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THOMAS TAYLOR

ABSTRACT. In this paper I construct a parametrix for the hypoelliptic dif-

fusion equations (d/dt — L)u = 0, where L = X)"=i 9a and where the ga are

vector fields which satisfy the property that they, together with all of the com-

mutators [ga,9&] for a < b, are at each point linearly independent and span

the tangent space.

1. Introduction. Let L be the Laplace-Beltrami operator on a complete

Riemannian manifold M. In this situation, L is essentially selfadjoint on C§°(M).

Let P(t,x) be the fundamental solution of the heat equation on M; i.e.,

f 7T- -L]P(t,x) = 0   and    lim P(t,x) = 6X,
\ot       ) t-»o

where 8X is the ¿-function at x. Suppose that p is an invariant measure for the

semigroup etL so that the density pß(t,x,y) of P(t,x) with respect to p satisfies

pß(t, x, y) = Pfi(t, y, x) and is a smooth function of (t, x, y) for t > 0. It also follows

that etL is a selfadjoint semigroup on L2(M,dp) and, if M is compact, that

trace(etL) = / pfi(t,x,x)dp(x).

Thus, Pfj,(t,x, x) is a kind of "local trace" for etL. Let A be the elliptic operator

defined by "freezing the coefficients of L" at ç G M, i.e., the operator which is the

constant part of L with respect to some coordinate system centered at Ç. Thus,

(L — A) is a second-order partial differential operator which vanishes at Ç. Since

the asymptotics of pß(t,x, x) are locally determined quantities at c, it can be (and

has been—see McKean and Singer [13]) assumed that M = Rm, that (L — A) is

of compact support and that p is Lebesgue measure. Let qß be the (Gaussian)

fundamental solution of (dt — A). It is easy to see that

(dt - A)[p(t, x, y) - q(t, x, y)] = (L - A)p(t, x, y).

Thus, one sees that there is a formal expansion

oo

p(t,x,y) = £ [(dt - A)-HL - A)]Nq(t,x,y).
N=0

It turns out that this formal expansion converges that uniformly, on compacta,

and is indeed equal to p(t,x,y) (see §3 of McKean and Singer [13]).   Now, the
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Schwartz kernel of (dt - A)-1 is just the Gaussian heat kernel so that, expand-

ing (L - A) in a formal power series, one obtains a formal series for p(t,x,y) in

terms which are homogeneous under dilations. The terms of this expansion are in-

tegrals involving integrands which are products of Gaussians and polynomials and

so may be computed explicitly. Evaluating these integrals when x — y leads to an

asymptotic expansion

p(t,x,x) ~ (47rf)-(d/2)[1 + cx(x)t + c2(x)t2 + ■■■],

where d = dim(M).

Weyl first obtained the leading term (47ri)-'<i/2\ Minakshisundaram [14, 15,

16] first proved the existence of this asymptotic expansion.

Later work by various authors [1, 7, 17] demonstrated profound connections of

the coefficients of this expansion with Riemannian and topological invariants of M.

Now, let M be a smooth manifold of dimension m = \n(n + 1). Consider a

partial differential operator L such that locally there are vector fields {ga)2=i SViCn

that the ga's together with all the vector fields [ga, gb] span the tangent space at each

point and such that L = J2 <?a- By a theorem of Hörmander [10], L is hypoelliptic,

as is also the diffusion operator (d/dt — L). Motivated by the work of Rothschild

and Stein [18], I will call such an operator a "step-two free hypoelliptic operator".

("Step-two" because no iterated commutators are necessary to span the tangent

space; "free" because the vector fields ga and [<?(,, gc] are linearly independent at

every point.)

It turns out that a step-two free hypoelliptic operator L is associated with a cer-

tain geometrical structure, just as elliptic operators are associated with Riemannian

geometry.

In particular, since L is a second-order partial differential operator, it induces

a quadratic form G* on T*M. For functions /i,/2 G C°°(M) such that fx(c) =

/2(c)=0, CGM,

n

G*(dfx(c),df2(ç)) = [L(fxf2)](ç) = ^2df1{ga(c))df3(ga(í))-
a=l

Since L is not elliptic, G* is a degenerate form. In fact, RankG* = n so that

dimkerG* = ^n(n — 1). However, G* induces a nondegenerate quadratic form G

on the subbundle V C TM, defined by D( = span{ga(c)}"=1.
This geometric structure is an example of what has been named a "singular

Riemannian geometry", and it has many properties which are very similar to Rie-

mannian geometry [3].

In fact, one may construct a parametrized family G*e of nondegenerate quadratic

forms on T*M such that lim£^ooG* = G*. Then the geodesic flows of the G*'s

converge to the hamiltonian flow associated to G*.

For the case that L is a step-two free hypoelliptic operator, the singular Riemann-

ian geometry implies a reduction of the bundle of frames on M, with structure group

a certain semidirect product of 0(n) with a vector space. Thus, one can, as usual,

construct connections and various invariants of the structure (details will appear

elsewhere).

On the other hand, assume for the moment that L has an extension which is

the generator of a strongly continuous contradiction semigroup on Cq(M) (= the
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space of bounded continuous functions vanishing at oo). Thus, one can obtain a

fundamental solution of (d/dt — A), which is a smooth measure for t > 0, just as

in the Riemannian case.

In this paper, I construct a parametrix for the diffusion operator (d/dt — L).

The construction involves the use of perturbation methods with respect to exact

solutions of certain left-invariant hypoelliptic diffusion equations on step-two free

nilpotent groups. It is, in fact, no loss of generality to assume that L has an

extension which is a generator, because a parametrix is a purely local object, and

I can always replace L by a generator which is equal to L on a compact set. The

form of this parametrix implies an asymptotic expansion at t = 0, in half-integral

powers of t, of the form

p(t,c,c) ~ ifi-W2'2(1 + Cx(c)t + C3/2(c)tz'2 + C2t2 + ■■■),

where K is a number which depends on n but not on c.

Note that there is no t1'2 term in this expansion; it is a consquence of the

geometry of the problem that the coefficient of t1'2 vanishes.

In attempting to construct a parametrix for step-two hypoelliptic diffusion equa-

tions, one's first hope might be that the Minakshisundaram approach could be ap-

plied directly to the computation of the fundamental solution and asymptotics of

the fundamental solutions for hypoelliptic diffusion equations. However, when one

freezes the coefficients of a nonparabolic diffusion equation, the result is a nonhy-

poelliptic diffusion equation, so the necessary techniques of analysis fail to apply.

Rothschild and Stein [18] have been successful in approximating the local behav-

ior of hypoelliptic operators by invariant hypoelliptic operators on free nilpotent

groups. This motivates me to be interested in nilpotent groups in the context of

hypoelliptic diffusions. On the other hand, results in control theory concerning

Volterra series have provided a context for the following theorem of Brockett [3].

THEOREM. Let gx,...,gn be vector fields on iî™(n+1)/2 which generate a Lie

algebra that spans at step two ( and hence is free, by dimensionality). Then there is

a coordinate system centered at zero, {xa,ybc}, for b < c such that

( d       1<A  b   d   \     .
9"=[d^ + -2Yi*êy^)+^

where the vector field d/dyab is defined to be —d/dyba when b < a, and where ha

has the properties that its coefficients vanish to second order in x and y.

REMARK. Note that this theorem is entirely local in nature, so the same result

holds for vector fields on an n(n + l)/2-dimensional manifold M on a neighborhood

of every point ç G M.

Thus, if A is defined to be the operator

kW 2k dyab)

in the coordinate system defined by Brockett's theorem, (L- A) is a (locally defined)

operator which vanishes to (slightly more than) second order ai ç G M. Thus A

contains both the zeroth- and first-order behavior of the coefficients of L at ç.
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Moreover, as I will discuss in §2, the exponential map gives a global coordinate

system on step-two free nilpotent groups such that the left-invariant "subelliptic

Laplacian" of such a group has exactly the same form as A. The corresponding

diffusion equation has fundamental solutions which are easy to characterize in terms

of certain partial Fourier transforms. These diffusion equations have been recently

discussed in the papers [6 and 9].

