homotopy

H: (£2 ®r5W Xm) ® A[l] ^ £2 ®TB~¥e~ Xm

relating y to the identity map

Proof. Since Y is abelian, the action of y on £2 commutes with the action of Y

on £2 and thus induces y. The asserted equality 8 °y = y ° 8 is proved by observing

that permuting the factors of B^eff™ and then projecting via (£2 X S) ®vB~¥e^m

—> B^e* has the effect of composing with an automorphism of p: Y -» A. There is a

unique (T-invariant) natural transformation from the identity functor 2 -» 2 to the

functor provided by multiplication by y. This gives a T-invariant natural transforma-

tion

id -» y ® 1: 2 ® WXm -> 2 ® WXm

which determines the homotopy H.

Recall (Theorem 6.4) that p, and pf stand for the geometric transfer maps

KY -> Kx and Kf -» K" as well as for the corresponding homotopy group maps.
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7.4 Theorem. If p: Y -* A is a Galois map as above of affine schemes over R, then

the simplicial homotopy of Proposition 7.3 determines a homotopy-commutative dia-

gram of maps of spectra

T

Ky     -»       fibre(p,)

i i

Kf     T->     fibre(pf)

such that the composites

T

Ky-> fibre(p,) -» KY

and

Kf C fibre pf- kf

are both given by 1 — y.

7.5 Remark. The maps of 7.4 give rise to commutative diagrams:

A„(y)r       -      A„+1(A)/image(p,)

i<t> i </>
et

KfiY)T      -5      A:t+i(A)/image(p,)

(Here Gr denotes the subgroup of T-fixed elements in the group G.) The horizontal

maps p,, and pf axe called the secondary transfer homomorphisms associated to p.

7.6 Remark. The above constructions are on the level of spectra, so that applying

the functor -l\Jt(v) gives maps t, rel and secondary transfer homomorphisms with

coefficients mod /".

Proof of Theorem 7.4. There is a commutative diagram of J^sschemes (see 7.3,

proof of 6.3):

_ l _

£2®rfi^/^"' =|       £2 ®rflS?<?,x'"
y

in\ i I in2 I T

(£2 ®rJBWXm) ® A[l]       -> B~W*
v T'H

Applying Horn,(X, -)(-) and taking the spectra associated to the resulting J^spaces

gives a commutative diagram of spectra

1+7

Jy     V    Jy * *3y

i ina i e«

/fet iroi
Y 9" = H X
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where ^et: Jf = Ky and, similarly, 'Jf -» K". The commutativity of this diagram

determines a map fibre(i>iet) -» fibre (8et). Define ret to be the composition

Kf - Jp -* fibre(/«et) -+ fibre(0et) - fibre(pf),

where the first map is the homotopy inverse of ^et, the second is the homotopy

inverse of

«   pr\ »

fibre(i«et) -» J* V J?-» Jf

and the fourth comes from the definition of pf in terms of 0et.

The definition of t is identical, with Hom/(-, -)(_} replaced by Homg(-,-),_,.

The naturality condition of 2.5 produces the desired commutative diagrams.

The following is an analogue of Lemma 6.6.

7.7 Lemma. If p: Y -* X is a trivial cyclic covering (i.e., Y is isomorphic, via p, to a

disjoint union of m copies of X) then the map

iex AJt(p):Kf-* fibre(pf) AJt(v)

is surjective on homotopy.

Proof. As in 6.6 there is an isomorphism

Ae;(y,z//")= © Kf(x,z/r)
m

such that the action of Y on the direct sum is by cyclic permutation. The lemma is

proved by inspecting the diagram

0

I
TA„#(l<)

© Kf(X,Z/l") -^ir*(fihxe(pf) AJt(v))

i ^^-^. *

^^-e k%(x,z/i")
m

i

Kf(x,z/r)
i
0

and using the fact that the right-hand column is exact.

