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RESONANCE AND QUASILINEAR ELLIPTICITY 
BY 

VICTOR L. SHAPIRO 

ABSTRACT. Two resonance-type existence theorems for periodic solutions of second 
order quasilinear elliptic partial differential equations are established. The first 
theorem is a best possible result, and the second theorem presents conditions which 
are both necessary and sufficient. 

1. Introduction. In this paper, we establish two resonance-type existence theorems 
for periodic solutions of second order quasilinear elliptic partial differential equa-
tions. The first theorem is a best possible result, and the second theorem presents 
conditions which are both necessary and sufficient. Also, we shall allow both the 
higher and lower order coefficients of the partial differential equation considered to 
be unbounded. There are few (if any) papers in the literature which deal with results 
of this nature, i.e., incorporating quasilinearity and unboundedness in both the 
higher order terms and lower order terms, all at resonance. 

Let Q = {x: -'IT < xJ < 'IT,j = 1, ... ,N} be the N-torus, N ~ 2. cP E COO(Q) 
means that cP E coo(RN) and is periodic of period 2'IT in each variable. W1.2(Q) will 
designate the familiar closure with respect to these Coo, periodic functions (that is, 
with respect to Coo(Q». 

We shall consider second order, quasilinear elliptic operators Q, operating on 
W1.2(Q), of the form 

(1.1) Qu = -Di [ aiJ(x, U }DJu] + bJ(x, u, Du }DJu, 

where Du represents the gradient of u, DJu = au/ax), and the summation conven-
tion is employed for i, j = 1, ... , N. 

The coefficients of Q, namely, the functions aiJ(x, z) and bJ(x, z, p), are assumed 
to be defined for all values of (x, z) E (Q - E) x R and (x, z, p) E (Q - E) x R 
X RN, respectively, where E C 0 is a set of Lebesgue measure zero. Furthermore, we 
shall suppose the following throughout the paper. 

(Q-1) The coefficients aiJ(x,z) and bJ(x,z,p) satisfy the usual Caratheodory 
conditions: For each fixed z E Rand p ERN, the functions aiJ(x, z) and bJ(x, z, p) 
are measurable; for a.e. x E 0 the functions aiJ(x, z) and bJ(x, z, p) are respec-
tively continuous in R and R X RN, i, j = 1, ... , N. 

(Q-2) 3 a nonnegative function a(x) E L2(0) such that laiJ(x, z)1 ~ a(x) for 
every z E R and a.e_ x E 0, i, j = 1, ... , N. 
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(Q-3) Q is symmetric; that is, aiJ(x, z) = aii(x, z) for every z E Rand a.e. 
x E ~, i, j = 1, ... , N. 

(Q-4) Q is uniformly elliptic almost everywhere in ~; that is, there is a constant 
"10 > 0 such that 

aii(x, z )~i ~i ~ "101~12 
for every z E R, a.e. x E ~,and every ~ E RN (1~12 = ~l + ... +~1). 

(Q-5) There is a nonnegative function b(x) E L2(~) and positive constants "11 
and "12 such that 

Ibi(X,Z,p)l~ b(x) + lhlzl+ "121pl 
for every p ERN, Z E R, and a.e. x E ~, j = 1, ... , N. 

(Q-6) For every u E Wl,2(~), the vector 
b(x,u,Du) = [bl(x,u,Du), ... ,bN(x,u,Du)] 

is weakly solenoidal, i.e., In bi(x, u, Du)Div(x) dx = 0 for every u and v E W1,2(~) 
where the summation convention is used. 

(Q-7) If {Un}~=l is a sequence of functions in L2(~) which tend strongly to 
u E L2(~) and {wn}~=l is a sequence of vector-valued functions which tend weakly 
to w E [L2(~)]N, then {b(x, un, wn)}~_l tends weakly to b(x, u, w) E [L2(~)]N, i.e., 
with bi(x, u, w) == bi(x, U, WI"'" wn) the jth component of b(x, u, w), then 
lim" ..... oo In bi(x, un, wn)vdx = In bi(x, u, w)vdx 'f:/v E L2(~) and j = 1, ... , N. 

By strong convergence in (Q-7), we mean convergence in norm. 
Before proceeding, we give an example of a vector b(x, z, p) which meets (Q-5), 

(Q-6), and (Q-7). Define the jth component of b( x, z, p) as follows 

bl(x,z,p) = cosx2 + P2 sin Xl' b2(x,z,p) = cosxl - PI sin Xl - zcosxl , 

bi(x,z,p) == 0 for j = 3, ... ,N. 
Clearly, condition (Q-5) is met. If cf> E Coo(~), then 

10 COSX2Dlcf>(x)dx = 10 cos x l D2cf> (x) = O. 

Likewise if u E W1,2(~), then 

10 [D2(usinx1)Dl cf> - Dl(u sin x1 )D2cf>] dx 

= -10 u sin xl[D2Dlcf> - D1D2cf>] dx = 0; 

SO, it is clear that (Q-6) is met. To see that (Q-7) is met, let { un} ~= 1 tend strongly to 
u in L2(~) and let {wn} tend we~y to w E [L2(~)]N. Then b1(x, un, w") = cosx2 
+ wi'sinx1and b2(x,u",w") = cosx1 - wi'sinx1 - UnCOSXl and b/x,u",w") = 0 
for j = 3, ... , N. It is clear that 

lim 1 bi(x, u",w")vdx = 1 bi(x, u, w)vdx 'f:/v E L2(~), 
" ..... 00 n n 

for j = 1, ... , N. Consequently condition (Q-7) is met. Therefore b(x, z, p) has met 
all the asserted conditions and our example is complete. 
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We shall study equations of the form 
(l.2) Qu=f(x,u) 
under various assumptions on f( x, u). Let .;V u be the Nemitsky operator 

.;Vu = f(x, u(x )), 
where f(x, z): Q X R ~ R. We shall suppose throughout the paper that 
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(f-I) f(x, z) meets the same Caratheodory conditions that aij(x, z) meets in (Q-I) 
above. 

