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INVARIANTS OF THE LUSTERNIK-SCHNIRELMANN TYPE

AND THE TOPOLOGY OF CRITICAL SETS

MONICA CLAPP AND DIETER PUPPE

Abstract. We introduce and study in detail generalizations of the notion of

Lusternik-Schnirelmann category which give information about the topology of the

critical set of a differentiable function. We also improve a result of T. Ganea about

the equality of the strong category and the category (even in the classical case).

The category cat( A) of a space A in the sense of Lusternik and Schnirelmann [14]

is the smallest number k such that there exists a covering {A,,..., Xk} of A" (of a

certain kind, cf. 1.2(1)) for which each inclusion A c A is nullhomotopic. The

motivation for introducing this concept was that it gives a lower bound for the

number of critical points of a function. More precisely, if M is a closed differentia-

ble manifold and / is a differentiable real function on M then the number of critical

points of / is at least cat(M).

We propose the following generalization: If si is any class of spaces we replace

the condition that Xj c A is nullhomotopic by requiring that it factors through

some A g si up to homotopy and we obtain the notion of .«¿category, si-oat(X). If

si consists only of the one-point space, this is the classical cat( A). If sé is the class

of a-connected spaces si-oat is the "a-dimensional homotopy category" introduced

by Fox in [7]. Another interesting example is the class si of a-dimensional spaces.

If /: M -> R is as above then si-cat(M) does not give any new information about

the number of critical points, because it is less than or equal to cat( M). It does give,

however, under certain conditions, some new information on the topological struc-

ture of the critical set. Roughly, one can say that either there are at least si-cat(M)

critical values of / or there is one critical value y of / such that the corresponding

set of critical points K n f~x(y) is not of the homotopy type of any space in si (cf.

§2 for more details).

Quite a number of papers have appeared on Lusternik-Schnirelmann category and

related notions (cf. [13] for a survey). In particular there has been a revival of

interest in recent years. We shall present a systematic theory for our more general
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notion which contains most of the classical results as special cases. But generality is

not our only purpose. Our proofs are not more complicated than the more special

ones in the hterature. We think that many of them are even simpler and give better

insight. This enabled us in particular to obtain an improvement of a classical result

of T. Ganea [9] concerning the notion of strong category.

It might seem more natural to define the category of a space A in terms of

subspaces of it which are contractible in themselves and not only in A. However, the

number CA" thus obtained is not an invariant of the homotopy type of A (cf. [7, 40]).

Ganea studied the minimum value of CY for all spaces y of the same homotopy type

as X and called it the strong category Cat( A) of A. It is known that

cat(A) < Cat(A) < cat(A) + 1

(the first inequality is trivial, for the second cf. [25]) and examples of both

possibilities are also known (cf. [1, 17]). Now, Ganea proved [9, Theorem 1.3] that

Cat( A") equals cat( A) = k if A is p-connected and

dimA< (k + l)(p + l)-3.

We shall not only generalize this result to ^category for many classes si, but we

will also replace the last condition by

dimA< (2k - l)(p + 1) - 3,

(5.8, 5.9), which improves Ganea's result for all k > 2. The whole theory works in a

G-equivariant setting, where G is a compact Lie group (partly even for more general

groups), and FadelPs notion of G-category is also an example of our general notion

(cf. 1.2(2)). However, for expository purposes, we shall present here mainly the

nonequivariant version and just point out once in a while how the theory goes

through to the G-equivariant case.

We shall work entirely in the category of compactly generated weakly Hausdorff

spaces.

1. Category with respect to a class of spaces.

1.1 Let si be a class of spaces which contains at least one nonempty space. We

shall say that a subspace X' of a space A is deformable in X to si if the inclusion /:

A" c A factors through some space insi up to homotopy, i.e. if there exist A ^ si

and maps a: X' -* A and ß: A -> A such that ßa is homotopic to i. A finite

numerable covering { A,,..., Xk} of A such that each Ay is deformable in X to si

will be called an si-categorical covering of X. We define the si-category si-cat(X) of

X to be the smallest cardinality k of such a covering. If no such covering exists let

si-cat(X) = oo. More generally: the si-category si-cat(f) of a map f: X -> Y is the

smallest cardinality A: of a finite numerable covering {Xv..., Xk) of A such that

for each j = l,...,k the restriction of f\Xy A, -» Y factors through some space in

si up to homotopy. Such a covering will be called an si-categorical covering

associated to f. Again if no such covering exists then si-cat(f) := oo.

Observe that si-cat(X) is the ^category of the identity map of A. These

definitions can be extended in the obvious way to the G-equivariant setting where G

is a topological group. Then of course the A.'s have to be G-invariant subspaces of

A and the " numerating functions" have to be also G-invariant.
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1.2 Examples. (1) Let 9 be the class which consists only of the one-point space.

Then ^-cauT^A) is nothing but the Lusternik-Schnirelmann category cat(X) of X,

except that classically the coverings of A considered in the definition were either

open or closed instead of numerable (cf. [7]). If A is a normal space our definition is

equivalent to the one with open coverings and if A is an ANR then it is also

equivalent to the one with closed coverings.

(2) We give now an example in the G-equivariant setting: Let G-0 be the class of

all homogeneous spaces G/H, where H is a closed subgroup of G. We shall denote

G-^-cat(X) simply by G-cat(A) and call it the G-equivariant category of the G-space

X. This is the most natural extension of the classical notion to the equivariant case

(cf. [6, 2.1]).

