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SUFFICIENCY CONDmONS FOR LP MULTIPLIERS 
WITH POWER WEIGHTS 

BENJAMIN MUCKENHOUPT, RICHARD L. WHEEDEN AND WO - SANG YOUNG 

ABSTRACT. Weighted norm inequalities in Rl are proved for multiplier operators 
with the multiplier function of Hormander type. The operators are initially defined 
on the space 5"00 of Schwartz functions whose Fourier transforms have compact 
support not including 0. This restriction on the domain of definition makes it 
possible to use weight functions of the form IxlQ for a larger than usually 
considered. For these weight functions, if (a + 1)/p is not an integer, a strict 
inequality on a is shown to be sufficient for a norm inequality to hold. A sequel to 
this paper shows that the weak version of this inequality is necessary. 

1. Introduction. This paper is concerned with proving norm inequalities of the 
form 

(1.1) 

for multipliers m of Hormander type. Initially, (1.1) will be proved for all f in sPoo , 
the Schwartz functions whose Fourier transforms have compact support not includ-
ing O. Restricting f to sPo.o allows much larger values of a than is possible if (1.1) is 
required to hold for all Schwartz functions, and the additional weight functions are 
important for applications. 

This paper is a continuation of [11]; there p was taken to be 2, and we 
characterized for each a > -1 all the multipliers for which (1.1) is valid for all f in 
sPo,o' Here the approach is somewhat different; we consider the usual spaces of 
multiplier functions, called M(s, X) here, which for X a positive integer and s 
satisfying 1 ~ s ~ 00 consists of all m such that 

B(m,s,X) = IImll oo + sup rX- 1/s [1 Im(X)(t)l s dt]1/
S < 00. 

r>O r<III<2r 

For the definition with X fractional, see §2; except for s = 1 and s = oo,these are 
two sided versions of the spaces S(s, X) used by Connett and Schwartz in [4] and the 
spaces WBVs,x used by Gasper and Trebels in [5]. The main result proved here is the 
following. 
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THEOREM (1.2). If 1 < P < 00, 1 ::::; s ::::; 00, A> max(t, I~ - !O or A = s = 1, 
mE M(s, A), 

max( -1, -pA, -1 + p( -A + !)) 
< a < min(pA,-l + p(A + !), -1 + p(A + 1 - ~)) 

and (a + 1)/ p is not an integer, then for fin 9'0,0 

(1.3) joo l(mj)V(x)(ix(dx::::;CB(m,s,AYjoo If(x)nxladx, 
-00 -00 

where C is independent of m and f. 
If the hypothesis that f be in 9'0.0 in Theorem (1.2) is changed to require only 

that f be in the class 9' of Schwartz functions, then it can be shown that the 
theorem is false for a outside the interval (-1, p - 1). This is done by observing that 
isgnx is in M(s, A) for all A> 0 and 1 ::::; s::::; 00 and that 9' is dense in the space 
L! of f with 

Ilfllp,a= [J~: If(x)nxladXfIP < 00 

for 1 < P < 00 and all real a. Therefore, the conclusion (1.3) asserts, in particular, 
that the Hilbert transform is a bounded operator on L!. It is well known, see for 
example Theorem 9, p. 247 of [7], that the Hilbert transform is bounded on L! if 
and only if -1 < a < p - 1. Therefore, the interval for a for which Theorem (1.2) is 
true for all f in 9' cannot extend beyond (-1, p - 1). 

The conditions on a in Theorem (1.2) may seem peculiar, especially the fact that 
taking s larger than the minimum of p' and 2 does not increase the range of a. It 
turns out, however, that except possibly for the strictness of the inequalities, these 
conditions are essential as shown by the following result proved in [10]. 

THEOREM (1.4). If 1 < P < 00, 1 ::::; s ::::; 00, A ~ l/s and (1.3) holds for all m in 
M(s, A) andfin 9'00' then a > -1, 
max(-pA, -1 + p(-A + !))::::; a::::; min(pA,-l + p(A + !), -1 + p(A + 1 - ~)) 

and (a + 1)/ p is not an integer. 

In at least some cases, the end values of the inequalities for a are included in the 
values for which (1.3) holds; a theorem of this type is given in §6. 

Results for weight functions of the form (1 + Ixoanf=llx - bjlaj and for more 
general weight functions are given in [12]. Periodic analogues are also considered in 
[12]. 

Theorem (1.2) can be extended to functions in more general classes than 9'0,0' For 
example, if Q-l = L2 and for k a nonnegative integer Qk is the set of fin L2 () L~ 
with /r:'oof(x)x j dx = 0 for 0 ::::;j ::::; k, then the following is true. 

THEOREM (1.5). If 1 < p < 00, a> -1, k is an integer, k ~ -2 + (a + l)/p, m 
is bounded and 

(1.6) 

for all fin Y o.o, then (1.6) is true for all fin Qk n L! with the same C. 
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Theorem (1.5) is proved by fixing an I in Qk-l () Lt and using Theorem (6.1) of 
[11] to produce a sequence {In} of functions in Yo,o that converges to I in L 2 and 
Lt. By (1.6) and this density, the operator (mj) von Yo,o has a unique extension to 
Qk-l () Lt· Call the image of a function g under this operator Tmg. Then 
IITm/llp,a < Cil/llp,a and there is a subsequence In} such that Tmln} co?verges to Tml 
almost everywhere. Since In converges to I in L2 as j ~ 00, then (min) v converges 
to (mj) v in L2, and a }subsequence converges to (mj) v almost everywhere. 
Therefore, (mj) v = Tml almost everywhere, and (1.6) follows from the fact that 
IITm/llp.a < Cil/llp.a· 

Theorem (1.2) for A > t is proved in §§2-4. The method consists of finding and 
using estimates of truncated kernels of the form [m(x)</>N(x)] v where cf>N is in COO, 
</>N(X) = 0 for Ixl> 2N + 1 and Ixl < 2- N - 1 while cf>N(X) = 1 for 2- N + 1 < Ixl < 
2N - 1. This procedure has led us to the definition of the classes M(s, A) given in §2 
and required most of the results there. Many of these are known because of the 
equivalence of our definition for 1 < S < 00 to the definitions in [4 and 5], but the 
approach is different because the definitions are different. In §3, estimates are 
obtained for integrals of the truncated kernels and their derivatives. This is the only 
way the M(s, A) assumption on m is used in later sections and the main theorems 
could, as a result, be stated with truncated kernel estimates as the hypothesis; this 
would, however, produce longer theorem statements. 

In §4, a result is first obtained for (1.1) with I in the class Y of Schwartz 
functions. This is then used to prove Theorem (1.2) for A > t. The case A < t is 
considered in §5; the method used is an adaptation of a proof by Calderon and 
Torchinsky in [1]. Theorem (1.2) for A < t is proved in §5 as Theorem (5.1). As 
mentioned before, §6 contains a proof that in some cases Theorem (1.2) remains true 
for a equal to an endpoint of the interval in the hypothesis. In §7, it is shown that 
the multiplier classes M (s, A) are the two sided versions of the multiplier classes 
used by other authors. 

The following definitions and notations will be used throughout this paper. In 
addition to the expression int(x) for the greatest integer less than or equal to x, the 
traditional [x] will also be used when unambiguous. The spaces Y, Yo,o and Lt 
will be as defined above. For integrable functions I, we define the Fourier transform 
by j(x) = t:J(t)e- ixt dt and the inverse Fourier transform by 

v 1 100 I(x) = - I(t)e ixt dt. 
2'lT -oc 

For general locally integrable I, we define j to be the function that satisfies 
I::'ooj(x)cf>(x) dx = f-':J(x)~(x) dx for every cf> in Coo with compact support, 
provided such a function exists. The inverse Fourier transform ! for locally 
integrable functions is defined analogously. Similarly, the weak derivative of a 
function I on ( - 00, (0) is the function f' such that I ~oo I (x) </>' (x) dx = 
- 1_0000 f'(x )cf>(x) dx for every cf> in Coo with compact support, provided such a 
function exists. 

