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REAL HYPERSURFACES AND COMPLEX SUBMANIFOLDS

IN COMPLEX PROJECTIVE SPACE

MAKOTO KIMURA

Abstract. Let M be a real hypersurface in /"'(C), J be the complex structure and

| denote a unit normal vector field on M. We show that M is (an open subset of) a

homogeneous hypersurface if and only if M has constant principal curvatures and

Jt, is principal. We also obtain a characterization of certain complex submanifolds in

a complex projective space. Specifically, /""(C) (totally geodesic), Q", Pl(C) x

P"(C). SU{5)/S(U{2) X (7(3)) and SO(10)/t/(5) are the only complex submani-

folds whose principal curvatures are constant in the sense that they depend neither

on the point of the submanifold nor on the normal vector.

0. Introduction. Many differential geometers have investigated isoparametric hy-

persurfaces in a sphere (i.e., submanifolds of codimension 1 with constant principal

curvatures). In particular, Münzner [6, 7] showed that the number of distinct

principal curvatures of isoparametric hypersurfaces in a sphere is 1,2,3,4 or 6. This

result is not obtained by classfying all isoparametric hypersursfaces.

There are many papers about real hypersurfaces in complex projective space

P"(C). In particular, Takagi [15] classfied all homogeneous real hypersurfaces in

P"(C), and showed that the number of distinct principal curvatures of homogeneous

real hypersurfaces in P"(C) is 2,3 or 5. Moreover, if a real hypersurface M has 2 or

3 distinct constant principal curvatures, then M is congruent to one of the

homogeneous examples [16 and 17].

In Theorem 1, using the results of Münzner and Okumura, we show that if a real

hypersurface M of P"(C) has constant principal curvatures and if the tangent vector

field ./£, which is obtained by applying the complex structure J to the unit normal

vector field |, is principal, then the number of distinct principal curvatures of M is

2, 3 or 5.

Cecil and Ryan [4] studied real hypersurfaces in P"(C) on which J£ is principal.

In fact, the tangent vector field /£ on a tube over a Kahler submanifold is principal.

Conversely, if J£ is principal on a real hypersurface and the rank of focal map is

constant (§2), then M lies on a tube over a Kahler submanifold. Making use of these

these results, we have

Theorem 4. Let M be a connected real hypersurface in P"(C). Then M has constant

principal curvatures and Ji- is principal if and only if M is congruent to an open subset

of a homogeneous real hypersurface.
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At the same time, we get the following result concerning Kahler submanifolds.

Theorem 5. Let N be a Kahler submanifold of a complex projective space. Then

eigenvalues of the shape operator A^ are constant in the sense that they depend neither

on the point x in N nor on the unit normal vector £ ;/ and only if N is congruent to an

open subset of one of the following:

P" -» Pm (totally geodesic),

Q" -> P" + l (complex quadric)
pi   w   pn—l  _^   p2»—1

SU(5)/S(U(3) X 1/(2)) -» P9,

SO(W)/U(5) -» P15.

In the last section, we get some results about noncomplex focal manifolds of

homogeneous real hypersurfaces in P"(C).

The author would like to express his thanks to Professor K. Ogiue, Mr. N. Ejiri,

Mr. Y. Shimizu and Mr. S. Udagawa for valuable comments.

1. Preliminaries. First of all, we recall the Fubini-Study metric on the complex

projective space P"(C) (or P"). For a more detailed description, see [4]. Let

(z, w) = \Z'l^Qzkwk be the natural Hermitian inner product on C + 1. The Euclidean

metric ( , ) on C" + 1 is given by (z,w) = Re(z,w). The unit sphere in C" + 1 is the

principal fibre bundle over P"(C) with the structure group Sx and the projection

map w. The tangent space of S2n+X at a point z is

T:S2"+X = { weC + 1|(z,R>) = 0}.

Let

T' = { w>eC" + 1|(z,H>} = (/z,w) = 0}.