(3) If # is the class of all a-connected CW-complexes, q > 0, then ^-cat(A) is

the "a-dimensional homotopy category of A" introduced by Fox in [7,15]. Here we

shall call it the q-connective category of X and denote it simply by cat?( A).

(4) Let G-3>q be the class of all G-CW-complexes of dimension < a. We denote

by G-caf(A") the G-^9-category of the G-space A, or simply by cat9(A") if G is

trivial, and call it the q-dimensional (equivariant) category of X. This notion plays an

important role for example in [16].

1.3 Some easy properties of ^/-category are the following:

(1) si-cat(f: A - Y) = 0 iff X = 0.
(2) si-cat(X) = 1 iff X is dominated by some space in si and X =£ 0.

(3) For any two mapsf: X -» Y and g: Y -* Z,

si-cat(gf) < min{si-cat(f), si-cat(g)}.

In particular

si-cat(f) < min{si-cat(X), si-cat(Y)}.

(4) // { Xf, X2} is a numerable covering of X then for any map f: X -* Y

si-cat( f ) < si-cat(/1 A, ) + si-cat( f\X2).

(5) si-cat(f) depends only on the homotopy class off.

A formal consequence of (3) and (5) is the following

1.4 Proposition. If X is dominated by Y then sf-cat(X) < j^cat(F). In particular

si-category is an invariant of the homotopy type of X.   D

Finally observe that if sic 38 then 3S-cat(f) < j^cat(/) for any map f. Applying

this to the examples in 1.2 we have that

cat,,_!(/) < cat,(/) < cat(/)    and   cat«+1(/) < cat'(/) < cat(/).

Before studying ¿^cat in detail we shall establish its relation with the critical sets of

differentiable functions.

2. .^category and critical sets. Let M be a paracompact C^Banach manifold

(possibly with boundary) and let /: M -> R be a C^function. One may also

consider the G-equivariant case where G is a compact Lie group acting differentiably

on M and / is G-invariant. What follows holds also in this case (with the suitable

obvious modifications). Let K be the critical set of /, i.e. the set of all points in M

where the derivative of / vanishes. Then f(K) is the set of critical values and
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R \f(K) is the set of regular values of /. For any a e R we write

Ma:=f-X] - oo, a]    and    Ka:= K n fx(a).

Our aim is to show, by extending the classical Lusternik-Schnirelmann method [14,

21], how ^category may be used to obtain new information about the topology of

the sets Ka.

2.1 We need some assumptions on M and /. If A, A" and X" are subsets of M

we say that A is deformable (in M) into X' (rel A") if there exists a homotopy ht:

X -> M, re [0,1], such that h0 is the inclusion and /¡,(A) c A' (and A, (A) is

independent of t if x e X"). Consider the following deformation conditions:

(D,) For any a in the interior of the set of regular values of f there is an e > 0 such

that Ma + !! is deformable into Ma_e.

(D2) For any isolated critical value a of f and any neighborhood V of K there is an

e > 0 such that Ma+e\ Vis deformable into Ma_e.

(D3) If a > sup f(K) then M is deformable into Ma.

It is not hard to see (and perhaps not very important) that (D3 ) is a consequence

of the following slightly stronger version of (D,):

(T>[) For any a G int(R\/(AT)) there is an e > 0 such that Ma + e is deformable

into Ma_e relMa  f.

Following Fadell [6] (but slightly different in detail) we call (Dj), (D2) and (D3)

together the generalized Palais-Smale condition (GPS).

2.2 What are sufficient conditions for (GPS) to hold? Assume first that M has no

boundary. If M is a Hilbert manifold then (being paracompact) it has a Riemannian

structure. If in addition /: M -* R is a C2-function and a proper map (which is only

possible if M has finite dimension) then standard methods of integrating the

gradient field v/ prove (Dx), (D2), (D3) and (DÍ), cf. e.g. [12, 6.2].

This was extended by Palais and Smale [19, 22, 24] to the case of a C2-function /

on a Hilbert manifold M (without boundary) satisfying

(C) For any S c M such that f is bounded but || V/|| is not bounded away from zero

there exists a critical point in the closure S.

In [21, 5.11] Palais extended it further to include all Banach manifolds M of a

certain kind (complete C2-Finsler manifolds) and all C2 "-functions (C'-functions

whose derivative is locally Lipschitz) /: M -» R satisfying a condition obtained

from (C) by replacing the gradient v/ by a "pseudo-gradient" [21, 4.1 and 5.2],

Finally one may allow M to have a boundary oM if there exists a pseudo-gradient

field on M which nowhere on dM points to the inside of M.

Everything in 2.1 and 2.2 has a straightforward extension to the equivariant case

for a compact Lie group G (if necessary one integrates over G).

Now we are ready to state our version of Lusternik and Schnirelmann's main

result (cf. [14, II, §4] and [21, 7.1]). We write si-catM(X) for j/-cat( A c M).

2.3 Theorem. Let M be a paracompact Cx-Banach manifold and f: M -> R a

Cx-function satisfying the generalized Palais-Smale condition. Consider the function

m:R->Nu{oo},        a ->si-catM(Ma)
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where si is a class of spaces having the homotopy type of a CW-complex (G-CW-com-

plex in the equivariant case). Then

(i) The function m is (weakly) increasing.

(ii) In the interior of the set of regular values m is locally constant.

(iii) At any a e R which is an isolated critical value off the function m jumps at most

by si-catM(Ka).

