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ON THE AMPLENESS OF HOMOGENEOUS VECTOR BUNDLES 
BY 
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ABSTRACT. A formula is proved which expresses the ampleness of a homogeneous 
vector bundle over G / P in terms of the distance of the weights of the representation 
of P to certain dominant weights of G, 

Classically, a line bundle L over a compact complex manifold X is said to be 
ample if the map X ~ p N associated to the sections of some power Ln gives an 
imbedding of X This notion has been extended to vector bundles as well [6]. In [9] 
Sommese generalized the notion of ampleness to the following: Let E be a holomor-
phic vector bundle over a compact complex manifold X and let HE) be the 
tautological line bundle over P(E). Then E is called k-ample if g(EY is spanned by 
global sections for some n > 0 and the map P(E) ~ p N associated to the sections of 
HE)n has at most k-dimensional fibers. This definition coincides with ampleness in 
the sense of Grothendieck [6] when k = O. 

Sommese [9] proves analogues of Barth-Lefschetz type theorems for k-ample 
vector bundles, and in [10] he shows that there is a connection between k-ampleness 
and (k + I)-convexity of holomorphic vector bundles: If E is k-amp/e, then E* is 
(k + I)-convex (in the sense of Andreotti-Grauert). For k = 0 the converse is also 
true. It should be remarked that the algebro-geometric conditions for k-ampleness 
are generally easier to verify than the differential geometric conditions for (k + 1)-
convexity, 

In this paper we investigate the ampleness of homogeneous vector bundles E over 
simply-connected complex projective algebraic manifolds X In this case, X is 
isomorphic to a coset space G/P, where G is a semisimple complex Lie group and P 
is a parabolic subgroup of G. Any algebraic homogeneous vector bundle over X 
comes from a rational representation of P on a vector space E. We show in §2 how 
to calculate the ampleness of E, which we denote by a(E), in terms of the relative 
positions of the weights in E, A(E), of a maximal torus T <:;;; P in the lattice of 
weights A of G. One need only compute the distance, measured by the number of 
Weyl chamber walls crossed in the diagram of G, between the weights A(E) and 
certain dominant weights in A. 

In §3 we review the results of Goldstein [5]. His calculation of the ampleness of 
the tangent bundle of X = G / P was one of the main inspirations for the generaliza-
tion to arbitrary homogeneous vector bundles in this paper. In §4 we specialize the 
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results of §2 to irreducible homogeneous vector bundles. In this case the computa-
tion of a(E) is extremely easy to carry out: If p, (respectively A) is the highest weight 
in E (respectively in E*) and A is dominant, then 

a(E) = dim X - indexp" 
where the index of p, is the number of positive roots a > 0 such that (a, p,) < o. We 
also show that E is O-ample when the weight A is regular and dominant. We 
conclude the paper with the classical example of Borel-Weil [8], calculating the 
ampleness of line bundles over X = G/P. 

1. Definitions and notation. 
1.1 The ampleness map. Given a finite-dimensional vector space E over C, we 

define the projectivization of E, denoted P(E) to be the quotient of E* \ 0 by the 
usual action of C*. We denote the image of z E E* \ 0 in P(E) by [z]. We use the 
same notation for the projectivization of a vector bundle E over a complex manifold 
X with fiber E. Let 'IT: P(E) ~ X be the bundle projection (with fiber P(E)) and 
define ~(E)* to be the rank 1 tautological subbundle of 'IT*E*. Recall that if X is 
compact, the isomorphism of vector spaces sn(E) == r(p(E), l!I(n)) induces an 
isomorphism [6] 

r(x, sn(E)) == r(p(E), HEr), n ~ 1. 
(Here, sn(.) denotes the nth symmetric power.) We denote both of these vector 
spaces by Vn • 

DEFINITION [9]. A holomorphic vector bundle E on a compact complex manifold 
X is called k-ample if: 

(1) ~(EY is spanned by global sections for some n > 0; i.e., the evaluation map 
P(E) X v" ~ ~(E)n is surjective. 