(f-2) For each r> 0, there is a tr E L2(Q) such that If(x, z)1 ~ tr(x) for a.e. 
x E Q and Izl ~ r. 

To establish the first theorem in the paper, we shall need the following one-sided 
growth condition on f: 

(f-3) Given e > 0,3 a nonnegative function c.(x) in L2(Q) and a constant zo(e), 

zf(x, z) ~ ez2 + c,(x)lzl for Izl ~ zo(e) and a.e. x E Q. 

We note that (f-3) is a generalization of the notion limsuPlzl~oof(x, z)jz ~ ° 
uniformly for x E Q. 

Motivated by [3], we shall set 
(1.3) ~±(x) = limsupf(x,z)jz 

Z-+ ± 00 

and establish the following theorem in §3. 

THEOREM 1. Assume (Q-I)-(Q-7), (f-I), (f-2), and (f-3). Suppose 
(i) In ~+(x) dx < ° and In ~(x) dx < 0, 

where ~+ and ~ are defined in (1.3). Then there exists a distribution solution 
u E wL2(Q) of Qu = f(x, u) withf(x, u) E Ll(Q) andf(x, u)u E L\Q). 

To be quite explicit, what we mean by u E Wl.2(Q) being a distribution solution 
of Qu = f(x, u) is 

(1.3)' Ia [aii(x,u)DjuDi</>dx + </>bj(x,u,Du)Dju] dx = Iaf(x,u)</>dx 

for every </> E COO(Q), where the summation convention is used for i, j = 1, ... , N. 
Theorem 1 is in a certain sense a best possible result, i.e., if we replace (i) above by 

(i') or (i") below, the conclusion to the theorem is false. 
(i') In ~+(x) dx = ° and In ~(x) dx < 0. 
(i") In ~+(x)dx < ° and In ~(x)dx = 0. 
To see that this is the case for (i'), we shall suppose Theorem 1 holds if (i) is 

replaced by (i') and arrive at a contradiction. Set 

(1.4) z ~ 0, 
z < 0, 

and f(x, z) = 1 + j3(z) for x E Q and z E R. Then f(x, z) meets (f-I), (f-2), and 
(f-3). Furthermore, it follows from (1.3) and (1.4) that ~+(x) = ° and ~(x) = -1 
for x E Q, and therefore condition (i') is met. So if Theorem 1 were true with (i) 
replaced by (i'), a distribution solution u E W1,2(Q) of Qu = f(x, u) would exist; 
i.e., we would have that (1.3)' holds. 
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On setting cf> = 1 in (1.3)' and observing that D) = 0 for i = 1, ... , N, we obtain 
in particular from (1.3)' that 

(l.5) 

where the summation convention is used for j = 1, ... , N. 
Now f(x, u) = 1 + f3[u(x)]. So it is easily seen from (1.4) that 

(1.6) f(x,u(x» ~ 1 a.e.in Q. 

Also we observe from (Q-6) that the left-hand side of (1.5) is O. We consequently 
obtain from (1.5) and (1.6) that 0 ~ (2'1T )N, a contradiction. Therefore no distribu-
tion solution u E W I ,2(Q) satisfying (1.3)' exists. We conclude that Theorem 1 does 
not hold when (i) is replaced by (if). An analogous example shows that Theorem 1 
does not hold when (i) is replaced by (i"). Theorem 1 is indeed in a certain sense a 
best possible result. 

Theorem 2 deals with f(x, u) in the form g(u) - h, i.e., with 
(1.7) Qu=g(u)-h. 

In (1.7), h is in W-1.2(Q) (== W1.2(Q)*). To be quite specific, h: W1.2(Q) ~ R, 
and h is both linear and continuous. On the other hand, g will be in C(R) and we 
shall suppose that both limits lim z --> 00 g( z) and lim z --> _ 00 g( z) exist and are finite. 
We shall say that u E W I ,2(Q) is a distribution solution of (1.7) if the following 
prevails: 

(1.8) In [aiJ(x, u)DJuD;cf> + cf>bJ(x, u, DU)DJu] dx = In g(u)cf>dx - h(cf» 

for every cf> E cooCQ). 
The theorem we shall prove is the following. 

THEOREM 2. Assume (Q-l)-(Q-7), that g E C(R), hE W-I•2CQ), and that the 
limits lim z --> 00 g( z) = g( 00) and lim z --> _ 00 g( z) = g( - 00) exist and are finite. Sup-
pose also that 
(1.9) g(oo) < g(z) < g(-oo) forz E R. 
Then a necessary and sufficient condition that a distribution solution u E w1.2(Q) of 
Qu = g( u) - h exists is that 

(1.10) (2'1T)Ng(00) < h(l) < (2'1T)Ng (-00). 
The results stated in this paper were motivated by the well-known results of Brezis 

and Nirenberg [2, Chapter IV], De Figueiredo and Gossez [3], Hess [4], and 
Landesman and Lazer [6]. 

We observe that I/; == 1 is a distribution solution of (1.2) with f(x, z) == 0, i.e., 

1 [a;J(x, I/; )DJI/;D;cf> + cf>bJ(x, 1/;, DI/; )DJI/;] dx = 0 
n 

for every cf> E Coo(Q). Consequently, we see that Q( 1/;) = 01/; and therefore that 0 is 
a characteristic value. We can therefore refer to our existence theorems involving 
(1.2) and (1.7) as resonance-type theorems (see the discussion in [3]). 
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From Theorem 1, we can also easily obtain the following result. 