(iv) m(a) = si-cat(M) for all a > sup/(AT).

Observe that the hypothesis on si is satisfied in all our examples 1.2. The

formulation of the theorem looks a little different from the traditional one, but by

observing that

c,:= inf{sup/(A)|j/-catM(A) > i) = inf{a|w(a) > i)

(if finite) is just the point where m jumps from some value < i — 1 to some value

> i, it is easy to translate one into the other. As in the classical case the proof

depends just on a few simple properties of the set function

Mo X^n(X):= si-cat M(X)

namely the following.

(1) Monotonicity. A' C A c M => n(X') < n( A).

(2) Subadditivity. If A,, A2 form a numerable covering of A c M then

n(X) < n(Xf) + n(X2).

(3) Deformation invariance. If Ac M is deformable (in M) into A' then

n(X) < n(X').

(4) Continuity. If A is closed in M then there is a neighborhood U of A such

that n(U) = n(X).

For n = si-catM properties (l)-(3) are trivial consequences of the definition.

Continuity (4) is easily proved using the fact that M is a (G)-ANR and (G-)CW-

complexes are (G-)ANEs (cf. Appendix B for details).

The rest of the proof of the theorem is obvious: (i) follows directly from (1), (ii)

from (3) using (Dj) in 2.1, (iv) also from (3) using (D3). To prove (iii) take a

neighborhood Uof Ka such that n(U) = n(Ka). Let F be a closed neighborhood of

Ka in the interior of U and choose e > 0 as i 2.1 (D2). Then

m(a + e) = n(Ma + e)

<n(Ma+e\V) + n(U)    by (2)

<n(Ma_e) + n(Ka)   by (D2) and (3)

= m(a-e) + si-catM(Ka).   D

2.4 Corollary. ///: M -* R and si are as in Theorem 2.3 and if in addition f is

bounded below then

si-cat(M) <  £ ^-catM(ATY).
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This is trivial if / has infinitely many critical values. Otherwise every y e R is

either a regular or an isolated critical value of /. Choosing a < inîf(M) and

ß > supf(K) we have m(a) = 0 and

ssf-cat(M) = m(ß)   by (iv)

<   E •^-catA/(ATj    by (i)-(iii).    D
yeR

This implies in particular that si-cat(M) is a lower bound for the number of

critical points of /, but since si-cat(M) < cat(M) this is already well known (cf. [21,

7.2]). The corresponding assertion in the equivariant setting will be discussed in 2.9

below.

2.5 Another useful consequence is that if si and / are like in 2.4 then either f has

at least si-cat(M) critical values or there is a critical value y of f such that

si-catM(Ky) > 1. This means that the critical set Ky at the level y (and hence the

whole critical set) cannot be deformed in M to si. In particular Ky is not

dominated by any space in si. We shall discuss now what this means in the

examples given in 1.2.

2.6 If /: M -» R is as above and if it has less than cat(M) critical values then its

critical set K is not contractible in M (cf. 1.2, Example 1). In particular this is true

if M = RP", CP" or HP" and /: M -» R is a C2-function having at most n critical

values (cf. 3.2). We will actually say a lot more about K in 2.8.

2.7 Let st= 3iq be the class of a-dimensional CW-complexes (1.2, Example 4)

and let /: M -» R be a Cx-function bounded below which satisfies (GPS). Then

either f has at least catq(M) critical values or the critical set K of f has covering

dimension greater than q. This follows from 2.5 because if dim K < a then, since M

is an ANR [20, p. 3] the inclusion K c M factors up to homotopy through some

a-dimensional simplicial complex, namely the nerve of a suitable covering of K.

As a specific example let M = RP", CP" or HP" and let /: M -* R be a

C2-function with precisely k critical values. Then the dimension of the critical set of

/ is at least d • [n/k] where d = 1, 2 or 4 resp.

Proof. Let r = [n/k]. Then k < n/r < caldr~x(M) by 3.2 below.

2.8 Now let si= ctêq be the class of a-connected CW-complexes (1.2, Example 3)

and /: M -* R be again a ^-function bounded below satisfying (GPS). Let M be

p-connected (p > 0) and assume that / has less than cat^M) critical values (hence

q > p). Then there exists an r, p < r < q, such that the Cech cohomology group

Hr(K; trrM) = [K, K(trrM,r)]

of the critical set K off is nonzero. For otherwise one could lift the inclusion K c M

to the g-connective covering space of M contradicting 2.5.

For projective spaces this gives the following: If /: M -* R is a C2-function with

at most n critical values then

HX(K; Z/2)*0 ifM = RP",
H2(K;Z)*0 iiM = CPn,

H4(K; Z)#0        if M = HP".
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Proof. Apply the preceding result with p = q — 1 and g = 1, 2, 4 respectively

and use 3.2(3).

2.9 Let now G be a compact Lie group and si= G-& be the class of homoge-

neous spaces (1.2, Example 2). Let M be a differentiable G-Banach manifold and /:

M -* R be a G-invariant C1-function bounded below and satisfying (GPS) in the

equivariant sense. This is certainly satisfied if M is compact without boundary and /

is C2, cf. also 2.2. Obviously the critical set AT of / is a union of orbits, and it

follows from 2.4 that / has at least G-cat(Af) critical orbits [6, 2.6]. Note that

G-cat(M) may be greater than both the ordinary category of M and of its orbit

space M/G.