Throughout this paper C will denote constants not necessarily the same at each 
occurrence. The letters i, j, k, I, m and n will be used for integers whether this is 
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stated explicitly or not except for cases where i is obviously the square root of -lor 
when they are names of functions. If g is an expression in x, [g(x)] /\ will denote the 
Fourier transform of g at the point x. For a number p with 1 ~ P ~ 00, p' will 
denote p/(p - 1). 

2. The classes M(s, A). In this section we define the classes of multipliers M(s, A) 
that will be used in the rest of the paper and prove some basic results concerning 
them. For A an integer, M(s, A) is the familiar space of multiplier functions m such 
that IImlloo < 00 and for r > 0 

[ ] 
l/s f Im(A)(x) IS dx ~ Cr- A+1/ s; 

r<lxl<2r 
(2.1) 

in particular, M(I,I) is the Marcinkiewicz condition, M(2, 1) is the Hormander 
condition and M( 00,1) is the Mihlin condition. For noninteger A, it is shown in §7 
that M(s, A) is the two sided version of the spaces S(s, A) in [4] and WBVs,A of [5] 
provided 1 < S < 00. 

The main results of this section are as follows. Theorem (2.12) describes the 
inclusion relations between the spaces M(s, A) and relates their norms; it is needed 
frequently throughout this paper. Lemma (2.18) estimates the norm of the fractional 
derivative of a product and is needed for kernel estimation in §3. Theorem (2.30), 
which states that xm'(x) is in M(s, A-I) if m(x) is in M(s, A), is of independent 
interest and could have been used in several of our proofs. 

We will use the following notations and definitions throughout the paper. The 
function I/; (x) will be Coo with support in ~ < Ix I < 2 and will satisfy 
Lj~-oo 1/;(2- jx) = 1 for x * O. If m is in L oo , then m/x) = 1/;(2- jx)m(x), k/x) = 

[m/x)] v and KN = L7~_Nk/x). DA will denote the operator defined by DAg(X) 
= [g(X)XA] /\, where x A is taken to be IxIAe-i"A for x < 0 and the Fourier 
transforms are as defined in §l. If 1 ~ s ~ 00 and A ;:, 0, then m is in M(s, A) if 
DAm j is a locally integrable function for every j and 

(2.2) B(m,s,A) = Ilmlloo + sup 2 j (A-1/S)IID Amj (x)lls < 00. 
J 

The classes M are independent of the choice of 1/;, and the values of Bare 
equivalent for different choices of 1/;; this is an immediate consequence of Theorem 
(2.25). Note that if 1 < s < 00, the bounded ness of the Hilbert transform on V 
shows that using [lxIAm) /\ in place of DAmj will give an equivalent definition of 
M(s, A) and B(m, s, A). Note also that 1/;(2-Jx ) + 1/;(2- j-1X ) == 1 for 2J < Ixl 
< 2J+1. Consequently, if A is a positive integer and m is in M(s, A), then 
DA(mj(x) + mj +1(x)) is the weak derivative of order A of m(x) on 2J < Ixl < 2 j +1 

and, therefore, (2.1) holds. Conversely, if A = n is an integer, Ilmlloo < 00 and (2.1) 
holds, then Dnm/x) can be written as a linear combination of terms of the form 
[1/;(2- jx )](n-i)[m(x)](i), 0 ~ i ~ n. Now I[ 1/;(2- jx )](n)1 ~ C2- nj and it is known that 
if Ilmlloo < 00 and (2.1) holds for A = n, then (2.1) holds for 0 ~ A ~ n. These two 
facts imply that 

II[ 1/;(2- jx )]<n-i)[m(x )](it ~ C2- j(n-1/s) 

and show that m is in M(s, A). 
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The fact that the classes M(s, A) are two sided versions of the classes S(s, A) in [4] 
and of the classes WBVs,A in [5] for 1 < S < 00 will be shown in §7. These classes are 
also equivalent to classes defined similarly using Bessel potentials instead of Riesz 
potentials. This fact, which will be needed in §5, is proved in the following lemma. 

LEMMA (2.3). If 1 < S < 00 and A ~ 0, then there is a constant C, independent of 
m, such that 

D(m, s, A) = IImlloo + sup 2- i / sll [(1 + 22ilx n Aj2 ki x ) r lis 
J 

satisfies D(m, s, A) ~ CB(m, s, A) ~ C 2D(m, s, A). 

To prove the first inequality, assume that B = B(m, s, A) < 00. Then (2.2) and 
the boundedness of the Hilbert transform on V imply that 

while the fact that Iml ~ B implies that 

II[ki x )]" lis ~ CB2i/ s. 

These two inequalities imply 

(2.4) 

Now 

(2.5) 

with j = 0 is the Fourier transform of a finite measure; see [15, pp. 133-134]. Bya 
change of variables, (2.5) is, therefore, the Fourier transform of a finite measure with 
total variation independent of j. Therefore, 

and the fact that D(m, s, A) ~ CB(m, s, A) follows from (2.4). 
To prove the second inequality, assume that D = D(m, s, A) < 00. Since the 

statements above concerning (2.5) are also true of its reciprocal, 

Since lI[k/x)] I\lls ~ CD2i/ s, it follows that 11[lxIAk/x)] I\lls ~ CD2}(ljs-A), and the 
boundedness of the Hilbert transform completes the proof. 

LEMMA (2.6). If f(x) is integrable, f(x) = 0 for x not in a compact interval I, 
A > -1, and DAf(x) is a locally integrable function, then there is a C, depending only 
on A, such that DAf(x) = 0 for almost every x to the right of I and 

DAf(x) = Cf f(t) dt 
I (t _ X)A+l 

for almost every x to the left of I. 



438 BENJAMIN MUCKENliOUPT. R. L. WHEEDEN AND WO-SANG YOUNG 

To prove this, let cp be a Coo function with compact support disjoint from l. Then 

(2.7) {X) DXf(x)cp(x) dx = joo j(x)xX~(x) dx. 
-00 -00 

Since both f and xX~(x) are integrable, the right side of (2.7) equals 

(2.8) ~f(x)[xX~(x)] v dx. 

With xX defined as it is at the beginning of this section, it is easy to verify that 
[xx] v= 0 for x < 0 and equals Cx- X- 1 for x> 0, where C = e- iX,,/2/f(_A). Note 
that if A is a nonnegative integer, C = O. Therefore for x in I, [xx~(x)] v= 

Cj':oocp(t)(x - t)-X-1 dt. Substituting this into (2.8) shows that the integral in (2.7) 
equals 

(2.9) cl.f(x)(jY CP(t)H1 dt )dX=cjY (I. f(X)d:+ 1 )cp(t)dt, 
[-oo(x-t) -00 [(x-t) 

where y is the left end of I; the last equality follows from the fact that f and cp are 
integrable and Ix - tl-1->.. is bounded on the set where f(x)cp(t) * O. The conclu-
sion of the lemma follows since the right side of (2.9) equals the left side of (2.7) for 
all cp that are Coo with compact support disjoint from l. 

COROLLARY (2.10). If m is in L oo , t/J(x) is in Coo with support in t ~ Ixl ~ 2, 
mix) = m(x)t/J(2-ix), A> -1, and D>"m/x) is a locally integrable function, then 
for almost every x satisfying Ixl > 2i+2 or Ixl < 2i - 2, 

IDXmi(x) I ~ C2illmlloo/(2i + IxI)H1. 
LEMMA (2.11). If A ~O, A-I < a < A, f(x) is integrable, f has compact support 

if A > 0, and DXf(x) is a locally integrable function, then Daf is a locally integrable 
function and for almost every x 

Da'f(x) = Cfoo D>"f(t) dt. 
( )1->..+a 

x t-x 

To prove this, let fJ = A - a and let cp be a Schwartz function. If A > 0, the 
hypothesis and Lemma (2.6) show that the function D>"f(x) is integrable on 
(-00,00). If A = 0, this is trivial. Therefore, since j!oo 1~(x)l(t - x).B- 1 dx is a 
bounded function of t, 

joo (fOO D>"f(tL.B dt)~(X)dX = {YJ (r ~(X)1_.B dX)D"!(t)dt. 
-00 x (t-x) -00 -00 (t-x) 

The right side equals 

C joo [t-.BCP(t)] v DXf(t) dt = C joo taj(t)cp(t) dt = C joo [Daf(t)] v cp(t) dt; 
-00 -00 -00 

the first equality holds since D>"f and IW.Bcp(t) are integrable. The equality in the 
conclusion of the lemma follows by comparing the end terms of this chain of 
equalities. The local integrability of Daf(x) follows from the equality and the 
integrability of D,,!-
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By use of Theorem (7.3) we see that our next result is a strengthened version of 
part (a) of the Theorem on p. 37 of [4]. For s and t not equal to 1 or 00, it is the 
same as Theorem 4 of [5]. 