(2) The projectivization a: P(E) ~ P(v,,) of the induced map ~(E)-n ~ v,,* has at 
most k-dimensional fibers. 

The number k is independent of the integer n for which HE)n is spanned [9]. We 
define the ampleness of E, denoted a(E), to be the minimum k for which E is 
k-arnple, and we call the map a the ampleness map. (If ~(E)n is not spanned for any 
n > 0, we define a(E) = dim x.) 

It will also be convenient for us to work with the map v: E* ~ sn(E*) ~ Vn* 
(lifted from a) defined as follows: For Zx E Ex*, x E X, and s E Vn , let 
v(zx)(s):= z;(sx). Here, z; stands for the image in sn(E*)x = sn(E)~ of the 
n-fold tensor z x ® ... ® z x. From the definitions we easily obtain, for z x E E x* \ 0, 

a[zxJ = [v(zJ] E P(Vn ), and dima-1a[zxl = dim v-1v(zJ. 

Thus, ~(E)n is spanned if and only if for every Zx E Ex* \ 0 there is a section s E Vn 
such that v(zx)(s) = z;(sx)'" O. Easy calculations then show that the maps v and a 
are finite on each fiber Ex* and P(E)x, x E X, respectively. Consequently, 

o ~ a(E) ~ dimX. 

1.2 Homogeneous vector bundles. As is well known, any locally trivial fiber bundle 
E over a space X with fiber E and structure group H is isomorphic (in the 
appropriate category) to a twisted product P X HE, where P is the associated 
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principal bundle over X. Here the twisted product P x HE is defined to be the 
quotient of P x E by the action h.(p, z) = (p.h- l, h.z), (p, z) E P X E, h E H. 
We denote the image of a point (p, z) E P X E in P X HE by [p, z]. Thus, 
[p.h, z] = [p, h. z] for all hE H. Projection onto the first factor [p, z] -+ p.H 
defines the bundle structure of P X HE with base P /H = X and fiber E. 

Our main interest in this paper is with homogeneous vector bundles E over compact 
projective algebraic manifolds X. By homogeneous we mean that the group of 
(algebraic) bundle automorphisms of E acts transitively on X. In this case, X is 
isomorphic to a coset space G / H where G and H are algebraic groups and the fiber 
E is a rational H-module. Thus, E is isomorphic to G X HE as described above. The 
finite-dimensional vector space of sections f( X, E) is in a canonical fashion a 
rational G-module. It is isomorphic to the induced G-module EIG which is defined to 
be the vector space of all algebraic morphisms s: G -+ E which satisfy s(gh-l ) = 
h.s(g) for all g E G, h E H. The action of G on EIG is by (g.s)(go):= S(g-lgO)' 
for all g,go E G. The relationship between such an s: G -+ E and a section 
o E f( X, E) is easily seen by writing a point x E X as a coset gH E G / H and 
expressing o(x) = o(gH) as an element of the twisted product G XHE: o(gH) = 
[g, s(g)]. We shall not distinguish between these G-modules and write el G (or 
sometimes EHIG when we want to emphasize that E is an H-module) for f(X,E). 

Evaluating a section 0 at the identity coset IH corresponds to the H-module 
homomorphism 

e: EHIG -+ E; e(s):= s(I). 

Indeed, we have e(h.s) = (h.s)(I) = s(h-l ) = h.s(l) = h.e(s). A homogeneous vec-
tor bundle is then spanned by global sections if and only if e is surjective. The 
induced module has the following universal property: Given any G-module M and 
any H-module homomorphism <p: M -+ E, there exists a unique G-module homo-
morphism <p/\: M -+ EHIG such that <p = eo <p/\ (for mE M define <p/\(m): G -+ E 
by <p/\(m)(g) = <p(g-lm». Also, if E -+ F is an H-module homomorphism, then 
there is an obvious G-module homomorphism of the induced G-modules EIG -+ FIG 
which commutes with the evaluation maps (see e.g. [4]). 