Now, since (d/dt - L) is hypoelliptic, the operator (d/dt - L)~x is pseudolocal.

Since the Schwartz kernel of (d/dt - L)_1 is the fundamental solution P(t,ç) of

(d/dt — L), it follows that pM(i, C, £) is determined, modulo smooth functions on

R x M, by the Taylor series of the coefficients of L at the point ç. In particular,

if <f) is a smooth function of compact support such that <f> = 1 on a neighborhood

of c, and if V = A -f d>(L - A), then on the domain U C M where A is defined,
(d/dt — L')P(t,x) is a smooth measure (which vanishes to infinite order at t = 0).

Thus, it is sufficient to consider operators on step-two free nilpotent groups which

differ from the subelliptic Laplacian by an operator which is smooth and of compact

support. For these operators it turns out to be easy to apply perturbation methods

to obtain a parametrix for L in terms of the coefficients of L (in the Brockett

coordinate system) and in terms of the fundamental solution of (d/dt — A). I

develop these results in §3.

Note that the leading term of the asymptotic expansion in the elliptic case is

exactly the function of time which normalizes the mass of the heat kernel of the

heat equation for the standard Laplacian operator on Rn. Thus, one might expect

(and I will show in §3) that the hypoelliptic analog of this term will be given by the

asymptotics of the fundamental solution of the diffusion equation for the subelliptic

Laplacian on step-two free nilpotent groups. From a dilation symmetry of this

diffusion equation I deduce in §2 a particular (power law) functional dependence,

and a calculation involving the partial Fourier transform of fundamental solutions

yields the specific coefficient. I perform this calculation explicitly in the case n = 2;

in higher dimensions I leave the answer as an integral of a certain function on
Rn(n-l)/2^

In §4 I apply the parametrix to compute coefficients of the asymptotic expansion

of p(t, c, c) for several examples of three-dimensional hypoelliptic diffusion equa-

tions. The case of the left-invariant hypoelliptic diffusion equation on the Heisen-

berg group is particularly easy, because the dilation homogeneity discussed above

implies that Cfc(c) = 0 for k > 1.

I also discuss the case when L = g\ + g\, where gx and g2 are independent

left-invariant vector fields on SL(2, R), which generate noncompact one parameter

subgroups, which are orthogonal with respect to the Killing pseudometric. In this

case I compute that

p(t, ç, c) ~ 1/16Í2 - 1/64Í + 0(t-^2).

The Weyl unitary trick may be applied to this computation to yield the asymp-

totic expansion for the diffusion equation on SO(3) with L = g\ + g2, where gx,g2

are independent rotation generators which are orthonormal with respect to the

Killing metric. In this case

p(t, ç, c) ~ 1/16Í2 + 1/64Í + 0(r1/2).
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REMARK. It is possible to verify this asymptotic expansion by using the repre-

sentation theory of SO(3) to compute the spectrum of L and thence to compute an

asymptotic expansion for the trace of etL. Dividing this expansion by the volume

of SO(3) yields the result.
A number of recent papers are of a similar spirit and overlap with this paper

when u = 2, particularly Beals, Greiner and Stanton [2], Stanton and Tartakoff

[19] and M. Taylor [20].

2. Invariant hypoelliptic diffusion equations on step-two free nilpotent

groups. Let V be an n-dimensional vector space. Let V AV be the antisymmetric

tensor product of V with itself. The vector space N(n) = V®(VAV) may be given

the structure of a Lie algebra as follows: for v,w GV set [v,w] = ^v A w; set the

commutator of anything with an element of V A V to be zero. This Lie algebra is

called the step-two free Lie algebra on n generators. Clearly, N(n) has dimension

^n(n + 1); the ideal V AV has dimension \n(n - 1).

V © (V A V) may also be given the structure of a Lie group; in fact, it is given

by the exponential of the adjoint action of N(n) on itself. One may compute that

the group multiplication is (v,u, w) ■ (v,u,w) = (v + v, u + v,, w + w + \v Av), and

that the group inverse is the same as the vector-space inverse. Let N(n) denote

this Lie group. Consider the vector space V* © (V* A V*). A choice of basis for V

determines a basis {xa, ybc}, where a, b, c = 1,..., n and b < c, for V* © (V* A V*).

This basis may be regarded as a global coordinate system on N(n). It is easy to

show that the vector fields

Tr ¿9        lr^   L   9 .
^ = ^ + 22^^'   fora = 1'--"n'

b=l

where the vector field d/dyab is defined to be -d/dyba when a > b, are left invariant

and generate the Lie algebra of N(n). It follows from Hörmander's theorem that

the operators A = Y12=i Kj2 and (d/dt — A) are both hypoelliptic.
The fundamental solutions Q(t, c) of (d/dt — A) are a set of time-dependent

measures on N(n) which are parametrized by ç G N(n) and (weakly) annihilated

by (d/dt — A). Then Q(t, c) also satisfies

/.
dQ(t,c) = l,     Jim Q(i,c) = 6,,

N(n) É^°

where ¿\ is the ¿¡-function supported at the point c G N(n). The hypoellipticity of

(d/dt — A) implies that Q(t, () is a smooth measure.

In addition, the volume form

p = dx1 A dx2 A ■ ■ ■ A dxn A dy12 A dyiz A ■ • • A dy*1'1'71

on N(n) is invariant under right or left translations, so A is formally selfadjoint.

The function p defines a smooth measure on N(n) such that the density of Q(t, c)

with respect to p is a smooth function q(t, (, £) on (0, oo) x N(n) x N(n) which is

symmetric with respect to the interchange of c and £. In addition, for each fixed

f i 9(i> ?) ') is in the Schwartz class on N(n), as is q(t, -, £) for each £ e N(n) [5].

Consider for example n = 2.   Then AT(2) is diffeomorphic to R3 and is the

Heisenberg group. We can use the traditional coordinates x, y, z on R3 and write

d      1    d did
Vl = d-x + 2ydz'    V2 = d'y - 2Xdz-
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It then follows that

A = [dl + d2y + \(x2 + y2)d2z] + [(xdy - ydx)dz].

Now, I want to compute the measure Q(t, 0) = exp(iA)<5(0,o,o)- Since both the delta

function and A may be seen to be invariant under rotations about the 2-axis, it

follows that Q(t, 0) is also invariant under rotations about the 2-axis. Note that the

term in A in the second set of brackets contains the generator of rotations about the

z-axis as one factor. Thus, the second term in brackets annihilates Q(t,0). Q(t,0)

is thus also the fundamental solution of the diffusion equation for the operator Ao

given by the first term in brackets, which is elliptic everywhere except on the line

x = y = 0. Let q(t,x,y,z;0) be the density of Q(t,0).

Define the Fourier transform in the z variable of q by

q(t,x,y,k;0)= / elkzq(t,x,y,z;0)dz.

Then q satisfies the equation

(III.4)       lq=(dl+d2y-l-k2(x2+y2)^q,        q(0,x,y,k;0) = 60(x)60(y).

The separation of variables method is applicable to this equation. In fact, q — qxqy,

where qx satisfies the equation

dax/dt = (dx2 - \k2x2) <f,        <f (0, x, k; 0) = 60(x),

and qy satisfies the analogous equation.

However, Feynman's book [4, pp. 49-51] (also Gaveau [6]) tells us that in this

case

qx(t,x,k;0) = [fc/47rsinh(fcí)]1/2exp[-(fc/4)coth(fcí)(x2)].

Thus, q(t, x, y, k; 0) is equal to

[rc/47rsinh(fci)] exp[-(fc/4) coth(fci)(x2 + y2)].

