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ON THE NEUMANN PROBLEM
FOR SOME SEMILINEAR ELLIPTIC EQUATIONS

AND SYSTEMS OF ACTIVATOR-INHIBITOR TYPE

WEI-MING NI AND IZUMI TAKAGI

ABSTRACT. We derive a priori estimates for positive solutions of the Neu-

mann problem for some semilinear elliptic systems (i.e., activator-inhibitor

systems in biological pattern formation theory), as well as for semilinear single

equations related to such systems. By making use of these a priori estimates,

we show that under certain assumptions, there is no positive nonconstant solu-

tions for single equations or for activator-inhibitor systems when the diffusion

coefficient (of the activator, in the case of systems) is sufficiently large; we also

study the existence of nonconstant solutions for specific domains.

1. Introduction. In this paper we are concerned with the Neumann problem

for some semilinear elliptic equations and systems. Let flbea bounded domain in

R^, tV > 2, with smooth boundary dQ, and let n denote the unit outer normal to

<9fi. A typical system of equations which we consider is

(1.1) dAu-u + — +<r = 0ï
v     ' vq

ur í   in fî,
1.2 DAv - vv + — = 0

(1.3) ? = ?=«   ondU,
dn     dn

where d, D, and u are positive constants, a is a nonnegative constant,

N   d2

3 = 1        3

is the Ar-dimensional Laplace operator, and the exponents p > 1, q > 0, r > 0, and

s > 0 satisfy

(1.4) 0<(p-l)/q<r/(s + l).

Moreover, we are only interested in positive solutions since u and v represent the

concentrations of certain substances.

The system (1.1)—(1.3) was proposed by Gierer and Meinhardt [5] as a model

of biological pattern formation. Stable nonconstant solutions to (1.1)—(1.3) are

interpreted as the spatially inhomogeneous state of cells. Here, by the stability of

solutions to elliptic equations, we mean the stability viewed as stationary solutions
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to the corresponding diffusion equations. For biological aspects of the system (1.1)-

(1.3) we refer to [5 or 8].

We shall also consider single equations including

(1.5) dAu - u + up = 0   infî,

(1.6) $^ = o on an,
dn

where d is a positive constant and p satisfies

(1.7) 1< p < N/(N - 2),

with the understanding that 1 < p < +oo if TV = 2. This problem may be regarded

as a model or reduced one for (1.1)—(1.3). In fact, (1.5)—(1.6) plays an important

role when we consider (1.1)—(1.3) for D sufficiently large because, as D —> +co, it

can be reduced to the shadow system:

up
(1.8) dAu - u + — + o = 0   inn,v        i Cq

dx = vÇ3+1(1.9) / vf
Ja

fill

(1.10) ^ = 0    on du.
dn

In particular, if a = 0, then w(x) = £,~q^p~x^u(x) satisfies (1.5).

For N = 1, we can justify the reduction to the shadow system and investigate

the structure of the solution set of (1.1)—(1.3) in great detail if D is sufficiently large

(see [17]). In the case of N > 2, however, very little is known both for (1.1)—(1.3)

and for (1.5)-(1.6).

The purpose of this paper is to derive a priori estimates for positive solutions

to the system (1.1)—(1.3) under further restrictions on the exponents. In fact, we

shall obtain the following estimates as a special case of the main results proved in

§4 (Theorems 5 and 6).

THEOREM 1.   (a) Let a > 0. Assume that

(1.11) p/q<r/(s + l)    and   r > max (p, N(p - l)/2).

Then any solution (u,v) to (1.1)—(1.3) satisfies

(1.12) llullc»(ñ) <Cmax(l,d_Am),

(1.13) ll«llc»(ñ) <Cmax(l,d-A'"r/(s+1))max(l,7?-1),

where Am = XwloP' and m is a nonnegative integer defined by (4.12) with a — r/p.

(b) Let o — 0. Assume that

(1.14) p/q = r/(s + 1)    and     r/p > N/2.

Then any solution (u,v) to (1.1)—(1.3) satisfies

(1.15) llullc«(ñ) - Cniax(l,d-1).

7/0 < s < 2/ (N - 2) holds in addition to (1.14), then

(1.16) IMIc'íñ) <C,max(l,d-r/(s+1))max(l,D-1).
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Here C > 0 and 6 E (0,1) do not depend on (u,v), d or D; 2/(N - 2) stands for

+00 i/iV = 2.

It is perhaps worthwhile mentioning that in Theorem 1, if one is only interested

in getting a priori bounds for ||u||ooi then in case (b), the extra condition on s is

not needed (see §5).

To achieve this purpose, we shall first derive a priori estimates for positive so-

lutions to single equations including (1.5)—(1.6) as functions of d, which are of

independent interest. By making use of these a priori estimates we are able to

show that if d is sufficiently large, then there is no nonconstant positive solution of

(1.5)—(1.6) or of (1.1)—(1.3) under the assumptions o > 0 and (1.11). We also con-

sider the existence of nonconstant solutions for some specific domains for (1.5)—(1.6)

and for (1.1)—(1.3) under the same restriction.

We remark that, for N = 1, an a priori bound for solutions to the system (1.1)-

(1.3) is derived in [17, Lemma 1.2] under the general condition (1.4); while in the

cas N > 2, a priori estimates were obtained for a special choice of the exponents

(i.e., p = 2, q = 1, r = 2, and s = 0) when o is positive. Our approach here covers

the case a = 0 under a certain restriction on the exponents.

For related works on the Gierer-Meinhardt system (1.1)—(1.3), we refer to the

references in [17]; for the time-dependent problem, see Rothe [14].