1.3 Semisimple Lie groups. From now on, G will denote a connected, simply-con-
nected, semisimple complex Lie group. General references for this section are [1, 7, 3]. 
We fix a Borel subgroup BeG and a maximal torus T c B. Let A denote the 
character group of T which we write additively. The elements of A are called 
weights. Let <I> c A denote the roots of G relative to T, and <1>+ (resp. <1>-) the 
positive (resp. negative) roots with respect to B. We write a > 0 (resp. a < 0) if 
a E <1>+ (resp. a E <1>-). Further, let !l = {al , ... , ad denote the subset of simple 
roots, I = dim T = rank G, so that each a E <I> can be expressed uniquely as an 
integral combination a = ,[nja j with either all nj :;;,. 0 (i.e., a > 0) or all nj ~ 0 (i.e., 
a < 0). The Z-module A is a free abelian group of rank I with a basis {Ai'·· . , AI} 
consisting of fundamental dominant weights, where 2(Aj, aj)/(aj , a) = ~jj. The 
lattice A is partially ordered by: A > p. if A - p. is a sum of positive roots. A weight 
,[njA j is said to be dominant if all nj :;;,. O. We denote the dominant weights by A +. 
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The Weyl group W:= NdT)/T of G acts on A and can be realized as the finite 
linear group generated by the reflections (Ja of F:= R ® zA through a E 41. For 
each W E W, we denote by 1/w E N(T) a fixed representative of w. We let (Jl"'" (JI 

denote the simple reflections, i.e., the reflections of F through the simple roots 
a l , ... , ai' respectively. Every w E W can thus be written as a product of simple 
reflections w = (J;(l) ••• (J;(J)' and the smallest number j is called the length of w, 
denoted I( w). Let B = T ~ U be the semidirect product decomposition of B where 
U is the unipotent radical of B. (U is just the product of all the root groups Ua , 

a > 0.) Then the length function satisfies 
dimUT/wB = dimB + I(w), 

since I( w) is the number of positive roots which are transformed to negative roots by 
w [3]. 

The Weyl chambers of Fare the closures of the connected components of 
F\UHa (a E 41+), where Ha is the hyperplane of F orthogonal to a. The Weyl 
group W acts simply transitively on the Weyl chambers. There is precisely one 
chamber, call it F+, such that An F+= A +. Thus, the W-orbit of any weight 
contains exactly one dominant weight. For any weight A E A we define the index of 
A to be the number of positive roots a > ° such that (a, A) < ° [2]. Geometrically, 
the index of A is just the number of hyperplanes H a , a > 0, crossed by a straight 
line connecting a to a general point of F+. We also have the following formula: 

index A = min{l(w) Iw E W, W.A E A +}. 
This follows from the observation that the shortest way for A to be moved to A + by 
W is by reflecting through the s hyperplanes between it and A +, S = index A. Now 
the product of these s reflections can be rewritten as the product of s simple 
reflections (see e.g. [2, p. 236]). 

If V is a rational T-module, we denote by A(V) the weights of Tin V. A weight 
space VA' A E A(V), is defined to be the subspace of all v E V such that t.v = A(t)V 
for all t E T. The multiplicity of VA is defined to be dim VA. We often let LA denote 
a T-stable line in Vof weight A. Notice that if V is a G-module, then W permutes 
the elements of A(V): T/ w. VA = VW(A) for all w E W. A maximal vector is a weight 
vector, v E VA' which is fixed by U, v E Vv. Let LA be the B-stable line.spanned by 
such a v. Then the highest weight of the G-submodule V' generated by v is A, all 
other weights being < A, and LA is the unique B-stable line in V'. Moreover, A is 
necessarily dominant with multiplicity 1 in V'. The submodule V'is irreducible and 
isomorphic to the induced G-module WoA I G where Wo is the unique element of W 
such that wo(q,+) = 41-. (We are employing the convention that a weight p. E A will 
also represent the (abstract) 1-dimensional B-module with weight p..) Note that WOA 
is the lowest weight of V' in the sense that WOA ~ P. for any p. E A(V'). 