One more fact is needed for the proof of 7.9. Suppose that

Ax     -*     A2     ->     A3

i i i

B,     -     B2     -     #3

1 i i
cx   -   c2   -*   c3
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is a commutative diagram of spaces (or spectra) in which each row and each column

is a fibration sequence. Let dh: ir*A3 -> ir*_xAx he the connecting homomorphism

for the topmost horizontal fibration sequence, and 3„: ir*Cx -» ir*_xAx the connect-

ing homomorphism for the left-hand vertical fibration sequence. Let F be the fibre

of the evident map B2 -> C3, and note that by assumption there are natural maps

/: £ - A3, g: £ - Cx.

7.8 Lemma. In the above situation, suppose that x e ir,F. Then dhf(x) = ±dvg(x)

inir,_,Ax.

Proof. If is not hard to see that up to homotopy there is a fibration sequence

Ax —> F -* A3 X Cx for which the connecting homomorphism 3: 7r,^3 X tt,C, —>

irl^,A, is given by the formula d(u, w) = dh(u) ± 3(1(w).

7.9 Theorem. Let X be a sscheme over R of finite mod / etale cohomological

dimension. Suppose that

xIy=xx^x2+- ■■ .«-*„«-...

is an infinite sequence of maps such that each Xn is Galois over X, each group

r„ = Gal(A„/A) is cyclic and lim v, (order Yn) = oo. Then the secondary transfer

homomorphism (see 7.5, 7.6)

pf. Kf_,(Y,Z/l"f - Af (A,Z//")/image(pf)

is surjective for each i > 1.

Proof. Let Yn = Xn X x Y, so that there is an infinite tower of cartesian squares

y   <-      y,     «-      y2     «-•■•«-      y„     «-

Pi J. /»i J- Pj i Pn

X     «-        Aj        <—        A2        <-...<-        jfn        <-

in which each p„: y„ -» An (n > 1) is a trivial covering. By 7.2 and naturality, there

is a 3 X 3 diagram of spectra

1 — y

fibre pf —      lim fibre(p„)f —        lim fibre(p„)t

4                           I i

Kf -+ lim Keyn ->Y lim Key

I pf 1 lim (/j„)T ilim(/»„)f

Ke; - lim Ke^ V lim K^

in which each row and each column is a fibration sequence, where y is a topological

generator of lim Yn. For brevity we will use the notation of 7.8 to refer to the spectra

in this diagram. Pick x e A,el( A, Z/l") = ir,Cx. By 6.6 the image of x in ir,C2 lifts to

an elemeni of ir,B2 and therefore (by an easy diagram chase) to an element y of ir,F

such that f(y) = x. By 7.8, i)hg(y) = ±3,,(x). However, by 7.4 and a careful
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naturality argument, there is a map of fibration sequences:

Kf       -      lim Key       -7      lim K*

J,tc1 J, lim if 1 lim if

Ax       -*    A2 —>       A3

By 7.7 the element g(y) e iriA3 can be lifted to an element z e T^lim Ky. The

image of z in ir,_xKf = Kf_x(Y,Z/l") then passes to ±x modulo image (pf) under

the secondary transfer homomorphism.

8. Surjectivity theorems. In this section, we will prove the theorems announced in

[7]. The basic result is the statement 8.5 that the natural map from algebraic

A-theory mod /"to etale A-theory mod /"is surjective for fields of Z//-cohomologi-

cal dimension < 2 and for rings of ^-integers in global fields. For a finite field this

map is an isomorphism (see 8.6). The corresponding /-adic surjectivity results (8.7,

8.9) are related to conjectures of S. Lichtenbaum. The section ends with a divisibility

theorem (see 8.10). The reader familiar with [37] will recognize that the strategy

below is just to combine results from the preceding sections with the arguments of

C. Soule.

Recall that a global field is either a number field (i.e., a finite algebraic extension

of the rational number field Q) or a function field (i.e., a finite algebraic extension of

F' (t) for some primep). Let cd,(-) denote (etale) Z//-cohomological dimension. If

£ is a global field, it is known [36, II, 4.4] that cd;(£)< 2 under any of the

following assumptions:

(i) F is a number field and / is odd,

(ii) £ is a number field with no real embeddings and 1 = 2,

(iii) £ is a function field and 1// e F.