Recall that A is left invariant. This implies that the fundamental solution start-

ing at (s, v,u), p(t, x, y, z; s, v,u), is the left translation of p(t, x, y, z; 0). We obtain

the partial Fourier transform of this left translation to be

q(t, x, y, k; s, v, u) = e^u+sy~vx\(t, x-s,y-v,k; 0).

Now, in general, one may show that for arbitrary n, the generator which we are

interested in is

n     /    r,    \ 2 n      n ,-. ,-,

^ I dxa )        ¿-^ ¿-^     dxa dyab
a=l   x a=lb=l

*     n      n      n ^ 0

gyca Qycb ■
a=lb=lc=l y y

Denote by Y the antisymmetric matrix with coefficients yab. Define A to be

an element of the dual space of the space of all such F's; let aab be the (a, 6)th

coefficient of A with respect to the basis determined by the yab,s. Then

A(Y) = Y^abayab-
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In these terms, the Fourier transform of q in the y variables is given by

q(t, x, A; 0) = fiir)-^?'4 f elA(-Y)/2q(t, x, Y; 0) J} dyab.
a<b

Then we have the Fourier-transformed diffusion operator

2

a=l

oZa-) +Ylixbñzz;a°b-iHY,xaxba™a"> ■
' h=l b=lc=l

Then the diffusion equation in matrix-vector notation is

(dt - [(dx, dx) - i(Ax, dx)-\ (Ax, Ax)] )q = 0.

Now, I claim that the operator (Ax,dx) commutes with both (dx,dx) and

(Ax, Ax). Indeed, since A is antisymmetric, (Ax,dx) is the infinitesimal gener-

ator of a rotation in Rn, and the Laplacian (dx,dx) is invariant under rotations.

Also,
[(Ax, dx), (Ax, Ax)] = (A2x, Ax) + (Ax, A2x) = 0

by antisymmetry. Thus, as in the n — 2 case, q(t, x, A; 0) is annihilated by the term

involving a rotation. Therefore, we are left with the partial differential equation

[dt - (dx,dx) + \(Ax,Ax)]q = {),     limq(t,x, A;0) = 60(x).

LEMMA.   The following function satisfies the above equations:

I -A1/2
det(zA[47Tsinh(¿Aí)]     )      exp[-(i, (¿A/4)coth(z'Ai)x)].

REMARK. The functions z/ sinh(z) and z[coth(2)] are easily seen to be smooth

for all real z. Therefore, since A is antisymmetric and hence diagonalizable with

imaginary eigenvalues, it follows that the above matrix functions are defined, and

G°° in A and in t > 0.

PROOF. Most of the proof is straightforward matrix calculus. I now describe

the only tricky detail. Expand det(zA[47rsinh(¿Af)]_1) as a product in terms of the

eigenvalues of A. Then one easily computes that

(d/dt) det(¿A[47rsinh(íAí)]-1)

= -trace[¿Acoth(¿Aí)]det(2'A[47rsinh(2'Aí)]-1).    Q.E.D.

Let D(s) be the group of dilations on N(n) defined by the pullbacks

D(s)*xa = esxa,    D(s)*yab = e2syab.

Recall that vector fields push forward. Note that

D(s).Va = e-X,    D(s)^b=e->>¿L,

Since A = £V02, it follows that D(s)*A = e~2sA. Note that the (Lebesgue)

measure p satisfies D(s)*p = e~n sp.

Let D(s) = D(s) ® exp[2st(d/dt)]. This is a dilation on N(n) x R, since

exp[2sí(d/dí)] is a dilation on R. Then D(s)t(dt - A) = e~2s(dt - A). Now,

[Q(t,0)dt] is Green's measure for our diffusion operator:

(dt-A*x)[Q(t,0)dt] = 60(X)60(t),
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but D(s)*6o(X)6o(t) = 6o(X)6o(t), since the ¿-function is invariant under dilations.

Thus, [Qdt] is determined by an equation homogeneous under D(s). It follows that

Q is also homogeneous and that its homogeneity is determined by the homogeneity

of the other terms. Indeed, because Dt(s)6r¡(x)6o(t) = 6o(x)6r>(t), we have

D(s),{(dt - A*)[Q(t,0)dt]} = (dt - A*)[Q(t,0)dt]

= [D(s).(dt - A')D(-s).]D(s).[Q(t,0)dt]

= e23(dt-A*)D(s).[Q(t,Q)dt].

Thus, we get that

D(s),[Q(t,0)dt] = e-2s[Q(i,0)dt].

But Q(t,Q)dt = q(t,0, X) dX dt, where g is a smooth function of (t,X) for t > 0.
Then

e-2s[Q(t,0)dt] = D(s)t[Q(t,0)dt]

= [D(-syq(t,0,X)][e-(n2+VsdXdt].

Thus, D(-s)*q(t,0,X) = en*sq(t,0,X). But the submanifold X = 0 is invariant

under the action D(s), so this equation implies that

g(í,0,0) ~ (constant)i~"2/2.

Thus, to compare this result to the elliptic case, we see that q(t, 0,0) gets one

factor of i-^1/2' for every x-direction ("ordinary direction") and a factor of i_1 for

every y-direction ("exceptional direction"). For example, when n = 2, q(t,0,0) is

proportional to t~2, so, as far as Weyl's theorem goes, a three-dimensional singular

Riemannian manifold looks like a four-dimensional Riemannian manifold.

Recall that the partial Fourier transform q of q in the y variables is given by the

function
q(t,x, A;0) = detíi'A^Trsinh^Aí)]"1}1/2

• exp [-(x, (¿A/4) coth(i'Ai)x)],

where i = \/—î and A is the antisymmetric matrix representation of the Fourier-

transformed variable of the y. Now,

2tt

Thus,

q(t,x,y;0) =

qit,0,0)=[-

n(n-l)/2

2-K

1)
2tt/

n(n-l)/2

n(n-l)/2

Í e-^2) trace^y)ç(i, 0, (x, A)) dA.

Jq(t,0,(0,A))dA

i det{¿A[47r sinh(iAí)] -1} dA.

EXAMPLE. When n = 2, the space of A's is one dimensional. Thus this

space is parametrized by the eigenvalues of A, ±ia. Thus, det{i'A[sinh(zAi)]} =

[a2/167r2sinh2(oi)],so

^,0,0) = lf
a

47rsinh(ûi)J

a

da

-i^yssinhaJ
da.
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But Gradshteyn and Ryzhik [8, §3.521] give us that q(t,0,0) = (16Í2)-1.

3. The construction of the parametrix.

A. Background mathematics. Recall from §1 the remarks following Brockett's

theorem: for an arbitrary step-two free system of vector fields on iîn(n+1)/2, Brock-

ett's theorem defines coordinates x, y in a neighborhood Uxy of every point c. These

coordinates define a local diffeomorphism from Uxy onto a neighborhood of the iden-

tity in N(n). This diffeomorphism can be used to pull back objects on N(n) to

Uxy. In particular, the dilation D(s) can be pulled back to a local group of local

diffeomorphisms on Uxy (call it D(s) again). These local diffeomorphisms fix the

point c. The vector fields ha of Brockett's theorem are

ha=^bcxbx^^j+ja,

where one sums on all repeated indices and where ja has a formal power series at

c in terms homogeneous under D(s) of order greater than or equal to one. We can

also pull back the vector fields Va to vector fields (called Va) on Uxy. Let A be

the partial differential operator £Va2. Note that A is homogeneous under D(s) of

order —2. Let L = ^2g2. A consequence of Brockett's theorem is that on Uxy

L = A + L^+L^°\

L = A+ (vaAiebcxbxcJ^ + symmetric) + tf°\

where /A-1) is homogeneous of order -1 under D(s) and Z/°) has a formal power

series at ç with terms homogeneous of order greater than or equal to zero.