THEOREM (2.12). If 1 ~ s ~ 00, 1 ~ t ~ 00, 0 ~ IX ~ A, m is in M(s, A) and one 
of the following holds: 

(i) IX - l/t ~ A - 1/s, s > 1 and t < 00, 

(ii) IX - 1/t ~ A - 1/s, s = 1 and t = 00, 

(iii) IX - l/t < A - l/s, 
then m is in M(t, IX) and B(m, t, IX) ~ CB(m, s, A). 

The theorem is not true for l/t - IX = l/s - A if t = 00 and 1 < S < 00 or if 
s = 1 and 1 < t < 00; this will be shown at the end of the proof by giving examples. 

The theorem will be proved by considering four cases. Case 1 is 1 ~ t ~ s ~ 00 

and IX = A. Case 2 is 1 < S < t < 00 and IX - l/t = A - l/s. Case 3 is s = 1, 
t = 00 and IX = A - 1. Case 4 is IX - l/t < A - 1/s, IX > A-I and either s = 1 or 
t = 00. Successive use of these cases is clearly sufficient to obtain the theorem. 

For each case we need to show that Damj is a function and that 

(2.13) 

and 

(2.14) [ 
I ]1/1 

2 j(a- l / l ) f . IDami x ) I dx 
Ixl< 21+2 

are bounded by CB(m, s, A). Lemma (2.11) implies that Daf is a locally integrable 
function, and Corollary (2.10) shows that (2.13) has the bound Cjlmlloo ~ 
CB(m, s, A), unless IX = 0 and t = 1 for which the inequality is trivial. Therefore, we 
will complete the proof by estimating (2.14) in each of the four cases. 

Case 1. Holder's inequality shows that (2.14) is bounded by 

which is bounded by CB(m, s, A). 
Case 2. Lemma (2.11) and the usual fractional integral theorem, [15, p. 119], show 

that (2.14) is bounded by 

since IX - l/t = A - 1/s, this is bounded by B(m, s, A). 
Case 3. By hypothesis, DAm/x) is integrable, and by Corollary (2.10), 

limx .... _oo Dam/x) = O. Therefore, Dam/x) = J:oo DAm/t) dt, IIDamjlloo ~ 
IIDAm)h and the result follows immediately from the definition of B(m, 1, A). 
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Case 4. By Lemma (2.11), (2.14) is bounded by the sum of 

C2}(a-l/l) . I m} y I dy dx [ I DA () I ]1/1 
~XI<2j+2 ~YI>2J+3 Iy - xl l - A+ a 

and 

2}(a-ljl) I m} y I dy dx [ 
DA () I ]1/1 

~XI<2j+2 ~YI"2j+3 Iy - xl l - A+ a 

For the first, use Corollary (2.10) and the fact that Iy - xl > lyll2. For the second, 
if s = 1, use Minkowski's integral inequality and the definition of B(m, s, A); if 
t = 00, use Holder's inequality with exponents sand s' on the inner integral. This 
completes the proof of Theorem (2.12). 

Now we will describe a function m such that m is in M(s, A) for given A and s 
satisfying A> Ijs and 1 < S < 00 but m is not in M(oo, A - lis). To do this, 
define 

h(x) = X[2,4](X) + cf>(x) 
Ix - 31 1/s llog( Ix - 30l a 

where lis < a < 1 and cf> is COO with support in [2, 4]. By Lemma 2.6 of [2], cf> can 
be chosen so that Ii xnh(x) dx = 0 for 0 ~ n ~ [A] + 1. Define m(x) = 
[x-AIz(x)] A; note that m is bounded since IIz(x)1 ~ qxl[A]+2 for Ixl ~ 1 and 
IIz(x)1 ~ qxr1+1/s for Ixl > 1. If A is an integer, it is easy to show that m is in 
M(s, A). If A is not an integer, the proof is longer and uses Corollary (2.10), Lemma 
(2.11) and some facts about fractional integrals. These fractional integral facts 
include Lemmas (2.15) and (2.18) and the fact that if 0 < A < 1, then IIDA.flls ~ 
Qllflls + II/'IIs)· To show that m is not in M(oo, A - lis), use Lemma (2.11) to 
show that 

DA-1/sm(x) = cfoo h(t) dt. 
x (t _ X)l-l/s 

The integral is easily estimated; it is bounded below for 512 < x < 3 by a 
positive constant times Ilog(lx - 31>11- a. By Lemma (2.6), it is easy to see that 
L}<o,}>3DA-l/sm/x) is bounded for 2 < x < 4; therefore, D A- ljsm/x) is un-
bounded on [2, 4] for at least one j satisfying 0 ~ j ~ 3. 

The example of an m in M(I, A) but not M(s, A-I + lis) for A> 1 and 
1 < S < 00 is similar. Define 

( ) X[2,4](x) + ( ) 
h x = Ix _ 311log(lx _ 30l a cf> x , 

where 1 < a < 1 + lis and cf> is C'~\ has support in [2, 4] and is chosen so that 
Ii xnh(x) dx = 0 for 0 ~ n ~ [A] + 1. Define m(x) = [x-AIz(x)] A. As before, it is 
easy to show that m is in M(l, A) if A is an integer and more involved if A is not an 
integer. The function I[xam(x)] AI, where a = A-I + lis, is bounded below for 
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5/2 < x < 3 by a positive constant times Ix - 31-1/sllog(lx - 3D11- a which is not 
in V. Therefore, Dam is not in L S on [2, 4]. As before, Lemma (2.6) implies that 
L)<o,»3Dam/x) is in L S on [2, 4] and completes the proof that m is not in 
M(s,a). 

Similar examples can be given to show that Theorem (2.12) is false if l/t - a < 
l/s - >.; these are simpler since the power of Ilog(lx - 3DI is not needed in the 
definition of h. 

To prove our last two theorems concerning the classes M(s, >.), we will need two 
lemmas concerning fractional derivatives, Lemmas (2.15) and (2.18). 

LEMMA (2.15). If 0 < a < 1, f is in Ll and either the function 

a d 100 f{t) G 'f{x) = -d ( )a dt, 
X x t - X 

where the derivative is taken in the weak sense, or Daf(x) is a locally integrable 
function, then the other is a locally integrable function and there is a nonzero constant 
C such that Daf(x) = CGaf(x). 

We will show that for all g in COO with compact support 

(2.16) i: g{x )xa!{x) dx = C i: g'{t)( 100 (:~ ;)a dX) dt. 

This is sufficient, for if Daf is a locally integrable function, the left side of (2.16) 
equals C f~ g(x)Daf(x) dx and the equality Daf(x) = CGaf(x) follows from the 
definition of the weak derivative. If Gaf is a locally integrable function, the right 
side of (2.16) equals -C f-~ g(x)Gaf(x) dx, and the asserted equality follows from 
the definition of the Fourier transform. 

To prove (2.16), use the fact that f and xag(x) are integrable and Plancherel's 
theorem to show that the left side of (2.16) equals 

(2.17) C i: f{x){g{x)x a) v dx = C i: f{x)( i: (:~t;r dt) dx. 

Since f and g' are integrable and g' is bounded, Ix - Walf(x)g'(t)1 is integrable 
and Fubini's theorem shows that the right side of (2.17) equals the right side of 
(2.16). This completes the proof of Lemma (2.15). 