The distribution Tz' defines a connection in the principal fibre bundle

52" + 1(P"(C), S1), because TJ is complementary to the subspace {iz} tangent to the

fibre through z, and invariant under the S^-action. Then the Fubini-Study metric g

of constant holomorphic sectional curvature c is given by g(X, Y) = (c/A)(X*, Y*),

where ije TXP"(C), and X*, Y* are respectively their horizontal lifts at a point

z with -n(z) = x. In this paper, we set c = A, unless otherwise stated. The complex

structure on 7" defined by multiplication by v'-f induces a canonical complex

structure on 7°"(C) through it*.

2. Focal sets and tubes in P"(C). In this section, we review results about focal sets

and tubes in P"(C), obtained by Cecil and Ryan. Let M be an embedded real

«-dimensional C°°-submanifold of P"'(C) with m = (n + p)/2. We denote by NM

the normal bundle over M with projection P onto M. For £ e NM, let F(í¡) be the

point in P"'(C) reached by transversing a distance |£| along the geodesic in P"'(C)

originating at x = P(£) with initial tangent vector £. A point y e P"'(C) is called a

focal point of multiplicity v > 0 of (M, x) if y = F(í¡) for some £ and the Jacobian of

F has nullity v at £.
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Let {£,.ip) be an orthonormal basis for the normal space T/- M with ^ = ¿.

Let   U   be  a sufficiently small normal coordinate neighborhood of x.  Extend

£[.¿    to orthonormal normal vector fields on U by parallel translation with

respect to the normal connection V x   along geodesies through x in M. For any

u g U and r/ g Tj1 M, we can write

where 0 < p., 0 < |r-| < 1 for all j and Zp-2tj < 1. Note that jti = |r/| and the /, are

the direction cosines of tj. The tangent space at this point n in NM can be

considered as

T„M X span{ 3/9/x, 3/o72,..., a/oï,}.

Cecil and Ryan studied the focal points of M in the case where M is a complex

submanifold or J£ is a principal vector of A^. Their result can be stated as follows.

Here 7\ denotes the eigenspace corresponding to an eigenvalue X of A(. As in [4], we

assume that 0 < r < m/2.

Proposition 2.1 [4]. Suppose £2 = /£ is normal to M at x. Then

(a) ( Fm)rç( X, 0) = 0 if X = cot r is an eigenvalue of'Aç and X G 7\,

(b)(F,)r{(3/3i2) = 0/orr = w/2,

(c) (Fm)r(( X, V) =£ 0 except as determined by (a) a«i/ (b).

Proposition 2.2 [4]. Suppose /£ is an eigenvector of A^ with corresponding

eigenvalue p. Then

(a) (F*)r((X,0) = 0 if X = coir is an eigenvalue of A% and X is a vector in 7\

orthogonal to Ji;.

(b)(F*)rS(J£,0) = 0ifu = 2cot2r,

(c) ( Fm)rç( X, V) ± 0 except as determined by (a) and (b).

Next, we review the computation of the shape operator of a tube over some special

submanifold M of Pm(C). Let BM denote the bundle of unit normal vectors to M.

The tube of radius r over M is defined by the map <j>r of BM into P"'(C) given by

4>r(è) = F(r£). For sufficiently small values of r, at least, 4>r determines a real

hypersurface of Pm(C). In the special case where M is a real hypersurface, it is

customary to consider <¡>r as a map of M into P"'(C). If £ is a local field of unit

normals, then <j>r(x) = F(r£,(x)). For values of r such that <pr is an immersion, <¡>rM

is called the parallel hypersurface at oriented distance r from M.

Let Ar be the shape operator of the tube <j>r at the point £ g BM. Using the same

trivialization of NM as before, we see that T^BM is isomorphic to TXM X

span{3/3i2.3/3?,,}.