COROLLARY. Assume (Q-I)-(Q-7), (f-I), and (f-2). Suppose that 
(1.11) limsupf(x,z)/z < 0 uniformly for x E Q. 

Izl-+ 00 

Then there exists a distribution solution of Qu = f(x, u) with f(x, u) E L1(Q). 
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(l.11) and (l.3) imply that f meets (f-3) and (i) of Theorem l. Therefore the 
corollary is an immediate consequence of Theorem l. 

An interesting fact about the above corollary is that it constitutes a partial 
generalization of an important result in the well-known paper of Kazdan and 
Warner, namely, part (b) of Corollary 2.12 [5, p. 575]. 

Even though we have not done so here, the techniques used in this paper allow us 
to establish results for our quasilinear Q analogous to those established in [3, 
Theorem 4, p. 13 and 2, pp. 286-288]. We shall treat results of this nature and 
related matters in a sequel to this current paper. 

2. Fundamental lemmas. We shall use a Galerkin technique to establish our 
existence theorems. In order to accomplish this, we observe that there is a sequence 
{"</; k }'k-1 of real-valued functions in COO(Q) with the following properties: 

(2.1) 

(a) 1/;1 = (2'1T r N/ 2, 

(b) In "</; k I/; I dx = 8 kl where 8 kl is the Kronecker delta, 

k,I=I,2, .... 
Also, given I/; E COO(Q) and e > 0, 3 constants c1, • •. ,cn such that 

(2.2) 1I/;(x)-cql/;q(x)l<e and IDJI/;(x)-cqDJI/;q(x)l<e 
uniformly for x E Q and j = 1, ... , N, where the summation convention is used in 
(2.2) with q = 1, ... , n. 

The first lemma we prove is the following, where {I/;k }'k-1 is the sequence in (2.1) 
and (2.2). 

LEMMA l. Let F(x) be a nonnegative function in Ll(Q) and let f(x, z) satisfy (f-I) 
and (f-2). Suppose that If(x, z)1 ~ F(x) for z E Rand a.e. x E Q and that Q 
satisfies (Q-I)-(Q-6). Then if n is a given positive integer, there is a function 
u = Yl1/;l + ... +Ynl/;n such that 

(2.3) 
In [aiJ(x, u)DJuDi"</;k + I/;kbJ(x, u, Du)DJu + Ul/;k n-1] dx 

= In I/;k(x)f(x,u)dx 

for k = 1, ... , n, where the summation convention is used for i, j = 1, ... , N. 

Here, and throughout the rest of the paper, we shall use the notation 

(2.4) (v,w)o = In v{x)w{x)dx 

for v and w in L 2(Q). 
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For each a = (a l , ... , an) ERn, we introduce an n X n matrix A( a) with compo-
nents A k'( a) given as follows: 

(2.5) Ak, = (D;I/;k' a;J(·, aql/;q}DJI/;,) 0 

+ ( I/; k' hJ(-, aql/; q' Daql/; q}DJI/;,) 0 + (I/; k' I/;')on- l , 

where the summation convention is used with indices i, j = 1, ... , N and q = 
1, ... , n. 

We observe from (Q-I), (Q-2), (Q-5), and (2.4) that 

(2.6) Ak,(a)EC(Rn) fork,I=I, ... ,n. 

Next, we observe from (2.5) for 13 = (131'···' f3n ), 

(2.7) Ak,( a)f3, = (D;I/;k' aij( ., aql/; q} DJf3,l/;) 0 

+( I/;k' hJ(-,aql/;q, Daql/;q} DJf3,I/;,\ + (l/;k,f3,I/;)On-1. 

Now it follows from (Q-6), the fact that DJI/;2 = 2I/;DJI/;, and from (2.4) that 

(2.7)' ( 1/;, hJ(·, cp, Dcp )DJI/;) 0 = 0 

for cp and I/; E COO(O). Consequently, we see from (2.7) that the quadratic form 
13 . A(a)f3 = f3kAk,(a)f3, is such that 

(2.8) 13 . A( a)f3 = (D;I/;, a;J(-, aql/;q}DJI/;) 0 + (I/;, I/;)on- l , 

where I/; = 1311/;1 + ... + f3nl/;n· 
It follows from (Q-4) and (2.4) that the right-hand side of (2.8) majorizes 

1/010 1 DI/; 12 dx + (I/;, I/;)on-l , 

where I/; = 1311/;1 + ... + f3nl/;n and IDI/;12 = ID11/;1 2 + ... +IDnI/;12. We conclude 
therefore from (2.8) and (2.I)(b) that 

(2.9) 13· A(a)f3 == f3kAk,(a)f3, ~ If3I 2n-1. 
Since 13 is arbitrary in Rn, it follows from (2.9) that for each a E Rn, the inverse 

matrix [A( a)]-1 exists, and furthermore 

(2.10) 

where II . 11.1 designates the usual n X n matrix norm. 
Next, for each a ERn, we set 

(2.11) 

for k = 1, ... , n, where the summation convention is used for q = 1, ... , n. We 
observe from (f-I), (f-2), and (2.4) that Sk(a) E C(Rn) for k = 1, ... , n. Also, we see 
from (2.11) and from the fact that If(x, z)1 ~ F(x) for a.e. x E 0 and every z E R 
where FE L1(O) that there is a constant f1 such that ISk(a)1 ~ f1 for every 
a ERn, k = I, ... ,n. We set 

(2.12)(a) 
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and conclude that 

(2.12)(b) 
S is a continuous map of Rn into the closed ball of Rn with 
center 0 and radius nl / 2 f l . 
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Next, we set G(a) = [A(a)]-IS(a) and observe from (2.6), (2.10), and (2.12)(a), 
(b) that G(a) is a continuous function of a which maps Rn into the closed ball of Rn 
with center 0 and radius n3j2 f l . Consequently, G is a continuous map of this last 
mentioned closed ball into itself. We invoke the Brouwer fixed point theorem and 
conclude that there exists Y = (Yl' ... 'Yn) ERn such that [A(y)]-IS(y) = y, i.e., 
A(y)y = S(y). We set u = Yl1/11 + ... +Ynl/ln and obtain from (2.7), (2.11), and 
(2.12)(a), with a = fJ = y, that 

( Dil/l k' aiJ(., u )DJu) 0 + ( I/Ik' bJ(·, u, Du )DJu) 0 + (I/Ik' u)on-l = < I/Ik,J( ., u) >0 
for k = 1, ... , n. But this is (2.3) in the statement of the lemma, and the proof of the 
lemma is complete. 