The surjectivity results below therefore apply to any global field which satisfies (i),

(ii), or (iii), as well as to any other field £ with cd;(£) < 2, such as a finite field, a

nonarchimedean completion of a number field, or the function field of a surface over

a separably closed field of characteristic different from /.

A ring of 5-integers A in a global field £ is a finitely-generated Dedekind domain

with field of fractions £. If £ is a number field let A = Spec 0, where (3 is the

integral closure of Z in £, while if £ is a function field let A be its associated smooth

complete curve. In either case Spec .4 is obtained from A by deleting a finite set of

closed points (a set which must be nonempty in the function field case). The

localization sequence in etale cohomology [37, III.l] implies that a ring of 5-integers

A in a global field F satisfies cd(^4) < 2 if cd(F) < 2.

Etale A-theory starts out with schemes over R = Z[l/l]. The following well-known

lemma shows that from the algebraic A-theory point of view this is often no real

restriction.

8.1 Proposition. Ler A be a ring of S-integers in a number field. Then the natural

map

K,(A,Z/r)^K,(A[l/l},Z/l")

is an isomorphism for i > 1 and an injection for i = 1.
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Proof. Apply Quillen's localization sequence [32]

■ ■ •  -. K,(A,Z/l") -» Kt(A[l/l],Z/r) -  © K,_x(k„,Z/l") - • • •

in which each k^ is a finite field of characteristic /, so that K,(ku,Z/T) = 0 for

i > 0 [30].

What follows is a three-step proof of surjectivity, first in low dimensions, then in

the presence of some roots of unity, and finally in general.

8.2 Proposition. Suppose that A is either a field F satisfying l/l e £ and

cd,(£) < 2, or a ring of S-integers in a global field F satisfying these conditions. Then

the natural map (see 4.4)

K,(A[l/l],Z/l") -+ Kf(A[l/l],Z/r)

is an isomorphism for i = 1 or i = 2.

8.3 Remark. The above map is not necessarily an isomorphism for i = 0. This

fails even for A = Q.

Proof of 8.2. Let B denote A[l/l]. By calculation (see [29, §§1, 16] and the

appendix to this paper) there are isomorphisms:

, / rank    \ det
A0red£ = kerlK0B -* Z       ->      Pic£ ~ 7r0Homg(£, BGL,)R,

det

K,B -> B* « irxrlomg(B, BGL,)R

Since cd,(B) < 2 and det: (5GL„)et -* (BGLx)et is in low dimensions a fibrewise

/-equivalence over Aet, there are isomorphisms (see 4.5):

(.   .    rank     \   det
A0e,5 -» Z    -+irQlAom,(B,BGL1)R,

KfB -* ir,Hom,(B, BGL,)R

It follows that the map KX(B, Z/l") -* Kxl(B, Z/l") is an isomorphism, since it can

be identified with the connected component map induced by the left-hand vertical

arrow in the following diagram (see 2.5) of fibrations:

Homg(B, Bpr)R     —     Homg(B, BGLX)R      ->      Homg(B, BGLX)R

.1 ^ 4/

Hom,(B,Bpr)R     ->     Hom^^, BGLX)R      -»      Hom,(B, BGL,)R

(The main step in this identification is to use the determinant function to produce a

map from Kfl to the spectrum determined by the tensor product multiplication on

Z X Homg(5, BGL,)R, as well as a map from kf to the spectrum determined by

the tensor product multiplication on Z X Horn,(B, BGL,)R.)