This paper is organized as follows: §§2 and 3 are concerned with single equations

including (1.5)—(1.6), while §4 deals with activator-inhibitor systems (to be speci-

fied at the beginning of the section) which include (1.1)—(1.3) satisfying (1.11). In

§2 we derive a priori estimates for single equations (Theorem 2). In §3 we prove

the nonexistence of positive nonconstant solutions for sufficiently large d (Theo-

rem 3) and consider the existence of nonconstant solutions for specific domains by

employing bifurcation theory (Theorem 4). §4 is divided into two subsections. In

subsection 4.1, a priori estimates for activator-inhibitor systems are derived (for u

in Theorem 5 and for v in Theorem 6). In subsection 4.2, we give some applications

of the a priori estimates. Theorem 7 is concerned with the nonexistence of positive

nonconstant solutions; while the existence of nonconstant solutions for specific do-

mains is stated in Theorem 8. Finally we observe that v is close to a constant if D

is sufficiently large (Theorem 9).

ACKNOWLEDGMENT. The authors would like to thank Professors E. Fabes and

C. E. Kenig for several useful conversations on the elliptic estimates in Lipschitz

domains.

Part of this work was done while the second author was visiting the Institute for
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2. A priori estimates for single equations. In this section we shall derive

a priori estimates for nonnegative solutions to the following Neumann problem:

(2.1) dAu -u + h(u) = 0   in n,

(2.2) ^ = 0   on dQ.
dn
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Here d > 0 is a constant; the function h: [0,+00) —> [0,+00) is continuous and

satisfies

(A.l) anuPo < h(u) < aiup    for sufficiently large u

with some positive constants oo and 01 independent of u, where the exponents po

and p satisfy

(A.2) Kpo<p< N/(N - 2)

with the understanding that N/(N — 2) denotes +00 if N — 2.

Throughout the section we assume that solutions u to (2.1)-(2.2) are of class

C2(Q) n C1(n). To state our results we need some notations. Define an integer k

by

(2.3) it = min{j E Z\p> > 2/[N - (N - 2)p}}.

Note that k > 1 because of (A.2). Put

k

(2-4) Afc = J>'.
7=0

Then the main result in this section is stated as follows.

THEOREM 2.   Let u be a nonnegative solution to (2.1)-(2.2). Then u satisfies

(2.5) Wc#(íí)<Cmax(l,d-Afc)

for some 6 E (0,1) and C > 0 independent of u and d.

Theorem 2 is an immediate consequence of the following proposition since we

have the continuous embedding W2>q(Q) C Ce(U), 0 < 0 < 2 - N/q, if q > N/2.
(For the Sobolev embedding theorems see, e.g., [9, Chapter 3].)

PROPOSITION 2.1. There exist positive numbers q* > N/2 and C depending

only on Q, an, Of, po, and p such that

(2.6) H|wa.,.(n)<C7max(l,d-A*)

holds for any solution to (2.1)-(2.2).

In the proof of Proposition 2.1, we use the following elliptic estimates for the

linear Neumann problem:

du
(2.7) Au - u + g = 0   in n,        — = 0   on on.

dn

LEMMA 2.2. (a) Let g E LX(Q) and let u E WX'X(Q) be a weak solution of

(2.7).  Then u E Wx>q(U) for ail q E [1, ./V/(Ar - 1)) and

(2.8) ||u||w".*(n) < C||o||Li(n)

with C independent of u.
(b) Let g E Lr(U) with 1 < r < +00 and u be a generalized solution of (2.7).

Then u E W2'r(Q) and satisfies

(2.9) ||u||(v2,r(n) < C||o||L,(n).
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These are standard facts (see, e.g., [3] for the proof of (a) and [1] for (b)).

In what follows, the letter C denotes various generic positive constants which do

not depend on d or u.

Proof of Proposition 2.1.
Step 1. First of all, we integrate both sides of (2.1) over n and use (2.2) to obtain

(2.10) / h(u)dx= / udx.
Jn Jn

Thus from (A.l) it follows that

(2.11) ao     uPodx< I udx + C.
Jn Jn

Applying Holder's inequality to the right-hand side leads to /n uPo dx < C, so that

(2.12) f udx<C.
Jn

From (2.10) and (2.12) we also have

(2.13) f h(u)dx<C.
Jn

Let us put
g(x) = d~xh(u(x)) + (1 - d~x)u(x).

Then (2.1)-(2.2) is written in the form of (2.7) and hence by Lemma 2.2(a) we have

(2.14) \\u\\Wi.q{n)<Cmax.(l,d-x)

for each q E [1,N/(N - 1)) since

/  \g\dx<d~x / h(u)dx + max(l,d~x) / udx < Cmax(l,d~x)
Jn Jn Jn

by (2.10) and (2.13).
Now by the Sobolev embedding theorem, we have the continuous embedding

Wx'q(ü) C Lr(Q) with r = Nq/(N - q). Since q < N/(N - 1), we see that

1/r = 1/q - 1/N > (1 - 1/N) - 1/N = 1 - 2/N, i.e., 1< r < N/(N - 2). Therefore
(2.14) yields that for each'r G (1,N/(N - 2))

(2.15) ||«IU'(n) <Cmax(l,d-1).

Step 2. By assumption on p, we can choose r so that p < r < N/(N — 2) holds.

Put Tf — r/p. Then by making use of (A.l), we see that

llffllin(n) < d~x\\h(u)\\Lr1 (rj) +max(l,iT1)||u||I/..1(rî)

<«r1(oiK||¿r1(n) + C7) + inax(l,ir1)||«||Lrl(n).