Proposition 2.3 [4]. Suppose £2 = J£ is normal to M at x. Let Xx.Xn be a

basis of principal vectors of A^ with corresponding principal curvatures \y = cotfy,
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0 < 0- < 77. Then the shape operator Ar of the tube <pr is given in terms of its principal

vectors by

(a) Ar(d/dt2) = -2cot2r(3/3i2),

(b) Ar(d/dtj) = - cot rtf/dtj), 3 <y < p,

(c) Ar(Xj,0) = cot(6> - rX^.,0), l<j<n.

Proposition 2.4 [4]. Suppose J£ is an eigenvector of A^ with corresponding

eigenvalue 2 cot 20, 0 < 0 < -n/2. Suppose /£, X2,..,, Xn is a basis of principal

vectors of A^ with A(Xj = cotô■A'-, 2 <y < n, 0 < 6 < m. Then the shape operator Ar

of the tube <pr is given in terms of its principal vectors by

(a) Ar(d/Btj) = - cot r(3/3i,), 2*j<p,

(b) Ar(Xp0) = cot(0, - rXXj,0), 2 <y < n,

(c) Ar(J£,0) = 2cot(2(0 - r))(J£,Q).

Using Proposition 2.3, we have the following result:

Corollary 2.5 [4]. Let M be a real hypersurface in Pm(C) which lies on a tube of

constant radius over a complex submanifold of P"'(C). Let £ be a unit normal vector to

M. Then /£ is a principal vector of the shape operator A ¿.

Corollary 2.5 shows that there are many real hypersurfaces with /£ principal and

the condition that /£ is principal is natural to a certain extent. Conversely, we show

next that with certain restrictions, if /£ is principal, then the real hypersurface must

lie on a tube of constant radius over a complex submanifold of P"'(C).

Remark 2.6. Maeda [5] proved that if 7£ is principal, then the corresponding

principal curvature p is locally constant.

Proposition 2.7 [4]. Let M be a connected, orientable real hypersurface of P "'(C)

on which Ji; is a principal vector with corresponding constant principal curvature

p = 2 cot 2 r. Suppose the map <j>r has constant rank q. Then q is even and every point

xQ G M has a neighborhood U such that §JU is an embedded complex (q/2)-dimen-

sional submanifold of Pm(C). Moreover, if T0 is the foliation defined by integrable

distribution T0(x) = (le TXM \(<pr)*X = 0} for each x G U, then the leaf of the

foliation Ta through x intersects U in an open subset of a geodesic hypersphere in the

totally geodesic pm-^/2\C) orthogonal to Ty(4>rU) at y = <t>r(x). Thus U lies on the

tube of radius r over <prU.

3. Real hypersurfaces in a complex projective space. Suppose that M is a real

hypersurface in a complex projective space, and that the principal curvatures on M

are constant. We begin this section by showing (Theorem 1) that the number of

distinct principal curvatures is 2,3 or 5 if Ji; is principal.

Let M2"~x and M2" be (real) hypersurfaces of P"(C) and S2n + X, respectively,

such that the following diagram is commutative:

A/2"       -*

i

M2"'1     ->

S2"+x

i

P"'(C)
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Assume that £ is the unit normal vector field on M such that the tangent vector J£

is principal. Let Ji, e2,...,e2n_x be an orthonormal basis of principal vectors with

principal curvatures p, \2,..., \2n-v and ^ De tne vertical vector of the above

submersion. Identify vector fields on M and P"(C) with their horizontal lifts, and

regard V, /£, e2,..., e2n_x as the lift of the basis /£, e2,..., e2n_x. If A (resp. A) is

the shape operator of the immersion M -* P"(C) (resp. M -> S2"+1), then the

relation between A and A is given as follows.

Proposition 3.1 [11]. The matrix of A with respect to the above basis of the tangent

space of M has the form

/0    1     0
1     ¡i     0

0    0    A2

0    0     0

where the A,,..., X2n_x are not necessarily distinct.

For isoparametric hypersurfaces in a sphere, Münzner obtained the following

result in which the values Xx,..., Xj must be distinct.