Let P(t, W) be the fundamental solution for (dt — L), with density p(t, W, X),

(dt - L(X)*)p(t,W,X)dX = 0,     limp(t,W,X)dX = 6\v(X),

where X and W each denote the coordinates x and y on N(n) and where, recalling

that 6w(X) is a measure, one includes the factor dX in order to keep track of

variances. Recall that p depends only on the formal power series of L* at X = W,
mod smooth functions which vanish to infinite order at t = 0 (because (dt — L) is

hypoelliptic). Therefore, since we are interested only in the small time asymptotics

of p, it suffices to restrict our study to operators L on N(n). Particularly, it is

sufficient to consider only operators of the form

L = A + f = J2(Va + 4>ha)2,

where <j> is smooth of compact support and equal to one on a neighborhood of c.

Recall that D(s) is the dilation on N(n) x R given by D(s)®exp(2st(d/dt)). If 7r

is the canonical projection on the left factor, then the following diagram commutes:

N(n) xR     —»     N(n) x R
D(s)

N(n)        ^        N(n)

Define Ls to be e2sD(s)*LD(-s)* and £a to be (Ls - A). Define ps to be

Ps(t,W,X) = en*aD(s)'p(t,W,X),
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where D acts on t and the X variable.   It is easy to see that the fundamental

solution for (dt - Ls) is Pa(t,W) = ps(t,W,X)dX.

B. A perturbation argument. Now, the Ä-linear span of the Va + <\>ha are all

complete vector fields. Therefore, it follows [21, Chapter 4] that A and, for each s,

La (specifically, a closure) generate a strongly continuous contraction semigroup on

the space of bounded continuous functions vanishing at infinity, Cr,(N(n)), consid-

ered as a Banach space with sup norm. I now wish to apply the following theorem,

which is in Kato's book [12, p. 502].

THEOREM. Let T and {Tn}%Zx generate contraction semigroups. If (Tn — A)-1

converges strongly to (T — A)-1 for some A with re(A) > 0, then exp(tTn) converges

strongly to exp(iT) uniformly for t in any finite interval.

To apply this theorem to Ls and A, I will need to prove some lemmas.

LEMMA 1. The coefficients of fs approach zero as s —» -co uniformly on com-

pact subsets of N(n).

PROOF. We can represent ¿¡o as a sum

i,j k

where i, j = 1,..., n(n +1)/2, u'-7' and uk are smooth functions of compact support

and the terms
Hi   d     d k   d

dXidXi '   dXk

(no sum) are homogeneous with polynomial coefficients of orders dtJ and dk greater

than or equal to —1. Thus, the ijth and fcth coefficients of £s are

exp[8(dy 4- 2)]uii(D(s)*X)fii(X)

and

exp[s(dk + 2)]uk(D(s)*X)fk(X).

Now, u(D(s)*X) is u(esx,e2sy) and so approaches the constant function u(0) uni-

formly on compact domains as s —> —oo, since u is a continuous function. But the

/'s are polynomials and therefore bounded on compact domains while exp[s(d + 2)]

goes to zero as s goes to —oo.    Q.E.D.

LEMMA 2.   For all functions g G Gc°°, lims_oo ||fsg|| = 0.

PROOF. All derivatives of g are again in G£°. But the coefficients of £s approach

zero uniformly on compact domains, particularly on supp(g).    Q.E.D.

LEMMA 3. C%° is dense in the domain D(A) of A when D(A) is considered as

a Banach space with norm || • || + ||A • ||.

PROOF. For A > 0, (A - A) is an isomorphism of D(A) with Go. It suffices to

show that (A-X)Cz° is dense in Go- Suppose the contrapositive. Then there exists

a measure p of finite nonzero variation such that integration against p annihilates

the image of Gc°°, i.e., for all g G Gc°°, (p, (A - \)g) - 0. Now, let R(X) denote

right translation be X G N(n). Since right translation maps CjZ to C£° and leaves

the sup norm invariant, it follows that for every g G G£°, u(X) = (p,R(x)g) is
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a bounded continuous function on N(n). On the other hand, u is also a weak

solution of (A — X)u = 0; hence, by hypoellipticity it is a pointwise solution, so by

the maximum principle u = 0 [11]. But this implies that p = 0.    Q.E.D.

LEMMA 4.   Strong-\im3^-

PROOF. We have formally

1

,(LS-A)-1 = (A-A)-1.

1 1
-(L3-A)

1
Ls-X      A-X     i* - Av  a        'A-X

It is obvious that this equation is true on the domain (A — X)C¡¡°, and on the

domain

11 11
-(Ls-A)^i

A
Ls-X X

=    1 +
1

AA-A
1

A    A-A A
1 +

La - X    A-X
X

A-X

However, this last operator is bounded and has norm less than 4/re(A) because Ls

and A generate contraction semigroups. Since, by Lemma 3, (A - X)C^° is dense

in Go, it follows that (Ls — X)~X(LS — A)(A — A)^1 extends uniquely to a bounded

operator on Co with the same norm.

Now, let g G C0, and let {/„}£°=1 in (A - A)GC°° be such that /„ -► g in C0. For

all £ > 0, let n* G Z+ be such that for all n > n*, \\fn - g\\ < (ere(A)/8). Then for
all s,

(Ls - A)
Ls-X (A-A)"

< (La-A)~fn

+

,-A

1

A-A-

A
(Ls - A)

1

<
1

Ls-X
(Ls - A)

A-X

1

A-A
In

iU - g)

e

^reW^;-A)/nll + Í'

where /„ = (A — A)_1/n G C¡?°. By Lemma 2, \[(LS - A)/n|| goes to zero as s

goes to —oo; hence we can choose s* sufficiently small such that, for all s < s*,

\\(Ls-A)fn\\<(sre(X)/2).    Q.E.D.
If we combine Lemma 4 with Kato's theorem we have

exp(iA) uniformly for t in finiteTHEOREM   1.   Síron0-lims__oo exp(iLs

intervals.

Let Q(t, W) denote the fundamental solution of our model diffusion equation

(dt - A)/ = 0.

COROLLARY 1.  As s -+ -oo, Ps(t,W) -^ Q(t,W) in the weak* topology in Cq
uniformly for t in nonnegative finite intervals.

PROOF. Because Ps and Q are the Schwartz kernels for exp(iLs) and exp(iA),

the strong convergence of these implies pointwise convergence of exp(tLs)f to
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exp(íA)/ for every / G Co, and by definition of the Schwartz kernel, of Pa to Q in

the weak* topology in Cq uniformly for t in nonnegative finite intervals.    Q.E.D.

C. A parametrix. Now, we have that

{dt - L*s)Ps(t,W) = 0,    (dt - A')Qit,W) = 0,

limPs(t,W)(X) = lim Q(t,W)(X) = 6w(X).

Thus, for t > 0, we can subtract the P.D.E. for Q from the P.D.E. for Ps, and

rearrange to get

(dt - A)(PS - Q)(t,W) = (Ls - A)Ps(t,W).

Therefore, since Ps = Q + (P3 - Q), we can formally write

oo

(Ps-Q)=E[(9t-A)-1(Ls-A)rQ.
m=l

If in this series we substitute the expansion of {Ls - A) in terms homogeneous

under D(s), we then have, again formally, a parametrix for Ps in terms which are

homogeneous under D(s). Thus, we are motivated to study the functional analysis

involved with hypoelliptic diffusion equations in order to clarify in what sense these

formal expansions might have validity.

From now on I use the same symbol for the density of Q and Pa as for Q and Ps

themselves. First of all, Q(t, W, X) is defined on N(n) x [0, oo) for each W. Extend

Q by the zero function to the domain N(n) x R, and denote this extended function

again by Q. This function is smooth everywhere except at t = 0, W = X. In fact,

recall that in the distributional sense

(dt - A(X)*)Q(t,W,X)dXdt = 6w(X)6Q(t).