The map of 4.4 together with the edge homomorphisms in the spectral sequence of

5.2 induces a map of short exact sequences:

0 ^ A2(£) ® Z//"       -»      K2(B,Z/l")      -> rK,(B)^0

if I g ih

0 - H2(Bet,Z/l"(2))     -     Kf(B,Z/l")     ->     H°(Bet,Z/r(l)) ^ 0
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The map h is the obvious isomorphism (see above), and the multiplicative properties

of the spectral sequence (see 5.4) imply that the map/is the Galois symbol [40, 3.3].

The Galois symbol is known to be an isomorphism for any field [27]; this finishes

the proof of Proposition 8.2 in the field case. If A is a ring of A-integers, the proof is

completed by applying verbatim the argument of [37, Lemma 10].

8.4 Proposition. Suppose that A is either a field F satisfying l/l e F and

cdj(F) «£ 2, or a ring of S-integers in a global field F satisfying these conditions. Then

if A contains a primitive l"th root of unity and I" ¥= 2, the map

K,(A[l/l],Z/l") - Kf(A\l/l\,Z/l")

is naturally split surjective for i > 1. In particular, the splitting is preserved by the

action o/Aut(^) on the groups involved.

Proof. This follows immediately from 5.6, 8.2 and the multiplicative properties of

the map K*(A[l/l],Z/l") -* Kf(A[l/l],Z/l").

8.5 Theorem. Suppose that A is either a field F satisfying l/l e £ and cd,(F) < 2,

or a ring of S-integers in a global field F satisfying these conditions. If I = 2, assume

that v > 1 and that A contains a primitive 4th root of unity. Then the natural map

K,(A[l/l],Z/l") - K«(A[l/l],Z/r)

is surjective for j > 1.

Proof. Let B denote A[l/l], and B -» B' the cyclic Galois extension obtained by

adjoining a primitive /"th root of unity to B; note that successively adjoining

primitive /* "th roots of unity to B' determines a tower as in 7.9. By 6.4 and 8.4, the

image of K,(B,Z/l") -» Kf(B,Z/l") contains the image of the transfer map

Kf(B',Z/l") -» Kf(B,Z/l"). By 7.9, the cokernel of this transfer map is in the

image of the corresponding secondary transfer map. The theorem now follows from

7.4 and 8.4.

8.6 Corollary. // F^ is a finite field of characteristic different from I, then the

natural maps

K,(Fq,Z/l") - Kf(Fq,Z/l"),       K,{Fq) ® Z, -> Kf (Fj

are isomorphisms for i > 0.

Proof. The case i = 0 is trivial, so assume i positive. Because cd^F^) = 1, the

spectral sequence of 5.1 implies that Kl)(Fq,Z/l") * H°((Fq)evZ/l"(j)) and

K?j_x{Tq,Z/l") « H1((Fq)et,Z/l"(j)). These groups are isomorphic to the known

finite groups K2J(Fq,Z/l") and K2J_,(Fq,Z/l") [30, 5]. This implies that the

surjection K,(Fq,Z/l") -> Kf(Fq,Z/l") of 8.5 is an isomorphism. (There are some

minor points here if / = 2. First of all, if /" > 4 the argument of 8.5 goes through

verbatim for F^ even in the absence of a primitive fourth root of unity, since every

degree 2 extension of a finite field is contained in a Z2-tower. Secondly, isomor-

phism in the case /" = 2 can be derived from isomorphism in the case /" = 4 by a

universal coefficient exact sequence argument.) The proof is finished by using the
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fact that A,.(F ) and Kf(Fq) axe finite groups to construct a chain of isomorphisms

K,(Fq) ® Z, = hm K,(Fq,Z/l") = hm Kf(Fq,Z/l") = Kf(Fq).

8.7 Theorem. Suppose that A is the ring of integers in a number field. If I = 2,

assume that v-T   G A. Then the natural map

Kn(A)®Zl^Kf(A[l/l])

is a surjective for n > 2.