Noting that ||u||Lrl(n) < C||u||Lr(n) and ||up||x,r1(n) = ||u||£,(n), we have

(2.16) ||fflUr1(n) <Cd~x(\\u\\pLrln) + l) + Cmax(l,d-x)\\u\\Lr{n).

The right-hand side can be estimated by a function of d in virtue of (2.15), so we

may conclude by using Lemma 2.2(b) that

(2.17) ||tt||w2.--i(n) <Cmax(l,d-p-x).
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If we can find an r E (p, N/(N - 2)) such that p/r - 2/N < 0, we are through. In

particular, we have proved the proposition for N — 2.

Step 3. Assume that 1/r, - 2//V = p/r - 2/N > 0 for all r E (p,N/(N - 2)).
Then by the Sobolev embedding theorem, W2'Tl (Q) c LSl (Q), where

(2.18) l/Sf = l/rf-2/N.

From (2.17) it follows that

(2.19) \\u\\Ln{Q)<Cmax(l,d-p-x).

Now, we go back to Step 2 with ri replaced by r2 — Sf/p. As in the derivation

of (2.16), we see that

\\gh'2(n)<Cd-x(\\u\\l,1{n) + l) + Cmax(l,d-x)\\u\\L>irn)

<Cmax(l,iTp -p~x)

by making use of (2.19). Thus, in view of Lemma 2.2(b), we have from (2.20) that

(2.21) \\u\\W2.rHQ) <<T?max(l,d-p2-p-1).

If there is an r E (p,N/(N - 2)) such that l/r2 - 2/N < 0, then we obtain the

assertion. If not, we repeat Step 3.

After the (Z - l)st iteration of Step 3, we have a sequence {sj}1-0 such that

(2'22) {l/Sj=p/Sj-f-2/N   forj>l,

i.e., 1/sj = 2/[N(p - 1)} + p>(l/r - 2/\N(p - 1)]), and the estimate

||w|liy2.»¡/p(n) < Cmax(l,d~A').

By an elementary computation, we see that k defined by (2.3) is the least number

for which there exists an r E (p, N/(N - 2)) such that Sj > 0 for j < k - 1 and

sk < 0. Therefore we have completed the proof.    D

REMARK 2.3. For the important special case h(u) = up, we note that if p >

(N + 2)/(N-2), then a priori estimates of the form (2.5) are still open. For the case

p < (N + 2)/(N - 2), it is possible to prove that for each d, there exists a constant

C — C(d) such that if u is a positive solution of (2.1)—(2.2), then ||w||z,°°(ri) < C(d).

However, in order to make use of such a priori estimates (e.g. nonexistence theorems

for d > 0 large, such as Theorem 3 below), it is necessary to obtain a somewhat

explicit dependence of C(d) as a function of d. This is a bit more subtle and is

achieved by an entirely different method (compared to the one used here) by C.-S.

Lin, W.-M. Ni, and I. Takagi in an ongoing current joint project. Perhaps we should

also mention that in contrast to the nonexistence result—Theorem 3 below—we

have also obtained existence results for (2.1)-(2.2) in case d > 0 sufficiently small

and p < (N + 2)/(N - 2). All these results will be published elsewhere in a joint

paper with C.-S. Lin.
REMARK 2.4. It is clear that our method of deriving a priori estimates in this

section applied to more general equations of the form

Au + f(x,u) = 0   inn,        ^r=0   on on,
dn

with some appropriate conditions on f(x,u).   We should remark that our main

interest is in the dependence of a priori estimates on the parameter d.
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3. Nonconstant solutions of single equations. In this section we consider

the existence problem for (2.1)-(2.2) under the assumption that h(u) satisfies, in

addition to (A.l) and (A.2), the conditions

(A.3) fceC1([0,+oo));

(A.4) the equation u — h(u) has precisely two solutions u — 0

and u = 7, where 7 > 0.

Later on we shall impose a further condition:

(A.5) h'(i) > 1.

Clearly, u = 0 and u = 7 are solutions to (2.1)—(2.2) for all d > 0. First we show

that (2.1)—(2.2) has no other solutions if d is sufficiently large.

THEOREM 3. Suppose that (A.l)-(A.4) are satisfied. Then there exists a d* > 0

such that if d> d*, then u = 7 is the only positive solution of (2.1)-(2.2).

PROOF. Let u be a positive solution to (2.1)-(2.2) and decompose u as u =

un + <j), where

(3.1) un = |n|_1 / udx    and 4>dx = 0,
Jn Jn

|n| being the volume of n. Then from (2.1) we have

(3.2) dA<?>-</>+( /   h'(uo + t<)))dt\<j) = uo-h(uo).

Multiply both sides of (3.2) by <j> and then integrate over n. Integration by parts

gives

(3.3) d I IV<p\2dx+ f <f>2dx= f <j)2 ( j   h'(u0 + Up)dt) dx,
Jn Jn Jn     \Jo )

by virtue of (3.1).

Now it follows from Theorem 2 that 0 < uo+tcf>(x) < maxu(x) < C max(l, d_Afc)

for (x,t) E H x [0,1], so that, by (A.3), \h'(u0 + t<p(x))\ < C for (x,t) E U x [0,1]
uniformly in d sufficiently large, say d > 1.

On the other hand we have the Poincaré inequality for </> E C1(n):

(3.4) f |V<¿>|2 dx > co / (p2 dx   if  f 4>dx = 0,
Jn Jn Jn

where en is the smallest positive eigenvalue of —A under homogeneous Neumann

boundary conditions.