Proposition 3.2 [1, 6, 7]. Let X,,..., X ¿, be the distinct principal curvatures of an

isoparametric hypersurface in a unit sphere and mx,..., rñj, be their multiplicities.

Then

(a) d= 1,2,3,4 or 6,

(b) mx = m2 = m3 if d = 3; mx = m3 and m2 = m4 if d = 4; and mx = m2 =

•••  = mb = 1 or 2 if d'= 6,

(c) there is a number r such that 0 < r < m/d and

\k - eot({k*/d) - r)       (k = l,...,d),

where r is given as the distance from some focal set in S2" + x.

Using the above result, we obtain the following theorem.

Theorem 1. Let M be a real hypersurface of P "(C) and £ be a unit normal vector

field on M. Suppose M has d distinct constant principal curvatures and J£ is principal.

Then d = 2, 3 or 5.

Proof. From the assumption and Proposition 3.1, M is an isoparametric hyper-

surface of 5'2" + 1, and we can see that M has principal curvatures

(p±ip2 + A)l/2)/2, \2,...,\u-i-

If we put ju = -2 cot 2r for 0 < r < it/2, then

(p+(p2 + A)l/2)/2 = tanr (= cot(ir/2 - r))

0     \
0

0

2/1-1 /
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and

(fi — (f*2 + 4)1/2)/2 = -cotr.

Hence, using Proposition 3.2, we see that d (number of distinct constant principal

curvatures of M ) is not equal to 1 or 3. Next, we show that d + 6.

We suppose that M has 6 distinct constant principal curvatures. From Proposi-

tion 3.2, we can write Xk = cot((k - 1)77/6 - r) for k = 1,...,6, and we have

m, = m2 = • • • = mb. Let m = mx. Then, making use of Proposition 3.1, we see

that the principal curvatures of M are given as follows:

Aj = -cotr if m + 1,

A4 = cot(vr/2 - r)ifm + \,

Xk = coi((k - 1)77/6 - r), k = 2,3,5,6,

ju = -2cot2r.

Now, we consider the focal manifold M = M„,6 corresponding to

A2 = cot(7r/6 - r)

in Proposition 2.2(a). Let r = 77/6 - r, £ be a unit normal to M at the point x, and

w(x) = 77(-sinñv 4- cosr£'), where w G S2"+x with 77(w) = x and £' is the hori-

zontal lift of £ to T¿. From the proof of Theorem 1 in [4], v(x) is a unit normal

vector of M at 3c = <t>f(x) and 17 gives a local diffeomorphism from C = (<j>f)~x(x) to

BXM, where BXM is the unit normal space of M at x. Hence n(C) is open and,

moreover, eigenvalues of the shape operator Ari( x) of M are:

cot 577/6 = -1/3 if m * 1,

cot 77/3 = V \/3 if m * 1,

COt 77/6  =  V^, COt 77/2 = °' COt277/3 =  -lv^,

-2 cot 77/3 = -2/V/3.

Now let / g R, tj be a unit normal vector on M and x,(f ) = det(/fj. — ?/) be the

characteristic polynomial of A¡.. From above, XrL(o ^s constant. Since \\B ^ is

analytic and n(C) is open in 73^M, x, is constant on BXM. Hence eigenvalues of A^

must not depend on the unit normal vector tj to M. In particular, the eigenvalues of

An coincide with the eigenvalues of A_ Hence, if A is a nonzero eigenvalue of An,

then so is -A. This contradicts the above fact. Consequently, we have d = 2 or 4.

