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ON THE GENERALIZED NAKAYAMA CONJECTURE 
AND THE CARTAN DETERMINANT PROBLEM 

BY 
K. R. FULLERI AND B. ZIMMERMANN-HUISGEN 

ABSTRACT. For Artin algebras allowing certain filtered module categories, 
the Generalized Nakayama Conjecture is shown to be true; our result covers all 
positively graded Artin algebras and those whose radical cube is zero. For the 
corresponding class of left artinian rings we prove that finite global dimension 
forces the determinant of the Cartan matrix to be 1. 

1. Introduction. In 1958 Nakayama conjectured that any finite dimensional 
algebra of infinite dominant dimension is quasi-Frobenius. A positive solution could 
be considered a step towards the-stronger-finitistic dimension conjecture, claim-
ing that all finite dimensional algebras have finite finitistic dimension (see e.g. [9, 
p. 105J for details). Another problem arose from Nakayama's conjecture, namely 
the Generalized Nakayama Conjecture (GNC) as proposed by Auslander and Re-
iten [1J: it suggests that, given an Artin algebra R, every indecomposable injective 
(left) R-module appears (up to isomorphism) as a direct summand of some term of 
the minimal injective resolution of RR. The validity of (GNC) implies that of the 
Nakayama Conjecture; given some injective resolution of RR which consists entirely 
of projective modules, the minimal injective resolution will have the same property, 
whence (GNC) entails that all injective modules are projective. 

A further, unrelated investigation turns out to profit from the technique we use 
to tackle (GNC), the question being whether for a left artinian ring of finite global 
dimension the determinant of the Cartan matrix is necessarily 1. 

What is known? 
As for the Nakayama Conjecture, Mueller and Morita and Tachikawa [8, 1J 

provided a positive answer for QF -3 algebras whose minimal faithful left ideals 
have endomorphism rings of finite representation type. Recently, Wilson [10J gave 
a proof for (GNC) in case R is a positively graded finite dimensional algebra over 
a field. Our first major goal will be to establish (GNC) for all Artin algebras 
R which are either positively graded or satisfy J3 = 0, where J is the Jacobson 
radical of R. Both situations (and others) arise as special cases of a more general 
statement (Theorem A). Even though the core of our argument, inspired by a trick 
of Eilenberg's, is essentially different from Wilson's, we owe a great debt to the 
ideas developed by Wilson in [10J. 

Concerning the above problem on the Cartan matrix C of a left artinian ring 
R, Eilenberg [4J showed that finite left global dimension of R entails det C = 
±1. Zacharia [l1J secured detC = 1 whenever Igl dimR ~ 2, while, for left 
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serial rings det C = 1 is even equivalent to finite left global dimension according 
to Burgess, Voss and the authors [2J. Here we will modify an approach of Wilson 
[10J who obtained det C = 1 for all positively graded finite dimensional algebras of 
finite global dimension. It proves useful to consider a refined Cartan matrix which, 
being no more difficult to compute than the classical one, stores considerably more 
information. With its aid we will simultaneously answer the determinant question 
for left artinian rings with either a positive grading or J3 = 0, as well as for left 
serial rings (Theorem B). 

We conclude with an application of our method to a computation of Exe (8,8), 
where 8 is a simple module over an artinian ring. 

Throughout, R will be a left artinian ring with identity and e1, ... ,en a complete 
set of orthogonal primitive idempotents in R. Since in none of the problems at stake 
will we lose generality by restricting our attention to basic rings, we will assume 
that the left ideals Re;., 1 ~ i ~ n, are pairwise nonisomorphic. 

2. Filtered R-categories and prototypical examples. Suppose that A is 
a skeletally small abelian category such that each object of A has an underlying 
structure of a finitely generated left R-module and all morphisms in A are R-linear. 
Moreover, we require that addition and composition of morphisms in A coincide 
with the corresponding operations for R-linear maps. Denote the forgetful functor 
A --t R-mod by 'I/J (here R-mod stands for the category of all finitely generated left 
R-modules). 