8.8 Remark. The spectral sequence of 5.1 shows that there is an isomorphism

AfU[l//]) = //4nt(,4[l//]et,Z/(i))

where n = 2i — j, j = 1,2. In view of the fact that the groups involved are finitely-

generated Z,-modules, this implies that the conjecture of [33, §9] is equivalent to the

conjecture that the surjection of 8.7 be an isomorphism.

Proof of 8.7. Construct a chain of maps

A„(^)®Z/^  lim Kn(A,Z/l") -*  lim Kn(A[l/l],Z/l")

-  hm Kf(A[l/l],Z/l") - Kf(A[l/l]).

The first is an isomorphism by the finite generation of each Kn(A) [31], the second

an isomorphism by 8.1, the third an epimorphism by 8.5 and finite generation, and

the fourth an isomorphism by the finiteness of H*(A [l//]et, Z/l"(j)) for each j.

Since K,(A) is finite for i > 0 if A is the ring of .S-integers in a function field [17,

18], the proof of 8.7 also gives the following result.

8.9 Theorem. Let A be a ring of S-integers in a function field of characteristic

different from I. If I = 2, assume v-T   e A. Then the natural map

Kn(A) ^ Kf(A) ^ H^(Aet,Z,(i))

(n = 2i — j, j = 1,2) is surjective for n > 1.

The following divisibility theorem is a slightly sharpened version of the one

announced in [7]. The theorem is stated for the ring of integers in a number field;

there is an analogous result for rings of .S-integers.

8.10 Theorem. Let A be the ring of integers in a number field F. If I = 2, assume

f^l e A. For any j > 1, there exists a finite Galois extension F' of F with ring of

integers A' < £' such that

(i) F'/F is a solvable extension, unramified at any (finite) prime not dividing I, and

(ii) the natural map

Kj(A)/toxsion -* Kj( A')/toxsion

has image divisible by I.

Proof. The groups A2,(.4) are finite for i > 0 [2], so the theorem is nontrivial

only forj odd. Theorem 8.7 states that the natural map

A2,_1(/l)®Z/-A2f_1(^[l//])-//c1ont(^[l//]et,Z/(i))
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is surjective for i > 2. Since the ranks of these groups have been computed and

shown to be equal [2, 38] it follows that

(K2i_,(A)/toxsion) ® Z, -> A2f„1(.4[l//])/torsion

is an isomorphism for i > 2. The case j = 1 is easy to handle directly, so it suffices to

exhibit F -* F' such that the image of Kf,_,(A[l/l]) -* Kf,_,(A'[l/l]) is divisible

by /. For this, it is enough to find £^£' such that Kf_x(A[l/l],Z/l) ^

Kfi-,(A'[l/l],Z/l) is trivial, or, equivalently, such that H\A[l/l}eVZ/l(i)) ->

Hl(A'[l/l]el, Z/l(i)) is trivial. If fis a primitive /th root of 1, the extension £[f ]/£

is cyclic and unramified away from /, so it is no loss of generality to require

F = £[?]• Under this assumption, it is enough to construct £ -» F' such that

Hl(A[l/l]el,Z/l(l)) -* Hl(A'[l/l]et,Z/l(l)) is trivial. Consider the Kummer short

exact sequence

0 -> A[l/l]* ® Z/l -> Hl(A[l/l\,Z/l(l)) -»,Pic(i4[l//]) -» 0.

Let £ -> F" be the Hilbert class field extension, an unramified Galois extension

with Gal(£"/£) = PicfA). It is known that Pic(^) -> Pic(^") is trivial, so that

Hl(A[l/l]et, Z//(l)) - H'{A"[l/l]ex,Z/l(l))

has image contained in A"[l/l]* ® Z/l. Let F" -» £' be the composite of the

cyclic extensions unramified outside / obtained by adjoining to F" the /th roots of

enough units in A"[l/l] to generate A"[l/l]* ® Z/l. Then A"[\/l]* ® Z/l -^

A'[l/l]* ® Z/l is trivial, so that Hl(A[l/l]et,Z/!(l)) -^ H\A'[l/l]ex,Z/l(Vf) is

trivial, as required.