But one can do a little better: Call two orbits of M equivalent if they have the

same type, / has the same value on them and their inclusions into M are

G-homotopic. The latter means that we may write the orbits as Gx and Gy, where x

and y have the same isotropy group H and lie in the same path component of the

fixed point set MH. The result is then that either the set of critical orbits is not

discrete in M/G (hence infinite) or the number of equivalence classes of orbits in K is

at least G-cat(M). And the proof follows again from 2.4 because if the set of critical

orbits is discrete then the unions of equivalence classes of orbits in AT form a

G-^-categorical covering of ATy associated to ATy c M.

We now turn to study ^category in detail. Like in the classical case [13, 1.3] one

obtains lower bounds for si-cat(X) in terms of the multiplicative structure of the

cohomology of A.

3. ^category and cohomology. Let T* be a G-equivariant multiplicative cohomol-

ogy theory. By this we mean that T* is defined on the category of G-spaces and

G-maps, it satisfies the axioms of exactness, G-homotopy and excision (but not

necessarily a dimension axiom) and it has a cup-product structure.

If si is a class of spaces and Y is a space we denote by TJY the intersection of the

kernels of the homomorphisms T*Y -» T*A induced by all maps A -» Y for all

Ac si.

For example, let G be trivial and T* be ordinary singular cohomology H*. If

sf= 3>q (cf. 1.2) then WJY = 0 for n < q and WJY = H"Y for n > q. For si= 9

the assertion is the same as for si= 2Q. If si= <gq then WJY = 0 for n = 0 and

H£Y = H"Y for 0 < n < q.

Let now /: X -* Y be a map such that si-cat(f) < k and take k elements

otf,...,ak in TJY. If {A,,..., Xk} is an .^categorical covering associated to / (cf.

1.1) then f*otj goes to zero in T*A/. Hence it is in the image of T*(A", AT) which

implies that

/*(«! ■■■ ak)=f*ai ---f*ak = 0.

Thus we have proved that

3.1 PROPOSITION. // there are k - 1 (not necessarily distinct) elements in TJY

whose product does not go to zero under /*: T*Y -* T*X then si-cat( / ) > fc.    D
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3.2 Examples. Applying this with T* = singular cohomology with Z/2-coeffi-

cients we obtain the following lower bounds for the classical, the g-dimensional and

the g-connective categories of projective spaces M = RP", CP" or HP" with d = 1,

2 or 4 resp.:

(1) cat(M) >n + l,

(2) catdq+e(M) >[n/(q+ 1)] +1 if 0 < e < d,

(3) catq(M) > « + 1 ii q> d,

cat?(M) = l ifg<o\

All these inequalities are in fact equalities, as we shall prove in 4.7.

Other well-known bounds (both lower and upper) for the classical cat [10] may

also be generalized to j^cat, at least for some classes si. For this one needs however

some equivalent definitions of j^cat. We shall give those in the next section.

4. ^category and sectional category.

4.1 Let A" be a space and si be a class of spaces. One can sometimes find a space

U in si and a map u: U -» A such that, for every A e si, every map ß: A -> X can

be lifted to U up to homotopy, i.e. there exists ß: A -* U such that uß is homotopic

to ß. A map u: U -» A having this property will be called si-universal. (More

systematically one could call it weakly terminal in si over A.)

4.2 Examples (recall 1.2). (1) If si= ¿P is the one-point space class and if A is

pathwise connected then any map u: pt -» A is .^universal.

(2) In the equivariant case a G-space admits a G-^-universal map if and only if

there exists x0 c X such that in every orbit one can find a point x which may be

joined to x0 by a path in the fixed point set of the isotropy group Gx. Since this is a

strong restriction it may be better, if a universal map is needed, to consider G-3>°

instead of G-& (cf. (4) below).

(3) Let si= cêq be the class of g-connected CW-complexes and A be pathwise

connected. Take any weak equivalence A -» A from a CW-complex A to A and let

Xq -* A be the g-connective covering fibration of A (cf. for example [11, 17.16]).

Then Xq e tg and the composition u: Xq -» A -> A induces isomorphisms of the

homotopy groups from dimension q + 1 on. Hence it is ^-universal.

(4) Consider now the case of (equivariant) g-dimensional category, i.e. si= G-2iïq.

For any G-space A there is a G-CW-complex A and a weak G-homotopy equiva-

lence X -> X [26, 3.7]. If A(<?) is the g-skeleton of X then u: X(q) c X -* A is

G-S> ''-universal.

Let u: U -» X be ^universal. Observe that a subspace A' of A is deformable in

X to si if and only if the inclusion A' c A can be lifted to U up to homotopy. This

motivates the following definition and proves the next proposition:

4.3 Definition [13, §8]. The sectional category secat(g) of a map g: B -* X is the

smallest cardinality k of a finite numerable covering {A,,..., Xk} of A such that

each inclusion Xj c X can be lifted to B up to homotopy.

4.4 Proposition. Ifu: U -» X is si-universal then si-cat(X) = secat(w).   D
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More generally: Let /: A -» Y be a map, u: U -> Y be .«/-universal and u':

U' —> A be the homotopy pullback of « over /, i.e. u' is the pullback over / of the

(Hurewicz-) fibration associated to u. Then it is easy to see that si-cat(f) = secat(w').

We shall now give some characterizations of secat (and hence of j^cat in many

interesting cases).

4.5 For any map g: B -» A we define the k-fold join gk: J%B -» X of B over X

inductively as follows: g y J\B -* X is the (Hurewicz-) fibration associated to g.