A category A as above together with a family (Fk)kEZ of additive subfunctors 
of the identity functor on A is called a filtered R- category if the following conditions 
are satisfied: 

(Fl) An object A in A is simple, indecomposable, projective or injective if and 
only if 'I/J(A) is such in R-mod. 

(F2) The functor 'I/J is exact and preserves injective envelopes as well as projective 
covers (whenever they exist in A). 

(F3) FkA;;2 Fk+1A and the quotient FkAjFk+1A is (zero or) a direct sum of 
simple objects for each A in A and all k E Z. Furthermore, there are integers u and 
v such that Pu A = A and Pv A = 0 (call the largest c with FC A = A the codegree 
of A, the largest d with Fd A =I- 0 the degree of A, and write c = codeg A, resp. 
d = degA). 

(F4) Given any two indecomposable projective modules P and Q in A with 
'I/J(P) ~ 'I/J(Q), there exists an integer l such that 

for all k E K. 
(F5) A contains objects 81 , ... ,8n of codegree zero such that each simple left 

R-module is isomorphic to exactly one of the modules 'I/J(81), . .. ,'I/J(8n ). Moreover, 
each 8i has a projective cover P.t in A. 

We say that R is A-filtered if R gives rise to a filtered R-category A. Moverover, 
we will often write 8i for 'I/J(8i ) and Pi for 'I/J(Pi) when there is no danger of confu-
sion. 
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Examples of filtered categories. 1. The category A = R-mod together with the 
"radical filtration" , i.e. with the functors 

is a filtered R-category. 

Fk A = Jk A for k E Z, k ~ 0, 
Fk A = A for k E Z, k ::; 0, 

2. The category A = R-mod is once more a filtered R-category when equipped 
with the following "socle filtration": Fk A = 0 for k > 0, and Fk A is the preimage 
in A of the socle of AI Fk+! A for k ::; O. 

3. Suppose that R is positively graded, that is R is a direct sum of abelian 
groups 

00 

R = E9 Rk with R;Rj ~ R;+j 
k=O 

such that J = EB~1 Rk. Then the category A = R-gr of all finitely generated 
graded left R-modules (here negative gradings are allowed: A = EBkEZ Ak with 
abelian groups Ak such that R;Aj ~ ~+j) together with the degree zero homo-
morphisms is a filtered R-category with the following functors: 

We refer to [3 and 5] for information on graded artinian rings and Artin algebras. 
We start by assembling a few elementary facts for futher reference. 

LEMMA 1. Let A be a filtered R-category and A an object of codegree c and 
degree d: 

(1) 'ljJ preserves direct sums; in particular, A is semisimple if and only if the 
same is true for 'ljJ(A) in R-mod. 

(2) J'ljJ(A) ~ 'ljJ(Fc+! A). 
(3) 'ljJ(Fd A) ~ Soc('ljJ(A)). 
(4) If f: A - B is an epimorphism in A, then codeg A ::; codeg B. 
(5) If f: A - B is a monomorphism in A, then degA::; degB. 

PROOF. (1) is clear. For (2) observe that by (F2) and (F3) 

'ljJ(A/ FC+! A) = 'ljJ(FC AI FC+! A) ~ 'ljJ(FC A)I'ljJ(Fc+! A) 

is a semisimple R-module. An analogous argument shows (3). Statement (4) 
follows immediately from the fact that B = f(~ A) ~ ~ B, while (5) is again 
symmetric. 0 

3. A filtered Grothendieck module for a filtered R-category. Starting 
with a filtered R-category A, we follow the Grothendieck pattern in defining a 
module GUO over the ring Z((T)) of integral Laurent series. Our goal is to identify 
the objects of A with their weighted composition factors, where the weight takes 
the layering through the functors Fk into account. More precisely, let 

