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ON THE EXISTENCE AND UNIQUENESS OF COMPLEX 
STRUCfUREAND SPACES WIlli "FEW" OPERATORS 1 

BY 
ST ANISLA W J. SZAREK 

ABSTRACT. We construct a 2 n-dimensional real normed space whose (Banach-Mazur) 
distance to the set of spaces admitting complex structure is of order nl / 2 , and two 
complex n-dimensional normed spaces which are isometric as real spaces, but whose 
complex Banach-Mazur distance is of order n. Both orders of magnitude are the 
largest possible. We also construct finite-dimensional spaces with the property that 
all "well-bounded" operators on them are" rather small" (in the sense of some ideal 
norm) perturbations of multiples of identity. We also state some "metatheorem", 
which can be used to produce spaces with various pathological properties. 

1. Introduction and the main results. The main purpose of this paper is to prove 
the following results. 

THEOREM 1.1. Given n there exists a 2n-dimensional real normed space X such that 
whenever Y is an n-dimensional complex normed space and Y R is Y, treated as a real 
space, then the Banach-Mazur distance d(X, YR ) ;;;. crn, where c is a numerical 
constant. 

Given a complex (normed) space Y denote by Y the space obtained from Y by 
replacing the multiplication by scalar (;\, y) ~;\y by (;\, y) ~ ;\0y = Xy and 
preserving the rest of the structure (addition, norm). We then have 

THEOREM 1.2. Given n there exists an n-dimensional space Y over C such that 
d (Y, Y) ;;;. cn, where c is a numerical constant (here d ( " .) denotes distance of 
complex spaces ). 

The orders of magnitude O(rn) and O(n) in Theorems 1.1 and 1.2 are of course 
the largest possible: In the first case the n-dimensional (complex) Hilbert space 
always gives the upper estimate fin, in the second-d(Y1, Y2 ) ~ n if dim Y1 = 
dim Y2 = n (in both the real and complex case). A weaker version of Theorem 1.1 
(with estimate O(/n/logn)) was shown recently by P. Mankiewicz [8]; a version of 
Theorem 1.2 (with estimate O(n/logn)) was shown, independently of this paper and 
approximately at the same time, by J. Bourgain [1], who also settled the infinite-di-
mensional problem, constructing a complex Banach space Y such that Y and Yare 
not isomorphic with all the consequences (see Corollary 1.3 below). Similar problems 
were considered recently by N. J. Kalton [5], who constructed an analogous example 
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for quasi-Banach spaces and a Banach space Y such that Yand Yare not isometric. 
All the papers-except Kalton's-are heavily influenced by the "random" Gluskin's 
technique from [3] and some of the papers [4, 9]. 

Since YR and YR (i.e., Yand Y treated as real spaces) are obviously identical and 
the identity map is an isometry, we have 

COROLLARY 1.3. Given n, there are two n-dimensional complex Banach spaces YI , Y2 

which are isometric as real spaces, but the complex Banach-Mazur distance d(YI , Y2 ) 

> en, where c is an absolute constant. Equivalently, there is a 2n-dimensional real 
Banach space admitting two complex structures, which differ (loosely speaking) in the 
worst imaginable way. 

In the positive direction it should be noted that a real normed space X admits 
complex structure (after some renorming) if e.g. X is isomorphic to the direct sum 
Z Ell Z for some normed space Z, in particular if X has symmetric (or subsymmet-
ric) basis; one has also an obvious finite-dimensional version of this statement. One 
can, however, ask 

PROBLEM A. Does every space with unconditional basis (resp. Banach lattice) admit 
complex structure? The spaces constructed in this paper have l)ery large unconditional 
basis constants (see [2]). 

On the other hand, it is clear that if a complex space Y has e.g. an unconditional 
basis, then Y is isomorphic to Y. However, it is not that clear that there is any 
(besides the Hilbert space) positive statement in the context of Corollary 1.3. 

PROBLEM B. Characterize the spaces which have unique (in the sense of Corollary 
1.3) complex structure. 

Theorems 1.1 and 1.2 will follow from the following "metatheorem", for which we 
need to introduce some notation. We will say that a linear operator T: Rn -+ Rn 
satisfies the condition (Mk,a) (M for "mixing") if 

(
there exists a subspace H c Rn , dim H > k, 

such that IpH.L TIH I> aIH· 

Here PH.L denotes the orthogonal projection onto H.L, the absolute value and 
inequalities have the usual "Hilbert space" meaning; in this case the Hilbert space is 
just 12 and the condition means that IIPH.L Txl12 > allxl12 for x E H (here and later 
II . lip denotes the usual I; norm). 

THEOREM 1.4. Given 8 > 0 there exists a norm II . liB on Rn, II' 112 ~ II 'IIB ~ II . Ill' 
such that whenever T satisfies (Mk,a) with some k > 8n, then liT: B -+ BII > cam, 
where c depends only on 8. Moreover, one can require II . II B to be invariant under some 
finite subgroup f of O(n), provided that H in (Mk a) can be chosen to be f-invariant; 
c depends then additionally on the cardinality of f. 