Suppose that gk^y j£~xB ^> X, k > 1, has been defined. Consider the pullback

diagram

P$~lB:= J\B X J*XB      *      j£-xB
x

8k-li ¿&t-l

and define J%B to be the double mapping cylinder of g{ and g¿_, and g y

JyB -» X to be the map induced by g/t_1 and g,. Then each gk is a fibration (cf.

A.3). We have

4.6 Proposition, secat(g) < k if and only if gk: J^B -> A has a section. In

particular if u: U -» X is si-universal then j^cat( A) < k if and only if uk: J%U -» A

has a section.

Proof. Observe that A' c A can be hfted to B up to homotopy iff gy J\B -> A

has a section over A'. Now, the points of J%B may be thought of as being

represented by (tfbf,..., tkbk) where all the bfs lie in the same fiber of g, and the

tj's are nonnegative real numbers such that r, + ■ • • +tk = 1. The proof is now

standard. It uses of course the partition of unity (cf. [13, 8.1]).   D

This generalizes Ganea's characterization of category [9, 2.2]. As a consequence of

4.6 we obtain an upper bound for secat:

4.7 Corollary. If g: B -> X is a p-equivalence and X is a CW-complex of

dimension less than k(p + 1) then secat(g) < k.

Proof. This follows from the fact that gy J^B -»A" is a (k(p + 1) - 1)-

equivalence (cf. A.2).

Hence the inequalities given in 3.2 for the classical, the g-dimensional and the

g-connective categories of projective spaces are in fact inequalities.

We give now another characterization of secat which generalizes G. W. Whitehead's

definition of category [27] (see also [13, §5]). Given g: B -> A we define the k-fold

wedge WkX of X under B as follows: Think of B as being embedded into the top of

the mapping cylinder Zg of g (in other words: replace g by its associated cofibra-

tion). Then WkX is the subspace of the k-iold product Z* of Zg consisting of all

points with at least one coordinate in B. For expository purposes let us identify Z
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with X (i.e. we assume that g: B -> X is already a closed cofibration). Let then iy

Wk c Xk be the inclusion and A: A -> Xk be the diagonal map. Then

4.8 Proposition. There is a homotopy pullback diagram

JXB     ->      WkBX

Ski 11*

A
A       -»        A"*

Proof (by induction on A:). For fc = 1 this is obvious. Consider the diagram of

inclusions

WkBX XX     <-      WkBX X B     ->     Xk X B

\ i /

XkX X

Since B c X is a closed cofibration the double mapping cylinder of the row is just

its pushout Wk+lX. Replacing the vertical arrows by fibrations and taking their

restrictions over A we obtain

JXB     *—     dxB  X JXB     —*     dxB
x

\ I i/
X

The rest follows from the easy observation that the pullback of a double mapping

cylinder is the double mapping cylinder of the pullbacks.   D

An immediate consequence of 4.8 is (cf. [27,13; 4.1])

4.9 Corollary, secat(g) < k if and only if the diagonal of Xk can be deformed in

Xk into WkBX.

Given maps h: D -> B and g: B -» A then obviously secat( g/z) > secat(g).

A condition for the equality is given by

4.10 Proposition. If h: D -* B is a q-equivalence and g: B —> A is a p-equiva-

lence, p < q, and if X is a CW-complex of dimension less than or equal to q +

(secat(g) - l)(p + 1) then secat(gh) = secat(g).

Proof. Let k = secat(g). We shall prove by induction on k that the map

JXD -» JXB induced by h is a (q + (k - l)(p + l))-equivalence. Let k > 1 and

consider the diagram

JXD <- JXD XjkXD ->        JkXD

x

io 1 II
(k-l)(p+l)-l ,    , ,     ,JXB *- JXB X Jk  XD -> JkXD

x

|| lq+(k-2)(p + l) lq+(k-2)(p + l)

(k-l)(p + l)-l ,    , PJXB *- JXB X Jk~xB -> Jk-XB
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where all arrows are the obvious ones and the numbers near them indicate how high

an equivalence they are (recall that gk_y JkxB^>Xisa((k-l)(p + l)-l)-

equivalence, A.2). Now apply Serre's Theorem A.l twice.   D

In particular, // X is p-connected, g > p and dim A < g + (cat?( A) — l)(p + 1)

then

cat?(A) = cat?+1(A)= ••• = cat(A).

Proof. Apply 4.10 to u: Xq+X -» X" ^ X and pt -» X" -» A, with u: Xr -» A as

in 4.2(3).   D

That the condition given in 4.10 is the best possible is shown by the following

example: Let

A = Sq+X X (RPik-xXP+x>/RPr).

Using 3.1 and 4.7 it is easy to see that cat (A") = k and cat +1(A") > k + 1 for

q > p and k > 1. (In fact cat?+1( A) = k + 1, cf. [3].)

5. Strong ^category. The notion of strong category was introduced by T. Ganea

in [9]. We start this section by generalizing this notion to our context and by giving

some characterizations of it.

5.1 Let si be a given class of topological spaces. A k-fold mapping cylinder

diagram with vertex-spaces in si is a commutative diagram of spaces A„, a c k =

{!,..., k}, o ^ 0, and maps fay AT -» A„, a c j, o ¥= t, such that Xj := A"{y} e si

for all j = 1,..., A:. (Schematically such a diagram looks like the 1-skeleton of the

barycentric subdivision of the standard (k — l)-dimensional simplex, all arrows

pointing outward). Let A0 denote the geometric realization of the (#a — 1)-

dimensional simplex generated by a and let eTO be the face map induced by a c t.