G(A) = l(A)/ R(A) 
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as follows: J(A) is the free Z((T))-module which has as a basis the set IAI of 
isomorphism types of objects of A, and R(A) is the Z((T))-submodule generated 
by the elements 

n 

D(A) = A - 2: 2: nikTkSi, 
kEZ i=1 

where A E IAI and 
n 

'ljJ(Fk AI Fk+1 A) ~ EB S7 ik 

i=1 

for each k E Z. Denote the class of A in .9(A) by [A] and make the following 
elementary observations: 

LEMMA 2. (1) [S1],"" [Sn] is a free basis for .9(A). 
(2) [A EEl B] = [A] + [B]. 
(3) If P and Q are indecomposable projective objects in A of codegree p, resp. q, 

then [P] = TV-q[Q], provided that 'ljJ(P) ~ 'ljJ(Q) in R-mod. 

PROOF. (1) From the definition of R(A) it is clear that [S1]"'" [Sn] span .9(A). 
To show linear independence, suppose that gi(T), hAT) are elements of Z((T)) and 
Aj E IAI with 

n m 

2:gi(T)Si = 2: hj(T)D(Aj ) 
i=l j=1 

~ ~hj(T) (A; -~~n~I)1*S') 
in J(A). Since D(Si) = Si - Si = 0, we may assume that none of the Aj is 
isomorphic to any of the Si in A. But then hAT) = ° for J' = 1, ... , m, and 
consequently gi (T) = ° for i = 1, ... ,n. Part (2) is valid because the functors Fk 
commute with direct sums, and (3) follows from (F4). 0 

In case the simple objects Si have injective envelopes in A, the classes of the 
latter generate a submodule of rank n in .9(A). Namely 

LEMMA 3. Suppose that Ei is an inJ'ective envelope of Si in A for i = 1, ... ,n. 
Then the elements [Ed, ... , [En] of .9(A) are linearly independent over Z((T)). 

PROOF. Expand each [Ej] in terms of the basis [S1]"'" [Sn], say 
n 

[Ej] = 2: lij lSi] 
i=1 

with lij E Z((T)) and set L = (lijh~i,J~n' All we have to show is that detL #- 0; 
for then L is an invertible matrix over the field of fractions of Z((T)). 

Note that the lij = I:k li;)Tk are actually polynomials in T and T- 1 , where 
Ii;) is the number of occurrences of the simple R-module Si in 'ljJ(Fk Ejl Fk+1 Ej). 
Setting dj = deg Ej , we have 'ljJ( Fdj EJ) = Sj = Soc( 'ljJ( Ej )) (compare Lemma 1 (3)) 
and FkEj = 0 for k > dj. Hence the monomial of highest degree in T appearing 
in ljj is Td j , whereas all the polynomials lij = liJ(T, T- 1) which are found in the 
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same column of L have degrees in T strictly below dj . If we expand det L as the 
sum of signed elementary products of the entries in L, it thus becomes clear that 

det L = T d l+··+d" + q(T, T- 1), 
where q(T, T-1) has degree strictly below d 1 + ... + dn in T. This ensures that 
detL 1= o. 0 

4. Morphisms which respect the filtration and examples revisited. Our 
strategy in proving (GNC) for rings with self-duality and a suitable filtered R-
category A will be to prove the dual (GNC)* via A: Given that each Sj has an 
injective envelope Ej in A, and that each Ej has in turn a minimal projective 
resolution 

o +- Ej +- QOj +- Q1j +- ... 

in A, we want to show that each 1/J(Pk) , i.e. each Rek, occurs (up to R-isomorphism) 
as an R-direct summand of some 1/J(Qij). The advantage of shifting the problem 
to A lies in the fact that, having taken some additonal precautions, we will be able 
to expand the [Ej] in g(A) as Z«T))-linear combinations of those [Pk]'s whose R-
isomorphism classes appear in some term along the above resolution and then invoke 
Lemma 3. The additional technical requirement is that the linking morphisms in 
the resolutions at stake not tangle the filtration of the objects too seriously. 