LEMMA (2.18). If 0 ~ a < 1, 1 ~ s ~ 00, f is integrable, Daf is a locally integrable 
function, cp is differentiable with 1I<P'IIoo < 00, and cp has support in a finite interval I, 
then Da( cp f) is a locally integrable function and 

(2.19) IIDa{ cpt) lis ~ C( Iicplioo + I I 1II<P'Iioo)( II XIDaf lis + I I I-allflls). 
For a = 0, this is immediate. Therefore, assume a > O. The expression 

(2.20) 3:... [100 cp{x)f{t] dt + 100 [cp{t) - cp{x~]j{t) dtj, 
dx x (t-x) x (t-x) 

where the derivative is taken in the weak sense, equals 

(2.21) Ccp{x)D f{x) + C100 [cp{t) - cp{x)]j{t) dt 
a x {t_x)a+l 
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by Lemma (2.15) since Daf is a locally integrable function. From this, it follows that 
(2.20) is a locally integrable function, and by Lemma (2.15), (2.20) equals eDa( q,f). 
We can complete the proof, therefore, by showing that the V norm of (2.21) is 
bounded by the right side of (2.19). 

The V norm of the first term in (2.21) is bounded by 11q,lloollx[DJlls as desired. 
U sing the fact that q, is 0 outside I, we see that the V norm of the second term in 
(2.21) is bounded by the sum of 

(2.22) e[l (1 1I<I>'lIoolf(!)ldt)S dX]l/S, 
2I 21 It - xl 

(2.23) e[l (f"q,loolf(t)1 dt)S dX]lIS 
(21)c I It - xl a + 1 

and 

(2.24) e [f (1 1Iq,lIoolf(t) I dt) S dX]l/s 
I (21)c It - xl a + 1 

In (2.22), make the change of variables u = t - x in the inner integral and use 
Minkowski's integral inequality to get the estimate CjjfllsIWllooIII1- a. In (2.23), use 
Minkowski's integral inequality to get the bound Cjjq,lIoollxdlllIIll/s-a-\ then use 
Holder's inequality to show that this is bounded by Cjjq,lIoollflisIII-a. For (2.24), use 
Holder's inequality on the inner integral and the fact that 

1 It - xl-s'(a+l) dt ~ CjII1-s'(a+l) for x in I. 
(21)C 

This shows that (2.24) is also bounded by Cjjq,lIoollflisIII- a and completes the proof 
of Lemma (2.18). 

The following theorem is needed to prove Corollary (2.28); it is also important 
since it implies immediately that the definition of M(s, A) is independent of the 
choice of the function "'. 

THEOREM (2.25). If m is in M(s, A), 1 ~ s ~ 00, A > 0, and q, has [A + 1] 
bounded derivatives and support in ! ~ Ixl ~ 2, then D~[m(x)q,(2-Jx)] is a locally 
integrable function and 

IID~[m(x)q,(2-Jx)] lis ~ eA(q,)2J(-~+1/s)B(m,s,A), 
where e is independent of m and A( q,) = supo.;;; k.;;; [Hl]IIq,(k)IIOO' 

Since q,(2- Jx ) has support contained in 2J - 1 ~ Ixl ~ 2J+\ 
J+l 

m(x)q,(2-Jx ) = L mk(x)q,(2-Jx ). 
k=j-l 

Therefore, since D~ = D~-[~]D[~], it is sufficient to prove for j - 1 ~ k ~ j + 1 
and 0 ~ i ~ [A] that 

(2.26) 
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is a locally integrable function and 

(2.27) 2- iill DA-[A] (m~A]-i)(x ) </>(i) (2- ix )) lis ~ CA( </> )2 i (-A+l/s)B( m, s, A). 

By Theorem (2.12) and Corollary (2.10), m~A]-i) and DA-[A]m~A]-i) are integra-
ble. Therefore, by Lemma (2.18), (2.26) is locally integrable and the left side of (2.27) 
has the bound 

This is bounded by 

C2- iiA( </»[2i (i-X+l!S)B(m, s, A - i) + 2i (i-A+l/s)B(m, s, [A] - i)]. 

Theorem (2.12) then completes the proof of (2.27), and thereby, of Theorem (2.25). 
We will need the following simple consequences of Theorem (2.25). 

COROLLARY (2.28). If m is in M(s, A), A> 0, 1 ~ s ~ 00 and N ~ 0, then KN is 
in M(s, A) and B(KN' s, A) ~ CB(m, s, A), where C is independent ofm and N. 

Since KN(x) = r.7=_Nm(X)I/J(2-ix), IIKNlloo ~ IImlloo' If A = 0, the result follows 
from this. For A> 0, if j is not N - 1, N, N + 1, -N, -N - 1 or -N + 1, 
K N(x)I/J(2- ix) either equals m(x)I/J(2-ix) or ° and the required estimate is im-
mediate. For the six values of j listed, K N(x)I/J(2- ix) = m(x)</>(2-ix) where </>(x) 
is one of six infinitely differentiable functions with support in 1/2 ~ Ixl ~ 2. 
Theorem (2.25) then completes the proof. 

COROLLARY (2.29). If A> 0, 1 ~ s ~ 00, 1 ~ P ~ 00, W(x) is nonnegative and 
for all f in a subset S of L2 and m in M(s, A), we have lI(m/) vllp,w ~ 
CB(m, s, A)llfllp,w with C independent of f and m, then for all N ~ ° and fin S, 
IIKN * fllp,w ~ CB(m, s, A)lIfllp,w with C independent of N, m and/. 

Since (KN * f)(x) = (KN(x)/(x» v for almost every x, the conclusion follows 
from the hypothesis and Corollary (2.28). 

Finally, we prove the following theorem which is of interest since it makes it 
possible to deduce properties of M(s, A) from properties of these classes with 
smaller values of A. It could be used to prove some of our multiplier theorems by 
induction. 

THEOREM (2.30). If 1 ~ s ~ 00, A> 1 + l/s and m is in M(s, A) then xm'(x) is 
in M(s, A-I) and B(xm'(x), s, A-I) ~ CB(m, s, A), where C is independent of m. 

By Theorem (2.12), m is in M(oo, 1) and B(m, 00, 1) ~ CB(m, s, A). Therefore, 
IIxm'(x)lIoo ~ CB(m, s, A). Next we must show that 

(2.31) 

To do this, use the fact that D A- 1 = DA-[A]D[A]-\ Leibniz' rule and Minkowski's 
inequality on the left side. This gives a sum of terms of the form 

(2.32) 
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for 0 ~ n ~ [A] - 1. We will use Lemma (2.18) with a = A - [A], I equal to 
[2i-l,2i+l] and [_2i+l, _2 i - 1 ], !/>(x) = (xI/J(2- ix»(n l and f(x) = 
D[Al-n[Ll~}_l m,(x)].1t is easy to see that 

II!/>(x) 1100 + IIIIIct>'(x) 1100 ~ C2i (1-nl. 

Furthermore, 

IIDA-[Alf lis + III[Al-Allflis ~ C2i (n-Hl/s)(B(m, s, A - n) + B(m, s, [A] - n)) 
by the definition of the function B. Now apply Lemma (2.18), these two estimates 
and Theorem (2.12) to show that (2.32) is bounded by the right side of (2.31). This 
completes the proof of Theorem (2.30). 

3. Kernel estimates for functions in M(s, A). Recall the notation k/x) = 
[I/J(2- ix)m(x)] v and KN(X) = [L7 __ NI/J(2- ix)m(x)] v, where I/J is the function 
used in the definition of M(s, A). This section contains norm estimates for KN that 
do not depend on N. The principal results are theorems (3.2) and (3.4); these are the 
basic facts used to prove the multiplier theorems in later sections. 