A k-fold mapping cylinder with vertex-spaces in si is the quotient of the disjoint

union U aCk(Xa X A„) obtained by identifying (jc, £TO(?)) with (faT(x), t) for all

x <= AT, t <= A0, o c t.

Examples. (1) For every map g: B -» A, the k-iold join JXB of B over A is a

/c-fold mapping cylinder with vertex-spaces all equal to JXB.

(2) A covering W = { A1;..., Xk} of A' consisting of spaces in si gives rise to a

/c-fold mapping cylinder diagram with vertex-spaces in si by taking Ao:= Dyeo A"-

and /OT: A"T c A0 to be the inclusion. The k-iold mapping cylinder of this diagram is

the classifying space B^l of the covering °U and the canonical projection mm: B^U -» A

is a homotopy equivalence if for example °U is numerable [4].

Let h si denote the class of all spaces having the homotopy type of some space in si.

5.2 Proposition and Definition. The following are equivalent:

(a) X has the homotopy type of a space X' which has a numerable covering

{X[,...,X'k}chsi.

(b) X has the homotopy type of a space X' which has a covering *% = { X{,..., X'k}

chsi such that m^: B<% -* X' is a homotopy equivalence.

(c) X has the homotopy type of a k-fold mapping cylinder with vertex-spaces in si.

The smallest number k such that one (and hence all) of these assertions is true will

be called the strong si-category of X. We denote it by J^Cat( A). It is by definition an

invariant of the homotopy type of X.
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Proof, (a) =» (b) and (b) =» (c) follow from the remarks made in Example 5.1(2).

Now, let Z be a A>fold mapping cylinder with vertex spaces in si. The inverse

images under the canonical map Z -> Ak of the open stars of the vertices of Ak form

a numerable covering of Z whose elements are homotopy equivalent to the vertex-

spaces of Z. This proves (c) => (a).   D

5.3 Examples. (1) If & is the one-point space class then h@ is the class of

contractible spaces and ^-Ca^A) is just Ganea's strong category Cat(A) [9, 1.2],

except that all spaces involved in his definition are CW-complexes. But in fact if A

and all spaces in si have the homotopy type of CW-complexes then si-Cat(X) is

the smallest k such that A has the homotopy type of a CW-complex AT which can

be covered by k subcomplexes in h si. And the same is true if one replaces the

words "a CW-complex AT" by "a semisimplicial complex A"" or by "a simplicial

complex AT ", mainly because in all of these cases %,: B°U -* AT is a homotopy

equivalence [4, Remark 2].

(2) Other examples are those corresponding to 1.2(2), (3) and (4). We use the

notation G-Cat, Cat? and Cat* for them.

As in [9, 2.1] one has also an inductive characterization of si-Cat, namely

5.4 Proposition. si-Cat(X) = 1 if and only if X has the homotopy type of some

space in si (and X + 0). If k,n ^ 1, then si-Cat(X) < k + n if and only if X is

homotopy equivalent to the double mapping cylinder of a diagram A, <- A0 —> X2 with

si-Cat(Xf) < k and si-Cat(X2) < n.

Proof. If A = A' and [X[,..., Xk+n) is a numerable covering of A' let

Xf = X{ U • ■ ■ UXk and A2 = Xk+1 U • • • uXk + n. { A,, A2} is again a numerable

covering of A', hence A' is homotopy equivalent to the double mapping cylinder of

A, d A'1 n A"2 c A2. The converse is also easy.   D

Observe that, since j^cat is a homotopy invariant, si-cat( X) < si-Cat(X) for all

spaces X. Moreover:

5.5 Proposition. si-cat(X) < k if and only if X is dominated by a space Z with

j^-Cat(Z) < Â:.1

Proof. If X is dominated by Z then by 1.4 si-cat(X) ^si-cat(Z) < j^-Cat(Z).

Conversely, let {A,,..., Xk} be a numerable covering of A and a,: AT -» A¡ and /3,:

A, -» X be such that ß,a, = (Xt c A), where A¡ e hsi and /}, is a fibration. Let Z

be the fiberwise join of Ax,..., Ak over A (defined like JXU in 4.5). Then Z is a

/c-fold mapping cylinder with vertex-spaces in hsi and as in 4.6 A is a retract of Z.

D

Hence si-cat( X) < k if and only if X is dominated by a k-fold mapping cylinder with

vertex-spaces in si (compare 4.6).

'Having completed the manuscript we learned about the thesis of Michael J. Hopkins: Some problems

in topology (Oxford, 1984). It contains results on "homotopy covers" which are closely related to this

proposition.
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As in the classical case si-cat and ja^Cat differ for many classes si by at most one

(cf. [25, 5]):

5.6 Proposition. Suppose that for every finite family of maps ßy A. —> A with

Aj G si there exist a map ß: A —> X with A c si and maps q>y Aj -» A such that, for

eachj, ß<pj is homotopic to ßj. Then si-Cat(X) < si-cat(X) + 1.

Proof. Let {Xf,..., Xk} be an ^categorical covering of A. Then by our

assumption there are maps ay Xj -» A and ß: A -* A such that ßoij is homotopic

to iy Xj c X for all /'. Let Y be the double mapping cylinder of
«iu • ■ • U«A <;i.■■■.'*>

A U • • • UA       «-       I,U---Ult     -»     A.