The following result strengthens Theorem 1.4 from [9] and is connected with the 
following well-known problem: 

"Does there exist an infinite-dimensional Banach space such 
that every bounded operator on it is of the form AI + K with K 
compact? (resp. K nuclear?)" 
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First we need to introduce some notation. Given a nuclear operator T: H ~ iI 
where (H, if are Hilbert spaces) define the quasi-norm 

where (s;(T» is the sequence of s-numbers of T (cf. §2). We then have 

THEOREM 1.5. Given 8 > 0 there exists c = c( 8) such that, for every n E N, there 
is a norm II . liB on Rn, 11'112";; II . liB";; II' 111, with the property that if an operator T 
satisfies liT: B ~ BII .,;; crn, then there exists A E R such that liT - Alilca .,;; on. 
Moreover, one can choose II 'IIB so that the cotype 2 constant of B does not exceed CI 

and B satisfies the Grothendieck theorem with constant c i (c i an absolute constant); in 
particular "'1(1: B ~ In.,;; cI· 

Theorems 1.4 and 1.5 (and 1.5A below) appear to be very useful facts. They 
reduce construction of spaces with some pathological properties to verifying simple 
conditions about operators on Rn. Besides yielding other results of this paper they 
have several nontrivial known facts as easy corollaries. For example, the main results 
of [4 and 9] follow immediately from the obvious fact that if P is a rank k 
projection on Rn , then liP -'Alilco ~ t[k 1\ (n - k)] combined with, respectively, 
Theorem 1.5 or 1.5A. Theorem 1.4 can be incorporated into the proof of the main 
result of [7]: the first part of [7] is devoted basically to showing a stronger version of 
our "mixing" condition for some group of operators which irreducibly act on Rn; 
after this is proved, the rest follows from Theorem 1.4. Another possible application 
of Theorem 1.4 would be in constructing "poorly equivalent" - in the linear 
topological sense-representations of groups which are otherwise equivalent alge-
braically (Theorem 1.2 can be thought of as a result of this type for the circle group), 
etc. 

We also have the following variants of Theorems 1.4 and 1.5. 

THEOREM 1.4A. Given n there exists a norm II· liB on Rn, 11'112";; II . liB";; II . 111' 
such that whenever an operator T satisfies the condition (Mk,a), then 

(0) liT: B ~ BII~ cak//n(l + Inn), 

where c is a universal constant. Moreover, II . II B may be constructed to be invariant 
under the finite subgroup r of O( n) and (0) still holds for T' s satisfying (M k, a) with 
H invariant under r. 

Note that (0) is meaningful if k//n(l + Inn) is large (e.g. k - nfJ, f3 > n, a 
much weaker condition than k ~ on in Theorem 1.4. However, here we do not 
recover the sharp estimates on IITII which we obtained in Theorem 1.4. 

Let us introduce another quasi-norm defined for compact operators acting be-
tween Hilbert spaces: 

IITllw-cl ~ II(s/T)) Ilw-11 = sup A' # {j: s/T) ~ A} = sup n . sn(T). 
A>O nEN 
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THEOREM 1.5A. There exists a norm II . liB on Rn , II· 112 ~ II . liB ~ II . Ill' such that, 
for any linear operator T on Rn , 

Jnf liT - Alll w - cl ~ cvn{1 + Inn) liT: B --> BII, 
I\ER 

where C is an absolute constant. 

Since we obviously have IITllcl ~ (1 + Inn)IITllw_c, (Cl is the nuclear norm) for 
T a rank n operator, we have 

COROLLARY 1.6. There exists a norm II· liB on Rn, II· 112 ~ II . liB ~ II . Ih, such 
that, for any operator Ton Rn, 

inf liT - Allie, ~ CVn(l + Inn)31IT: B --> BII. 
hER 

Theorems 1.5 and 1.5A and Corollary 1.6, although clearly relevant to the 
problem stated before Theorem 1.5, have an obvious drawback: the norms of 
T - AI, which appear in their statements, are not intrinsic to B. Instead, they come 
from some inner product norm (closely connected with B, though). 

ACKNOWLEDGMENTS. A large part of this research was done while the author was 
in residence at the Banach Space Workshop at the Ohio State University in July 
1984. The author would like to thank Gilles Pisier for communicating the problems 
(which led to Theorems 1.1 and 1.2) and the result of P. Mankiewicz. 

2. Notation and organization of the paper. We use the standard Banach space 
notation as can be found e.g. in [6]. If X is a (normed) linear space, L(X) will 
denote the space of (bounded) linear operators on X. L(X) will be endowed with 
the standard operator norm II· II L( X), occasionally denoted by II·: X --> XII or 
II . II X ~ x' although we may occasionally consider other operator (usually ideal) 
norms or quasi-norms. By I x we will denote the identity map on X; occasionally we 
will omit the subscript X. By B( X) we will denote the unit ball of X. If X = I;, we 
will write B; for B(l;). We will frequently identify a normed space X with its unit 
ball B(X) and its norm II ·llx. For a set Fe X we will denote by ac(F) its absolute 
convex hull and by [F] its linear span. 

All inner product spaces considered in this paper are de facto subspaces of 12 for 
appropriate n and so we will denote every inner product norm by 11·112. If H is a 
Hilbert space and E its subspace, we will denote by P E the orthogonal projection 
from H onto E. If T: H --> if (if also a Hilbert space) is compact, then T admits 
the polar decomposition, i.e. can be written 
(PD) T = L A/Uj , • )uj ' 

j;;.l 

where Al ? A2 ? > 0 and (uj ) and (u) are orthonormal sequences in Hand 
if respectively. The representation (PD) is "nearly" unique; certainly the sequence 
(A) is unique and so are (up to a sign) (uj ) and (u) if all A/S are distinct. A/S are 
sometimes called the s-numbers of T and denoted by s/T). Another description of 
s-numbers involves the concept of a modulus of an operator defined by ITI = 
(T*T)I/2; (sj(T)) is then the sequence of eigenvalues of T arranged in the 
nonincreasing order, u/s are corresponding (normalized) eigenvectors. 
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We will work with the usual order on L(H). For our purposes it is enough to 
know that if ST = TS, then lSI ?o ITI iff IISxl1 2 ?o IITxl12 for all x E H. Also, let us 
state explicitly some immediate consequence of the existence of (PD): if dim H = n, 
a ?o ° and 1 ~ k ~ n, then either there exists a subspace E c H, dim E ?o k, such 
that ITIEI ~ alE or a subspace F c H, dim F > n - k, such that ITIFI > aI F' 