A parabolic subgroup G is a subgroup P which contains a Borel subgroup. A 
standard parabolic subgroup p[ is a parabolic subgroup constructed from a subset 
I c !l of simple roots: p[ is the subgroup generated by the fixed Borel subgroup B 
and all the root groups Ua where a is a root in the Z-linear span of 1. Any parabolic 
subgroup P of G is conjugate to a standard parabolic subgroup Pl. Throughout this 
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paper, when we refer to a parabolic subgroup of G we shall assume that it is a standard 
parabolic subgroup. The subgroup of W generated by the simple reflections CJa , 

a E J, will be denoted by WI. Then P is the product of its radical and a semisimple 
subgroup S, and WI is isomorphic to the Weyl group of S. 

2. The ampleness formula. 
2.1 We retain the notation of §1. In particular, G is a connected, simply-con-

nected, complex semisimple Lie group; B a Borel subgroup; U the unipotent radical 
of B; P::J B a parabolic subgroup; W the Weyl group of G relative to a fixed 
maximal torus T c B; I(w) the length of an element wE W; A (resp. A +) the 
weights (resp. the dominant weights) of G relative to T; A(V) the weights of a 
T-module V. 

In this section we derive a formula for the ampleness of a homogeneous vector 
bundle E = G X pE over G j P based only on the relative positions of the weights of 
the P-module E in A. We let E B:= G XBE denote the pull-back of E to GjB. Note 
that the fiber ofEB - E is P jB and that f(GjB,EB) == f(GjP,E). 

THEOREM. Assume €(E)" is spanned by global sections for some n > 0 and let 
S = (E*)u. Then 

(1) A(S) c A +; 
(2) a(EB) = max{l(w)lw E Wand w(JL) E A(E*) for some JL E A(S)}; 
(3) a(E) = a(EB) - dim P jB. 

This result can be formulated more cleanly if we use the following notation: for 
any two subsets A, Be A we will define the orbital distance between A and B to be 

d{A, B) = min{l(w) Iw E W, w(A) n B * 0}. 
Let Wo E W be the unique element such that wo(<II+) = <11- and define CJo:= -Wo, 
an involution on A +. 

COROLLARY. a(E) = dimGjP - d(CJoA(S), A(E». 

PROOF. From the Theorem, 

dimGjP - a(E) = dimGjB - a(EB)' 

where a(E) = max{l(w)lw E W, and w(JL) E A(E*) for some JL E A(S)}. Now, 
I(wwo) = dimGjB - I(w) [3], so 

-max{l(w)} = min { -/(w)} = min{l(wwo)} - dimGjB. 

The formula then follows by observing that if T = wWo and JL E A(S), then 

w(JL) = TWo(JL) E A(E*) c:> TCJO(JL) E A( E). 0 

Thus, to compute the ampleness of a homogeneous vector bundle E = G x pE 
(for which €(E)" is spanned), one need only find the smallest distance from the 
weights in CJoA(S) c A + to those in the same W-orbit in A(E) (measured by the 
number of hyperplanes Ha, a > 0, between them; see §1.3) and subtract this from 
the dimension of the base space. 
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2.2 The proof of the Theorem is in two steps. The first is to examine the map v: 
E* -+ Vn* lifted from the ampleness map (§I) to obtain a formula for a(E) in terms 
of T-stable lines in v( E *). (Here, we are identifying E * with {[I, z] I z E E *} C G 
X pE* = E*.) The second step is to translate this information into statements about 
the weights of E *. The first step is contained in the following lemma. We let Lp. 
denote a T-stable line of weight p., and for each w E W we fix a representative 
T/., E N(T). 

LEMMA. Let M be the maximum of /( w ) for all w E W which satisfy T/wLp. C v( E *) 
for some Lp. C v(E*) n (V,,*)u. Then 

aCE) = M + dimB - dimP. 
PROOF. Since a is G-equivariant, the fiber dimension of a is constant on G-orbits. 