Since the mapping cyhnders of the ay's form a numerable covering of Y, si-Cat(Y)

< k. Now let Y' be the double mapping cylinder of

«jU ••• Uak (ai,...,ak)

AU---UA       «-       Aj LI •■■ UA*.      -»      y4.

Since jSa = /' , Y is homotopy equivalent to the double mapping cyhnder of Y' d

A -> X and since ^4 is a retract of Y', X has the homotopy type of the double
r

mapping cylinder of A *- Y' -» F where r is a retraction. Hence by 5.4 si-Qat(X)

< k + 1.   D

The hypothesis of 5.6 is certainly satisfied if si is closed under finite disjoint

unions or if there is a ^universal map into X.

What we have said so far about strong .^category is true also in the equivariant

case without any changes. Our aim is now to give some conditions for the equality

si-Cat(X) = si-cat(X) and for this we will assume that all our spaces are (ordinary)

CW-complexes. The methods we are going to use do not work in the equivariant

case, at least not immediately. We start by proving the following

5.7 Lemma. Let m > p ^ 1. Suppose that

(a) there is a p-equivalence a: A —> X with A simply connected and A(-m~X) c hsi,

(b) there is an m-equivalence g: Y -* JXA, k ^ 2, and

(c) dim Y < m - 1 + (k - l)(p + 1).

Then jzá¿Cat(F) < k.

Proof (by induction on k). Let k > 2 and consider the diagram

^m~l) - Wk"_f -        Zk_f z

II [«] i [5] (»')>!• Ät-1 (n)iß

A"-l) - WU - Yk_f Z'

a'l(m-l) [3] l(m-l) [4] || (»)l«

((fc-l)(/> + l)-l) (p)

Y' - Wk_f -* Yk_f Y

i(m) [2] ¿(m) [1] (m)J, (™)4g

«A-l)(/> + l)-l) (p)
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which is built up starting from the bottom row (cf. 4.6) as follows [1] and [2] are

obtained by taking homotopy pullbacks of g: Y -» JXA. Hence Y is the double

mapping cylinder of the second row (from bottom to top), a': A(m~X) -> Y' is a

map whose composition with the map Y' -* JXA below it is homotopic to the

inclusion A'-m~X) c A = JXA. [3] is a homotopy pullback and [4] is commutative.

Z, = A^m~X) and ßx is like a', and for k > 3, Zk_x is the (n' = m - 1 + (k - 2) ■

(p + l))-skeleton of Yk_l and ßk_x is the inclusion. Finally [5] is a homotopy

pullback and [6] is commutative. The numbers in parentheses near the arrows

indicate how high an equivalence they are. Let now Z' and Z be the double

mapping cylinders of the third and the fourth rows respectively. By Serre's Theorem

A.l the induced maps a and ß are (n = m — 1 + (k — l)(p + Inequivalences.

Now, si-Cat(Zf) = 1 and for k > 3, since n' > m, by induction hypothesis si-

Cat(Zt_1)< k-1.

Consider now the Mayer-Vietoris sequence of the fourth row. Since n' =

dixa.Zk_f < n — 2 (because p > 1), the connecting homomorphism d*: HnZ —>

Hn_fWk'_f is an isomorphism, and since dim F < h the composition a^ß+d*1:

Hn_fWk_f -* HnY is an epimorphism onto a free abelian group. So by [2, 2.1] there

is an (n — l)-dimensional CW-complex AT and a map w: K -» Wk"_f such that w#:

H¡K -* H¡W¿'_f is an isomorphism for /' < n — 2 and the composition a+ß+dyxw*.

Hn_fK -* HnY is an isomorphism. Let

A(m-i)     <_        K       _,     Zj^_i ¿

|| iw || I*

Aim-V>       +_        W>Ll        _       Zk_f Z

be a commutative diagram (whose bottom row is the top row of the diagram above),

let Z be the double mapping cylinder of its top row and w: Z -> Z be the induced

map. Then dimZ < n, w: H¡Z -* H¡Z is an isomorphism for / < n - 1 and, since

the connecting homomorphism d#: HnZ -^ Hn_xK is again an isomorphism, so is

(aßw)^: HnZ -* HnY. Hence aßw: Z -* Y induces an isomorphism in homology.

Since A is 1-connected and m > p > 1, Z and Y are also 1-connected. Hence aßw:

Z -* F is in fact a homotopy equivalence. But by 5.4 j^Cat(Z) < k. D

We are now ready to prove the following

5.8 Theorem. Suppose that

(a) si-cat(X) = k,k>'2,

(b) there is an si-universal map u: U -* X which is a p-equivalence, p > 1, with U

1-connected and uWp+X)~3) c hsi, and

(c) dim X < (2k - l)(p + 1) - 3.

Then j^-Cat(A') = k.

Proof. Let g: A -> JXU be a section of uy JXU -» X (cf. 4.6). Then g is an

(m = k(p + 1) - 2)-equivalence. Now use 5.7 with A = U and Y = X.    O

Applying this to our examples in 1.2 we get

5.9 Corollary. (1) If X is p-connected, p > 1, and

dimA< (2cat(A)-l)(p + 1) - 3

then Cat(A") = cat(A).
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(2) If X is p-connected, p > 1, and

dimA< {2catq(X)-l)(p + 1) - 3

then Cat?(A") = cat^A).