Let A be a filtered R-category with filtration (Fk )kEZ and let I: A -+ B be a 
morphism in A. We say that I respects the filtration in case the following three 
conditions are satisfied: 

(Rl) I(FkA) = FkB for all k E Z (so, in particular, I is an eipmorphism). 
(R2) codeg(Ker f) ~ codeg A. 
(R3) There exists a decomposition of K = Ker I 

K = K1 EB .•• EB Kr 
and nonnegative integers U1, ... ,Ur such that 

r 
1/J(K n Fk AI K n Fk+1 A) ~ E9 1/J(Fk- u ; Kd Fk- u i+1 Ki) 

i=l 

in R-mod. 
REMARK. Note that whenever I: A -+ B respects the filtration, then any 

refinement of a decomposition of K = Ker I as in (R3) will again satisfy (R3). In 
particular, (R3) will hold for any indecomposable decomposition of K. 

The following two lemmas will smooth the terrain for our main theorem. 

LEMMA 4. II I: A -+ B respects the filtration, then the lollowing equality holds 
in g(A): 

r 
[B] = [A]- I::rui[Kd, 

:=1 
where the Ki and Ui are as in (R3). 

PROOF. For any X E IAI set 
n n 

X(k) = Tk I:: nik[Si] if 1/J(Fk XIFk+1 X) ~ E9 S['ik, 
i=l i=l 
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so that [XJ = LkEZ X(k). Then, observing that f induces a split exact sequence 

0-+ (K n FkA/K n F k+1A) -+ (FkA/Fk+1A) -+ (FkB/Fk+1B) -+ 0 

in R-mod (we dropped 't/J for better legibility), we see that 
r 

A(k) = B(k) + I: T"i Ki(k-u;) 
i=1 

by the definition of the Ki and Ui. Summation over k E Z yields 
r 

[AJ = [BJ + I:TUi [KiJ. 0 
i=1 

Given a nonzero integer polynomial h = h(T, T-1) in T and T-1, we call the 
exponent of the highest monomial in T that occurs nontrivially in h the degree of h, 
the lowest among the exponents of T the codegree of h. Set deg h = codeg h = 00 

for h = O. 

LEMMA 5. Let f: A -+ B be a morphism in .A which respects the filtration 
and whose kernel K is contained in the radical of A (as an R-module). Then the 
following is true: 

(1) codeg A = codeg B. 
(2) If K = EBj=1 Kj with integers Ul, ... , Ur 20 as in (R3), then 

codeg Kj + Uj 2 codeg B + 1 

for all j = 1, ... , r. 
(3) Further specification of f to be a projective cover of B yields 

n T 

[BJ = I:~[~J - I:TUj[KjJ 
i=1 j=1 

with polynomials ~ = ~ (T, T-1) in T and T- 1 such that 
(i) ~ = 0 if ~ is not R-isomorphic to a direct summand of't/J(A), and 
(ii) codeg~ 2 codegB. 

PROOF. Denote the codegree of A, resp. B, by a, resp. b. 
(1) From Lemma 1 we know that a :S b. For the reverse inequality observe that 

Fa+1 B = f(Fa+1 A) i= B, since Fa+1 A i= A and Ker f is superfluous in A. Thus 
b:S a. 

(2) Since codegKj 2 codegK 2 a, the latter inequality being (R2), and since 
Uj is nonnegative, it will suffice to show that Uj = 0 implies codeg Kj 2 a + 1. 
So let Uj = 0 and note that the quotient K n Fk A/ K n Fk+1 A vanishes for all 
k :S a. For k < a this is clear, for k = a it follows from the fact that K ~ Fa+1 A 
(compare Lemma 1). Now (R3) tells us that the quotient 't/J(FkKj /Fk+1Kj ) = 
't/J(Fk-Uj Kj / Fk-Uj +1 KJ ) is contained in the above quotient up to isomorphism, 
whence Fk Kj = Fk+1 Kj for all k :S a. But the latter means codeg Kj 2 a + 1. 