Therefore, from (3.3) we see that

(1 + cod) f 4>2dx<C f 4>2dx
Jn Jn

provided d > 1.  Thus <p = 0, i.e., u is a constant if d > (C — l)/cn.  In view of

(A.4), we may conclude that u = 7, as desired.    Q.E.D.
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Next, we show the existence of nonconstant solutions near u = 7 by applying

bifurcation theory. For this purpose, we introduce a space of functions:

(3.5) X = L E C2+e(Q) n CX(U) ̂  = 0 on du\ ,

where 0 < 9 < 1. Let R+ denote the set of all positive real numbers. We interpret

the problem as finding a pair (d, u) E R+ x X satisfying (2.1). The set T =

{(d, 7)|d > 0} is.called the branch of trivial solutions. A point (dc, 7) E T is said to

be a bifurcation point if every neighborhood of (dc,7) in R+ x X has a nontrivial

solution (d,u), u ^ 7.

From now on we assume further that (A.5) is also satisfied. Putting u — 7 + w,

w E X, we have an equation for it;,

(3.6) dAw + (/i'(7) - l)™ + n(w) = 0,

where r)(w) = 71(7 + w) — 7 — h'(i)w satisfies 77(0) = n'(0) — 0. As is easily seen, a

necessary condition for (d, 7) to be a bifurcation point is that the linear operator

appearing in (3.6) has nontrivial kernel. Let {lj}"^L0 be the eigenvalues of —A

under homogeneous Neumann boundary conditions, and {lj}j^0 the corresponding

eigenfunctions

— Ad>i = Lei    in n,        —-^ =0   on dû
dn

0 = Zo < h < h < • • • < lj < ■ ■ • Î +00.

Then the operator dA + (h'(i) - 1)/ has nontrivial kernel if and only if d = dj,

where we define

(3.7) dj = (h'(1)-l)/lj,       j = 1,2,3,....

We see that this condition is also sufficient.

PROPOSITION 3.1.   (a) Each (dj,7) is a bifurcation point.

(b) Iflj, j > 1, is a simple eigenvalue, then the solution set near (dj, 7) consists

of exactly two curves T and {(dj(e),Uj(e))\ \e\ < £0}, where dj(e) = dj + 0(e),

Uj(e)(x) = 7 + s4>j(x) + o(e).

PROOF. Assertion (a) is obtained by applying bifurcation theory for gradient

operators (see, e.g., Böhme [2, Satz II.l] or Rabinowitz [13]). In fact, we see that

(t, w) = (0,0) is a bifurcation point for the equation

Aw + IjW + (lj - T)(h'(~i) - l)~xr)(w) = tw

under homogeneous Neumann boundary conditions by virtue of Theorem 0.2 of [13]

which is stated for nonlinear terms independent of r; however, the proof remains

unchanged for our case (cf. Remark 1.25 of [13]). Note that nontrivial solutions

(t, w) E R x iy1,2(n) to the above equation give nonconstant solutions ([^'(7) -

l]/(lj - r),7 + w) to (2.1) and that such solutions turn out to be smooth because

of elliptic regularity theorems. Therefore we obtain (a).

Assertion (b) follows from the standard theorem of bifurcation from simple eigen-

values (e.g., Crandall and Rabinowitz [4, Theorem 2.4]).    Q.E.D.

In order to obtain more information on the structure of the solution set, we

would like to consider (2.1)—(2.2) in a specific domain.
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A rectangle R = {(xf,... ,xn)\0 < Xj < o3, j = 1,...,N} is called simple if

{aJ2}jLf are rationally independent, i.e., 53J=1 njaZ = 0, n,j E Z, implies nj = 0

for all j = 1,..., N. The eigenvalues of - A in R subject to homogeneous Neumann

boundary conditions are given by

lM = Ti2(m2x/a2x + ■■■ + m2N/a2N),

where the m^'s are nonnegative integers and M = (mi,..., m/v) is a multi-index.

The corresponding eigenfunctions are

N

4>m(x) = TJ cos(irmjx/aj).

7 = 1

For simple rectangles, every Im is a simple eigenvalue. We also write djvi =

(h'(i) - T)/lM.
Let S be the closure in R+ x X of the set of all nonconstant solutions to (2.1)-

(2.2). Let Cm be the connected component of S containing the bifurcation point

(dM,7)- In the neighborhood of (dM,7), Cm is a smooth curve transversal to T.

The continuum Cm of the nonconstant solutions exists globally with respect to d

in the following sense.

THEOREM 4. Suppose that (A.1)-(A.5) are satisfied and letQ = R be a simple
rectangle. Then

(3.8) ProjR+ Cm D (0, dM]

for each M ^ (0,..., 0). Tiere ProjR   : R+ —* X x R+ is the projection operator.

From the proof, we observe a few facts.

First, let a,ß be such that 0 < a < ß and put A = {(d,u) E S UT\a < d < ß}.
Then A is compact in R+ x X. Indeed, let G be the Green operator of 7 — A

subject to Neumann boundary conditions. Then G is a compact operator on X

and solutions (d,u) of (2.1)—(2.2) are in one-to-one correspondence with solutions

(A,iu) E (1,+co) xXof

(3.9) w = \Gw + (A - l)(/i'(7) - l)-xG[n(w)]

through the relation A = 1 + (h'(^) - l)d~x and w = u — 7. Since the right-hand

side of (3.9) defines a compact operator on (1, +00) x X, we have the claim.

Secondly, the a priori estimates given by Theorem 2 and the uniqueness by The-

orem 3 remain valid for rectangles. This is because both (a) and (b) of Lemma 2.2

hold also for rectangles. In fact, by applying some standard reflecting arguments,

we see that (a) is valid for Lipschitz domains [6], and (b) for rectangles is proved

by making use of the Fourier series expansion and Marcinkiewicz' theorem on the

Fourier multipliers [7].