We will consider the trace classes Cp c L(H) with norm IITllcp = (trITIP)l/p = 
IIsj(T)lI p (in particular the nuclear norm C1) and some unitary ideal quasi-norms 
corresponding to various symmetric quasi-norms on Rn: 

df 
IITIIco = LSj(t)/(l + Sj(t)), 

J 

IITllw-c1 =11(Sj(t))llw-ll = sup A .{J: sj(T)?o A} = supjsiT). 
'\>0 j 

It should be noted that II . IICO satisfies the triangle inequality, but is not positively 
homogeneous; II' IIW-Cl is positively homogeneous, but satisfies just liS + Tllw-c 1 

~ 2(IISIIw-c1 + IITllw-cJ 
If dim H = m, we will say that a (H-valued) random variable (r.v.) g, defined on 

some probability space (Q,~, P), has the (Gaussian) distribution N(O, 0'2, H) if its 
density equals (m/27TO' 2 )m/2e-m I1 x:\j;2(12. We emphasize that, in our normalization, 
ElIglI~ = 0'2. We will need just three facts about such g: 

(i) 9'({IIgll2?o 2O'}) ~ an, a < 1 a numerical constant. 
(ii) if E c H, dim E = k, then PEg has the distribution N(O, kO' 2/m, E). 
(iii) if E, Fe H, E .1 F, then PEg and PFg are independent. 
Beginning with §4, all spaces considered in this paper are real; in §§1 and 3 it is 

always carefully stated whether we deal with the real or complex case. 
The paper is organized as follows. 
§1 presents the main results: Theorems 1.1,1.2,1.4 and 1.5 together with their 

corollaries and generalizations, comments and some open problems. 
§3 contains reduction of Theorems 1.1 and 1.2 to statements about real spaces: 

Propositions 3.1 and 3.2. The corresponding "mixing properties" (Lemmas 3.4 and 
3.5), from which the propositions follow via Theorem 1.4, are also stated there. 

In §4 the "mixing" Lemmas 3.4 and 3.5 are proved. 
§5 contains the proof of Theorem 1.4 and a sketch of the proof of its generaliza-

tion-Theorem 1.4A. 
In §6 Theorems 1.5 and 1.5A are deduced from Theorems 1.4 and 1.4A respec-

tively. 

3. Reduction to problems about real spaces. If X is a normed space over R, then 
any complex structure on X (i.e. multiplication elements of X by complex scalars) 
corresponds (on an essentially one-to-one basis) to the R-linear isometry on X such 
that A2 = -I. Indeed, if multiplication by complex scalars satisfying !lAx!l = IAI . !lxll 
is defined, set Ax = ix. Conversely, if such an isometry exists, define ix = Ax or, 
more generally, (a + bi)x = ax + bAx, to get that !I(a + bi)x!l = la + bil . !lxll one 
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must modify the norm a little bit, introducing e.g. 
1 df 1 12'11" 

IIxll = 217 0 II(cosO)x + (sinO)Axil dO; 

clearly II . III i. II . II· 

Taking this into account, Theorem 1.1 immediately reduces to 

PROPOSITION 3.1. Given n there exists a 2n-dimensional real normed space X such 
that whenever S: X ...... X satisfies S2 = -I, then IISII ~ cJi;; CI a numerical con-
stant. 

To reformulate Theorem 1.2 notice that if Y is a complex space and A is the 
isometry associated with the regular multiplication (i.e., Ax = ix), then the isometry 
determining the complex structure of Y is -A, as ;Ox = -ix = -Ax. Therefore to 
say that an R-linear operator T: YR ...... YR is C-linear considered as acting from Y to 
Y (i.e., T(ix) = i0Tx) is precisely the same as to say that TA = -AT. Thus Theorem 
1.2 reduces to 

PROPOSITION 3.2. Given n there exist a 2 n-dimensional real space X and an isometry 
A on X satisfying A2 = -I such that whenever T: X ...... X satisfies TA = -AT, then 
IITII . liT-III ~ cln, cr a numerical constant. 

For future use observe that T: Y R ...... Y R is C-linear considered as an operator 
acting on Y (or Y) iff TA = AT. 

For the rest of this section and in §4, all normed spaces will be "living" on R2n; 
they will then be determined by (and frequently identified with) their unit balls. We 
will work with the standard lin Hilbert space structure. 

REMARK. 3.3. When working with the product IITII . liT-III we are always free to 
replace T by any aT, a E R \ {O}, without affecting the value of the product. For 
the purpose of the proof of Proposition 3.2 we will use a normalization such that 
both T and T- I have at least n s-numbers greater than or equal to 1; in other 
words, if T = L:;:'IO/Uj , ')Vj is the polar decomposition of T, then 01 ~ 02 ~ ... 
~ 0n.~ 1 ~ 0n+1 ~ ... ~ 02n' 

Both Propositions 3.1 and 3.2 assert that norms of certain operators are large. It is 
therefore clear that the propositions can be deduced via Theorem 1.4 if we show that 
those operil;tors satisfy certain" mixing properties", which we now formulate. 