Moreover, the fiber dimension is upper semicontinuous, so its maximum can be 
found by specializing within a G-orbit to a point on a closed G-orbit in P(Vn ), say 
G.[y] where [y] = a([z]) E a(P(E». Since a(P(E» n G.[y] is closed and B-in-
variant, the B-orbits of minimal dimension in a(P(E» n G.[y] are closed. However, 
any closed B-orbit in projective space must be a B-fixed point. Therefore, we may 
assume that y lies in a B-stable line Lp. C Vn* n v(E*) for some p. E A«Vn*)u). 
Then 

dima-l[y] = dim v-l(y) = dim{[g, z] Iv([g, z]) = y} 

= dim{(g,z) Iv(z) = g-l.y} - dimP 

= dim { g E G Ig.y E v{E*)} - dimP. 
Since v(E*) is a cone, we must find the dimension of{g E GlgLp. C v(E*)}. By the 
Bruhat decomposition, each g E G lies in some UT/wB, w E W, with dimUT/wB = 
dim B + /( w) (§1.3). Now, 

gLp. = uT/wbLp. C v{E*) <=> T/wLp. C v(E*). 
Therefore, 

dim v-l(y) = max { dimUT/.,B Iw E W, and T/wLp. C v(E*)} - dim P 

= max { lew) Iw E W, and T/.,Lp. C v(E*)} + dimB - dimP. 
The maximum fiber dimension is then found by maximizing this number over 
Lp. C v(E*) n (Vn*)u. 0 

The remainder of the proof of the Theorem now consists of showing that: 
(a) A(S) C A +; and 
(b) there exists a B-stable line Lp. C v(E*) n (V/)u with T/.,Lp. C v(E*)( w E W) 

if and only if p. = nA for some A E A(S) with W(A) E A(E*). 
(a) Let A E A(S) and consider the surjective B-module homomorphism sn(E) -+ 

-nA. We then obtain a G-module homomorphism of induced G-modules /3: v" = 
sn(E)I G -+ -nAI G• Now, /3 cannot be the zero map, since vlLx -+ v(Lx) is finite, 
taking the B-stable line Lx C E* to a B-stable line of weight nA in e~(sn(E)*) C 

V/ (en: Vn -+ sn(E) is the evaluation map). Furthermore, -nAI G is either 0 or 
irreducible, the latter occurring precisely when wo( -nA) is a dominant weight, i.e., 
when A E A +. This proves (a). 
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(b) Sufficiency (=) is obvious so we only prove Necessity (=). Let Po:= pIE*. 
Then Po: E* ~ Vn is finite, P-equivariant, and satisfies po(az) = anpo(z) for all 
a E C, z E E* (§l.I). Therefore, the preimage pi/Ly of any B-stable line Ly C 

p(E*) n (Vn*)V is a I-dimensional cone in (E*)v = S; hence each irreducible 
component of pi/Ly is a B-stable line in S. Thus, if L,. is a B-stable line in 
p(E*) n (Vn*)V with 1/..,L,. C p(E*) for some w = W, there is a B-stable line 
LA C S, X E A(S), such that for all t E T, z E Lu: 

p.(t)p(z) = t.p{z) = p(t.z) = p{X{t)z) = X(trp{z). 
Therefore, p. = nX (additive notation). Now, 1/..,L,. has weight w(p.) = nw(X), so we 
write 1/..,L,. = Ln..,(A). As above, each irreducible component of pol(Ln..,(A» is a 
B-stablelinein E*; and we have, for all t E T, Zl E pol(Ln..,(A»' 

p(t.zl ) = t.P(Zl) = (wX(t)rp{Zl) = p(WX{t)Zl)· 
We may thus conclude that w(X) E A(E*). This proves (b) and finishes the proof 
of the Theorem. 0 

3. Tangent bundles. 
3.1 An important class of homogeneous vector bundles is provided by the tangent 

bundles of homogeneous projective manifolds G/P, where G is a semisirnple 
complex Lie group and P is a parabolic subgroup. The ampleness of such bundles 
was first worked out by Goldstein [5]. We now give a summary of his results to 
illustrate how the ampleness formula §2 can be applied. 