From Proposition 3.2, principal curvatures of M are written as:

Case d = 2: Xx = -cotr, m(Xx) = mx,

X2 = cot(7r/2 — r), m(X2) — m2,

Case d' — A:XX = cotr, m(Xx) = m,,

X2 = cot(77/4 — r), m(X2) = m2,

X3 = cot(77/2 — r), m(X3) = mx,

X4 = cot(377/4 - r), w(A4) = m2,

where w(A) denotes the multiplicity of the principal curvature A. Then principal

curvatures of M are given as follows:

Case d = 2. If mx = 1 or m2 = 1, then d = 2, p = -2cot2r and A = -cotr or

cot(7r/2 - r). If mx > 1 and m2 > 1, then d = 3 and p = -2cot2r, A, = -cotr,

A2 = cot(77/2 - r).
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Case d = 4. If mx = 1, then d = 3 and A[ = cot(77/4 - r), m(A,) = n — 1,

A2 = cot(37r/4 - r), m(A2) = n — 1, /i = -2cot2r, m(p) = 1. If m, > 1, then

J = 5 and A! = -cotr, m(Xx) = mx — 1, A2 = cot(7r/4 - r), m(X2) = m2, A3 =

cot(77/2 - r), m(A3) = w, - 1, A4 = cot(377/4 - r), w(A4) = m2, p = -2cot2r,

m(p) = 1.

Homogeneous real hypersurfaces of P"(C) are determined by Takagi [15]. On the

other hand, there are several results that characterize homogeneous examples with

two or three distinct principal curvatures among real hypersurfaces in P"(C). For

example, we have the following two propositions.

Proposition 3.3 [4]. Let M be a connected real hypersurface in P"(C) (n ^ 3) with

at most two distinct principal curvatures at each point. Then M is an open subset of a

geodesic hypersphere.

Proposition 3.4 (due to Cecil-Ryan). Let M be a connected real hypersurface in

P"(C), n > 3, on which /£ is principal, which has three distinct principal curvatures at

each point. Then M is an open subset of a tube over a totally geodesic Pk(C),

0 < k < m — 1, or a tube over a complex quadric Qm~x.

The proof is exactly the same as that of Theorem 4 of [4]. In the case d = 5, we

get the following result.

Theorem 2. Let M be a connected real hypersurface in P"(C) with five distinct

constant principal curvatures on which 7£ is principal. Then M is congruent to an open

subset of some homogeneous real hypersurface with d = 5.

This theorem is related to the following theorem about the Kahler submanifold in

a complex projective space.

Theorem 3. Let N be a connected n-dimensional Kahler submanifold of P"+P(C)

such that eigenvalues of A^ are X, -X and 0, where X is constant in the sense that it

depends neither on the point x in N nor on the unit normal vector £. Then N is

congruent to an open subset of P1 X P""1 with n > 3 or of SU(5)/S(U(3) X U(2)) or

SO(10)/U(5).

Remark 3.5. In Theorem 2, if the principal curvature in the direction of /£ is

2cot2r, then the focal manifold <j>r(M) satisfies the assumption of Theorem 3.

Conversely, in Theorem 3, the tube over N satisfies the assumption of Theorem 2.

Hence Theorem 2 is equivalent to Theorem 3. Moreover, making use of the above

argument and Proposition 3.2, we see that principal curvatures of M in Theorem 2

are given by A, = -cotr, \2 = cot(7r/4 - r), X3 = cot(7r/2 - r), A4 =

cot(377/4 — r), and jti = -2cot2r with m(Xx) = mx, m(X2) = m2, m(X3) = mx,

m(X4) = m2, m(p) = 1 and mx + m2 = n — 1. Finally, using Propositions 2.2 and

2.7, we find that A in Theorem 3 is equal to 1, mx is even and 2p = mx + 2.

4. Kahler submanifolds in a complex projective space. Let N be an «-dimension

Kahler submanifold in Pn+p(C) such that, for any unit normal vector field £ on N,

eigenvalues of A, are 1, -1, 0 with m(\) = m(-\) = m and m(0) = 2n — 2m. Then
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A\ = Aç. We now define an inner product ( , ) on Tx N introduced by Cecil [3]. Let

£ and 77 be normal vectors at a point x in TV. If

(£,T))= traceA(Av,

then ( , ) is an inner product on T1 N which satisfies

(/£,/!,> = (I, r,),       (£,/£) = 0.