The next lemma we prove is 

LEMMA 2.Let n be a given positive integer and let f(x, z) satisfy (f-1) and (f-2). 
Suppose that Q satisfies (Q-1)-(Q-6) and that there is a nonnegative function F(x) in 
L2({2) such that 

(2.13) zf(x, z) ~ F(x )Izl + z2j2n for a.e. x E {2 and 'Vz E R. 

Then there is a function u = Yl1/11 + ... +Ynl/ln such that (2.3) in Lemma 1 holds. 

For each positive integer M set 

{
f(X' M), 

fM(X, z) = f(x, z), 
f(x,-M), 

z~M, 

-M~ z~M, 

z~ -M. 

It follows from (f-2) that there is a rM E L2({2) such that 

IfM(X,z)l~ rM(X) fora.e. x E {2 and'Vz E R. 

Consequently it follows from Lemma 1 that there exists {yr} 7-1 such that 

(2.14) uM = YIMI/ll + ... +YnMl/ln 

satisfies (2.3) with f replaced by fM, i.e., 

(2.15) (Dil/lk' aiJ(., uM)DJu M) 0 + (I/Ik' bJ(·, uM, DuM)DJUM) 0 + (I/Ik' uM)n-l 

= (I/Ik,JM(.,UM)o 

for k = 1, ... , n. 
Now it follows from the definition of fM(X, z) and from (2.13) that zfM(X, z) ~ 

F(x)lzl + Izl2j2n for a.e. x E {2 and'Vz E R. Consequently 
2 

(2.16) uM(x)fM[X,UM(x)] ~IUM(X)IF(x) +luM(x)1 j2n 

for a.e. x E {2 and M = 1, 2, .... 
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Next, we multiply both sides of (2.15) by yf: and sum over k = 1, ... , n. Using 
(Q-4), (2.7)', and (2.14), we then obtain that 

n-1( uM, uM)o ~ (u M, fM(., uM)o 
for each fixed positive integer M. But then it follows from (2.16) that 

(2nf\u M, uM)o ~ 10 luM(x) IF(x) dx. 

By the hypothesis of the lemma, F E L2(~); so it follows from this last inequality in 
conjunction with the Schwarz inequality that 

(UM,UM)O ~ 4n 2(F,F)0· 
We next employ (2.1)(b) and (2.14) in conjunction with this last fact to obtain 

(Y1M)2 + ... + (YnM)2 ~ 4n 2( F, F)o 
for every positive integer M. 

Since n is a fixed positive integer, we infer from this last inequality that there 
exists a subsequence of {yf:} which converges for each k = 1, ... , n. For ease of 
notation, we shall suppose this subsequence is the full sequence and record this fact 
as 
(2.17) k = 1, ... , n. 

We set u = Yll/;l + ... +Ynl/;n and obtain from (2.14) and (2.17) that 

lim uM(x) = u(x) uniformly for x E ~, 
M--+oo (2.18) 
lim DJuM(x) = DJu(x) uniformly for x E ~ and j = 1, ... , N. 

M--+oo 

From (Q-l) and this last fact, we see that 

(2.19) 
(a) lim aiJ(x,uM(x)) = aiJ(x,u(x)), 

M-->oo 

(b) lim bJ(x, DuM(x)) = bJ(x,Du(x)) 
M--> 00 

for a.e. x E ~ and i, j = 1, ... , N. 
From (Q-2) in conjunction with (2.14), (2.17), (2.18), and (2.19)(a), we see that 

(2.20) lim (D;l/;k,a;J(.,uM)D/u M) =(D;l/;k,aiJ(.,u)DJu) 
M--+oo 0 0 

for k = 1, ... , n. Likewise, we see from (Q-5) in conjunction with (2.14), (2.17), 
(2.18), and (2.19)(b) that 
(2.21) lim (l/;k,bJ(.,UM,DuM)DJUM) =(l/;k,bJ(.,u,Du)DJu) 

M--+oo 0 0 

for k = 1, ... , n. 
Next, we observe from (2.14) and (2.17) that the sequence {UM(X)}~=l is 

uniformly bounded on ~ and in COO(~) for each M. We consequently obtain from 
the definition of fM(X, z) that there is an Mo such that for M ~ Mo, fM(X, uM(x)) 
= f(x, uM(x)) for x E ~. But then it follows from (f-l), (f-2), and (2.18) that 

lim (l/;k,fM(.,uM))o=(l/;k,f(·,n))o 
M--+oo 
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for k = 1, ... , n. We conclude from (2.15), (2.18), (2.20), (2.21), and this last fact 
that 

( Dil/l k' aij(·, u )Dju) 0 + ( 1/1 k' b j(·, u, Du )Dju) 0 + (1/1 k' u)on-1 = ( 1/1 k.J(·, u» 0 

for k = 1, ... , n. But this establishes (2.3) for u = YlI/Il + ... +Ynl/ln' and the proof 
of the lemma is complete. 

Next for w E L 2(D), we set 

(2.22) 

and establish the following lemma. 