(3) Decompose A into indecomposable summands 
n mi 

A=EBEB~I' 
i=l 1=1 
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where each 1/J(Pid is isomorphic to 1/J(Pd ~ Rei in R-mod. Setting Pil = codeg Pil-
codegPi, Lemma 2 yields [Pid = TPiI [Pi], and therefore [A] = L~=1 hdPi] with 
hi = L;::1 TPii. In view of Lemma 4, we thus obtain 

n r 

[B] = L~[~]- Lrui[Kj]. 
i=1 j=1 

Our construction guarantees that hi = 0 in case mi = O. If, on the other hand, 
hi :f 0, then codeg hi ~ b because Pil ~ codeg Pil ~ a = b, the first inequality 
following from the fact that codeg ~ ::; 0 by Lemma 1. D 

Standard examples. 1. Let R be arbitrary left artinian, A = R-mod with the 
radical filtration (compare §2). Every epimorphism in A satisfies (Rl) and (R2). 

(a) If J 3 = 0, then every epimorphism f: A - B in A with Ker f ~ J A respects 
the (radical) filtration. 

PROOF. To verify (R3), observe first that any finitely generated indecomposable 
left R-module M with J2 M = 0 is either simple or satisfies Soc M = J M. Applying 
this to the indecomposable summands of K = Ker f, we can find an indecomposable 
decomposition 

K = K1 E9 ... E9 Kr 
such that for some 1 ::; a ::; b ::; r + 1 we have 

J Ki :f 0 for 1 ::; i < a, 
J Ki = 0 and EB Ki n J2 A = 0 for a ::; i < b, 
JKi = 0 and Ki ~ J2A for b::; i::; r. 

Since J Ki = Soc Ki = J2 A n Ki for 1 ::; i < a, one easily checks that the required 
Ui are Ui = 1 for 1 ::; i < b and Ui = 2 for b ::; i ::; r. 

(b) Now suppose that R is left serial, meaning that each indecomposable pro-
jective R-module Rei is uniserial (i.e. has precisely one composition series), and 
endow A = R-mod with the radical filtration. Then all epimorphisms between 
uniserial modules respect the filtration (and so do all finite direct sums of such 
epimorphisms) . 

PROOF. Given an epimorphism f: A - B with A and B uniserial, let U be the 
length of and check that this shifting constant (R3) is satisfied. 

2. Given a positively graded ring R, consider A = R-gr with the filtration of §2 
and observe that every epimorphism in A respects the filtration (for (R3) choose 
r = 1 and U = U1 = 0). 

5. The Nakayama conjecture. We call R Nakayama filtered if R allows a 
filtered R-category A with the following properties: A contains injective envelopes 
E1 , ... , En of the simple objects 81", . , 8n and each Ei has a minimal projective 
resolution 

/"0 /"1 o +- Ei~QiO~Qi1 +- ... 

in A such that all direct summands of the maps lij: Qij - Im(fij) respect the 
filtration. (Here a morphism g1: A1 - B1 is called a direct summand of g: A - B 
if g = g1 E9 g2: A1 E9 A2 - B1 E9 B2 for some g2: A2 - B2') 

§4 supplied us with major classes of examples: Whenever all indecomposable 
injective left R-modules are finitely generated and R satisfies J3 = 0 or is positively 
graded, R is Nakayama filtered. Furthermore, all serial rings (i.e. rings which are 
left and right serial) are Nakayama filtered. 
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THEOREM A. The dual of the generalized Nakayama conjecture holds for all 
Nakayama filtered rings. In more explicit terms: If R is Nakayama filtered, then 
every indecomposable projective left R-module appears as a direct summand of some 
term in the minimal projective resolution of at least one indecomposable injective 
module. 

COROLLARY. Both the Generalized Nakayama Conjecture and its dual hold for 
all Artin algebras with either radical cube zero or a positive grading. 