Let || • || denote the norm induced from the standard inner product g. If we fix a

normal vector field £ to A7 with ||£|| = 1, then taking a suitable orthonormal basis of

the tangent space of TV, we see that

Ai =
'Im      0      O)

0    -/„,   0

\ 0       0      0

*7{

(0   /„,   0

im    0    0

,0      0     0

where Im denotes the (m X m) identity matrix. We also fix such a basis of the

tangent space of N.

Lemma 4.1. // tj g Txx N with \\v\\ = 1 and (tj, £> = (tj, ./£> = 0, then

0 0 'C.   '

(4.1) A,

where C is a ((2n — 2m) X m) matrix, and

0 0 'C,/'

C      -J'C 0

/' =
0       -/,n — m

0

Proof. We put

T+= { A" g TXN\A(X = X),    T= { Xe TXN\A(X = -X),

T° = { îë T^/V^A^ 0}.

For X g r°, set /4^ = Y++ Y_+ Y0, where T+g T+, F.e 7" and Y0 g T°. First,

we will show that Y"0 = 0. Here

/13?+^ = ||£ + T)||2/(Í+^ = ||£ + Tí||2(y++ Y_+ Y0).

On the other hand, since A^ X = 0,

A\+riX = (a\Av + /l^2 + AnA(A„ + A\)X

= 2Y++ 2Y_+ Y0+(A(A„ + A^AjA^X.

Similarly,

A¡^X = U - vf A^X = ~U - nfiY^ Y.+ Y0),

and

A\^X = {-A\An + A,A\ + A^A^ - A\)

= -(2T+= 2Y_+ Y0)+(A(AV + AnA,)A^X.
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Hence,

A\+VX - A\_„X = (||£ + vf + ||£ - tj||2)(T++ Y+ Y0)

= AY++ AY_+ 2F0.

Since ||£ 4- tt||2 + ||£ - tj||2 = 4, we get Y0 = 0.

Next, for X g T+, put A^X = Y++ Y_+ Y0, where T+g T+, F.e T~ and Y0 g

T°. We will show that Y+= (const) • X. Here

A3     X l^ + T)||2^i + ,A = ||£ + T7||2(A'+ Y++ Y_+ Y0),

and

A\+„X ={A¡ + A\A^ + A(A„A( + AtA\ + A^A\ + A„A(A„ + A\A^ + A\)x.

Similarly,

A^X = H - vfA^X = U - n\\\x - Y+- Y_- Y0),

and

A\_nX ={A¡- A\A^ - AiAnAi + A(Al - A^A2 + A^A^ + A2VA( - A])x.

Combining the above equations, we have

II + tjII2 -H - v\\2)x + (u + vf + H - v\\2)(y++ Y_+ Y0)

2{AiAvAi + AVA2 + A2AV + A\)x= 8T++ AY_+ AY0.

Taking T+-components and using ||£ + tj||2 - ||£ - tj||2 = 4g(£,tj), we get Y+ =

g(£, tj)A". If p = g(£, tj), then AVX = vX + Y_+ Y0. By similar arguments, for

A G TZ if we put AVX= Y++ Y_+ Y0, then Y_= -g(£,Tj)A, and A^X = Y+- vX

+ y0, where v = g(£, tj). Consequently,

so that

vlm

B

\  C

I

>B       'C

vl„,     'D

D

AíÁr> ~

vlm      'B

-B     vlm

\  0        0

0

'C

-'D

0    ;

0 = (£, tj) = traced^,, = 2mv, and v = 0.

Since the matrix of the almost complex structure J is

J =

(0

L
\0

-L    o
0       0

0      J'j
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using the fact that N is a Kahler submanifold, we obtain

I-B       0       -'£>^

A* = JA, = 0        'B       'C

\J'C    J'D       0   /

Thus B = 0 because (£, /tj) = 0. By putting Cn = C, we complete the proof.