(3) // A is 1-connected and dim A < (2cat«( A) - l)(g + 1) - 3 then Cat?( A) =

cat«(A").   D

5.10 Remarks. Ganea proved Corollary 5.9(1) under the stronger assumption that

dim X < (cat( A") + l)(p + 1) - 3 [9, 1.3]. For cat( A) = 2 this condition coincides

with ours and it is in fact the best possible (cf. [1 and 17; 2.4]). Now, our same

condition appears in a similar result obtained by W. Singhof [23, 6.1] and L.

Montejano [16, 1]. They each used different methods (quite different from ours) to

obtain their results. This leads us to the conjecture that this condition is always the

best possible.

It is, however, not easy to find counterexamples (the only examples known for

Cat(A") + cat(A) are those of Berstein and Hilton [1] where cat(A) = 2), mainly

because of the fact that Cat(A) is difficult to compute. It is thus desirable to have

better descriptions of Cat(X). Some nice work in this direction has been done

recently by L. Montejano [17, 2.1].

Appendix A: Serre's theorem. The following result played an important role in the

proofs of 4.10 and 5.7.

A.l Serre's Theorem. Let

Y «-     A0      X      Xf Zf

il        *i   (d)   ig     a

Y *-     X2      ->       A Z2

be a homotopy commutative diagram where the right square (D) is a homotopy

pullback. Let Z, and Z2 be the double mapping cylinders of the rows and g: Zx -» Z2

be the map induced by the vertical arrows. Then, if g is an m-equivalence and f is an

n-equivalence, g is an (m + n + l)-equivalence.

This theorem can be proved by elementary methods. It is an easy consequence of

Mather's generalization [15, 47] of Ganea's theorem about the homotopy fiber of the

mapping cone of the inclusion of the fiber into the total space of a fibration [8,1.1].

In order to emphasize the simplicity of the methods and for the reader's convenience

we include here also a proof of Mather's result.

A.2 Proposition. Let (D) be a homotopy pullback diagram as in A.l, Z be the

double mapping cylinder of y and \p, andz: Z -> X the map induced by f and g. Then

(i) the homotopy fiber of z: Z —> X is the join Fg* Ff of the homotopy fibers of g and

f,
(ii) // g is an m-equivalence and f is an n-equivalence then z: Z -» A is an

(m + n + l)-equivalence.
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Proof of A.l. Consider the diagram

U (D)
/

1«

X

Î.

Z

where jx and j2 are the inclusions and Z,, Z2, Z are the double mapping cylinders

of the rows. The induced map j\ : Zx -> Z is a homotopy equivalence. By A.2(ii) z is

an (m + n + Inequivalence, so z: Z -» Z2 and hence also g: Z, -» Z2 are (w + n

+ Inequivalences.   D

Proof of A.2. We may assume that / and g are (Hurewicz-) fibrations and that

(D) is an ordinary pullback diagram. Then (i) follows from A.3 below and (ii)

follows from the fact that the join of an (n — l)-connected space with an (m — 1)-

connected space is (m + «)-connected.   D

A.3 Lemma. Let

Ef

Po \ s Pi

X

be a map of fibrations. Then any two lifting maps

E¿    and    Ty EXXXX'Iq: ^o xx X E{

for the fibrations p0 and p, can be extended to a lifting map T for the projection p:

Zv -* X (induced by p0 andpf) of the mapping cylinder Zç of <p: E0 -* Ex onto X.

Proof. We define T: Zç X x X1 -> Z^ as follows: for (e, t, o) c (E0 X I) X x X',

s c I, let

l(T0(e,o)(s), (t - J)(l + s) + Kl -s))    if \ < t < 1,

T(e, t,o)(s) = / (T0(e,o)(s), t - \s)   if 0 < t < \ and s < 2r,

(ri(<p(r0(e,o)(2i)), o5l)(s - It)   if 0 < t < \ and s > 2t,

where o2t(r) = ö(min{2i + r, 1}), and for (e, a) e £, X x X' let T(e, o) = Tf(e,o).

a
Appendix B: Continuity of si-cat M. Now we give the proof of 2.3(4), i.e. of the

continuity property of the set function ^catM, and for completeness we do it in the

equivariant case. Thus G is a compact Lie group, M is a paracompact C1-Banach

G-manifold and si is some class of spaces having the equivariant G-homotopy type
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of G-CW-complexes. We shall use that every G-CW-complex is a G-ANE, i.e. an

equivariant absolute neighborhood extensor [18,12.5], and that M is a G-ANR. The

latter is proved for trivial G in [20, p. 3]. In the general case one can easily obtain it

from [18, 8.9]. When we now prove the continuity of si-cat M it is understood that

everything happens in the category of G-spaces.

Let A' be a closed subset of M, k = si-catM( X) and {A~1;..., Xk} an ^categori-

cal covering associated to X c M, i.e. a numerable covering of A such that there are

Aj e si and maps ay Xj -» AJt ßy Aj -» M with ßjüj homotopic to the inclusion

AT: c A (j = 1,..., k). Choose (invariant) open subsets U" of M such that AT =

Uj" n X. Then Xj is closed in the metric space U". Since Aj e si it has the

(equivariant) homotopy type of a G-ANE. It follows that up to homotopy a ■ may be

extended to a map ày U¡ -» Aj where U¡ is an open (invariant) neighborhood of AT

in Uj". Consider ßjäy U¡ -» M. Since M is a G-ANR there is an open (invariant)

neighborhood LT of AT in U¡ such that jS-á -|i/y- is (equivalíantly) homotopic to the

inclusion Í7 c M. Now {Uf,...,Uk} is an ^categorical covering of its union U

associated to U c M, and hence si-catM(U) = k.   D
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