LEMMA 3.4. If S: lin ...... lin is such that S2 = -I, then it satisfies the "mixing 
property" (Mn,l)' 

LEMMA 3,5, Let A E O(2n) be such that A2 = -I and let T: lin ...... lin verify 
(i) AT = -TA, 
(ii) at least n s-numbers of T are greater than or equal to 1 (cf. Remark 3,3). 
Then T satisfies the "mixing property" (Mm ,1) with m ~ n/8 - 1 and H such that 

AH=H. 

Assuming the lemmas above (to be proved in §4) it is immediate to deduce 
Propositions 3.1 and 3.2 (and hence Theorems 1.1 and 1.2) from Theorem 1.4 
(proved in §5), Indeed, to prove Proposition 3.1, we apply the first part of Theorem 
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1.4 with 2n instead of n, 8 = 1/2, a = 1. To prove Proposition 3.2, we apply the 
second part of Theorem 1.4 with e.g. 8 = 1/17, a = 1 and r = {I, A, -I, -A} (cf. 
Remark 3.3). 

4. The "mixing" properties. In this section we prove Lemmas 3.4 and 3.5. Let us 
reformulate slightly the first of them. 

LEMMA 3.4A. If S: lin --+ lin is such that S2 = -I, then there is Helin, 
dim H = n, such that, for x E H, 

II PH-,-Sx 112 =IISxI12 ~llxI12. 
PROOF. Consider the polar decomposition S = I:]~lA/Uj' ·)Vj (with Aj > 0, (Aj) 

nondecreasing). Since S = -S-\ we also have S = -I:]~lA"/(Vj' . )uj . By the unique-
ness properties of polar decomposition, it follows that Aj = A-ln - j + 1 for all j (in 
particular An+ 1 = A-n1 ~ 1 ~ An and hence Aj ~ 1 for j ~ n). If all A;'S were 
distinct, it would also immediately follow that Vj = ±U 2n - j+ 1 ; in the general case 
we can also achieve that by modifying the original u;'s and v;'s somewhat. Thus we 
can write 

n n 

S = L A/Uj ,· )vj - L A:/(Vj ,. )uj , 
j=1 j=1 

where (u1, U2, ... , un' VI' ... ' Vn) is an orthonormal basis of lin. Let H = [uj]j<;;n. 
Then H.L = [vj ] j <;; n and 

n 

j=i 

Since all A ;'s, 1 ~ j ~ n, are greater than or equal to 1, the assertion of Lemma 3.4A 
readily follows. Q.E.D. 

The proof of Lemma 3.5 is a little bit more complicated. We shall work with A 
whose matrix representation in the standard unit vector basis (e 1,.··, en' 
en + I, ... , e 2n ) of R2n is 

(1) [~ -I] o ' 
where the entries stand for n X n matrices (i.e. Aej = en+j and Aen+j = -ej for 
j = 1, 2, ... , n). This can always be achieved by appropriate change of 
coordinates-orthogonal, if A E O(2n) (see the proof of Lemma 3.4). Actually for 
Proposition 3.2 we just need to find some A and X, so we could as well start with A 
of the form (1). 

Let us reformulate the lemma. 

LEMMA 3.5A. Let A be given by (1) and let T: lin --+ lin satisfy 
(i) AT = -TA, 
(ii) at least r s-numbers of T are ~ 1. 
Then there exist Helin, dim H ~ r /8 - 1, AH = H, such that, for x E H, 

For the proof of Lemma 3.5A we need several further lemmas. 
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LEMMA 4.1. If A: lin -+ lin is given by (1) and T: lin -+ lin satisfies TA = -AT, 
then there exists an orthonormal sequence hI' h 2, ... , h k with k :? n I 4 such that one 
has 

(j) E; ..1 Ej for i -=1= j, where Ej = [hj' Ah), Th), TAh)] for j = 1,2, ... , k, 
(jj) IITh)12:? S8(J-l)+I(T)forj = 1,2, ... ,k. 

PROOF. Set Eo = {O} and let k be the smallest integer greater than or equal to 
n14. For j = 1,2, ... , k choose 

h E (E + ... +E ).1 nT-1((E + ... +E ).1) '! E ) 1 )-1 1 )-1 

such that IIh)1I2 = 1 and IITh)lb:? S8(J-l)+I(T); this is possible since codimE ~ 
8(j - 1). Obviously, h)..l E; and Th j ..1 E; for i < j. Also Ah) ..1 AE; = E; and 
TAh) = -ATh) ..1 AE; = E; for i < j. So E) ..1 E; for i < j. Q.E.D. 

LEMMA 4.2. If S: H -+ H (H a Hilbert space) and u, u' E H\ {O} satisfy 
(Su, u)(Su', u') ~ 0, then there exists w E [u, u'], IIwll2 = 1, such that (Sw, w) = O. 

PROOF. Apply the Intermediate Value Theorem to the function [0,77/2]3 () -+ 

(Swl" we), where We = U· cos() + u'· sin(). Q.E.D. 

LEMMA 4.3. If A and T are as in Lemma 4.1 and h E lin with IIhll2 = 1, then there 
exist u, v E [h, Ah] such that Au = v, lIull2 = IIvll2 = 1 and (Tu, v) = (Tv, u) = O. 
Moreover, (u, v) = 0, (Tu, u) = -(Tv, v) and IITull2 = II Tv II 2 = IIThIl2. 