Now we can verify Theorem 4 immediately by combining the next lemma with

the above observations.

LEMMA 3.2. For simple rectangles, Cm is not compact in R+ x X for each

M^(0,...,0).

PROOF. We proceed by induction on AT For N = 1, the assertion is well known

(e.g., Rabinowitz [12, Theorem 2.3]).
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Assuming that the lemma is true for AT - 1, we verify the assertion for N by

adapting Nishiura's symmetry argument [11]. First note that if Cm contains a

bifurcation point (dj, 7), J = (ji,. ■. ,Jn), such that fi — 0 for some I, then Cm is

noncompact. Indeed, any solution to (2.1)-(2.2) in an N — 1 dimensional rectangle

Rn-i can be naturally viewed as a solution in the rectangle 72/v of dimension N such

that dRw D Rn-i, so that by the assumption of induction, the noncompactness

follows.
Suppose now that Cm is compact in R+ x X; then Rabinowitz' alternative [12,

Theorem 1.3] implies that Cm contains another bifurcation point (dj,7). We pick

up M* such that |M*| = max{|J| \(dj,^) E Cm}, where |J| = jf -I-\-Jn- From

the above observation we may assume m\--- m*N ̂  0. Let us consider (2.1)-(2.2)

in a smaller rectangle

R' = {(xf,...,xN)\0 < Xj < aj/m*, j = l,...,N}.

Then l'¡ = ir2 Y,j=iiaj/mj)~2i / = (1> • • • f 1), is a simple eigenvalue of -A in 72'

and d'j = (71(7) — T)/l'¡ (= dM) gives a bifurcation point for the problem in 72'.

Let C'j be the component of 5' containing (d'¡,^), where S' is the counterpart of

S. By reflection with respect to the sides of the rectangle, any solution in 72' gives

rise to a solution in 72. Thus if C'¡ is noncompact, then Cm contains a noncompact

subset; so assume C\ is also compact. Then C'¡ contains another bifurcation point

(d'fl-,7), K = (ki,...,kpf), with fciAvfcw ^ 0 (otherwise, C'¡ is noncompact
as we have seen above). Since 7 7¿ K, at least one of fc^'s is greater than one.

Now, Cm contains the bifurcation point (dx-, 7), K* = (m^kf,..., m^fc^), which

contradicts the maximality of |M*|. Therefore the proof is completed.    Q.E.D.

4. Activator-inhibitor systems. The objective of this section is to derive a

priori estimates for solutions to activator-inhibitor systems specified below. This is

done in subsection 4.1. By making use of the estimates we shall show in subsection

4.2 that assertions analogous to Theorems 3 and 4 hold also for such systems under

certain conditions. Moreover, we prove that the inhibitor v is close to a constant if

its diffusion constant is sufficiently large.

Let d, D, and v be positive constants. A system of equations in positive functions

u and v,

(4.1) dAu - u + $(u, v) = 0

(4.2) DAv -VV + *(w, v) = 0

is said to be an activator-inhibitor system if $ and V satisfy the following conditions:

(B.l) $eC1([0,+oo)x(0,+oo)),

$(u,v)>0,     _(U)V)>0,     —(u,v)<0   ioru>0,v>0;
du av

(B.2) *eC1([0,+oo)x(0,+oo)),

9(u,v)>0,     ^-(u,v)>0,     -^-(u,t;)<0    for u > 0, v > 0.
du dv

We call u an activator and v an inhibitor.

n,
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In what follows, we put further restrictions on $ and *. One is concerned with

the growth rate in u of $:

(B.3)     There exist a nonincreasing function A: R+ —> R+ and p > 1 such

that for each v > 0, <&(u,v) < A(v)up if u is sufficidently large.

Others are concerned with the relationship between $ and *:

(B.4)     There are a > 1, ß > 1, 60 > 0, and 60 > 0 such that V(u,v) >

b0$(u, v)avß if u > 6qX or 0 < v < 60.

Moreover, let p satisfy

PE(l,N/(N-2a))   iil<a<N/2,

(      ' pE (l,+oo) if a > AT/2.

REMARK 4.1. (a) In view of *„ < 0 and (B.3), for each 6 > 0 we can find

Bg > 0 and &i such that

(4.4) S(u, v) < Bsupv-a/ß + bf

for all u > 0 and v > 6.

(b) In the case of the Gierer-Meinhardt system (l.l)-(O), all assumptions (B.l)-

(B.5) are satisfied if (1.11) holds by choosing a = r/p and ß = qr/p — s.

Now let us put

(4.5) f(u, v) = $(u, v) - u,

(4.6) g(u, v) = V(u, v) - vv,

which is the "kinematic part" of (4.1)-(4.2). In virtue of (B.l), f(u, v) = 0 defines a

C1 function v = k(u) such that f(u, k(u)) = 0. Similarly, (B.2) yields the existence

of a function v = l(u) of class C1 satisfying g(u, l(u)) = 0 for all u > 0 and l'(u) > 0

for u > 0.

4.1. A priori estimates. Throughout this subsection we shall always assume

that solutions (u,v) to (4.1)-(4.3) are of class C2(Q) n CX(Q). It is convenient to

introduce the following notations:

,. „. \ U* = minu(x),        U* = maxu(x),

1 V". = min?;(x), V* = maxt;(i);

(4.8) a =     inf    $(u, v)    and    r=     inf    V(u,v).
u>0,v>0 ti>0,i;>0

Note that l(v) > t/v since v = l(u) solves vv = ^l(u,v).