PROOF. All we have to note is that Artin algebras possess self-dualities, which, 
in particular, ensures that their indecomposable injective modules are finitely gener-
ated. 0 

The case where R is a positively graded finite dimensional algebra over a field 
was treated by Wilson in [10J. 

PROOF OF THEOREM A. Assuming that R is Nakayama filtered via an R-
filtered category .A, let E be one of the indecomposable injective objects El, .. . , En 
in .A with codeg E = c and let 

o +- E +- QO...&-Q1 d2- ... 
be a minimal projective resolution of E in .A. 

Since by (F2) application of 1/J to the above exact sequence will yield a minimal 
projective resolution of 1/J(E) in R-mod, all we have to show is that each P; occurs 
for at least one choice of E E {E1' ... , En} as a summand of some 1/J( Qj ). 

To achieve this, we will express [EJ as a Z((T))-linear combination of those 
classes [PiJ for which Pi splits off in some 1/J(Qj). Once such expansions for the 
[EkJ are available, we are done: For this means that the Z((T))-submodule of g(.A) 
generated by [El], ... , [EnJ is contained in the submodule generated by those [PiJ 
which appear in one of the resolutions. Since the former submodule has rank n by 
Lemma 3, the latter cannot be generated by less than n elements. 

We will progressively approximate the desired expansion of [EJ by constructing 
a sequence of elements ~, ~, i 2': 0, in 9 (.A) which satisfy the following system of 
equations, with t running through all nonnegative integers: 

(t) [EJ=Ao+Al+···+At+Rt 
such that for each s = 0, ... , t 

n 

As = L Psi [P;], 
i=l 

where the Psi are polynomials in T and T-1 with codegpsi 2': c + s and Psi = 0 if 
P; does not appear as a summand of 1/J(Qs) in R-mod; of Rt we require that 

mt 

Rt = L qtk [BtkJ 
k=l 

with E9~'!1 Btk = Ker ft in .A and codeg qtk + codeg Btk 2': c + t + l. 
Equation (0) results from an application of Lemma 5 to fo: Qo --+ E. In fact, 

the equation 
n r 

[EJ = L~[P;J - Lruk[KkJ 
i=l k=l 
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as guaranteed by Lemma 5 will yield the desired representation [E] = Ao + Ro if 
we set Poj = hj, qOk = _TUk and BOk = K k · 

To construct AH 1 and Rt+ 1 such that (t + 1) holds, we apply Lemma 5 to 
projective covers gk : Ptk ~ Btk with the property that 

Tnt mt 

ft+! = EB gk : QHl = EB Ptk ~ KerUd· 
k=1 k=1 

We thus obtain polynomials hkl,"" hkn in T, T- 1 and decompositions Ker(gk) = 
EBj~1 KkJ together with integers Ukl,·'" ukrk ;::: 0 such that 

n rk 
[Btk ] = L hki [P;] - L TUkj [Kkj] 

i=l j=1 

with 
(1) hki = 0 if Pi is not isomorphic to a direct summand of 'ljJ( Ptk), 
(2) codeg hki ;::: codeg Btk' 
(3) codeg K kj + Ukj ;::: codeg Btk + 1, 

for all i = 1, ... , n, k = 1, ... , mt and J' = 1, ... , rk. Insertion into the above 
expansion of Rt yields 

where 
codeg qtk hki = codeg qtk + codeg hki 

;::: codeg qtk + codeg Btk ;::: C + t + 1 
and 

codeg qtkTUkj + codeg K kj = codeg qtk + Ukj + codeg Kkj 

;::: codeg qtk + codeg Btk + 1 ;::: (c + t + 1) + 1. 

Set Pt+l,i = 2:::;;'=\ qtkhki. Relabeling the K kj as B t+1,1, ... , Bt+1,mt+1 with mHI 
= 2:::~1 rk and the corresponding coefficients -qtkTUkj as qHl,I,"" qt+l,m'+I' we 
arrive at Rt = At+l + Rt+!, as required. 