Let E be the vector space quotient of the Lie algebra of G by the Lie algebra of 
P. Then, under the adjoint representation, E is a rational P-module, and the 
tangent bundle T(G/P) is isomorphic to E = G X pE. This bundle is clearly 
spanned by global sections. If we decompose G into simple factors G = Gl 
X ... X Gm, then G/P is isomorphic to Gl/Pl X ... X Gm/Pm, Pk parabolic in Gk , 

k = 1, ... , m. The tangent bundle splits correspondingly into a direct sum of 
G-stable subbundles E = El E!) ••• E!) Em' and E splits into a direct sum of P-sub-
modules E = El E!) ••• E!) Em. Now, 

A(E) = A{El ) U ... uA{Em ) and S = (E*)v = (Ett E!) ••• E!)(E!)v. 
Inspecting the coadjoint representation we find A«Env) = {,Bd, where,Bk is the 
highest root of Gk (always invariant under 0'0)' k = 1, ... , m. Thus, A(S) = O'oA(S) 
= {PI' ... ' Pk }· Therefore, by Corollary 2.1, 

a{E) = dimG/P - d( O'oA(S), A(E») 

= dirnG/P - min { d(,Bk' A(Ek») Ik = 1, ... , m}. 
Goldstein worked out a procedure for determining d(Pk , A(Ek » which we shall 

now outline (see also [11, Theorem 4.6]). To simplify notation, we shall drop the 
subscript k in the following. On a case by case basis, it is not difficult to compute 
the orbital distance of,B to the negative roots [5, p. 370]: 

G An Bn en Dn E6 E7 E8 F4 G2 

d(fl, (fr) n 2n - 2 n 2n - 3 11 17 29 8 3 
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Moreover, for any long simple root a i one can find an w E W such that d(f3, CP-) = 
l( w) with w( 13) = -ai [5, (4.3)]. Now, if 1 is the subset of simple roots which defines 
P, then the weights of E are the negative roots of the form 

- I>jaj , where nj > 0 for some aj E ~ \ I. 

Therefore, if some a j E ~ \ 1 is long, then by the above remark 

d(f3, A(E)) = d(f3, cp-). 

If all a j E ~ \ 1 are short, then find an w E W such that d(f3, CP-) = l( w), with 
w(f3) = -ai' a i long. Again, a case by case computation shows that for G = G2 or 
Bn we need exactly one more reflection to get w(f3) to involve the short root a j 

(there is only one short root for G2 and Bn so ~ \ 1 = {aj }). If G = en or F4 , we 
need a minimum of d(I) additional reflections to get w(f3) to involve some 
a j E ~ \1, where 

d(I) = minimum number of nodes on the Dynkin diagram 
from an element a E ~ \ 1 to a long root. 

Using the same definition of d(I) for all the different types of simple Lie groups, we 
can summarize the above cases in the formula 

d(f3, A(E)) = d(f3, cp-) + d(I). 

4. Irreducible homogeneous vector bundles. 
4.1 Let P be a parabolic subgroup of a semisimple complex Lie group G. We shall 

call a homogeneous vector bundle E = G X pE irreducible if E is an irreducible 
P-module. Any line bundle over G / P is necessarily homogeneous and irreducible. If 
E is irreducible, there is a simp)"! criterion for ~(E)n to be spanned. 

PROPOSITION. Let E be an irreducible P-module, and let i\ be the weight of the 
unique B-stable line in E *. Then the following are equivalent: 

(1) ~(E)n is spanned by global sections for some n ;;, 1; 
(2) E is spanned by global sections; 
(3) i\ is a dominant weight, i\ E A +. 