LEMMA (3.1). If 1 ~ s ~ 00, 1 ~ P < 00, t = Inin(2, p', s), I ~ 0, A ~ 0, m(x) is 
in M(s, A) and r > 0, then 

f Ikj'l(x) ( dx ~ CB(m, s, AY(2iryU-A+l/tlrl-pU+ll, 
r<lxl<2r 

where C is independent of m, rand j. 
-

To prove this, start with the fact that the left side is bounded by 

Cr- Ap f IxAkj'l(x) ( dx. 
r<lxl<2r 

Now t ~ p' implies that p ~ t', and Holder's inequality gives the bound 

crl-AP-p/t'[f IxAk),l(x) (dX]P/t' 
·-<lxl<2r 

Since t ' ~ 2, the Hausdorff-Young inequality implies that this is bounded by 
Crl-AP-P/t'IIDA(x'm/x»lIf. Using the fact that DA = DA-[A1D[Al shows that it is 
sufficient to estimate terms of the form 

Crl-AP-p/t'll DA-[Al (x'-nmj[Al-nl(x)) II:, 
where 0 ~ n ~ [A]. To estimate these, use Lemma (2.18) with 

!/>(x) = x'-n[I/J(21 - ix) + I/J(2- ix) + I/J(2-1 - iX)] 

and f(x) = mrl-nl(x); this gives 

Crl-AP-P/t'(2iu-nlP)(11 DA-nmi r + 2- iP(A-[Allll D[Al-nm ill:)· 

Then by Theorem (2.12), B(m, t, A - n) and B(m, t, [A] - n) are both bounded by 
CB(m, s, A) since t ~ s. These inequalities and the definition of B complete the 
proof of Lemma (3.1). 
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THEOREM (3.2). If 1 ~ s ~ 00, 1 ~ p < 00, t = min(2, p', s), 0 ~ I < A - l/t, 
m(x) is in M(s, A) and r > 0, then 

f IKAfl{x) ( dx ~ CB{m, s, AYr1-p(I+ll, 
r<lxl<2r 

where C is independent of r, m and N. 

To prove this, we will show that 

(3.3) f Ikyl{X) ( dx ~ CBP{2JrY(I+llr1- P(1+1l, 
r<lxl<2r 

where B = B(m, s, A). This is sufficient since 

[~<lxl<2rIKAfl{X)( dxflP ~ j~N [~<lxl<2rlkYl{x)( dxflP, 

and we can estimate each term of the sum using (3.3) if 2Jr ~ 1 and the conclusion 
of Lemma (3.1) if 2Jr > 1. 

To prove (3.3), observe that since 

Im{x)1 ~ B and Ikyl{x)1 = q(x im{x)",{2-Jx)rl, 

we have 

Ikyl{X) I ~ Cllx im{xH{2-Jx) lit ~ C2 J(l+llB. 

Using this inequality in the left side of (3.3) proves (3.3) and completes the proof of 
Theorem (3.2). 

THEOREM (3.4). If 1 ~ s ~ 00, 1 ~ p < 00, t = min(2, p', s), 0 ~ L < A - l/t < 
L + 1, m is in M(s, A), r> 0 and Iyl < r/2, then 

f IKN(X - y) - t (-yrK~nl(x)IP dx ~ CB(m,s,A)p(1ll)PA-PI/r1 - p, 
r<lxl<2r n=O n. r 

where C is independent ofy, r, m and N. 

We will show that the hypotheses imply 

(3.5) f IkJ(X- Y )- t (-yrkYl(X)IPdX 
r<lxl<2r n=O n. 

if 2Jlyl > 1 and 

(3.6) f IkJ(X- Y )- t (-Y/\Yl(X)IPdX 
r<lxl<2r n=O n. 
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if 2JIYI < 1, where B = B(m, s,;\) and C is independent of y, r, j, and m. As in 
the proof of Theorem (3.2), this is sufficient by using Minkowski's inequality and 
either (3.5) or (3.6) according to the value of j. 

To prove (3.5) for 2Jlyl ~ 1, we will estimate 

(3.7) 

and 

(3.8) 

for 0 ~ n ~ L. For (3.7) use the fact that Iyl < r /2 to get the bound 

(3.9) f . Ik/u)IPdu. 
r/2<lul<3r 

We will now use Lemma (3.1) to bound all these terms. For (3.8) we get 

CBP(2Jlyly(1/t+n->.)( Iyl/r y(>.-l/I) r1-p; 

for (3.9) we get the same with n = o. Since n ~ Land 2Jlyl ~ 1, these are all 
bounded by the right. side of (3.5). 

To prove (3.6) for 2Jlyl ~ 1, start with the fact that the left side is bounded by 

Since p ~ (', we can use HOlder's inequality to get the bound 

Cr->'p+l-p/I' f x>' ki x - y) - L (-y/ kt)(x) dx ( I ( L n ) II' ) p/I' 
r<lxl< 2r n=O n. 

Since (' ~ 2, the Hausdorff-Young theorem gives the estimate 

Since D>' = D>'-[>'1D[>'1, it is sufficient to estimate 

(3.10) Cr->'p+l-p/I' D>'-[>'1 e- ixy - L (ixy) m(J)(x) [( 
L n )([>.1-/) 1 p 

n=O n! ] 

for 0 ~ I ~ [;\]. This will be done using Lemma (2.18) with a: = ;\ - [;\], 1= 
[2 J-1, 2J+l] or [-2J+1, _2J- 1], 

( 
L. n )([>.1-/) 

</>(x) = e- ixy - n~o (l~) X/(x) 
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and /(x) = mY)(x). It is easy to verify by Taylor's theorem that 

111/>1100 + 1/1111/>'1100 ~ C!yIL+I{2})L+1+/-[A]. 

From the definition of B(m, s, A), 

II DA-[A]/ III + I/I[A]-AII/iit ~ C2}([A]-A-I+1/t){B{m, t, A - [A] + l) + B{m, t, I)). 
Since t ~ s and 0 ~ I ~ [A], Theorem (2.12) shows that 

B{m, t, A - [A] + i) + B{m, t, l) ~ CB{m, s, A). 
Now with these inequalities and Lemma (2.18), we get the bound 

Cr- Ap+ I-p/I' [B{ m, s, A) lyIL+12}(L+I-A+I/I)] p 

for (3.10). This equals the right side of (3.6), and the proof of Theorem (3.4) is 
complete. 

THEOREM (3.11). Ifm(x) is in M(s, A), 1 ~ s ~ 00, A> -t, A > l/s and 1 < P < 
00, then there is a C, independent 0/ m, N, y, / and r, such that 

(3.12) 

(3.13) 

f IKN(x - y) - KN{X) Idx ~ CB{m, s, A), 
Ixl>2lyl 

II/ * K N lip ~ CB (m , s, A) II/lip 
and, for r > 0, 

(3.14) 

By Theorem (2.12), we may assume that l/t < A < 1 + 1/t where t = min(2, s). 
By Theorem (3.4) with p = 1, L = 0, n ~ 1 and r = 2nlyl, 

1 IKN{x - y) - KN{X) I dx ~ CB(m, s, A)2 n (-HI/t). 
2"lyl<lxl< 2"+IIYI 

Adding these for n ~ 1 proves (3.12). For 1 < P < 00, (3.13) follows from (3.12) and 
the boundedness of m; see, e.g., the corollary on p. 34 of [15]. The weak type 
inequality (3.14) is obtained in the proof of the corollary in [15]. 

4. Proof of Theorem (1.2) for A > -to To do this, we first derive Theorem (4.2) for 
multipliers defined as (m!) v for all/in the set Y of Schwartz functions. As 
mentioned in §1, defining a multiplier in this way, allowing m to be an arbitrary 
member of a class M(s, A) and requiring that the operator be bounded on L/: 
implies that -1 < a < p - 1. For some pairs (s, A), a must be in a proper subset of 
(-1, p - 1). 

It should be noted that for each set of values A, p, s, Theorem (4.2) asserts the 
boundedness of the multipliers in M(s, A) for weight IxlQ if a is in a certain open 
interval I, while Theorem (1.4) and the fact that a must be in (-1, p - 1) show that 
the conclusion of Theorem (4.2) is false for a not in the closure of I. Therefore, 
Theorem (4.2) cannot be greatly improved. Theorem (1.4) does show that a cannot 
equal -lor p - 1; in most other cases we state no result for a an endpoint of I. 
However, since Yo,o is dense in Y in L/: metric for -1 < a < p - 1 and 1 < p < 00 
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by Theorem 6.1 of [11], the results of §6 do provide some examples in which the 
multipliers in M(s, A) are bounded on Y for a equal to an endpoint of I. 