We are going to bound ||u||ce(m and |Mlce(ñ) m terms of d, D, and Vm.(Propo-

sition 4.3 and Theorem 6(a) below). As a corollary we shall give explicit a priori

estimates which are valid for all positive solutions in the case of a + t > 0 and in

the case of o = r = 0 under further restrictions on $ and 4'. Let us begin with the

next important observation (the proof of (4.9) is similar to that of Proposition 1.1

in [16]; (4.10) is verified in the same way as in the proof of Lemma 1.2 (1.13) in

[17]).

PROPOSITION 4.2.   Any solution (u,v) to (4.1)-(4.3) satisfies

(4.9) u(x) > o,

(4.10) l(U.) < v(x) < l(U*)
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for all x E H. In particular,

(4.11) V. > l(o).

To state our main results in this section, we define an integer m as

(412) m-i°   ifa>A72;
K       > \ mm{j E Z\pJ > 2a / [N-(N-2a)p]}    iil<a<N/2.

Note that m > 1 if 1 < a < N/2 since 1 < p < N/(N - 2) by virtue of (B.5), where

N/(N - 2a) stands for +oo if 2a = N.

Recall that Am = YJj=o^■ Let A_i = 0.
With these preliminaries we can now state the main results:

THEOREM 5.   Assume that (B.1)-(B.5) hold.
(a) Let a + t > 0.  Then any solution to (4.1)-(4.3) satisfies

(4.13) ll«llc'(ñ) ̂  CfK(l(o)) max(l,d"A-),

where

(4.14) K(t) = max(l, rA"-l/3/a) max(l, iPm(1-^)/«).

(b) Let a > N/2 and ß = 1. Then for any solution to (4.1)-(4.3) it holds that

(4.15) IMIc'Cfi) - Cimax(l,d_1).

Here, C\ > 0 and 6 E (0,1) do not depend on (it, v), d or D.

Note that (4.15) is valid even for o = t = 0.

Observing that l(o) > 0 if a + r > 0 since l(u) > 1(0) > t/v for u > 0, and

hence V* is uniformly bounded away from 0 by l(o) > 0 in virtue of (4.11); and

that if m = 0 and ß = 1 then K(t) = 1, we obtain Theorem 5 immediately from

the following proposition.

PROPOSITION 4.3. Under assumptions (B.1)-(B.5), any solution to (4.1)-(4.3)

satisfies

(4.16) Nlc»(ñ) <Ci/r(K)max(l,<rA")

with 6 E (0,1), Cf > 0 independent of (u, v), d, and D.

We remark that combining (4.10) with (4.13), (4.15) or (4.16) yields upper

bounds on V* which are independent of D. As for a priori estimates for ||v||c»m)'

we have the following Theorem 6. To treat the case a = r = 0 we have to impose

a further assumption on \f':

(B.6)     There exists a A > N/2 and an increasing function B : R+ —» R+

such that V(u,v) < B(u)v'x^x~x^ for sufficiently small v > 0.

THEOREM 6.  Assume that (B.1)-(B.5) hold.
(a) For any solution to (4.1)-(4.3), it holds that

(4.17) IMIc«(ñ) < C72*(C/*,V;)max(l,7)-1);

in particular, if a + r > 0 then

(4.18) ll«llc»(fi) ̂ C2V(CfK(l(o-))max(l,d~Xm), 1(a))max(l,D~x).
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(b) Let a > N/2 and ß = 1. If, in addition to (B.1)-(B.5), (B.6) is satisfied,
then

(4.19) IMIc'íñ) <C2[B(Cimax(l,d-x))]^-x^xmax(l,D-x)

holds for any solution to (4.1)-(4.3).

Tfere 6 E (0,1) and C2 > 0 are independent of (u,v), d, and D.

The rest of this subsection is devoted to proving Proposition 4.3 and Theorem

6.
PROOF OF PROPOSITION 4.3. We shall obtain the bounds on Holder norm from

those on W2tt(U) norm of solutions, t > N/2, as in the proof of Theorem 2.

Step 1. First we divide both sides of (4.2) by vß and then integrate over n to

find

(4.20) ßD i v-0-x\Vv\2dx+ i V(u,v)v-0dx = v i vx~ßdx.
Jn Jn Jn

Since $(u, v) < $(60~1,6o) if u < ¿¿"x and v > ¿>n, it follows from (B.4) and (4.20)

that

(4.21) ||*(«,t;)||L-(n) < Cmax(l,VJx-^a),

where, as usual, C denotes various positive constants independent of (u, v), d, and

D.
Next we multiply both sides of (4.1) by ua~x and then integate over n. Integra-

tion by parts leads to

(4.22) (a - T)d f ua~2\Vu\2 dx+ [ ua dx = f ua-x$(u, v) dx.
Jn Jn Jn

By Holder's inequality, the right-hand side does not exceed IMI^l/m ll$(u> ̂ )llL°(n)>

and hence

(4-23) NU-(ii) < ll*(«,«)||L-(n).

Now let us put

(4.24) gx(x) = u(x) + d-x[$(u(x),v(x)) - u(x)}.

Since |1 -d_1| < max(l,d_1), |<7i| < max(l,d~x)u + d~x$(u,v); therefore, from

(4.21) and (4.23) we have

(4.25) HffilU-in) < Cmax(l,Vi1-«/a)max(l,d-1).

Note that (4.1) is written in the form Au - u + gi =0. We would like to apply

Lemma 2.2. First consider the case a > 1. Then by (2.9) we see that

(4-26) ||u||iy2.«(n) < C%i||La(n).