LEMMA 3. Suppose f(x, z) satisfies (f-1), (f-2), and that there is a nonnegative 
function F E L2(D) such that 

(2.23) zf(x,z)~F(x)lzl+z2 fora.e.xEDandVzER. 

Suppose also that for every positive integer, there is un = yNl + ... +Y:tPn which 
satisfies 

(2.24) (Dil/lk' aij(·, un)Dju n) 0 + (I/Ik' b j(·, un, Dun)Dju n\ + (I/Ik' un)on-1 

= (I/Ik.J(-,Un»o 

for k = 1, ... , n, where the summation convention is used for i, j = 1, ... , N, and Q 
satisfies (Q-1)-(Q-6). Suppose furthermore there is a constant K such that 

(2.25) lIu n 110 ~ K for n = 1,2, .... 
Then there is a constant K* such that 

(2.26) 

Multiplying both sides of (2.24) by Yk and summing over k = 1, ... , n, we obtain 
from the hypothesis of the lemma and (2.7)' that 

( Dun aij(. un)Dun) +(un un) n-1 =(un f(. un» i' , j 0 '0 "0· 

Consequently, we have from (Q-4) and this last fact that 

(2.27) O~(un,f(·,un»o' 

Next, we set 

(2.28) 
An = {x E D: un(x)f(x,un(x» ~ O}, 
En = {x E D: un(x)f(x,un(x» < O}, 

and observe from (2.22) and (2.23) that 

f unf(x, un) dx ~ IIF 11011 unllo + Ilunll~ 
A. 

for n = 1,2, .... Consequently we have from (2.25) that there is a constant Kl > 0 
such that 

(2.29) f unf(x, un) dx ~ Kl for n = 1,2, .... 
A. 
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Also, it follows from (2.27) and (2.28) 

-f unf(x, un} dx ~ f unf(x, un} dx. 
B. A. 

Therefore, we obtain from (2.29) and this last fact that 

f lunllf(x,un)ldx~K1 forn=1,2, .... 
B. 

But this fact in conjunction with (2.28) and (2.29) gives 

folunllf(x,un}ldx~2K1 forn=1,2, .... 

This last inequality is (2.26) with K* = 2K1, and the proof of the lemma is 
complete. 

LEMMA 4. Suppose the conditions in the hypothesis of Lemma 3 hold. Then the 
sequence {f ( x, un)} ~ -1 is uniformly absolutely continuous. 

To be precise, what we mean by uniformly absolutely continuous is the following: 
Given E > 0 there exists a 8 > 0 such that if E c {l with JL(E) < 8, then 
Ie If(x, un)1 dx < E for n = 1,2, ... , where JL is N-dimensional Lebesgue measure. 

First of all we choose r > 0 so that 
(2.30) K*/r < E/2, 
where K* is the constant in Lemma 3. Next, using (f-2), we choose ~r E L2({l) such 
that 

(2.31) 

Also we set 

If(x, z} I ~ t(x} for a.e. x E {l and Izi ~ r. 

(2.32) An= {XE{l: lun(x}l~r}, 

and choose 8 > 0 such that 

(2.33) JL(E) < 8 =* fe t(x) dx < E/2. 

Now suppose JL(E) < 8 with 8 as in (2.33). Then it follows from Lemma 3 and 
(2.31)-(2.33) that 

!.If(x,un(x))ldx ~ f ~r(x}dx + r-1f lun(x}f(x,un(x))ldx 
/, EnA. EnB. 

~ E/2 + K*/r 
for n = 1,2, .... From (2.30), we see that the right-hand side of this last established 
inequality is < E. Consequently {f(x, Un)}~=1 is uniformly absolutely continuous, 
and the proof of the lemma is complete. 

3. Proof of Theorem 1. Since f satisfies (f-1)-(f-3), we see that for every E > 0, 
there exist a nonnegative function F.(x) E L2({l) such that 

(3.1) zf(X,Z)~EZ2+F.(x)lzl fora.e.xE {land\fz ER. 
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Consequently, it follows from Lemma 2 that there is a sequence {U n }::,,= 1 with the 
following properties: 
(3.2) un = Y1"1/I1 + ... +Y:I/I,,; 

(3.3) (D;I/Ik' a;j(·, u")Djun) 0 + ( I/Ik' bj(·, un, Dun)Dju") 0 + (I/Ik' u")on-1 

= (l/Ik,f("U"»o 
for k = 1, ... , n, where {l/Idk=1 is the orthonormal sequence with properties (2.1) 
and (2.2). 

With IIwllo for w E L2(0) given by (2.22), we define IIvliI for v E W1.2(O) by 

(3.4) Ilvlli = Ilvll~ + IIIDvlll~, 
where IDvl2 = ID1Vl2 + ... +IDNVI2. 

We claim there is a constant K such that 

(3.5) Ilu"lh,.;; K for n = 1,2, .... 
Suppose that (3.5) is false. Then (see [1, p. 169]) there is a subsequence of 

{u n }::,,= l' which for ease of notation we shall take to be the full sequence, with the 
following properties: 

(3.6) lim II un Ih = 00; n-+ 00 

(3.7) 
there is a v E W1.2(O) such that lim II v" - v 110 = 0, n-+ 00 

where vn = unlllunl11; 
(3.8) lim vn(x) = v(x) a.e. x E 0; 

n-+oo 

Next, we observe that D/Un)2 = 2unDjun and consequently obtain from (Q-6) 
that 

( Un bj(. un Dun)D.un) = 0 , " J 0 • 

Using this fact in conjunction with (3.2), (3.3), and (3.7) gives us that 

(3.10) (D;v", aiJ(., un)Djvn)o + (vn,vn)on-1 = (un,f(-,un»01Iunll~2. 
Now it follows from (Q-4) that 

aij(x,un)D;vnDjvn ~ 'l'/01Dvn12 

for a.e. x E 0, where '1'/0 is a positive constant. Consequently we obtain from (3.1) 
and (3.10) that for every £ > 0, there is an F. E L2(0) such that 