Therefore, (dt — A)-1 is an integral operator with kernel Q. Also, (dt — A)-1 is ho-

mogeneous under D(s)m of order two. Thus, in order to understand our parametrix,

we want to understand Q and, hence, exp(tA) in the context of distributions.

Let S be the Schwartz class of functions on N(n). Recall that S is a Fréchet

space with respect to the following set of seminorms: for all k G Z+, and for / G S,

||/||fe=  £ sup|X'VJ/(X)|,
I,J<k

where I and J are multi-indices and VJ is a polynomial in left-invariant vector

fields on N(n) ordered according to some fixed choice of ordered basis. Note that

||/||k < ll/llfc+i f°r au / and k. Recall that a sequence {/n}£Li in S converges in

S if it is Cauchy with respect to || • \\k for all k.
Let T be an operator mapping S to S. Then T is continuous or bounded if for

every k there is some j G Z+ and some c G R+ such that, for all f G S, \\Tf\[k <

c||/||j. Define ||T||fc¿ to be the infimum of such c. Note that ||T||fc_aj+6 < ||T||fcj

for all a, b in Z+.

LEMMA 5. For each t > 0, exp(iA) is a continuous map S —> S, and in fact

there are constants cx,c2 > 0 which depend only on k such that \\exp(tA)f\\k <

ae^WfWk-

PROOF. The proof is based on Proposition 3.2 of [11], which in this situation

states that exp(iA) defines a strongly continuous semigroup on Bk (= the closure
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of S with respect to the norm || • ||fc) if left translation on N(n) acts strongly

continuously on Bk- Thus, it is sufficient to prove that left translation is strongly

continuous on Bk ■

For cGN(n), let

c = exp(¿^ + E^¿)-
\o=l a<b y     J

Since exp is a global diffeomorphism for N(n), the choice of a basis (Va,d/dyab)

determines uniquely the numbers {ta,tab}. Thus,

a a<b

defines a function on N(n) such that (c, £) —» |ÇcJ_1| is a distance function.

Let U(c)f denote left translation of / G Bk by ç G N(n); i.e.,

Mi\M) = f(rH).
The group multiplication law for N(n) gives us the estimates

\U(ç)xa[ < \xa\ + \ta\,

\U(ç)yab[ < \yab\ + \tab\ + \taxb - tbxa\.

Hence,

(*1) \U(ç)xa\ < eltal(l + |xa|) < eW(l + \xa\),

(*2) \U(c)yab\ < elta6l(l + \yab\) + \ta\ \xb\ + \tb\ \xa\

<eM(l + \yab\ + \xb\ + \xa\).

Therefore, we have for f G Bk

sup [XJV JU(ç)f\ = sup \XIU(<;)VJf\

(since the VJ are left invariant)

= sup |t/-(t)([(7(r1prV-7)l = sup \[u(r ^x^v'f]

(since sup is invariant under translation)

= sup(|C/(c-1)X/||F-//i).

Now, since translation is an automorphism of the ring of continuous functions, we

have, for N = n(n + l)/2,

|«7(r1)(^1)¿1(^2)¿2---(^;V)^l<efckl E lX'l'

|/|<fc

so

8up|X^Jy(c)/|<efclil||/|U.

Thus, there is a constant c > 0 such that

l|i/(c)/||fc<cefc^||/||fc.

Now, for all f G S and all multi-indices I and J, XIVkf G S and so vanishes

at infinity. Thus, if the sequence {fn}n=o C S is Cauchy in Bk, {XIVJfn}%LQ is



204 THOMAS TAYLOR

Cauchy in Cq if |J|, |J| < k, so for each f G Bk and each e > 0 there is a compact

set K(e) C N(n) such that

E      sup   [X'VJf[ < e.
\i\,\J\<kx<¿K(>£í

Let u£ G Cc°° be such that 0 < u£ < 1 and ue[K(e) = 1. Then

(*3) \\[U(c)-l]f\[k<    E   *np\XI[U(e)-l]u°VJf\
\i\,\J\<k

+    E   ws>.\XIM()-l\0.-vl')VJf\.
\I\,\J\<k

But by definition of K(e), the second sum is less than £[Gefclfl], where G is inde-

pendent of e.

On the other hand, u£VJ f is continuous and of compact support and, hence,

also in Go, and left translations are strongly continuous on Go- Also, estimates

(*1) and (*2) imply that there is a compact set K C N(n) such that the support of

U(c)u£VJ f is contained in K for all |ç| sufficiently small. The strong continuity of

left translations on Go then implies that for all e' > 0 and for |f| sufficiently small

E    m>\[U{ç)-l]u*VJf\<e',
\l\,\J\<k

so

E    sup [X1 [/7(c) - l]u£VJf[ <£'     sup     \X*\.
\I\,\J\<k x€K,\I\<k

This means that we can make the second term on the right of (*3) arbitrarily

small for all |c| smaller than some fixed value by choosing e small enough.  Even

though this choice of £ may make the first term on the right of (*3) large for a fixed

value of |c|, the first term may also be made arbitrarily small by choosing |c| small

enough. Thus,

limJ[U(ç)-l]f\\k=0.
Ici—►o

Thus, indeed left translation is strongly continuous on Bk, so according to Propo-

sition 3.2 of [11] the measure Q(t,0) has the property that f dQ(t,0,ç)U(ç) is a

strongly continuous semigroup on Bk- But this integral is just the semigroup etA

on Go restricted to Bk-

Since etA is strongly continuous, it follows that there are constants ci,C2 > 0

such that ||etA/||fe < cieC2t||/||fc for all f G Bk and, hence, for all f G S. Since this

is true for all k, it follows that etA is a continuous operator on S.    Q.E.D.

LEMMA 6.   For all f G S, the map t —> exp(iA)/ of [0, oo) —> S is continuous.

PROOF. The proof of Lemma 5 shows that the semigroup etA on Go restricts to

strongly continuous semigroups on Bk for each k. Thus, for / G S = f)k Bk, e f

is continuous with respect to the seminorm || • []&.    Q.E.D.

LEMMA 7. Let f be a smooth function on N(n) x R of the following type:
t —> f(t,-) is a continuous map into S and f(t,-) is zero in S for t sufficiently
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small (sufficiently large). Then (dt — A)   xf (respectively, (dt + A)   xf) exists and

is a function of the same type.

PROOF. It is sufficient to prove the (dt — A) case since the other is related

by t —> -t. Now || exp(iA)/||fc is continuous in t, so ||exp[(i - v)A]f(v,-)\\k is

continuous and, hence, measurable in v. Thus, according to Yoshida [22, p. 134],

exp[(i - v)A]f(v, ■) is Bochner integrable in the Banach space Bk (the completion

of S with respect to || • ||fc). But this is true for all k G Z+, so the integral is in S.

Also, as an S-valued function the integral

X'Vj f    dvexp[(t-v)A]f(v,-)= f    dvXIVjexp[(t-v)A]f(v,-)
J— oo J— oo

is in S for each t in R, since XJVj maps Bk into Bk+ma.x(\I[, \J\)-

In the above integrals we consider exp[(i — v)A] to be zero for v > t, so the

above integrals are zero in S for t sufficiently small. The fact that (dt — A) can

be moved across the integral sign implies that (dt - A)-1 is defined on this class

of functions by the above Bochner integral and that Q is its Schwartz kernel. The

hypoellipticity of (dt — A) implies smoothness.    Q.E.D.