Theorem (4.2) is proved using a sequence of three lemmas. The first, Lemma (4.3), 
is a statement of what is commonly known as the" three parts proof'. It is stated in 
more generality than needed here since it will also be used in [12] and is no harder to 
prove in this general form. The next two lemmas, Lemma (4.9) and Lemma (4.10), 
are proved using Lemma (4.3) and the results in §3. They are like Theorem (4.2) but 
with overly restrictive hypotheses. Theorem (4.2) is then proved from Lemmas (4.9) 
and (4.10) using an interpolation argument. Finally, Theorem (1.2) for A > t is 
proved using Theorem (4.2) and Lemma (4.3) except for the case A = s = 1 for 
which we quote a known result. 

The following facts based on §§2 and 3 and known results are intended to put 
Theorem (4.2) in perspective. If Tm is initially defined for functions in Y as (mj) v, 
1 ~ s ~ 00, A> max(t, t) and m is in M(s, A), then by Theorem (3.11), Tm is a 
bounded operator on (unweighted) LP, 1 < P < 00. If 1 ~ s ~ 00, A ~ 1 and m is 
in M(s, A), then Tm is a bounded operator on (unweighted) LP, 1 < P < 00, by the 
Marcinkiewicz multiplier theorem [15, p. 108] and Theorem (2.12). More generally, 
we have the following. 

THEOREM (4.1). If 1 < p < 00, -1 < a < P - 1, s ~ 1, A ~ 1, mE M(s, A) and 
fEY, then lI(mj) vllp,a < CB(m, s, A)llfllp,a' where C is independent ofm andf. 

Theorem (4.1) was proved for A = s = 1 by Hirschman, Theorem 6.1, p. 60 of [6] 
in the periodic case and by Kurtz, Theorem 2, p. 237 of [8] on the line with more 
general weight functions. The fact that the constant in these results can be written as 
CB(m, 1, 1) is clear from the proofs. The form stated here is an immediate conse-
quence of the case s = A = 1 and Theorem (2.12). Except for the case A = s = 1, 
Theorem (4.1) is also an immediate consequence of Theorem (4.2). 

Since a E (-1, P - 1) is a necessary condition for the conclusion of Theorem 
(1.1), we cannot obtain more weight functions by placing more requirements on s 
and A. What is needed here is the following result for A < 1. 

THEOREM (4.2). If 1 < s ~ 00, max(t, 1) < A < 1, mE M(s, A), 1 < p < 00, 

max(-l, -pA) < a < Inin(p - 1, pA) andfis in Y, then 

where C is independent of m and f. 

The lemmas to be used to prove this are the following. The first is a statement of 
what is commonly known as the "three parts proof." 

LEMMA (4.3). If Tf(x) = /':"00 K(x, y)f(y) dy, a and b are real, r> 0, U(x) and 
w( x) are nonnegative and there is an A independent of hand r such that 

(4.4) 1 ITh{x) (Ix - blau{x) dx ~ A {Xl Ih{x) (Ix - blaW{x) dx 
r.;;lx-bl<2r -00 



u MULTIPLIERS 449 

for all h in cro with support in rj8 ~ Ix - bl ~ 16r, then for fin c ro, IITfIl;,u is 
bounded by the sum of 

(4.5) C foro (~Y_bl<rIJ~/2<IX_bl<2)K{X' y) (U{x) dx fIP'f{Y) Idy r ~, 
(4,6) CA fro If{x) (W{x) dx 

-00 

and 

(4,7) C {'O (~Y-bl>4r [~/2<IX_bl<2,1K{X' y) (U{x) dx fIP'f{Y) Idy r ~ , 
where C is independent off, K and W. 

This is proved by starting with the fact that 

IITfll~,u= n~ro hn<lx-bl<2n+J.£: K{X,Y)f{Y)dyI
P 
U{x)dx. 

Now write f(y) = L)=l.!j(Y) where .!j(y) is in Coo, 1.!j(y)1 ~ If(y)1 for 1 ~j ~ 3, 
fl(Y) = 0 for Iy - bl > 2n - 2, f2(Y) = 0 for Iy - bl < 2n - 3 and Iy - bl > 2n +4 

and f3(Y) = 0 for Iy - bl < 2n +3. Then IITfll;,u is bounded by 3P times the sum of 

(4.8) n~ro hn<lx-bl<2n+ 11.£: K{X,Y).!j{Y)dyIP U{x)dx 

for 1 ~j ~ 3. 
To estimate (4.8) with j = 1, use Minkowski's integral inequality to get the bound 

n~oo (~Y-bl<2n-2[ hn<lx_bl<2n)K{X, y) (U{x) dx fIPlfl{Y) I dy r· 
This is bounded by 

2 n~oo h~n+l( ~Y-bl<rIJ~/2<lx-bl<2r IK{x, y) (U{x) dx fIP'f{Y) I dy r ~ , 
which is bounded by (4.5). 

For (4.8) with j = 2, we have the bound 

By (4.4), this is bounded by 
00 

n~oo CA2- na hn-3<lx_bl<2nJf2{X) (Ix - blaW{x) dx, 

and this is bounded by (4.6). 
The fact that (4.7) dominates (4.8) with j = 3 is proved in the same way that (4.8) 

with j = 1 was estimated. This completes the proof of Lemma (4.3). 



450 BENJAMIN MUCKENHOUPT, R. L. WHEEDEN AND WO-SANG YOUNG 

LEMMA (4.9). If 1 < s ~ 00, max(t,'D < "A < 1, m E M(s, "A), 1 < p < 
1/(1 - "A), p - p"A - 1 < a < p - 1 and f is integrable, then IIKN * flip,<, ~ 
CB(m, s, "A)llfll p ,,,,, where C is independent off, m and N. 

To prove this, we will apply Lemma (4.3) with K(x, y) = KN(X - y), a = -a, 
b = 0 and U(x) = W(x) = Ixl"'. To complete the proof, we will show that (4.5) and 
(4.7) have the bound CB(m, s, "A)Pllfll;,,,,; that (4.6) has this bound is immediate. 

To estimate (4.5), replace Ixl'" by er'" and enlarge the integration set in the inner 
integral to get the estimate 

C IKN(X-y)1 r"'dx If(y)ldy -. 100 (1 [1 p ]l/P )P dr 
o lyl<r/4 r/4<lx-yl<4r r 

By Theorem (3.2); this is bounded by 

CB(m,s,"A)P 100 [1 If(Y)ldy]Pr"'-Pdr. 
o lyl<r/4 

Now since a < P - 1, we have a - p < -1 and Hardy's inequality, Lemma 3.14, p. 
196 of [16], shows this is bounded by CB(m, s, "A)Pllfll;,,,, as desired. 

To estimate (4.7), replace Ixl'" by Cr'" to get the estimate 

oo( [1 P ]l/P )P C 1 1 -1 I K N (x - y) I dx If (y ) I dy r "'dr. 
o lyl>4r r r/2<lxl<2r 

To estimate this, note that the hypothesis a > p - p"A - 1 implies that p/(a + 1) 
< 1/(1 - "A). We can, therefore, choose a q satisfying max(p, p/(a + 1» < q < 
1/(1 - "A) and use Holder's inequality to obtain the bound 

oo( [1 q ]l/q )P cl 1 -1 IKN(X-y)1 dx If(y)ldy r"'dr. 
o lyl>4r r r/2<lxl<2r 

Now enlarge the integration set of the inner integral to lyl/2 < Ix - yl < 21yl and 
use Theorem (3.2). This gives the bound 

CB(m,s,"A)p 100 [1 IYI-l+l/qlf(y)ldy ]Pr",-p/qdr. 
o lyl>4r 

Now since p/(a + 1) < q, we have a - p/q > -1. Hardy's inequality, Lemma 3.14, 
p. 196 of [16], then shows that this part also has the asserted bound. This completes 
the proof of Lemma (4.9). 

LEMMA (4.10). If 1 < s ~ 00, max(t, t) < "A < 1, m E M(s, "A), 1/"A < p < 00, 

-1 < a < p"A - 1 and f is integrable, then IIKN * flip,,,, ~ CB(m, s, "A)lIfll p ,,,,, where 
C is independent off, m and N. 