We choose a local field £,.£/), /£, = £f.J£p = £* of orthonormal frames

of TL (N). Let a be the second fundamental form, V ' the covariant differentiation

with respect to the connection in (tangent bundle) © (normal bundle), and A the

Laplacian.

Proposition 4.2 [10]. Let M"+P(c) be an (n + p)-dimensional complex space form

of constant holomorphic sectional curvature c, and let N be an n-dimensional Kahler

submanifold of M. Then

(4.2)    (l/2)A||a||2=||v'a||2-2trace(E^^- E (trace^)2
\  a ' a.ß

+ c(n + 2)||o||2/2,    where a,/3=l,..., p, 1*,..., p*.

5. Proof of theorems. We prove Theorems 2 and 3. By assumption, ||a||2 is

constant so that A||a||2 = 0. We compute the right-hand side of (4.2). Since

traced2 = 2m, \\a\\2 = Ztraced2 = Amp, and E(trace^ay4^)2 = £(trace.42)2 =

%m2p, where Aa stands for A¿ . Next, (Y.A2a)2 = 2LA4a + Y,a±ßß*A2aA2ß. We have

traceE/1* = Amp. Using (4.1), we get traceA^A2 = 2 trace'C,, • C . Since 2m =

traced2 = 4 trace'C^ • C , we obtain traceAJA2 = m. Hence traceE^ßß,/!2/!2, =

Amp( p — 1). Since c = A, (4.2) implies

|| V'a ||   = impip + m — n — l).

On the other hand, from Remark 3.5, using the notions of §3, we get m = m2,

2p = mi + 2 and 2n = mx + 2m2, so that p + m — n — 1=0. Consequently, N

is a parallel Kahler submanifold in P"+P(C). Parallel Kahler submanifolds of a

complex projective space have been completely classified by Nakagawa and Takagi

[8] as P", Q", Pk X P"-k, SU(n + 2)/S(U(2) X (/(«)) (n > 3), SO(\0)/U(5) and

£6/Spin(10) X T\

All principal curvatures of a totally geodesic submanifold are zero, and Q" has

two distinct principal curvatures for any normal directions [13]. Moreover, it is

known by Ogiue [10] that principal curvatures of Veronese imbedding of the

H-dimensional complex projective space of constant holomorphic sectional curvature

2 into P"<" + 3>/2 depends on the normal direction, hence it does not satisfy the

conditions of Theorem 3. Consequently, we check the remaining examples.

Case 1. Pk X P"~k -> p"k-k2 + l\ In this case, since p = nk - k2, the Gauss

equation yields ||a||2 = c\k(n - k). If this submanifold satisfies the conditions of

Theorem 3, then ||a||2 = Amp = Amk(n - k), so that m = 2. Moreover, since

n = p + m — 1 = nk — k2 + 1, we get k = 1 or n — 1.
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Case 2. SU(k + 2)/S(U(k) X U(2)) -» P^2»"1 (k > 3). In this case, n = 2k,

p = (k2 - k)/2 and from the Gauss equation and Table 2 in [8], ||a||2 = %k(k - 1).

If the conditions of Theorem 3 are satisfied ||a||2 = Amp = 2mk(k - 1), so that

m = A. From n = p + m - 1, we get 2k = k(k - l)/2 + 3 and hence k = 2 or 3.

Since k > 3, we have k = 3.

Case 3. SO(10)/U(5) -* PXi. In this case, n = 10, p = 5, and similarly, ||a||2 =

120. If the conditions of Theorem 3 are satisfied, then ||a||2 = Apm = 20m, hence

m = 6 so that p + m — n — 1=0.

Case A. £6/Spin(10) XT1-» P26. In this case, n = 16, p = 10 and ||a||2 = 320.

If the conditions of Theorem 3 are satisfied, then ||a||2 = Apm = 40m, so that

m = 8. But p + m - n '- 1 # 0.