REMARK. (dt — A)-1 is "bounded on Bk" in the sense that for each continuous

function f:R —> Bk, such that f(s) — 0 for all s < tr¡ for some io G R, the function

í ~* \\[(dt - A)-1/](i)IU is a locally bounded function of R. Indeed,

rt

||[(3t-A)-1/](i)IU =
/:

dve(t-v)Af^

< /     dv[[e^-v^Af(v)

<
J So

dvcxe c2(t-v)
\\f(v)

(by Lemma 5, for t > so)

<cxe Cj(t-í'o)    /

-'So

dv\\f(v)\\k

We are now in a position to prove

LEMMA 8.   For every N' > 0, in a (tempered) distributional sense Ps is equal

to

N'

E [(dt - A*)-1^ - A)*]NQ + [(dt - A*)-HLS - A)*]N'(Ps - Q).
N=0

PROOF. For / G Cc0O(N(n) x R),

(f,Ps-Q) = (f,(dt-à* -1CsPs) = -(Udt + A)-1f,Ps),

where the extra signs are because dt is skew symmetric with respect to dX dt. Note

that £s(dt + A)-1/ vanishes for t sufficiently large, and Ps vanishes in S' for t < 0,

so the last integral makes sense. But Ps = Q + (Ps - Q), so by Lemma 7 it makes

sense to iterate.    Q.E.D.
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LEMMA 9.   For all f G S, lim,-*-«, e-s£,/ = L(_1)/ strongly in S.

PROOF. Recall the notation of Lemma 1. I claim that the operator of multi-

plication by D(s)*u (u = u13 of uk) converges strongly to multiplication by the

constant u(0). Indeed,

(*) \\x'vMD{8rx)f\\ < E CKWx'Wj-KuMayxWKfi
K<J

where by K < J, I mean that every component of the multi-index K is less than or

equal to the corresponding component of the multi-index J. But, Vj-kD(s)*u =

e~dsD(s)*[Vj-Ku], where d is the homogeneity of Vj-k and is a nonpositive num-

ber, zero only in the case that J = K. Thus, since [D(s)*Vj-ku](X) is uni-

formly bounded in s and X, the same reasoning as in Lemma 1 gives us that

Vj-ku(D(s)*X) converges uniformly to zero when J is not equal to K. In this

case, therefore, XI[Vj-au(D(s)*X)]Vkf —> 0 as s —► -oo. Thus in the limit

of s -* -oo, XIVj[u(D(s)*X)f] is the same as the limit of u(D(s)*X)[XIVJf],
which, as in the proof of Lemma 1, converges uniformly on compacta. But uniform

convergence on compacta in Go implies uniform convergence: Since u(D(s)*X) is

uniformly bounded in s and X, for each / and for every e > 0 there is a compact

subset E such that on Ec, \ui:'(D(s)mX)f\ < e uniformly in s and in s* such that,

for s < s*, \u(D(s)*X) - u(0)\ < e uniformly on E. This proves my claim.

Now, as in the proof of Lemma 1, the coefficients of £o are f^u^ and fkuk,

where pi did j and fkdk are homogeneous of order dij, dk greater than or equal

to —1. When d — —1, e~sexp[s(d + 2)] is independent of s. When d > —1, this

exponential goes to zero as s —♦ -oo. The assertion follows as in Lemma 1.    Q.E.D.

LEMMA 10.   s —* D(s)* is a strongly continuous group in S-

Proof.
||XJVjI>(a)'/ll = exp[(d/ + djMlDWX'VjfW

= exp[(dI+dj)s]\\XIVjf\\

since sup norm is invariant under dilations, where the di and dj are the homo-

geneities of X1 and Vj, respectively. Note that this implies ||D(s)*/llfc < Gefelal||/||fe

for some C > 0.

In addition,

||X'V>[1 - D(sy]f\\ = ||[1 - exp[s(dj + djWmx'VjfW

<||(l-exp[(d/-rdj)«])X/V>/||

+ exp(dI + dj)S\\[l-D(sy]XIVjf\\.

But XIVjf G Go, and dilations are strongly continuous on Go-    Q.E.D.

LEMMA 11. Letf GC™(N(n)xR). Then [(La - A)(dt + A)"1]"/ = 0(ens)
at s = —oo, and, in particular,

lim  [e-*(Ls - A)(dt + A)"1]"/ = [¿(_1)(^ + A)"1]"/
s—»—oo

for all n G Z+.
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PROOF. For each t, we have the following fc-norm estimate on S(N(n)):

\[[L^(dt + A)"1]"/ - [e-°iLs - A)(dt + A)"1]"/!!*

< Ell[^("1)(öt + A)-1r[L(-1)-e-^s]
m=0

x (dt + Ay^e-'Udt + A)"1]"-'"-1/!!*

ícJp^-í-W + a)-1

x[e-s6(öt + A)-1]""m"1/ll*

207

m=0

|fc+2m

for some C > 0 since, in the terminology of Lemma 7, IA_1) maps ßfc+2 into Bk

and (<9t + A)-1 maps Bk to B¿ for each k and each t.

Now, Lemma 10 implies (because £o is second order of compact support) that,

for each s and for some p > 2, ||e~s£s||A:,fc+p < oo. I claim that p can be chosen so

that this operator norm is uniformly bounded for s < 0. Indeed, in the notation of

Lemmas 1 and 9, for g G S,

'É.ffllfc Y}D(syuv r]dxd3g
1.1

< Eexp[(d¿J + lMmsyu^fVdidjgU,
y

where dxj is the homogeneity of ftJ didj (for the sake of brevity, we omit the terms of

the form [D(s)*u% fl]di; the estimates are of exactly the same form). But f^didjg

is in S, so, as in the proof of Lemma 9, inequality (*) holds. Thus, we have that

each term in the above sum is less than a sum over I and J of terms of the form

WX'VjlDisyu^f'didjgW

< C E e-^-Hity'Ttyj-KuVyiX'VKftdidjgl
K<J

But each term in this sum is

-sdj

-sdj-¡,

>-"\\D(sy(Vj-KuV)\\[\XIVKrdld3g\

< e-«»-K\\Vj-KuV\\ WX'Vicr'didjgW.

But since the ulJ are in C%°, there is a constant Cj > 0 such that

\\XIVjD(sy[u^rdld3g]\[<Cj E WVKpêidiQl
K<J

since exp(-sdj-K) and exp[s(dij + 1)] are < 1 for s < 0. But each component of

K is less than the corresponding component of J, so the sum over I and J gives,

for s < 0,

\\e-'[D(sy(u^rj)]didjg\\k < C||f^tâii7||fe,

for some G > 0. Since flJ are polynomials, there is an integer p > 1 such that, for

all i,j, WP-'didjgWk < Cij\\g\\k+P for some constants Cij sufficiently large.  Thus,
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for each k there is a constant Ck sufficiently large such that ||e_sc;ag||fc < Gfc||(j||fc+p.

This proves my claim.

Therefore, by substituting e~s£, = L^-1) + (e~s£, - Z/-1)), we can bound

\\[L^ - e-^a](dt + ^[e-'Udt - ^)-l]n'm~1f\\k+2m

by a sum of terms, each of the form

||[q factors in L(_1) or e"s£3 times (dt + A)-1],

[£(_1) - e-stra]idt + Ay^L^Hdt + A)-1]B-m-1-«/||fc+3m

< Cq[[[L{-1] - e-'isKdt + A)-x[L^(dt + A)-1]"-™-1-* f\\k+pq

for some Cq > 0. But for each t, [H-V(dt + &)-i]n-m-i-qf g ^ so by Lemma

9 this quantity goes to zero as s —» -oo.    Q.E.D.

Corollary 2. (a) [(dt - A")-1£]BQ is 0(ens) in S' ats = -oo.

(b) [(dt - A*)"1^]"^, - Q) is 0(e(-n+1)s) in S' at s = -oo.

PROOF, (a) Duality as in the proof of Lemma 8 applied to Lemma 11.