Appendix: The space Homg(A, BG)S. The construction of the algebraic A-theory

spectrum given in 4.1 involves geometric function spaces Homg(A, BG)S (in the

special case S = Spec R, G = GL„). The purpose of this appendix is to calculate the

homotopy type of such a function space. In the appendix, G will denote a group

scheme over an arbitrary (but fixed) base scheme 5. If U is a sscheme over 5, then as

usual hom(U, BG)S will denote the set of maps from U to BG over S and

Hom(U, BG)S the function space of maps from U to BG over 5*.

For any sscheme U over S, let Zl(U, G) denote the set of all maps /: U, -» G

(over S) which satisfy the (cocycle) condition

(f°d2)-(fod0)=fodx:U2^G.

A.l Lemma. There is a natural isomorphism hom(U, BG)S -* Zl(U, G) given by

Proof. This is an elementary consequence of the definition of BG [14,1.2].

Let 3VX(U, G) denote the category whose objects consist of the elements / in

Zl(U,G). A morphism h: f -> /' in this category is by definition a function h:

[/0 -» G (over S) such that f-(h°d0) = (h° d,)-f: U, -» G. If h is a morphism

/ -> /' and /i' a morphism /' -> /", then h ■ h': U0 -» G represents the composite

morphism/ -» /".
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A.2 Lemma. The set Zl(U ® A[l], G) is naturally isomorphic to the set of arrows h:

fo ~* fi m tne category Jifl(U, G). More generally, the set Z\U ® A[«], G) is naturally

isomorphic to the set of diagrams

h\ h2 h„

fo -* /l -» fl -*   ■ • ■   ~*fn

inJff\U,G).

Proof. This follows from a direct calculation with the 2-skeleton of U ® A[«].

Lemmas A.l and A.2 together imply

A.3 Lemma. The function space Hom([/, BG)S is naturally isomorphic to the nerve

of the category Jf\U, G).

Let A be a scheme over 5 and let U -» X he an etale hypercovering. Denote by

TX(G) the category of G-torseurs over A and by TX(U, G) the full subcategory of

TX(G) containing those G-torseurs P which are c/0-trivial, i.e., P\v = U0 X G.

A.4 Lemma. There is a natural functor Jf?l(U, G) -» TX(U,G). This functor is an

equivalence of categories.

Proof. There is one way to express the basic result of the theory of descent [6,1-4;

15, III.3.6].

In conjunction with A.3, Lemma A.4 leads to the following result.

A.5 Lemma. Let X be a scheme over S and let U -» A be an etale hypercovering.

Then there is a natural map from the simplicial set Hom(U, BG)S to the nerve of the

category TX(U, G). This map is a homotopy equivalence.

Taking a direct limit of the equivalences in A.5 provides an identification of

Homg(A, BG)S.

A.6 Theorem. Let X be a scheme over S. For any left filtering category I of etale

hypercoverings of X with the property that each G-torseur over X is trivial over U0 for

some U in I, there is a natural homotopy equivalence from lim Hom(U, BG)S to

the nerve of the category of G-torseurs over X.

Since the category of G-torseurs over A is a groupoid category, its nerve contains

as a strong deformation retract the disjoint union U[P]Blso(P), where [P] runs

through the set of isomorphism classes of G-torseurs over A, and Iso(£) denotes the

group of automorphisms of the G-torseur P.

A.7 Corollary . Let X be a scheme over S and let H1(X,G) denote the set of

isomorphism classes of G-torseurs over X. Then there is a homotopy equivalence

Homg(A, BG)S^ TJ        Blso(P).
[PleH^X.G)
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