2 2 -1 
(3.11) '1'/0111 Dvn 1110 ,.;; £llvnllo + Ilunlh II vn 11011 F.llo· 
From (3.4) and (3.7), we see that IIvnll? = 1 and furthermore that IIvnll~,.;; 1. We 
conclude from this fact, in conjunction with (3.6) and (3.11), that lim sUPn -+ oolllDvlll~ 
,.;; £'1'/01, and therefore, since £ > 0 is arbitrary, 

(3.12) lim III Dvn 1110 = o. n-+oo 
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Since IDiv1/1 ~ IDvll1 for j = 1, ... , N, we obtain from (3.9) and (3.12) that 

Consequently 
(3.13) 

1 c/>Djvdx = 0 'tic/> E Coo(Q) and j = 1, ... , N. 
n 

Djv = 0 for j = 1, ... , N 

and v is equal to a constant a.e. in Q. To calculate this constant, we see from (3.7) 
that Ilv"ll? = 1. Now Ilvllll? = II vl/I16 + IIIDvnll16 and from (3.7), we see that IIvnll6 ~ 
Ilvll6. Therefore it follows from (3.12) that limn~ocllvnll? = Ilvll~ and we conclude 
from (3.7) that IIvll6 = 1. Therefore since v is constant a.e. in Q, v = (277tN/2 a.e. 
in Q or v = _(277)-N/2 a.e. in Q. 

We shall suppose 

(3.14) V = (277)-N/2 . n a.e. m ~~ 
and arrive at a contradiction. A similar line of reasoning prevails in case the other 
alternative holds, and we leave the details of this part to the reader. 

To arrive at a contradiction, we see from (Q-4) in conjunction with (3.10) that 
(3.15) (un,/(·,ul/))o>O. 
Also, from (3.1) with £ = 1, we see that 

(3.16) (VI/)2 + FI(x)v"llunll~I - un/(x,un)llunll~2 > 0 a.e. in Q, n = 1,2, .... 
We set 
(3.17) gl/ = the left-hand side of the inequality in (3.16) 
and obtain from (3.15) that 

(3.18) 

From (3.6), (3.7), (3.14), and the fact that Fl(x) E L2(Q), we obtain from (3.18) that 

lim inf 1 gn (x) dx ~ 1. 
fl~OO n 

On the other hand from (3.16), (3.17), Fatou's lemma [7, p. 24] and this last 
inequality, we obtain that 

(3.19) 

From (3.7), we see that un(x) = vl/(x)llunli. Therefore it follows from (3.6), (3.8), 
and (3.14) that 

(3.20) lim vl/(x) ;= (277 r N/ 2 and lim un(x) = + OCI a.e. E Q. 
n~oo 

Also, we see that 
-2 J Un/eX, un)llun III = (vnt/(x, un)jun. 

Consequently, it follows from (3.6), (3.16), (3.17), (3.20) and (1.3) that 

liminfgl/(x) = (277rN -(277rN%+(X) a.e. in Q. 
fl----!o 00 
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But then we see from (3.19) that 1 - (27T)-N/O ~+(X) dx .::;; 1 and therefore that 
/0 ~+ (x) dx ~ O. This fact is contrary to the first inequality in condition (i) in the 
hypothesis of the theorem. We have arrived at a contradiction and conclude that 
(3.5) is indeed true. 

From the fact that (3.5) holds, it follows (see [1, p. 169]) that there is a 
subsequence of {un }:;O=l' which for ease of notation we take to the full sequence, 
with the following properties: 

(3.21) there is a u E W 1•2(g) such that lim Ilun - ullo = 0; 
n-+ 00 

(3.22) lim un(x) = u(x) for a.e. x E g; 
n-+oo 

(3.23) 

From (3.22) and (Q-l), we see that 

lim aii[x, un(x)] = aiJ[x, u(x)] a.e. x E g 
,,-+ 00 

for i, j = 1, ... , N. It consequently follows from (Q-2) and this last fact that 

lim Ila ii(., u") - aii(., u) 110 = O. 
"-+00 

But this fact, in turn, in conjunction with (3.5) and the Schwarz inequality implies 
that for fixed k 

(3.24) 

From (3.23), in conjunction with (Q-2), we also see that 

lim (Di'h, aii(., u)Diun) = (Di'h,aiJ(.,u)Diu) . 
n-+oo 0 0 

We conclude from this last fact in conjunction with (3.24) that 

(3.25) }~~ (DitPk,aiJ(.,un)DiUn)o = (DitPk,aii(.,u)Diu)o 

for k = 1,2, .... 
Next, from (Q-6), we see that 

10 bi(·,un,Dun)D/untPk)dx = 0 

and consequently that 

(3.26) ( tPk' bi(., un, Dun)Diun) 0 = -( un, bi (., un, Dun) DitPk) o. 