(b) Duality again, with Lemma 11 and Corollary 1 give us that [(dt - A*)-1£*]n

x (Ps - Q) is o(ens). This plus the expansion of Lemma 8 implies that (Ps - Q) is

0(es), and, hence, that [(dt - A*)"1^]"(PS - Q) is 0(e(-n+1'>s).   Q.E.D.

REMARK. The positive i-axis is an invariant set for D(s). Also, t is a homoge-

neous function of order 2. This implies, in particular, that

Ps(i,0,0) = e"2sP(e2si,0,0).

Corollary 3. P(t,0,0) ~ Q(t,0,0) + O[t^-n2^2].

PROOF. The expansion in Lemma 8 equals Q(í,0,0) + O[í1/2Q(í,0,0)].    Q.E.D.

LEMMA 12. Suppose that T is a second-order partial differential operator of

compact support. Suppose that T has a formal power series at zero in terms ho-

mogeneous of order > q, under D(s), where q is the biggest such integer. Then

[eqsD(s)*TD(—s)*] converges strongly on S to T^ (where T^ is the polynomial

coefficient partial differential operator equal to the part of the formal series for T

which is homogeneous of order q).

PROOF. The same as Lemma 9.    Q.E.D.

LEMMA 13. Let Tx,...,Tjv be operators of orders qx,... ,q^¡, as in Lemma 12.

Then as s —> —oo,

D(sy | fl[e^+2^Tz(dt + A)"1] 1 D(-Sy

converges strongly on S to fln=i T^Qi\dt + A)-1.

PROOF. As in Lemma 11.    Q.E.D.
Now recall that L = Yli^a. + 4>ha)2. Since 0 = 1 on a neighborhood of zero,

it follows that for all q G Z+, L = A + L_x + L0 + Lx + ■ ■ ■ + Lq + Lq+1. Here,

for k — 1,..., q, Lk is of the form UfcLJj. , with Uk a smooth function of compact

support which is identically one on a neighborhood of zero, Lk is homogeneous of

degree k and Lq+1 has a formal power series consisting of terms homogeneous of

order > (q + 1). We have the following lemma.



A PARAMETRIX FOR STEP-TWO HYPOELLIPTIC EQUATIONS 209

LEMMA 14. For all n G Z+, D(syLkD(s)* = eksL\k) + 0(ens) strongly in S

at s = —oo.

PROOF. Lfc = L{k) - (1 - uk)Lkk), so

D(SyLkD(-Sy = eks[Lkk) - (1 - D(Syuk)Lkk)].

But Lk Ms a bounded operator on S, so it suffices to show that (1 — D(s)*Uk)

vanishes strongly to infinite order as an operator on S.

Now,

x'v>[0(*r(i-ti*)]/
= exp[-s(dj + dJ)]D(s)*X/^(l - uk)D(-s)*f.

But X!Vk(1 — Uk) vanishes on a neighborhood, call it U, of zero. The statement

follows since U is open and / restricted to D(s)Uc vanishes to infinite order at

s = —oo, since f(e3x,e2sy) vanishes to infinite order in {e3} as s —> —oo.    Q.E.D.

LEMMA 15. For each N G Z+, [£,(dt + A)-1]^ is strongly asymptotic to a

sum of terms homogeneous of integer order greater than N. In addition, there are

only a finite number which are homogeneous of a given order.

PROOF. In light of Lemma 14, the expansion of £, implied by Lemma 9 and

the discussion before Lemma 14 extends strongly to a formal power series about

s = — oo (we consider £, as an operator-valued function of s). The coefficients of this

expansion are the Lk , which are homogeneous. (dt + A)~x is also homogeneous, so

[Lk '(dt+A)-1] is homogeneous, as is any product of such factors. The homogeneity

of such a product is the sum of the homogeneities of the factors. There are only a

finite number of ways to add together positive integers to obtain a given integer or

to order a given finite set of positive integers.    Q.E.D.

THEOREM 2. Ps has an asymptotic expansion about s = —oo, in terms of the

LK , (dt — A)-1 and Q (i.e., a parametrix for Pa).

PROOF. Consider the expansion of Lemma 8. According to Corollary 2 the

term [(dt - A*)"1^ - A)*]7V'(P, - 0) is 0(e^N'+1^) . Lemma 15 gives us that

every other term in the expansion of Corollary 2 is asymptotic to a finite sum of

terms which are homogeneous of order no more than order N', plus a term which

is 0(e(-N'+1^a). But this is true for every N' G Z+.    Q.E.D.

COROLLARY 4. P(t, 0,0) has an asymptotic expansion in powers oft1'2 with

lowest-order term t~n I2'.

PROOF. The function t is homogeneous of order 2. P has an asymptotic expan-

sion in terms of distributions homogeneous of order q for all q bigger than or equal

to -n2.    Q.E.D.

THEOREM 3. The coefficient of i'1_" )/2 in the asymptotic expansion for

P(i,0,0) vanishes.
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PROOF. The coefficient is /0* dvdXQ(t - v, X, 0)L(-'1^Q(v, 0, X). But the oper-

ator ¿(-1) is explicitly represented by

VaA^X"
d„e

dybe
+ Aba<:dexdxe^Vn.

dybe

= 2AbZdexdxe
d   d

+ Abe

+ AbZxdXeXf

dybcdxa

d     d

x"
_d
dybe

ade    " " dybc dyaf

(sum on repeated indices). Note that every term is antisymmetric with respect

to the reflection x —» —x. But Q is invariant under this reflection. Therefore the

integrand is antisymmetric under this reflection, and so the integral with respect

to X is zero.    Q.E.D.

4. The local trace on SL(2, R). Let us identify the space of all 2 x 2 real

matrices with R4. Define tp:R4 —► gl(2, R) as follows. Let w,x,y,z denote the

standard Cartesian coordinates on P4. Let gij, for ij = 1,2, be the matrices with

a in the ij position and zero everywhere else. Let /„• be the linear functional on

gl(2, R) given by fij(M) = trace^M). Then V*/n = ui + x, ip* fii = w - x,

ip*fi2 =y + z, x¡)*f2X =y-z.
Consider the differential equation on gl(2, R)

M(t) = GM =
v

— u
M(t),

where u and v are real-valued parameters. This amounts to the following differential

equation on P4:

u

0

0

v

0

0
u

0
— I

u

0

with associated vector fields

gx = (xdw + wdx + zdy + ydz), 92 = (ydw - zdx + wdy - xdz

Note that these vector fields each generate a 1-parameter Lie group of diffeomor-

phisms which is isomorphic to R. Define g3 to be the commutator g3 = [<?2,9i] =

2(wdz - zdw + ydx — xdy). Because G is in sl(2, R), it follows that the determinant

function det: gl(2, R) —y R is independent of time when evaluated on M(t); i.e., det

is annihilated by tp*ga, cl = 1,2,3. Thus, we can restrict our attention to a three-

dimensional submanifold, S, given by det = 1. But this amounts to the submanifold

of P4 given by w2 - x2 - y2 + z2 — 1. At the point (1,0,0,0) in 5 the functions

x,y, z define a local coordinate system for some neighborhood. Since the dw com-

ponent of the g's is zero at this point, we can factor out w = y/l + x2 + y2 - z2.

In these coordinates the <?'s can be written as

gx = yjl + x2 + y2 - z2dx + zdy + ydz,

g2 = -zdx + yjl + x2 + y2 - z2dy - xdz,

g3 = ydz - zdy + yjl + x2 +y2 - z2dz.
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We can expand the square root in a power series around the point x — y — z = 0

(it is analytic in an open neighborhood) to obtain the vector fields

91 = íx+yíz+Zíy + í2{x2 + y2- ñíx + higher °rder'

d d d      I,,      2      2\<9i-i .
92 = dy - Xd~z - Zdx + 2{X  + V  - Z ]dy + hlgh&T <**"■

Consider a position-dependent rotation of the vector fields gx and g2'-

exp   z
0 -1

1 0

gi - zg2

Ê/2 + zgx
+ second order in z.