PROOF. Notice first that (Ax, x) = 0 for every x E lin. Since (h, Ah) = (Th, TAh) 
= 0 and IIThll2 = IITAhIl 2, it easily follows that IITxll2 = IIThll2 for every x E [h, Ah] 
with IIxll2 = 1. The fact that one can choose u E [h, Ah] with lIull 2 = 1 such that if 
v = Au, then (Tv, u) = (TAu, u) = 0 follows from Lemma 4.2 applied with S = TA, 
u = h, u' = Ah. All other statements follow trivially from these and the assump-
tions. Q.E.D. 

PROOF OF LEMMA 3.5A. Let hI' h 2, ... , hk' with k:? n14, be an orthonormal 
sequence constructed as in Lemma 4.1. For every i, find u;, v; E [hi' Ah;] as in 
Lemma 4.3; then v; = Au; and (u;, vJ = (Tu;, vJ = (Tv;, u;) = o. Also IITu;1I2 = 

IITv;1I2 = IITh;1I2:? 1 for i ~ d, where d:? rl8 (by (ii) of Lemma 3.5A and (jj) of 
Lemma 4.1). Therefore 

Tu; = a;u; + z;, Tv; = -ATu; = -a;v; - Az; 

with z;, Az; E lUi' v;] and (z;, AzJ = O. In particular 
[hi' Ah;, Th;, TAh;] = E; = [Ui' v;, zi' Az;]. 

Exchanging the roles of u;'s and v;'s for some i's, if necessary, we may assume 
that the sequence (aJ has alternating signs. For j = 1,2, ... , [dI2], apply Lemma 
4.2 with {u,u'}={U 2)_I'U2)} to obtain an orthonormal sequence (w) with 
w) E [U 2)-I' u2) C E2)-1 ffi E2) and (Tw), w) = O. Since Tw) E E2)-1 ffi E2), we 
also have (Tw)' wJ = 0 for i -=1= j. 

Let Ho = [w))';[d/2J and let H = Ho + AHo. We already know that Tw)..l Ho 
for j ~ [dI2]. Since Tw) E [U 2)-I' u2)' Z2)-1' Z2)] ..1 [v2;, v2;-d 3 Aw; for i, j ~ 
[dI2], also Tw) ..1 AHo. So Tw) ..1 H and hence THo ..1 H. It follows in particular 
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that TAHo = -A THo ..1 AH = H. Thus TH ..1 H. Since 

II TwJI12 ~ min{IITu2J-1 112, IITu2J2} ~ 1 

and the Tw/s are mutually orthogonal, it follows that II PH.!. Txl12 = IITxll2 ~ IIxl12 
for x E H. This proves Lemma 3.5A. Q.E.D. 

5. Proof of Theorem 1.4. The proof of Theorem 1.4 consists of three parts: (a) 
description of the random norm II· liB on Rn, (b) the "measure theoretic" argument 
which shows that, for a given operator T satisfying the appropriate "mixing 
condition", liT: B ~ BII is large for the vast majority of B's and (c) the "e-net" 
argument which shows that, still for "most of' B's, liT: B ~ BII is large for all such 
T's. 

We shall prove Theorem 1.4 only in the case relevant to Proposition 3.2 (and 
Theorem 1.2), i.e. f = {J, A, -J, -A} with A of the form (1) (see §4), which reveals 
all technical difficulties. The case of trivial f = {l, -I} relevant to Proposition 3.1 
(and Theorem 1.1) is somewhat easier and can be obtained from the argument we 
present by, roughly speaking, dropping all references to A and expressions involving 
A; the case of general f requires" throwing in" additional expressions involving all 
elements of f different from J. We point out the crucial observation that if Go c Rn 
then there is G :::) Go which is f-invariant with dimG :::;; #f . dim Go. 

(a) Description of the random norm. Fix l> > ° and let k ~ l>n. Let m :::;; kilO and 
let gl' g2' ... , gm be independent Gaussian random variables (r.v.'s) with distribu-
tion N(O, 1, 12) defined on some probability space (Q, ~, &). For each w E Q denote 
B = B( w) = ac{ e 1, e2, ... , en' gl"'" gm' Ag1, •.. , Agm}. We shall identify B with 
the normed space (Rn, II· liB) whose unit ball is B. Note that A(B) = B and hence 
IIxllB = IIAxllB for x ERn, i.e. II . liB is f-invariant. Let us observe here (this is going 
to be useful in the proof of Theorem 1.5) that every space constructed in this way is 
a quotient of Ii' with N :::;; 2n. Moreover, the randomness in the construction allows 
us to conclude that, with large probability, the kernel of the projection (and in fact 
also the orthogonal-in I~-complement of the kernel) are "nearly" Euclidean sub-
spaces of If. In the case of trivial f (i.e. B = ac{ e 1, •.• , en' gl"'" gm}) this follows 
directly from [9, Remark 4.5]; the "complex version" of the argument presented 
there also works if f = {J, A, -J, -A}, i.e. the case we describe here in detail (we 
do not make any claim about the kernel in the case of general f). In particular it 
will follow that all spaces, whose existence is asserted in Theorems 1.1,1.2,1.5, and 
the cases of Theorem 1.4 relevant to the f's mentioned above can be assumed to be 
quotients of Ii' by a "nearly" Euclidean subspace with all the consequences like 
having cotype 2 constant bounded by a universal constant C1 and satisfying the 
Grothendieck theorem with the constant C1 (see [9, Remark 4.5] and its references). 