Consequently, this submanifold does not satisfy the conditions of Theorem 3. Hence

the Kahler focal manifold of a real hypersurface of a complex projective space which

satisfies the conditions of Theorem 2 is Px X P"~x or SU(5)/S(U(3) X U(2)) or

SO(10)/U(5). On the other hand, since homogeneous real hypersurfaces in a

complex projective space with d = 5 satisfy the assumptions of Theorem 2, their

Kahler focal manifolds must be one of the above examples. More precisely, using the

Table of [17], we see that the focal manifold of type C is Px X P"~l, the focal

manifold of type D is SU(5)/S(U(3) X U(2)) and the focal manifold of type E is

SO(10)/U(5), where types C, D and E mean hypersurfaces which are orbits of the

isotropy representation of compact Hermitian symmetric spaces of rank 2 of types

C, D and E respectively. Hence M must coincide with one of the homogeneous

examples with d = 5. This completes the proof of Theorems 2 and 3.

Combining Propositions 3.3 and 3.4 and Theorem 2, we obtain the following.

Theorem 4. Let M be a connected real hypersurface in P"(C). Then M has constant

principal curvatures and /£ is principal if and only if M is congruent to an open subset

of a homogeneous real hypersurface.

Concerning Kahler submanifolds, using a Theorem of Cecil [3] and Theorem 3, we

have

Theorem 5. Let N be a Kahler submanifold of a complex projective space. Then

eigenvalues of the shape operator A^ are constant in the sense that they depend neither

on the point x in N nor on the normal vector £ // and only if N is congruent to an open

subset of P" (totally geodesic), Q", Px X P"1 or SU(5)/S(U(3) X U(2)) or

SO(10)/U(5).

Remark. The above examples are only "normally homogeneous complex sub-

manifolds in P"(C)"[2].

6. Characterization of noncomplex focal submanifolds of homogeneous real hyper-

surfaces in P"(C).

Theorem 6. Let M be a connected real submanifold in P"(C) with codimR M > 2.

Suppose JT1 (M) c T(M), and 7£ is an eigenvector of A^ for any £ g TL (M). If

the principal curvatures of M are constant, that is, eigenvalues of the shape operators
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depend neither on a point of M nor on the normal vector, then M is congruent to an

open subset of the noncomplex focal variety of a homogeneous real hypersurface in

P"(C), and M is minimal.

Proof. Let N = 4>r(M) be a tube of radius r over M for sufficiently small r > 0.

From our assumption and Proposition 2.4, N has constant principal curvatures and

7£ is a principal vector, where £ is a unit normal vector to N. Then Theorem 4

implies that N is an open subset of a homogeneous real hypersurface in P"(C).

Consequently M is an open subset of a noncomplex focal variety of a homogeneous

real hypersurface in P"(C).

Let tt: S2n+X -> P"(C) be the Hopf fibration. Since ir~x(M) is a focal variety of

an isoparametric hypersurface in S2"+x [18], tr~x(M) is a minimal submanifold in

S2" + 1 [9]. Hence M is a minimal submanifold in P"(C) [11]. This completes the

proof.

M is classified in the chart below.

dimR M codimRM complex focal variety of M

M,
M2

My

m\

n (n > 2)

4n - 1(n > 2)

13

23

P1 x P"

SU(5)/S(U(2) X i/(3))

SO(10)/U(5)

Remark. Since M- (j = 1,2,3,4) is a focal variety of a homogeneous hyper-

surface, M¡ is homogeneous. From Theorem 3 is [3], Mx = P"(R) (totally geodesic),

and using pp. 24-27 in [12], we can see that M2 = ir(U(n + l)/U(n - 1)) and

M3 = 77(i/(5)/Sp(2) X t/(l)).

A submanifold M in P"(C) is called totally real if JT(M) ± T(M).

Corollary. Let M be an n-dimensional totally real submanifold in P"(C). Suppose

J£ is an eigenvector of Aç and the eigenvalues of A^ are constant for any £ G Tx (M).

Then M is a totally geodesic P"(R).
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