To prove this, observe that the dual of L% is L!~/(p_l)' A standard duality 
argument then derives Lemma (4.10) from Lemma (4.9). 

To prove Theorem (4.2), fix p and a satisfying the hypotheses. It is possible to 
choose Po such that 1 < Po < min(p, 1/(1 - "A» and Po - Po"A - 1 < apo/p < Po 
- 1 because each of these inequalities is equivalent to requiring an upper bound or a 
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lower bound on Po, and it is easy to show that the lower bounds are strictly less than 
the upper bounds. By Lemma (4.9), 

(4.11) joo Ilxl"/P(KN *f)(x) (idx ~ CB(m,s,A)joo Ilxl"/Pf(x)(i dx 
-00 -00 

for i = 0. Similarly, there is also a PI satisfying max(I/A, p) < PI < 00 and 
-1 < aPI/p < PiA - 1; by Lemma (4.10) this gives (4.11) for i = 1. Interpolation 
of operators, Theorem (1.3), p. 179 of [16], then shows that IIKN * flip,,, ~ 
CB(m,s,A)IIfll p,,,. Since (m!)v=limN_ooKN*f almost everywhere, Fatou's 
lemma completes the proof of Theorem (4.2). 

To prove Theorem (1.2) for A > 1. observe for A > 1. s > 1 and a < P - 1 that 
Theorem (1.2) is a corollary of Theorem (4.2). For A > !, s = 1 and a < P - 1 
Theorem (1.2) is a consequence of Theorem (4.1). Therefore, to complete the proof 
of Theorem (1.2) for A > !, we need only consider the case a > P - 1. Now fix p, 
s, A > ! and a > P - 1 that satisfy the hypotheses of Theorem (1.2), let t = 
min(2, pi, s) and let I be the positive integer for which lp - 1 < a < (l + 1) P - 1. 
Then since a < -1 + p(1 + A - l/t), we have 1- 1 + l/t < A. Since a < -1 + 
p(1 + (l + 1/t) - 1/t), there is a Al satisfying 1- 1 + l/t < Al < 1+ l/t and 
a < -1 + p(1 + Al - 1/t). It A;;;' 1+ 1/t, then Al < A, m is in M(s, AI) and 
B(m, s, AI) ~ CB(m, s, A) by Theorem (2.12). Therefore, proving the case a > p - 1 
for I - 1 + l/t < A < I + l/t is sufficient to establish it in general. 

Now apply Lemma (4.3) with a = -a, b = 0, U(x) = W(x) = Ixl" and 
/-1 ( r 

K(x, y) = KN(X - y) - L -:. K~n)(x). 
n=O . 

Since f is in 9'0,0' f K(x, y)f(y) dy = f KN(X - y)f(y) dy, and inequality (4.4) 
holds with A = C(B(m, s, A)JP by Theorem (3.11). To complete the proof, we will 
show that (4.5) and (4.7) have the bound CB(m, s, A)Pllfll;,,,; that (4.6) has this 
bound is immediate. 

By Theorem (3.4), (4.5) has the bound 

oo( [(I I)PA-P/t ]1/P )P d 1 1 r"/p CBP L r1- p If(y)ldy ~, 
o lyl<r/4 r r 

where B = B(m, s, A). This is bounded by 

CBP 100 [1 lyIA-l/tlf(y) I dY ] P r,,-p-pA+p/tdr. 
o Iyl<r 

Now since a < -1 + p(1 + A - l/t), we have a - p - pA + p/t < -1. Therefore, 
Hardy's inequality, Lemma 3.14, p. 196 of [16], shows this is bounded by CBPllfll;,,, 
as desired. 

For (4.7), we use the fact that since Iyl > 4r, the inner integral is bounded by a 
constant times the sum of 
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and 

1 IYlnpIK~n){x)(r"'dx 
r/2<lxl<2r 

for 0 ~ n ~ 1- 1. Theorem (3.2) gives the respective bounds CBPrl-p+"'(lyl!r)l-p 
and CBPrl-p+"'(lyl/r)n p. Since Iyl/r ~ 1, these are all bounded by 
CBPr1-p+"'(lyl/r)p(I-l). Using this estimate in (4.7) gives the bound 

CBP[~(l IYlt-llf{y)ldy)Pr",-tPdr. 
o lyl>4r 

Since a - Ip > -1, Hardy's inequality gives the desired estimate; this completes the 
proof that IIKN * flip,,,, ~ CBII/llp,,,, for m, p, a and f satisfying the conditions of 
the theorem. The fact that Il(mf) vll p ,,,, ~ CBllfll p,,,, follows from Fatou's lemma. 

S. The case A ~ t. This section contains the proof of Theorem (5.1), which is 
Theorem (1.2) for A ~ t. This proof is based on a similar one in §4 of [1]. 

THEOREM (5.1). If 1 < p < 00, 2 < s ~ 00, max(t, If, - t) < A ~ to m E 

M(s, A), max( -PA, -1 + pet - A)) < a < mine -1 + peA + t), pA) and f is in Y, 
then 

II{mj) v lip,,,, ~ CB{m, s, A)lIf lip,,,, 

with C independent of m and f. 
We will use the following notation. Define O(x) = 1.{I(xI2) + 1.{I(x) + 1.{I(2x), 1.{1 as 

in §2, and define the operator Dt by 

Dl'f{x) = [[1 + 22tlxI2r'/2j{x)r. 

Given a bounded function m(x), complex z and A, positive e and a, and an integer 
N, define 

N ["(1-Z)/2] (5.2) m{z,x) = L O{2- tx)D/ z - 1)/2-f I D/,'m t I sgnDtmt , 
I=-N 

where sgn z = z liz I for z =1= 0 and sgn 0 = o. 
LEMMA (5.3). Ifa > 2, ~ < A ~ to e = A -~, misinM(a,A) and v isreal, then 

(5.4) m(l - ~,x) = £ mt{x), 
I=-N 

(5.4) IIm{l + iv, x) 1100 ~ C{1 + v2) 
and 

(5.6) B{m{iv,x),2,e + t) ~ C{l + v)2[B{m,a, A)] "/2, 

where C is independent of v and m. 

Equality (5.4) is immediate since the hypothesis and Lemma (2.3) imply that 
DI'mt is a function and O(2- lx) = 1 on the support of mt. 
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To prove (5.5), we use the fact that 

(5.7) DJv/2-Ef(x) = foo f(x - t)[[1 + 22/ItI2]iv/4-E/2r dt 
-00 

provided this integral exists. Now define for 0 < ex < t and /3 real 

(5.8) h(ex,/3,x) = -21 foo eixt[I + t 2YB-"dt. 
7T -00 

We will estimate Ih(ex, /3, x)l. To do this for Ixl < 1, divide the defining integral for 
h into integrals over It I < 1!Ixl and It I > I/Ixl. In the first, replace eixt by 1, and in 
the second, integrate by parts and replace eixt by 1 to get 

(5.9) Ixl < 1. 
For Ixl > 1, integrate by parts twice and replace eixt by 1 to get 

(5.10) Ixl> 1. 
Now with f(x) = IDl'mll-iov/2 sgn DXml, 

IDJv/2- Ef(x) 1= 1.£: f(x - t)2- lh( I' *,2-lt) dtl· 

Since If(x)1 ~ 1, this is bounded by Ilh(e/2, v/4, t)lll ~ C(I + v2). Use this fact in 
the definition of m(I + iv, x) and the fact that at most five terms in the sum 
defining m(z, x) can be nonzero for any x to complete the proof of (5.5). 

To prove (5.6), it is sufficient by Lemma (2.3) to show that 

(5.11) IIm(iv,x) 1100 ~ C(I + v2)[D(m,a,A)]0/2 
and 

(5.12) 

To prove (5.11), use (5.7) and (5.8) to show that 

11m (iv, x) II 00 

~ t~N fJ(2- lx).£: 2- /lh( 2e : 1 , *' 2- /(x - t)) IID/\ml(t) 10/ 2 dt L. 
Apply Schwarz' inequality to show that the integral is bounded by 

[.£: 2- 2/Ih ( 2e: 1 , *' 2- lx) r dx r/2[.£: ID1Xml(t) 1
0 dt r/2. 