Now since codeg Psi;::: C + s for all i and s we can, for every i, sum up all the 
Psi, s ;::: 0, in Z((T)) to obtain a Laurent series Pi = 2:::s>OPsi. Note that Pi = 0 if 
Pi is not isomorphic to a direct summand of 'ljJ( Q s) for any s. 

Finally, we conclude that 
n 

[E] = L pilP;] , 
i=1 

because the coefficients arising in the expansion of At and R t via [SI], ... , [Sn] are 
Laurent series whose codegrees exceed c + t + min Ci, where Ci = codeg Pi. 0 

Our concluding remark pushes an observation of Wilson [10, p. 396] somewhat 
further. 

REMARK. Suppose that all indecomposable injective left R-modules are finitely 
generated. If the injective dimension of RR is finite and det C 1= 0, the R satisfies 
the Generalized Nakayama Conjecture. 
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PROOF. Let 0 -t Rei -t UiO -t Uil -t ... -t Uiti -t 0 be minimal injective 
resolutions of Rei in R-mod. In the classical Grothendieck group Ko(R-mod) this 
yields 

t 

[Rei] = I) -l)j[UiJ·], 

j=O 
and expandingf each Uij into a direct sum of indecomposable components, we can 
express each [Rei] as a linear combination of the classes of those indecomposable 
injectives which appear as summands in at least one Uij . But det C f. 0 means that 
[ReI],".' [Ren ] are linearly independent over Z, and thus each of the n indecom-
posable injective modules must occur in some Uij, i = 1, ... , n, j = 0, ... , ti. 0 

6. The Cart an matrix. Given an R-filtered category .4, we call the following 
matrix 6 with coefficients in Z[T, T- 1 ] the (.4- )filtered Cartan matrix of R: 

6 = (Cij), 
where [Pj] = 2::~1 Cij[Si] in 9(.4). In other words, each Cij is a polynomial 
Cij = 2::k cglTk in T and T- I so that c~:) is the number of copies of Si in 
'Ij;(Fk Pyl Fk+l Pj ). We note that evaluation of 6 at T = 1 yields the classical 
Cartan matrix, i.e. C = 6(1). In particular, det 6 = 1 implies det C = 1. 

Call 6 the J-filtered Cartan matrix if 6 is the filtered matrix for .4 = R-mod 
with the radical filtration (compare §1, Example 1). We start by demonstrating 
with two examples the superiority ofthe J-filtered Cartan matrix over the classical 
Cartan matrix with respect to the "finite global dimension test". 

EXAMPLES. 1. Let F be a field and R the subring of M4(F) consisting of all 
matrices of the form 

( O~o U~b ~~ W~a)' where a, b, U, v, W E F. 

The J-filtered Cartan matrix of R is 

6=(1~T ;); 
in particular, we have det 6 = 1 + T - T2 of:. 1 (which entails gl dim R = 00 by 
Theorem B), whereas det C = 1. 

2. [2, Example II] exhibits an example of rings Rand S with radical cube zero 
having identical classical Cartan matrices, whereas gl dim R < 00 and gl dim S = 00. 

As it turns out, the J -filtered Cart an matrices still reflect finite, resp. infinite, global 
dimension in this case. In fact, det6(R) = 1, whereas det6(S) f.1. 

Our main goal in this section is to prove that in any of our standard settings 
finite left global dimension entails det 6 = 1 for the correspondingly filtered Cart an 
matrix 6. For this purpose, we start again with an abstract filtration on A. 

LEMMA 6. If Ci = codeg I{ for i = 1, ... , n, then 

det 6 = TCl +··+Cn + p, 

where p E Z[T, T- 1 ] with codegp > Cl + ... + Cn . 
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PROOF. Focus on the jth column of C and note that ejj = TC' + qj, where 
codeg qj > Cj, whereas eij > Cj for all i i- j. For any nontrivial permutation (1' of 
{1, ... ,n} this gives us codeg(el t7 (1)'····enu (n));::: Cl + ... +cn +2, and our claim 
follows. 0 

To establish our main theorem, we intend to employ a trick similar to that of 
§5, and again we will need the morphisms in the relevant projective resolutions to 
be well behaved. 