On the other hand, from (Q-5) we see that 

10 lu n - ullbi(x, un, Dun) I dx .::;; Ilun - ullo[llb(x) 110 + 1hll un llo + 1hIII Dun lllo]. 
From (3.5) and (3.21), we also see that the right-hand side of this last inequality goes 
to 0 as n --+ 00, and consequently from (3.26), we obtain that 

(3.27) 
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However, from (3.23), we see that {Dun }~=l is a sequence of vector-valued func-
tions in {L2(0)}N which tends weakly to Du E [L2(0)]N. Also from (3.21), we see 
that {un}~=l tends strongly to u in L2(0). Therefore, it follows from (Q-7) that 

lim (u,bj(.,u n, Dun) Djl/lk) = (u,bj(.,u,Du)DJl/Ik) . 
11-->00 0 0 

But, since u E W1.2(O), we see as earlier, 

(u, bj(·, u, Du)Djl/lk) 0 = -( l/Ik' b j(·, u, DU)Dju) o' 

We consequently conclude from these last two equalities and (3.27) that 

(3.28) lim (l/Ik,bJ(.,u",Dun)Dju n) = (l/Ik,bj(.,u,Du)Dju) 
11-->00 0 0 

for k = 1,2, .... 
Next, from (3.5) and Lemma 4, we see that the sequence {I(x, Un)}~=l is 

uniformly absolutely continuous. Also, we see from (f-1) and (3.22) that 
limn-->oof[x, un(x)] = f[x, u(x)] for a.e. x E O. We conclude from Egoroffs theo-
rem [i, p. 75] and from Fatou's lemma that 
(3.29) f(x, u) E Ll(O) 
and 

(3.30) 

for k = 1,2, .... 
From (3.3), (3.21), (3.25), (3.28), and (3.30), we see that 

(3.31) (Dil/lk,aij(.,u)Dju)o + (l/Ik,bj(.,u,Du)Dju)o = (l/Ik,f("U»o 

for k = 1,2, .... 
From (Q-2), we see that a il(., u )Dju E Ll(O). From (Q-5), we see that 

bj(·, u, Du)Dju E Ll(O). From (3.29), we have that f(x, u) E Ll(O). Also, it fol-
lows from (2.2) that given <P E COCCO), there is a sequence {<Pn}~=l and real 
constants {C;};=l such that <Pn=CNl + ... +c:l/In,limn--><Xl<pn(x) = <p(x), and 
lim" --> <Xl Dj<p,,( x) = Dj<p( z) uniformly for x E 0, j = 1, ... , N. We conclude first 
that (3.31) holds with l/Ik replaced by <Pn, and next on passing to the limit as n ~ 00, 

that 

(Di<P' a iJ(., u)Dju) 0 + (<p, bJ(-, u, DU)Dju) 0 = (<p, f(', u»o' 

But this is (1.3)'. From (3.21) we see that u E Wl.2(0). We conclude that u is 
indeed a distribution solution of Qu = f(x, u). 

To complete the proof of the theorem, it remains to show that uf(x, u) E Ll(O). 
From (3.22) and (f-1), it follows that 
(3.32) lim un(x)f[x,un(x)] = u(x)f[x,u(x)] a.e.E O. 

n --+ 00 

On the other hand from (3.5) and Lemma 3, we see that there is a constant K* such 
that In lu"(x)lIf[x, un(x)]ldx ~ K*. Consequently, it follows from Fatou's lemma 
and (3.32) that In lu(x)lIf(x,u(x»ldx ~ K*, and the proof of Theorem 1 is 
complete. 
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4. Proof of Theorem 2. We first establish the necessary condition of the theorem. 
Suppose then that (1.8) and (1.9) hold, where u E W l ,2(Q). We choose cp == 1 in 
(1.8) and observe that 

1 aiJ(x, u)DJuDi1dx = O. 
Q 

Also, we see from (Q-6) on choosing v = u that 

10 bJ(x, u, DU)DJudx = O. 

We consequently conclude from these last two equalities and the fact that (1.8) holds 
that 

(4.1) 10 g(u) dx = h(l). 

Using the first inequality in (1.9) in conjunction with (4.1) gives us the first 
inequality in (1.10). Using the second inequality in (1.9) in conjunction with (4.1) 
gives us the second inequality in (1.10), and the proof of the necessary condition in 
Theorem 2 is complete. 

To establish the sufficient condition in the theorem, we first observe that the 
following lemma holds. 

LEMMA 5. Let g be in C(R) n Loo(R) and h E W-l ,2(Q). Suppose that Q satisfies 
(Q-1)-(Q-6). Then if n is a given positive integer, there is a function un = yNl 
+ ... + y,;'1/; II such that 

(4.2) 
10 [aiJ(x, un)DJul!Dil/;k + I/;kbJ(x, un, Dun)DJul! + Unl/;k n- l ] dx 

= 10 I/;k(X )g(ul!) dx - h( I/;k) for k = 1, ... , n. 

The proof of the above lemma is exactly the same as the proof of Lemma 1 except 
Sk( a) in (2.11) now becomes Sk( a) = N k' g( aql/; q»o - h( I/; k) for k = 1, ... , n, 
where the summation convention is used for q = 1, ... , n. The reader will have no 
difficulty in filling in the details. 

We now proceed with the proof of the sufficiency. We observe that the conditions 
in the hypothesis of Theorem 2 imply those in the hypothesis of Lemma 5. So for 
each positive integer n, we let un designate the solution satisfying (4.2). We claim, as 
in the proof of Theorem 1, that there is a constant K such that 

(4.3) 

where II . III is defined in (3.4). 
Suppose that (4.3) is false. Then (see [1, p. 169]) there is a subsequence of {un}, 

which for ease of notation we shall take to be the full sequence, which satisfies 
(3.6)-(3.9) and furthermore, since hE W- l ,2(Q) (== W1,2(Q)*), satisfies 
(4.4) lim h(vn ) = h(v), 

n-+ 00 

where vI! = ul! IlIul!lh and v = uilluil l . 
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Now, as the proof of Theorem 1, (un,bj(·,un,Dun)Djun)o = 0; so we obtain 
from (4.2) that 

(4.5) (DiVn,aiJ(.,un)Djvn) + (vn,vn)on-1 = [(un,g(un»o- h(un)]llunll~2. 