In particular, if a > N/2, then we get (4.16) with m = 0 by virtue of (4.25) and

(4.26) together with the Sobolev embedding theorem. Thus in what follows we

assume a < N/2. In view of the Sobolev embedding theorem, we have from (4.26)

that

(4-27) \\u\\L*(n) < C\\gi\\Lam,
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where l/t = 1/a - 2/N if a E (1, AT/2), and 1 < t < +oo if a = N/2. Secondly,
consider the case a = 1. Then by the same reasoning as in Step 1 of the proof of

Proposition 2.1, we get (4.27) with 1 < t < N/(N - 2).

Consequently, for a E [1, AT/2] we have (4.27), where l/t = 1/a - 2/N if a E

(l,N/2), and l/t > 1/a - 2//V if a = 1 or N/2.
Step 2. Now it is easily seen that the same bootstrapping argument as in Steps 2

and 3 of the proof of Proposition 2.1 does work for this case provided that 1 < p <

N/(N — 2a). Hence we omit .the details and only point out that the counterpart of

the crucial estimate (2.16) can be derived as follows.

llffi||L'/P(n) ^ max(l,d-1)||u||Li/P(n) + d_1||$(u,u)||Lt/p(n)

< max(l,d-x)(C\\u\\Ltin)-rBsV-Va\\up\\Lt/nQ)-rC)

< Cmax(l,d-x)max(l,V-ß/a)(\\u\\pLt{ri)-rC),

where we have used (4.4). In view of (4.25) and (4.27), we thus have an estimate

for ||<7i||/_,t/p(n) in terms of ||{7i||r_,<»(n)! so in terms of V» and d.    Q.E.D.

PROOF OF THEOREM 6. First of all, we observe that by the same reasoning

as in proving (4.23)

(4-28) HMU'(n) < ||*(«,t>)||i*(n)
for t > 1. Hence, putting

g2(x) = v(x) + D-x(V(u(x),v(x)) - uv(x)),

we find that

(4.29) ll<?2|U<(n) ^ Cmax(l,í)-1)||*(íi,í;)||L«(n).

Since (4.2) is written in the form Au — v + g2 = 0, we are able to apply Lemma

2.2 and the Sobolev embedding theorem to see that if t > N/2, then

(4.30) IMIcrñ) ̂  C|Mlw*.»(ri) < C\\g2\\Lt{n).

In view of (B.2), we have V(u(x),v(x)) < tf(i/*,V.) for all x E Ü, so that

ll*(u.t>)IU«(n) < \n\lftii!(U',V,). Therefore (a) is proved by (4.29) and (4.30)
together with this observation.

For the verification of (b), it is sufficient to show that

(4.31) n*(t*,toiiL»(o) < Mfii(5(tn+c)A_1]1/A

since A > tY/2. To do this, we first observe that

(4.32) /  *(u,u)u_1da;<i/|n|
Jn

by putting ß = lin (4.20). Therefore, writing V(u,v)x = (*(u,u)A-1u)(*(u,u)u-1),

we have (4.31) from (4.32) because

»(tt,t»)A-1t> = (*(ult;)«1/(A-1))A-1<(B(ii) + C7)A-1

by virtue of (B.6).    Q.E.D.
REMARK 4.4. In the case of the Gierer-Meinhardt system, (B.6) is satisfied if

0 < s < 2/(N - 2) by choosing A > N/2 such that s < (A - 1)_1. Therefore, we

have Theorem 1 readily from Theorems 5 and 6 in view of Remark 4.1(b).

4.2. Some applications of a priori estimates. First, we show that if the activator

diffuses very fast, then the only possible steady state is spatially homogeneous.
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THEOREM 7. In addition to (B.1)-(B.5), assume that a + r > 0. Then there

is d* > 0, independent of D, such that (4.1)-(4.3) has no nonconstant positive

solution if d> d*.

In the case of a = r = 0, let a > N/2 and ß = 1. Then for each 6 > 0 small, there

exists d* > 0, depending on 6 but not on D, such that if d > d* then (4.1)-(4.3)

has no nonconstant solution satisfying V* = min u > 6.

This theorem can be verified in a way analogous to that in the proof of Theorem

3, or more precisely, by the same reasoning as in §3 of [16]; so we do not enter into

details but only remark that the derivatives $u, $„, #„, and *„ remain bounded in

absolute value as long as (u, u) stays in bounded subsets of R+ x R+ and u > 6 > 0

and that maxu(x) and maxv(i) are estimated by constants independent of D.

Next, we consider the existence of nonconstant solutions by applying bifurcation

theory under the following assumption:

(B.7)     The equation f(u, v) = g(u, v) = 0 has exactly one positive solution

(u,v) = (ü,ü).

This is equivalent to saying that u = $(u,l(u)) has a unique positive solution

u = v,, since u = l(u) solves g(u, v) = 0. Thus, (B.7) is fulfilled if, for instance,

(4.33) tf(ti, u) = ($(u, u) - a)avß.

Indeed, substituting u = l(u) into (4.33) gives $(tt, l(u)) = (^/(u)1-'')1/'* +a; since

the right-hand side is nonincreasing, u = $(u, l(u)) has a unique positive solution.

Note also that the Gierer-Meinhardt system (1.1)—(1.3) satisfies (B.7) under the

general condition (1.4).

Now let n be a simple rectangle as in Theorem 4. We fix D > 0 and look for a

pair (d, (u,v)) E R+ x X x X satisfying (4.1)-(4.3), where X is defined by (3.5).
We note that T = {(d, (tZ,u))|d > 0} forms the branch of constant solutions.