(b) The "measure theoretic" argument. We will consider operators T satisfying the 
condition (Mk ",), k ~ l>n. Clearly it is enough to work with a = 1, i.e. with the 
condition 

(2) {
there exists H c Rn , dim H ~ k, such that 

AH = Hand II PH.!. Txl12 ~ Ilxllz for x E H. 
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For technical reasons we will also use a slightly weaker form of (2): 

{
there exists Ho c R", dim Ho ;?; 4k/5, such that 

(2A) 
AHo = Ho and IlpH~ TI12;?; IIxI12 for x E Ho· 

We have the following "measure theoretic" statement. 

PROPOSITION 5.1. Let T satisfy the condition (2A). Then, for every Ko > 0, 

( 
K 2) km/2 

9({IIT: B ~ BII > Ko}) > 1 - COk5~: 

Moreover, 

9((there exists Z, Z.l [g"Agj]"j .. m )) > 1_(coKon2)km/2 
such that, for some} ~ k, PzTgj E KoPzB k 5/ 2 

Co is in both cases a numerical constant. 

PROOF. Clearly it is enough to prove the second statement. The argument is in the 
spirit of the proof of Fact 5.2 from [9]. We need the following lemma, which is a very 
slight modification of Claim 6.2 from [9] (the same proof works and so we omit it). 

LEMMA 5.2. Let E, (J, Ko> ° and let W: H ~ iI (H, iI are Hilbert spaces, 
dim H = k) be such that # {j: s/W);?; I} ;?; k o. Let Be iI be of the form 
B = ac{ Yl, Y2"'" YM}' IIYjll2 ~ 1 for } ~ M, and let g be an r.v. with distribution 
N(O, (J2, H). Then 

9({Wg E KoB}) ~ (CKo2Mik )kO 
ko . (J 

Let us denote Go = [giL .. m' gj = PHgj + PH~ gj = gi + gi', G~' = PH~ Go = 
[gi']j .. m and G" = G~' + AG~' = [g;', Agi'L,j .. m (note that since AH = Hand 
hence also AH.L = H.L , both PH and PH~ commute with A and so e.g. PH~Agj = 
APH~gj = Agi'). Finally, choose Z = (G" + PH~ TG~').L nH.L . Observe that 

1 ° g~, ... , g:", g{', ... , g;:' are independent r.v.'s with distribution N(O, kin, H) 
for gi's and N(O,(n - k)/n, H.L) for gi"s. 

2° Z c H.L ,codimension of Z in H.L is ~ 3m ~ 3k/1O; Z .1 G" = [g;', A~j]' 
3° G" and hence Z depend only on gj"s and so are independent of gi's. 

. df ° ConsIder now To = PzT = PZPH~ T. As rank(To - PH~ T) ~ 3k/10 by 2 , we 
have (cf. (2A» 

(3) {
there is Ho c H, dim Ho = ko ;?; k/2, such that 

IIToxI12;?; IIxl12 for x E Ho. 
By 3°, Ho depends only on gi"s and so is independent of gj's. 

We are now ready to estimate the probability in the assertion of Proposition 5.1. 
We have 

II T: B ~ B II ~ Ko = Tgj E KoB for} = 1,2, ... , m 

= PH~ Tgj E KOPH~B <=> PH~ Tgi + PH~ Tgi' E KOPH~B 

= PZPH~ Tgi + PZPH~ Tgi' = Togi + ° E KOPZPH~B 
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and 

PzPH~B = Pz(ac{ PHdj, gj', Ag~'} j.;n;j,h.;m) 

= ac{ PZe j, Pzgj', PzAg~'} = ac{ PZe j} = PzB~. 

Thus W = TOIH satisfies the assumptions of Lemma 5.2 with ko ~ k/2 (cf. (3», 
M = n, iJ = PzB = PzB~ = ac{PZej};.;n and 0 2 = k/n (see 3°). Therefore 

.9'( {liT: B --+ BII ~ Ko}) ~.9'( {Tog; E KoPzB~, j = 1,2, ... , m}) 

= [.9'( {Togf E KopzBn ) r ~ ( c~onlk ) kom 
k o ' k/n 

= ( cKon2) kom ~ ( 4cKon2) km/2 
k~1k k 5/ 2 

and hence the assertion of Proposition 5.1 follows with Co = 4c. Q.E.D. 
(c) The "E-net" argument. Assume for simplicity that k (~ lln) is a multiple of 10 

and choose m = k/10. Then the statement in the assertion of Proposition 5.1 
becomes 

62 nZ/20 

.9'({IIT: B --+ BII > Ko}) > l-(ll~~~ln-) (4) 

Fix K> 0 (to be specified later) and define 

tf/= {TE GL(n): liT: I~ --+ I~II ~ 2K, Tsatisfies(2A)}. 

By Fact 5.1 of [9] (essentially due to Gluskin), for any E E (0,1), tf/ admits an 
E . 2K/ m = net (in the operator norm on 12), say JV;, such that #JV; ~ (Co/E)nz. 
We need this fact just fOTE = t, so denote by %= %1/4 the k/2m -net, #% ~ C( 
It follows from Proposition 5.1 (d. (4» applied with Ko = 2K that if K ~ c2m 
(where c2 = c2(ll) = ll5/2(2co)-1(2C1)-20/6\ then 

nZ .( coKo )6Znz/2o ~ (!)nz 
C1 ll5/2m '" 2 

and hence with probability ~ 1 - (!yZ we have liT: B --+ BII > 2K and moreover 

(5) (
there exists Z ..1. [go Agj ] j,j';m 
such that PzTgj $ 2KPz B for some j ~ m 

for every T E %. Consider now any B satisfying (5) and additionally 

(6) 

Note that .9'({(6)}) ~ 1 - an for some numerical a < 1 «i), §2). We claim that any 
such B verifies the assertion of Theorem 1.4 with c = c2(ll) as above (except that, in 
view of (6), we have only tll'1I2 ~ II' liB; replacing II . liB by 11'112 V II'IIB or each 
gj by tgj takes care of that problem). To show this assume the opposite is true. Let, 
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for some B satisfying (5) and (6), there exist T satisfying (2) such that 

(7) liT: B~BII.::;K. 