Thus, up to terms homogeneous of order bigger than one, we can write the vector

fields as

gx= [l + ±(x2+y2)]dx + (y-xz)dz,

g2=[l + \(x2+y2)]dy-(x-yz)dz,

which is of the form given in Brockett's theorem.

One can calculate that

L = gx + g\ = g\ + g\ + ixdx - ydy) + h.o. = A + L0 + h.o.

= A + (x2 + y2)[(d2x + d2y) + (ydx - xdy)dz]

+ (xdx - ydy) + (xdx + ydy) + zdz(ydy - xdx) + h.o.

Now, the (ydx — xdy) term does not contribute to the integral since Q is cylindri-

cally symmetric.  Likewise, the (ydy — xdx) term does not contribute, since it is

antisymmetric under the transformation x <-> y, whereas Q is symmetric.

Recall that the Fourier transform of Q is

F(Q)(t,k,x,y;0) =
¡çe-(l/2)k coth(2kt)[x2 +y2

27Tsinh(2/ci)

and

„2   i   „,2v;í2   i   ^   ,   ¿uiJl   ,   „,2lF(Lo) = (x2 + y2)(d2x + d2y) + ik(x2 + y2)(ydx - xdy) + (xdx + ydy)

Recall also that

f32exp[-(c/2)x2] = [c2x2 - c]exp[-(c/2)x2].

Therefore

F(L0Q) = F(Lo)F(Q)

= (x2 + y2)[k2(x2 + y2) coth2(2kt) - 3kcoth(2kt)]F(Q).
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Thus, we need to evaluate the integral

/   dv     dxdydz < dk

I

jrce-tfcze-(fc/2)[coth[2fc(t-,;)](i2-(-2/2)]

4?r2 sinh[2rc(£ - v)]

h.ip-ik'z„-(k'/2)coth[2k'v](x:2+y2)

dk———-_
4tt2 sinh[2fc(i - v)]

x (x2 + y2)(k'2 coth2(2k'v)(x2 + y2) - 3k' coth(2Ar*w))

Since the integrand vanishes rapidly at infinity in the variables x, y, z, k, k' for t

and v bigger than zero, we can first integrate out the z dependence. The e~l(k+k )*

integrates to give 27rr5(rC + k'). Thus, we are left with

/**/*{/
dxdy

k4 coth2(2kv)(x2 + y2)- 3fc3 coth(2A:t;)

8tt3 sinh[2fc(i - v)] sinh(2/ct;)

< [(x2 + y2) exp[-(k/2) coth(2to)(x2 + y2)]

x exp[-(fc/2) coth[2fc(i - v)](x2 + y2)]] \.

Now we integrate with respect to x and y. Recall that dx dy is equal to rdrdO. The

integral with respect to 6 gives us a simple factor of 2tt. Recall that the integrals

of r5e cr   and r3e cr   from 0 to oo are

/■oo

/    drrbe-cr

Jo

Thus we get

i   r
= ?'     /o

drr e3„-cr' _1_
2c2'

1

4tt2 sinh[2fc(i - v)] sinh(2fct;)

(6fc) coth[2fc(¿ - v)] coth(2fct>) - (2k) coth2 (2kv) 1 )

[coth[2fc(i - v)] + coth(2fcu)]2 J J '

Now use the fact that coth = cosh/sinh, clear the denominator, and use the identity

for sinh of the sum of two angles. The integrand becomes

(3k) cosh[2fc(t - v)] sinh[2fc(i - v)] sinh(4fct;)

-47r2sinh3(2A:i)

(2k) cosh2 (2kv) sinh2 (2kv)

-47r2sinh3(2fci)

If we now apply the identities for the sinh and cosh of the sum of two angles to the

numerator, we see that it can be written as

(fc/2)[cosh(4fct) - 2cosh[4fc(i - 2«)] + 1],

plus a term which integrates to zero. Thus our integral can be written as

(fc/2)[2cosh[4ifc(i - 2v)] - cosh(4fct) - 1]W dk-
47r2sinh3(2fci)
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I claim that the integrand is absolutely integrable. Indeed, the numerator van-

ishes to third order in k with coefficient of magnitude less than At2, so the integrand

is bounded. The derivative of the integrand with respect to v is

-(8*) sinh[4ifc(i - 2v)]/[Aw2 sinh3(2fci)].

This is equal to zero only on the line v = t/2. Any extremum of the integrand

will therefore occur on the lines v = 0, t/2, t. Thus the magnitude of the integrand

is bounded by the maximum of (k/2)[cosh(Akt) - l]/47r2 sinh3(2fci), which is obvi-

ously a bounded function. Denote this bound by G. Obviously, we can bound the

magnitude of the numerator by (2fc)cosh(4fci). Therefore we can bound the mag-

nitude of the integrand by a function equal to G for k < Ko, for some Ko > 0, and

equal to (2fc)cosh(4/cí)/47r2sinh3(2fcí) on the rest of [0, í] x P. But this function

is integrable, so that my claim follows. Thus, by the Lebesgue-Fubini theorem we

can switch the order of integration of v and k. Now

JO
dv cosh[4fc(i - 2v)] = — sinh(4fci).

Therefore, our integral is equal to

kt + (kt) cosh(4kt) - \ sinh(4fci) 1

87T2sinh3(2fci) J/.{;

t 2u + (2u) cosh(4u) - sinh(4u)

-/*,{; 167T2sinh3(2u

Now,

2u + (2u) cosh(4ti) - sinh(4u)

/

oo

du-
167T2sinh3(2u)

oo a„.   i   /j.,\„;„l2Au + (Au) sinh (2u) - sinh(4t
du-

(*)
-/

■/

f°° du U H du
/_«,      167T2sinh(u)     J_00

oo

oo

du

But
sinh(2u

/

167r2simV(2w)

u + (u) sinh2(u) - ^ sinh(2u)

167r2sinh3(u)

u — 5 sinh(2u)

167T2sinh3(u) '

du-
sinh3(u) sinh(tt)'

Also, in Gradshteyn and Ryzhik [8, p. 126, number 2.477.19], we find

( ,        u 1 j (u) cosh(u) 1 Í u     )

J       sinh3(u) 2(   sinh2(u)        sinh(u)     J       sinh(t¿) J

Thus (*) is equal to

\L
oo

du^„     ",. . — lim
(u) cosh(u) — sinh(u)

167r2sinh(u)     «-»oo \ sinh2(u)

i r ,      u
2/_«,      167r2 sinh(u) '
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But, Gradshteyn and Ryzhik #3.521.1 is

FJo
du-

7T

T/o        sinh(u)

so (*) is 1/64. Thus,

P(í,0,0)~l/16í2-l/64í.

REMARK. The Weyl unitary trick converts representations of sl(2, P) into rep-

resentations of su(2). We may apply this to our hypoelliptic operator on SL(2, P)

to obtain asymptotics for a hypoelliptic diffusion equation on SU(2). Begin by

considering the differential equation

M = i
u   v

V    u
M

on gl(2,C). This amounts to the differential equation on G4

0 iu

iu 0

iv 0

0 — iv

iv 0

0 — iv

0 iu

iu 0

Apply to this differential equation the unitary change of basis

U =

0

i
0

0

to obtain the differential equation

10 — u

0

0

v

0

0

0

— v

u

0

To translate these matters into geometry, one merely multiplies the vector fields

gx and ¡72 by i and transforms coordinates by w —* w, x —> ix, y —+ iy, z —> z. One

easily computes in this situation that

L = g2 + g2 = A-(x2 + y2)(^2 + Q-(xl+y^

+ terms of higher homogeneity

+ terms which do not contribute.

An inspection of the calculation in the last section reveals that on SU(2), therefore,

p(t, c, c) ~ 1/16Í2 + 1/64Í + 0(r^2).
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