For each positive eigenvalue Im of -A, put

(4.34) d<M> = ¡^[an + a12a21/(DZM - a22)\,

where on = fu(ü,v), a12 = fv(u,v), a2\ = gu(u,v), and a22 = gv(u,v). Observe

that ai2 < 0,.<i2i > 0, and a22 < 0 by (B.l) and (B.2). Then the linear part

ru\ - ( dA + on        oi2     \
LW-y     a2X        DA-ra22)

of the operation in (4.1)-(4.3) around the constant solution (ü~,v) has 0 as an

eigenvalue if and only if an > 0 and d = d^M^ with

(4.35) lM > (ana22 - a12a21)/(auD).

Moreover, for given d^M^ > 0, there exists at most one J such that d^ = d^M^

and J ¿ M. It is easy to see that (a) if d<M) ̂  d^ for all J ¿ M, then 0 is a

simple eigenvalue of £.(d(M)); and (b) otherwise, £(d^M^) has 0 as an eigenvalue of

algebraic multiplicity 2. We call d^M) simple if (a) occurs, otherwise it is called dou-

ble. Let dfM"> > 0 be simple. Then C(d^M^) satisfies the nondegeneracy condition

of Crandall and Rabinowitz [4, Theorem 2.4] as d changes through d^M); conse-

quently, (d^M\(ü:,ü)) is a bifurcation point: there exists a one-parameter family
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of nonconstant solutions (dM(z), (um(z),vm(£))) such that djvf(£) = d^M^ + 0(e),

ujf(e) = « + e<t>M(x) + o(e), and dm(ê) = ü + £6m<¿>aí(z) + o(e) with |e| < e0 and

bM = o,i2/(DlM - a22).

Let S be the closure in R+ x X x X of the set of nonconstant solutions to (4.1)-

(4.3), and Cm be the connected component of S containing (d^M\ (u,v)). Then

we can verify the following theorem in the same way as in the proof of Theorem 4

since the reasoning in proving Lemma 3.2 works for systems of equations such as

(4.1)-(4.3) (see also [11 or 16] where the case N — 1 is proved).

THEOREM 8. Let il be a simple rectangle. Suppose that (B.7) is satisfied in

addition to (B.1)-(B.5). Ler o + t > 0 and an = $„(ü, v) — 1 > 0. Then for each

simple d^M) it holds that

ProjR+CMD(0,d(M>].

Finally, we would like to show that if D is sufficiently large, then u is close to a

constant. Let us decompose u as v(x) = vo + ^(x), where uo = |n|_1 Jn udx and

hence Jnxpdx = 0. Then we can bound max \ip(x)\ as follows.

THEOREM 9. Under assumptions (B.1)-(B.5), for each 6 > 0 there exists a

constant C > 0 independent of D such that for any solution to (4.1)-(4.3) satisfying

minu > 6 the following estimate holds:

(4.36) max\ip(x)\ <C/D.

Moreover, C is independent of 6 if o + t > 0 or if a > N/2, ß = 1, and (B.6) is

satisfied.

PROOF. Let us begin with recalling the known result on the boundedness of

weak solutions to linear elliptic equations (e.g., Théorème 1 of Stampacchia [15]).

Let t > N/2 and h0 E 7,*(n) with ¡nh0dx = 0. If w E Wx<2(tt) is a weak

solution to

(4.37) Aw + h0 = 0   in n,        -^- = 0   on dû,
dn

then, for some C > 0 depending only on n and t,

(4.38) IHU~(n) ̂  C(||Ao||L.(n) + IM|l«(1ï)).

Now putting go(x) = *(u(x),u(x)) - vv(x), we note that w = ip satisfies (4.37)

with ho = D~xgo, and hence (4.38) reads as

(4.39) IMU~(n) < C(D-x\\goh'(n) + IMU»<n)).

We claim that (a) IMIl^íi) < CT^IIsoIIl«^) and (b) ||ffo||L«(n) < C6 if V» > 6 >
0, where C and Cs do not depend on D. Combining (4.39) with (a) and (b) yields

(4.36).
To prove (a), we multiply both sides of DAt¡) + go = 0 by ip and then integrate

over n. Integration by parts and Holder's inequality give

(4.40) D f |V^|2dx = f go^dx < ||jtolU«(n)IMlL«'(ii)>
Jn Jn
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where t' = t/(t - 1). Putting 2* = 2N/(N - 2) if N > 3 and 2* = t' if AT = 2,
we see that 2* > t' and hence, with the aid of Holder's inequality and the Sobolev

embedding theorem, that

Wl.'co) < CUWv'in) < C\\nWi.Hny

Since fnipdx = 0, it holds that

Mm^n) = Í ^2dx+ f \V4>\2dx
Jn Jn

<(l + c0) /"iVVfdx
Jn

by the Poincaré inequality (3.4). Therefore HVHIl«'^) - CIIW'llL^n)» and we have
from (4.40) that ^IIV^Hi,»^) < C||{7o||L'(ri). Applying the Poincaré inequality
again, we obtain (a).

Next we turn to the proof of (b). Since 0 < V(u(x),v(x)) < *(U*, V.) by (B.2),

we see that \\Vl(u,u)||/_,oo(n) is bounded uniformly in D provided V» > 6 because of

(4.16). In view of (4.28) we therefore have (b). If a + r > 0, then V» > 1(a) > 0 for

all solutions, so ||</o||i,*(0) is bounded by a constant independent of 6; if a > N/2,

ß = 1, and (B.6) holds, then ||<to||/>(n)> ̂ > tV/2, is bounded uniformly in V» by
virtue of (4.31), (4.15), and (4.28). Thus the proof is complete.    Q.E.D.
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