By an argument identical to that in the proof of Proposition 4.1 of [9] it then follows 
that there exists T, liT: I~ ~ I~II .::; K < 2K, such that if, as before, G = 
[g;, Ag);,j.;; m and Q = PG~' then 

(8) QT= QT. 

In particular, rank(T - T) .::; dimG .::; 2m .::; kj5 and hence T satisfies the condi-
tion (2A) (note that AG -1 = G -1) and so T E CiJI. Therefore there exists Tl E % such 
that liT - Tl11/2~/2 .::; Kj2!1i. By assumption (5) on B this shows that there is a 
Z ..L G and j E {I, 2, ... , m} such that 

(9) 

On the other hand, since obviously 

IITgj - T1gJ2 .::; liT - TllI/2~/2I1gjI12'::; 2~ ·2= ~ 
(we used (6)), we have 

and hence 

(10) PzTgj - PZT1gj E KPzB. 

Now (9) and (10) together imply that PzTgj $. KPzB and, a fortiori, since PzQ = Pz 
and QT = QT by (8), QTgj = QTgj $. KQB, which contradicts (7). 

This concludes the proof of Theorem 104. Q.E.D. 
Sketch of the proof of Theorem 1.4A. In the case of trivial r one essentially follows 

[4]: to construct the space one adds m random points to the ball of I~, this time with 
any m such that en (In n) 2 .::; m .::; n 2 for an appropriate numerical constant C. The 
"me<j.sure theoretic" part of the argument-based on an analogue of Lemma 4 from 
[4] rather than on Lemma 5.2-is much less complicated than in the case of 
Theorem 1.4 since we do not (and cannot) annihilate the space Z -1 (we pay for this 
with a wea~er estimate). The only source of apparent difficulty is the presence of the 
terms PH~ Tgj', but they can be handled using the fact that the densities of measures 
N(O, 0 2 , I:;J are symmetric and radially decreasing. The "e-net" part can be taken 
care of as in [4]: note that, for fixed k, one only needs to find a net for the set 
{PH~ T: T satisfies (Mk,l)' liT: 1'2 -+ 1'211 .::; n, HE Gk,n} of rank k operators. The 
case of general r requires only obvious modifications. 

6. Proof of Theorem 1.5. Theorem 1.5 will follow immediately from Theorem 104 
and the following 

PROPOSITION 6.1. Let II > 0 and let T: Rn ~ Rn be such that, for any A E R, 
liT - Alilco ~ lln. Then T satisfies the mixing condition (Mk,a) with some k ~ llnj36 
and IX = llj6. 
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Indeed, suppose we have proved Proposition 6.1. Apply the first part of Theorem 
1.4 with 8/36 instead of 8. This gives B = (Rn, II' liB) with II '112 ~ II 'IIB ~ II' III 
satisfying, by Proposition 6.1, the first assertion of Theorem 1.5 (about norms of 
operators). The facts that B can be chosen so that the cotype 2 constant of B does 
not exceed some numerical constant C1 and that B satisfies the Grothendieck 
theorem with constant c1 follow from the "random" construction of B-see §5(a). 

REMARK 6.2. It should be noted that the following converse to Proposition 6.1 
holds: 1fT: 12 -4 12 verifies (Mk,a)' then, for any A E R, liT - AlilcD ~ ka/(l + a). 

For the proof of Proposition 6.1 we need the following simple variant of Lemma 
4.1. 

LEMMA 6.3. Given T: 12 -4 1'2 and G C 12, dim G = p, there exists an orthonormal 
sequencef1' f2"'" fk in G with k ~ p/4 such that 

( Tfi' TfJ = (TJ;, fj) = 0 if 1 ~ i, j ~ k, i "* j. 
PROOF. Argue as in Lemma 4.1 omitting all references to A and s-numbers of T. 
PROOF OF PROPOSITION 6.1. Observe first that it is enough to exhibit an orthonor-

mal sequence h1' h 2, ... , hk' k ~ 8n/36, satisfying 
(I) (Thi' Th) = (Thi' h) = 0 for i "* j, i ~ i, j ~ k, 
(II) IIP[hjl~ Th)12 ~ 8/6 for j ~ k. 
Indeed, then the space H = [h1' h 2, ... , h k] works: just observe that, for each j, 

PH~ Th j = P[h)~ Th j and the sequence (PH~ Th)j", k is orthogonal. 
To construct (h) we proceed as follows. Let T= '[:;~lA;<Uj' ')uj be the polar 

decomposition of T. Since IITllcD = liT - OlllcD ~ 8n, we must have 
# {J: Aj ~ 58/6} ~ 8n/6 

or, in other words, if m is the smallest integer greater than or equal to 8n/6, then 
Am ~ 58/6 «A) is assumed to be nondecreasing). Let us consider two cases: 

(i) Am - An - m + 1 < 8/3, 
(ii) Am - An - m + 1 ~ 8/3. 
Case (i). Note that if p = Am - 8/6 (~ 28/3) and m ~j ~ n - m + 1, then 