Call R Cartan filtered if R admits a filtered R-category A in which each Si has 
a minimal projective resolution 

such that all direct summands of the epimorphisms fij : Qij -+ Im(fij) respect the 
filtration. 

If R is Cartan filtered, then, in particular, the projective covers Pi -+ Si -+ 0 
respect the filtration, whence codeg Pi = 0 for all i (Lemma 5). Consequently, Cis 
a matrix in Mn(Z[T]) with det 6 = 1 + p, where codegp > 1. 

THEOREM B. If R is a Cartan filtered ring of finite left global dimension, 
then det 6 = 1, and in particular, the determinant of the classical Cartan matrix 
equals 1. 

COROLLARY (see [10] for the case of a finite dimensional, positively graded 
algebra). (1) If R satisfies J3 = 0 or is positively graded, then finiteness of the left 
global dimension of R implies det 6 = 1. (Here 6 is the J -filtered matrix in the 
former case, and filtered with respect to the grading in the latter.) 

(2) Suppose that R is left serial and C the J -filtered Cartan matrix. Then R has 
finite left global dimension if and only if det C = 1. 

PROOF. Compare with §4 to see that all the rings under discussion are Cartan 
filtered. For (2) use Theorem B and the fact that det 6 = 1 implies det C = 1, 
while the latter condition entails finite left global dimension for left serial rings by 
[2, Theorem 6]. 0 

PROOF OF THEOREM B. Suppose that A meets the requirements for a Cartan 
filtration and that I gl dim R < 00. Condition (F2) then guarantees that the minimal 
projective resolutions of the Si in A terminate; denote them by 

o +- Sik-QiO!!-Qil!:-'" +- Qimi +- O. 

Noting that 

o = codeg Si = codeg QiO :::: codeg(Ker fa) = codeg Qil :::: ... 

and proceeding as in the proof of Theorem A, we find polynomials dji E Z[T] such 
that 

n 

lSi] = 2: djdPj] 
j=l 
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in g(A). By the defintion of the Cij we infer 
n n 

[SiJ = L dji L Ckj [SkJ 
j=1 k=1 

that is, if b = (dij), then cb = In, the identity matrix in Mn(Z[TJ). Thus detC 
is a unit in Z [TJ. But since det C i -1 by Lemma 6, the proof is complete. 0 

REMARK. In a forthcoming paper we will show that for J2 = 0 we have 

detC = 1 ¢:> 19l dimR < 00, 

whereas for J3 = 0, the J-filtered Cartan matrix alone no longer suffices to distin-
guish between finite and infinite global dimension. 

Green, Gustafson and Zacharia [6J have recently shown that I gl dim R :::; 2 im-
plies Extk(S, S) = 0 for an arbitrary simple left R-module S. It is apparently an 
open question whether, more generally, IgldimR < 00 entails the same conclusion. 
For Cart an filtered rings we have the following 

COROLLARY. If R is Cartan filtered by the radical filtration (e.g. if J3 = 0 or 
R is left seria~ and 19l dimR < 00, then Extk(S,S) = 0 for every simple left 
R-module S. 

PROOF. In Lemma 6, we have Ci = 0 for all i, and the argument we give there 
shows that the polynomial det C has a nonzero linear term if and only if this is true 
for at least one diagonal coefficient Cii of C. On the other hand, Extk(Si, Si) =1= 0 
clearly forces a linear term upon Cii, a situation which is excluded by the condition 
detC = 1. 0 

ADDED IN PROOF. In connection with the concluding remark of §5: Y.Iwanaga 
[Comm. Algebra 7 (1979), 393-414J had already proved the (GNC) for noetherian 
rings of finite left and right injective dimension. 
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