From (Q-4), we see that the left-hand side of (4.5) majorizes 'I1oIIIDvnlll~. On the 
other hand, since g E LOO(R) and h E W- 1,2(O), we see that the right-hand side of 
(4.5) is majorized by Klllunlhllunll12, where Kl is a constant independent of n. We 
conclude from (4.5) that 

(4.6) IIIDvnlll~ ~ 'I101Klllunll~1 for n = 1,2, .... 
From (3.6) and (4.6), we immediately obtain that 

(4.7) lim IIIDvnlll~=O. 
n --+ 00 

From (3.7), we see that IIvnlli = 1 and consequently from (3.4), (3.7), and (4.7) that 

(4.8) Ilvll~ = lim Ilvnll~ = 1. 
n --+ 00 

Also, from (3.9) and (4.7), we see that 

(4.9) Djv = 0, j = 1, ... , N. 

Now by (3.7), v E W1•2(O). It follows, therefore, from (4.8) and (4.9) that 
v = (2'IT)-N/2 a.e. in 0 or v = _(2'ITtN/2 a.e. in 0. 

We shall suppose 

(4.10) (2 )-N/2 . n 
V = 'IT a.e. In ~~, 

and arrive at a contradiction. As the reader will easily see, a similar line of reasoning 
gives a contradiction in case the other alternative holds. 

Suppose then that (4.10) holds. We observe from (Q-4) and (4.5) that 0 ~ 
(un, g(un» - h(un), and consequently, using the linearity of h, that 

(4.11) h(vn) ~ (vn,g(un»o' 
Since un = lIunlhvn, we see from (3.6), (3.8), and (4.10) that 

(4.12) lim g[un(x)]vn(x) = (2'ITfN/2g(OO) a.e.inO. 

Also, since g E LOO(R), it follows from (4.8) that there exists a constant K2 such that 

10 Ig(u n )vn I2 dx ~ K2 for n = 1,2, .... 

From this last fact and Schwarz' inequality, it follows that the sequence { g( un) vn };:"= 1 

is uniformly absolutely continuous and consequently from (4.12) and Egoroffs 
Theorem [7, p. 75], 

(4.13) 

On the other hand from (4.4), (4.10), and the linearity of h, we see that 

lim h(vn) = (2'ITf N/ 2h(1). 
n --+ 00 
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But then we obtain from (4.11), (4.13), and this last inequality that h(l) ~ 
(2?T )Ng( 00). This fact is a contradiction to the first equality in (1.10). We conclude 
that (4.3) does indeed hold. 

From the fact that (4.3) holds, we see from [1, p. 169] that there is a subsequence 
of {un}, which for ease of notation we shall take to be the full sequence, and a 
function u E W1.2(Q) which satisfies (3.21), (3.22), and (3.23). 

Using (Q-l), (Q-2), (3.21), (3.22), and (4.3) (which is the analogue of (3.5», we 
obtain exactly as in the proof of Theorem 1 that 

(4.14) lim (D;l/;k,a;j(.,un)Dju n ) = (D;l/;k,aiJ(.,u)Dju) 
II--'*" 00 0 0 

for k = 1,2, .... In a similar manner, we obtain from the proof of Theorem 1 that 

(4.15) lim (l/;k,bj(.,un,Dun)Djun) = (l/;k,bJ(.,u,Du)Dju) . 
11-00 0 . 0 

Next, from (3.22) and the fact that g E C(R), we see that 

lim g[un(x)] = g[u(x)] fora.e. x E Q. 
11-00 

Since g is also in L 00 (R), it follows from this last equality and the Lebesgue 
dominated convergence theorem that 

( 4.16) 

From (3.21), (4.2), (4.14), (4.15), and (4.16), we finally conclude that 
(4.17) 

( D;I/; k' aiJ(- , u )Dju) 0 + ( I/; k' bJ( " u, Du) Dju) 0 = < I/; k' g( u)) 0 - h (I/; k) 

for k = 1,2, .... 
Next, given cf> E Coo(Q), we see from (2.2) that there exists a set of real constants 

{C;}~=l and a sequence {cf>n}:;=l with 

(4.18) 

such that both of the following prevail: 

(4.19) 

(4.20) 

lim cf>n(x) = cf>(x) uniformly for x E Q, 

lim Djcf>n(x) = Djcf>(x) uniformly for x E Q, j = 1, ... , N. 
11-+00 

These last two facts, in particular, imply that limn ~ oollcf>n - cf>111 = 0, and conse-
quently since h E W-1.2(Q) that 

(4.21) lim h (cf>J = h ( cf> ). 

Since u E W1.2(Q), it follows from (Q-2) that 

(4.22) a;J(x,u)DjUELl(Q) fori=I, ... ,N. 

Likewise, it follows from (Q-5) that 

(4.23) 
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From (4.20) and (4.22), we obtain 

(4.24) }~~ (DjCPn,aij(.,u)Dju)o = (Djcp,aiJ(.,u)Dju)o' 

Likewise from (4.19) and (4.23), we obtain 

(4.25) }~~ (CPn,bj(.,u,Du)Dju)o = (cp,bj(.,u,Du)Dju)o' 

Also, we see from (4.19) that 

(4.26) lim (CPn,g(u»o = (cp,g(u»o' 
n --+ 00 

We are now ready to conclude the proof of the theorem. From (4.18) we see that 
(4.17) holds with 1/1 k replaced by CPn' But then we obtain from (4.21), (4.24), (4.25), 
and (4.26) on passing to the limit as n --. 00 that (4.17) holds with 1/1 k replaced by cP, 
i.e., 

(4.27) (D;cp,aiJ(.,u)DJu)o + (cp,bJ(.,u,Du)Dju) = (cp,g(u»o - h(cp). 

cP, however, is an arbitrary given function in Coo(O), so (4.27) shows that (1.8) is 
indeed true, and the proof of Theorem 2 is complete. 
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