Ip - A) ~ 8/6. Thus if F = [uj ]m",j",n-m+1' then 
(11) codimF = 2m - 2 < 8n/3 
and if x E F, then 

(12) 
For x E Rn consider the condition 

for A = p and A = -p; we will also denote by - (13h the reverse (nonstrict) 
inequality. Our present goal is to prove the following 

Claim. At least one of the following statements holds. 
(A) There exists Eo C F, dim Eo ~ 8n/9, such that every x E Eo verifies both 

- (13)p and - (13L p ' 

(B) There exist E 1, E2 C F with E1 .1 E2 and dim E1 = dim E2 ~ 8n/9 such that 
every x E E1 verifies (13L p and every x E E2 verifies (13)p. 
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PROOF. Observe first that since liT ± pIllco ~ 8n, (11) implies that IITfF ± pIFllco 
~ 18n. Therefore there exist Fl , F2 c F, dim F; ~ 8n/3 such that every x E Fl 
satisfies - (13L p and every x E F2 satisfies - (13)p. If no Eo satisfying the 
condition (A) exists, then it follows from the remarks following the definition of 
polar decomposition in §2, applied to the operator T fF, + pI F, (resp. TfF2 - pI F,)' 
that there exists F{ c Fl , dim F{ ~ 28n/9 (resp. F{ c F2, dim F{ ~ 28n/9) such 
that every x E F{ satisfies (13L p (resp. F{, (13)p). Choosing further subspaces 
Ei c F;' with dim Ei ~ 8n/9 and El ..L E2 concludes the proof of the claim. 

To settle case (i) it remains to deduce the assertion of Proposition 6.1 from the 
Claim. To this end, we observe that if E is either Eo (from (A)) or the graph of any 
isometry from El onto E2 (El' E2 as in (B)), then 

(14) 

A simple geometric argument (the reader is advised to draw pictures) works in both 
cases. If x E Eo with IIxl12 = 1 and Tx = ax + x' with x' ..L x, then it is easily 
shown that (12), p ~ 18, and - (13)p.sgna show that Ilx'112 > 8/6. On the other 
hand, if y E El and z E E2 are such that IIyl12 = IIzll2 = 1, then IITy + pyl12 ,;:;; 8/3, 
IITz - pzll ,;:;; 8/3 and so if x = 2-l / 2(y + z) and x' = 2- l/ 2(y - z), then x' ..l x, 
IIxl12 = Ilx'112 = 1 and (Tx, x') ~ t(2 - Ii) > i (we also use p ~ 18 here). This 
establishes (14). 

Finally notice that in either case E satisfying (14) also verifies dim E ~ 8n/9. 
Therefore applying Lemma 6.3 to E we get an orthonormal sequence satisfying (I) 
and (II), as required. 

Case (ii). First apply Lemma 6.3 with G = [u l , ... , um) to obtain an orthonormal 
sequence fl' ... , fk' k ~ m/4. Then define q to be the smallest integer not less than 
m/6 (note that q ~ 8n/36 and E = [fl" .. , fqj). Again apply Lemma 6.3 with 
G = [un-m+l, ... ,un) Ii (TE).L liT-l(E.L) to obtain E' = [f{, ... ,f:); then E'..:.. 
TE and TE' ..L E (observe that we have automatically E ..L E' and TE ..L TE' since 
u/s came from the polar decomposition of T). 

Now set hj = 2- l / 2(fj + fj') for j = 1,2, ... , q. We claim that these h/s satisfy 
the conditions (I) and (II). Indeed, (I) is clear since fj's and fj"s were obtained via 
Lemma 6.3 and since E, E', TE, TE' are mutually orthogonal. To show (II), we 
observe that 

IIp[h)~ ThJ~ = ~IIT(fj + fj') II~ - tl( T(fj + fj'), (fj + fj')) 12 

~ t(IITfjll-IITfj'llt ~ Hi\m - i\n_m+l)2 ~ (8/6)2 

by (ii). This concludes the proof of Proposition 6.l. 
PROOF OF THEOREM l.5A. We use Theorem l.4A and the following 

LEMMA 6.4. Let T: Rn --+ Rn and denote K = inf'\ERIIT - i\Illw_c,. Then there 
exist k, a with ka ~ CK (c a universal constant) such that T satisfies the condition 
(Mk •a )· 
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The proof of Lemma 6.4 goes along the same lines as the proof of Proposition 6.1. 
First, by replacing T by T - AoI for appropriate Ao, we may assume that 
IITllw-cj = K. Assume, for simplicity, that n is even and set p = sn/2(T). Consider 
now the operator T - pI and liT - pIllw-cj = m 1 . smj(T - pI) (:? K), denote 
/31 = smJT - pI). Assume first that m 1 ,;;; nl2 and consider two cases: 

(i)' smJT) - Sn-mj +1 < 1/31' 
(ii)' Smj(T) - Sn-mj+l :? 1/31' 
In case (ii)' we argue similarly as in case (ii) of Proposition 6.1. In case (i)' notice 

that we must necessarily have 

/31 = smJT - pI) ,;;; smj(T) + P < P + 1/31 + P 

and so p > t/31' Therefore m1/31 :? K :? 1n . p > 1n . t/31 and hence m1 :? tn (the 
case m 1 > 1n also falls in here). Considering similarly T + pI we get that the only 
unsettled case is when liT + pIllw-cj = m 2/32 etc., with m 2 :? tn. But this type of 
situation is covered by Proposition 6.1. Thus Lemma 6.4-and hence Theorem 1.5A 
-is proved. 
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