Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On secondary bifurcations for some nonlinear convolution equations
HTML articles powered by AMS MathViewer

by F. Comets, Th. Eisele and M. Schatzman PDF
Trans. Amer. Math. Soc. 296 (1986), 661-702 Request permission

Abstract:

On the $d$-dimensional torus ${{\mathbf {T}}^d} = {({\mathbf {R}}/{\mathbf {Z}})^d}$, we study the nonlinear convolution equation \[ u(t) = g\{ \lambda \cdot w \ast u(t)\} , \quad t \in {{\mathbf {T}}^d}, \lambda > 0.\] where $\ast$ is the convolution on ${{\mathbf {T}}^d}$, $w$ is an integrable function which is not assumed to be even, and $g$ is bounded, odd, increasing, and concave on ${{\mathbf {R}}^ + }$. A typical example is $g = {\text {th}}$. For a general function $w$, we show by the standard theory of local bifurcation that, if the eigenspace of the linearized problem is of dimension $2$, a branch of solutions bifurcates at $\lambda = {(g\prime (0)\hat w(p))^{ - 1}}$ from the zero solution, and we show that it can be extended to infinity. For special simple forms of $w$, we show that the first bifurcating branch has no secondary bifurcation, but the other branches can. These results are related to the theory of spin models on ${{\mathbf {T}}^d}$ in statistical mechanics, where they allow one to show the existence of a secondary phase transition of first order, and to some models of periodic structures in the brain in neurophysiology.
References
    E. Bienenstock, Cooperation and competition in C.N.S. development: a unified approach, Synergetics of the Brain (Proc. Sympos., at Schloss Elmau, 1983, E. Basar et al., eds.), Berlin and New York.
  • Odo Diekmann and Hans G. Kaper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal. 2 (1978), no. 6, 721–737. MR 512163, DOI 10.1016/0362-546X(78)90015-9
  • Theodor Eisele and Richard S. Ellis, Symmetry breaking and random waves for magnetic systems on a circle, Z. Wahrsch. Verw. Gebiete 63 (1983), no. 3, 297–348. MR 705628, DOI 10.1007/BF00542534
  • —, The generalized Curie-Weiss model and the $d$-body ferromagnetic circle (to appear).
  • Richard S. Ellis, James L. Monroe, and Charles M. Newman, The GHS and other correlation inequalities for a class of even ferromagnets, Comm. Math. Phys. 46 (1976), no. 2, 167–182. MR 395659
  • G. B. Ermentrout and J. D. Cowan, Large scale spatially organized activity in neural nets, SIAM J. Appl. Math. 38 (1980), no. 1, 1–21. MR 559077, DOI 10.1137/0138001
  • G. B. Ermentrout and J. D. Cowan, Secondary bifurcation in neuronal nets, SIAM J. Appl. Math. 39 (1980), no. 2, 323–340. MR 588504, DOI 10.1137/0139028
  • D. J. Gates and O. Penrose, The van der Waals limit for classical systems. I. A variational principle, Comm. Math. Phys. 15 (1969), 255–276. MR 260283
  • D. O. Hebb, The organization of behavior, Wiley, New York, 1949.
  • Uwe an der Heiden, Analysis of neural networks, Lecture Notes in Biomathematics, vol. 35, Springer-Verlag, Berlin-New York, 1980. MR 617008
  • J. L. van Hemmen, A. C. D. van Enter, and J. Canisius, On a classical spin glass model, Z. Phys. B 50 (1983), no. 4, 311–336. MR 703679, DOI 10.1007/BF01470043
  • Gérard Iooss and Daniel D. Joseph, Elementary stability and bifurcation theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1980. MR 636256
  • O. E. Lanford, Entropy and equilibrium states in classical statistical mechanics, Statistical Mechanics and Mathematical Problems (Battelle Seattle, 1971), Lecture Notes in Phys., vol. 20, Springer-Verlag, 1973, pp. 1-113. Ch. van der Malsburg, Development of ocularity domains and growth behavior of axon terminals, Biol. Cybernet. 32 (1979), 49-62.
  • Jacob Palis Jr. and Welington de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982. An introduction; Translated from the Portuguese by A. K. Manning. MR 669541
  • G. Ruget, About nucleation, Mathematical tools and models for control, systems analysis and signal processing, Vol. 3 (Toulouse/Paris, 1981/1982) Travaux Rech. Coop. Programme 567, CNRS, Paris, 1983, pp. 377–393 (English, with French summary). MR 783850
  • M. Schatzman, Spatial structuration in a model in neurophysiology, preprint, 1982.
  • Steve Smale, The mathematics of time, Springer-Verlag, New York-Berlin, 1980. Essays on dynamical systems, economic processes, and related topics. MR 607330
  • N. V. Swindale, A model for the formation of ocular dominance stripes, Proc. Roy Soc. London Ser. B 208 (1980), 243-264. —, A model for the formation of orientation columns, Proc. Roy Soc. London Ser. B 215 (1982), 211-230. C. L. Thompson, Mathematical statistical mechanics, Princeton Univ. Press, Princeton, N. J., 1972.
  • A. Vanderbauwhede, Local bifurcation and symmetry, Research Notes in Mathematics, vol. 75, Pitman (Advanced Publishing Program), Boston, MA, 1982. MR 697724
  • D. J. Willshaw and Ch. van der Malsburg, How patterned neural connections can be set up by self-organization, Proc. Roy Soc. London Ser. B 194 (1976), 431-445.
  • Francis Comets, Nucleation for a long range magnetic model, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, 135–178 (English, with French summary). MR 891708
  • P. Deuflhard, B. Fiedler, and P. Kunkel, Efficient numerical pathfollowing beyond critical points, SIAM J. Numer. Anal. 24 (1987), no. 4, 912–927. MR 899712, DOI 10.1137/0724059
  • Th. Eisele, Equilibrium and nonequilibrium theory of a geometric longrange spinglass, Proc. Summer School Les Houches 1984 on Critical Phenomena, Random Systems and Gauge Theories.
Similar Articles
Additional Information
  • © Copyright 1986 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 296 (1986), 661-702
  • MSC: Primary 58E07; Secondary 45G10, 82A25, 92A09
  • DOI: https://doi.org/10.1090/S0002-9947-1986-0846602-7
  • MathSciNet review: 846602