PROOF. Recall that (1) = (3) was already proved in Theorem 2.1, and (2) = (1) is 
immediate. Thus, it remains to show (3) = (2). Since E is irreducible, it is induced 
from the B-character -i\, i.e., E = -i\ BI p (see [8]). By transitivity of induction [4, 2] 
we have 

G ( P) G G E p I = -i\ B I I = -i\ B I . 
Recall also that EplG = EBr. If i\ E A+, then the P-module (or B-module) 
homomorphism e: EIG ~ E cannot be the zero map since the B-module homomor-
phism E I G = -i\ BIG ~ -i\ B is surjective and factors (via e) through the B-module 
epimorphism E ~ -i\ B. Therefore e must be surjective. 0 

4.2 The ampleness of irreducible homogeneous vector bundles (which are spanned) 
can be easily computed using the formulas of §2. 
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THEOREM. Let E be an irreducible P-module and let JL (resp. A) be the weight of the 
unique B-stable line in E (resp. E*). If A is dominant, A E A +, then the ampleness of 
E = G XpE is given by 

a(E) = dimGjP - indexJL. 

PROOF. Let I be the subset of simple roots which defines P and let W/ be the 
corresponding subgroup of W (= Weyl group of G). Because E is irreducible, 
ooA(S) = 00A and 

W.(ooA) n A(E) = W.(-A) n A(E) = W/.(-A); W/(-A) n A += ooA. 

Therefore, w.ooA E A(E) for w = W if and only if W-IJL' E A + for some JL' E 
W/.( -A). Then 

d( ooA(S), A(E» = min{t( w) Iw E Wand W.JL' E A + for some JL' E W/.( -A)} 

= min {index JL' IJL' E W/.( -A) } . 

We claim that the minimum index is attained at JL which, by Corollary 2.1, proves 
the Theorem. To see this, note that -A is the lowest weight in E and satisfies 
(0:, -A) ~ 0 for all positive roots 0: > O. Now, since JL is the highest weight in E, at 
least as many reflections 0"" 0: > 0, are needed to take -A to JL as to take -A to any 
other weight JL' E W/.( -A). Thus, the number of 0: > 0 which satisfy ( 0:, JL) ;;;. 0 is at 
least as large as the number of 0: > 0 which satisfy (0:, JL/) ;;;. 0 for any JL' E W/.( -A). 
In particular, 

indexJL = #{ 0: > 0 l(a,JL) < O} ~ #{ a> 0 l(a,JL' ) < O} = indexJL'. 0 

4.3 A direct application of Theorem 2.1 yields the following sufficient condition 
for O-ampleness: 

THEOREM. Let E be an irreducible P-module and let A be the weight of the unique 
B-stable line in E*. If A is regular and dominant, i.e., (A, A;) > 0 for every: 
fundamental dominant weight Ai' then E = G X pE is O-ample. 

PROOF. First we observe that the stabilizer of A in W is trivial. Also, if I is the 
subset of simple roots which defines P, then W.(A) n A(E*) = W/.(A). Therefore, 
if w.A E A(E*) then w.A = w'.A for some w' E WI' so that w = w'. Thus, 

max{l(w) Iw.AEA(E*)} =max{l(w' ) IW/E WI} =dimPjB. 

By Theorem 2.1, we obtain a(E) = O. 0 
This Theorem shows that we need only apply Theorem 4.2 in the case where A is 

singular. 
4.4 We conclude with the relatively simple class of examples of line bundles over 

G j P. Such bundles are automatically homogeneous, and their "ampleness" was 
already computed in 1954 [8]. For completeness, we include this calculation here. 

Given any weight A E A, let I be the subset of simple roots a orthogonal to A, 
(0:, A) = 0, and denote by P).. the standard parabolic subgroup p/ (§1.3). Clearly, P).. 
is the largest standard parabolic subgroup of G which can have A as a character. 
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Now let E = G X pE be a line bundle over G/P and let A be the weight of E. 
Then by Theorem 4.1, E (or any power of E) is spanned if and only if -A is 
dominant. Note also that PcP>... To compute a(E) we must find the maximum 
length I( w) of a Weyl group element w E W such that W.A = A. This is clearly given 
by the maximum of I(w) over w = WI (WI is the stabilizer of A in W). But, 

max{l(w) Iw E WI} = dim PI/B. 

Therefore, by Theorem 2.1, 

a(E) = dimP>../P, 

and E is O-ample if and only if P = P>... 
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