In the first integral, change the variable and use the estimates (5.9) and (5.10) to 
obtain the bound C2- 1/ 2(I + v2 ). For the second integral, use Theorem (2.3) to 
obtain the bound [2IB(m, a, A)0]l/2. Since for a given x, fJ(2- lx) > 0 for at most 
five values of I, this completes the proof of (5.11). 

To prove (5.12), use the fact that fJ(2- lx)l{;(2- ix) == 0 for Ii - II > 2 to show that 
the left side is bounded by 
(5.13) 

"+2 

1~"f-211 Drl/2 [DFV-l)/2-e{1 D1xml(l-iV)/2 sgn D1X ml} fJ(2-IX) l{; (2- i x )] 112. 
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To estimate this we need the fact that for a > 0 

(5.14) 

To show (5.14), start with the fact that 

1 + 22/X2 ~ 2[1 + 22/(X - t)2][1 + 221t2] 
to show that the quantity 

I [Di{fg)] "I = [1 + 221X2] a/21 i: f(x - t)g(t) dtl 

is bounded by 

2a/2jOO [1 +(x - t)222/]a/2If(x - t)I(1 + t222/r/2Ig(t)ldt. 
-00 

Therefore, 

I[DrUg)] " I ~ 2a/2I[Dtf]" 1* I [Drg]" I 
and (5.14) follows by using Plancherel's identity and Young's inequality. 

Applying (5.14) to (5.13) shows that the terms in (5.13) are bounded by a constant 
times the product of 

(5.15) 

and 

(5.16) 

Since (1 + 22ilxI2y+l/2(1 + 22/lxI 2)-e-I/2 ~ C for Ii - II ~ 2, (5.15) is bounded 
for Ii - II ~ 2 by 

cill Dl'ml/2 112 = c[IID/\mlll,,]"/2 ~ C2i/2[D(m,(1, A)] ,,/2. 
A change of variables in (5.16) gives 

/1[1 + IxI2]'2e+I)/4[O(2i-lx)~(x)]" Ill' 
which is finite, having one of five possible values. Therefore, (5.13) is bounded by 
C2i/2[D(m, (1, A)],,/2; this completes the proof of (5.6). 

To complete the proof of Theorem (5.1), fix mE M(s, A) with B(m, s, A) = 1. 
Let 0 satisfy I/A < 0 ~ s and note that 0 > 2. Additional requirements on 0 of the 
form 0 - I/A < C will be given below. Let E = A - I/o, r = 4p/(2p + 20 - po) 
and f3 = aor/2p, and define m(z, x) by (5.2). By taking 0 - 1/A sufficiently small 
we will have IJ - tl < ~, and it is easy to see that this implies 1 < r < 00 and 
2p/or> O. From the fact that 

lim 2p(r - 1) = -1 + PA + !!... > a, 
,,-+ 1/>.. or 2 

we see that by taking 0 sufficiently close to 1/A we have a < 2p(r - l)jor, and, 
consequently, f3 < r - 1. Similarly, since 

,,~~>.. (!~ )max[ -1, -r( E + i)] = max [ -PA, -1 + p( i-A)] < a 
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and 

lim (_2P_) [-1 + r(l + e + 1.. - __ 1 __ )] 
(J-> 1/>.. ar 2 min(2, r') 

= min[PA,-l + P(A + I)] > a, 

we have 

max(-l,-r(e + -21 )) < P < -1 + r[l + e + -21 _ 1 ] 
min(2, r') 

if a is close enough to 1/A. Now assume that a is close enough to l/A that all these 
inequalities are satisfied. Theorem (1.2) with its A, s, P, and a taken as e + t 2, r 
and P respectively and Theorem (1.5) then imply that for f E Lp n L2, i: I[m(iv, x)/(x)] v (Ix 1/1 dx ~ c[ B( m(iv, x),2, e + I) r i: If(x) i'lxl/l dx. 

Now apply Theorem (2.12), the conclusion (5.6) of Lemma (5.3) and the fact that 
B(m, s, A) = 1 to show that for f E Lr n L: 2/1lr we have 

foo IT(iv)f(x) ( dx ~ C(l + v2rfoo If(x)( dx, 
-00 -00 

where 

T(z )f(x) = Ixl(l-Z)/llr[ m(z, x)(i(x)lx I(Z-l)/llr)" r. 
Conclusion (5.5) of Lemma (5.3) implies for f E L 2 that 

foo IT(l + iv)f(x)12dx ~ C(l + V2)2foo If(x)1 2dx. 
-00 -00 

Complex interpolation, Theorem 4.1, p. 205 of [16], then implies for f in LP n 
L: 4/1lar 

i: IT(l- ~)f(X)( dx ~ ci: If(x)( dx, 

since 1/p = [1 - (1 - 2/a)]/r + t(1 - 2/a). Conclusion (5.4) of Lemma (5.3), the 
fact that 2p/ra = a/p and letting N -+ 00 then completes the proof of Theorem 
(5.1) for m with B(m, s, A) = 1. The general result follows from the fact that 
B(ym,s, A) = lyIB(m, s, A). 

6. Endpoint results. If 1 ~ s ~ 00, A > max(l~ - tl, t) and 1 < P < 00, Theorem 
(1.2) asserts that (1.3) holds for all m in M(s, A) and f in .9'0,0 if a < -1 + 
p(A + 1 - l/t), where t = min(2,p',s), provided (a + l)/p is not an integer and 
a> max(-l,-pA,-l + p(-A + t». Theorem (1.4) asserts that (1.3) does not hold 
for all m in M(s, A) and f in .9'00 if a> -1 + p(A + 1 - 1/t) or if (a + l)/p is 
an integer. Neither theorem makes an assertion about a = -1 + p(A + 1 - l/t) if 
A - l/t is not an integer. In this section, we show that in some cases (1.3) does hold 
for this value of a. The proof is interesting both because the result partially fills the 
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gap between Theorems (1.2) and (1.4) and also because the technique is quite 
different from that of previous sections. The proof uses Pitt's theorem and the 
M(s, A) condition directly rather than using the results of §3. The results to be 
proved are the following. 

THEOREM (6.1). If 1 < s ~ p ~ 2, A ~ 1, A - [A] = ljs - ljp, m is in M(s, A) 
and a = -1 + p(A + 1 - lis), thenforallfin Y'oo 

(6.2) foo I[m(x)/(x)] v nxla dx ~ C[B(m, s, A))P foo If(x) (ix( dx, 
-00 -00 

where C is independent off and m. 

THEOREM (6.3). If 2 ~ P ~ s ~ 00, A is a positive integer, m is in M(s, A) and 
a = pA, then for all fin Y'o,o (6.2) holds with C independent off and m. 

The proof of Theorems (6.1) and (6.3) is based on the following special case of 
Pitt's theorem. For a proof of the periodic case of Pitt's theorem, see [14, p. 489]. 

THEOREM (6.4). If 1 < P < 00, -1 < f3 ~ min(p - 2,0) andfis in L2 n LJ-2-P' 
then 

where C is independent off. 

Theorems (6.1) and (6.3) will be proved simultaneously; where differences occur, 
they will be distinguished by considering the cases p ~ 2 for Theorem (6.1) and 
p ~ 2 for Theorem (6.3). Since the left side of (6.2) is equal to i: I [~: [m(x )/(x)] r r1x la-kP dx, 

where k denotes [A], it is sufficient to show that for 0 ~ j ~ k we have 

(6.5) foo I[ m(J)(x)[xk-if(x)]" r nxla- kP dx ~ CBP foo If(x) (ixla dx, 
-00 -00 

where B = B(m, s, A). 
We will first prove (6.5) for j = O. To do this observe that if p ~ 2, then 

a - kp = p - 2, and if p ~ 2, then a - kp = O. Therefore, since k ~ 1, we have 
-PA < -1 < a - kp < a = -1 + p(A + 1 - ljt). Therefore, we can use Theorem 
(1.2) with a replaced by a - kp to show that the left side of (6.5) with j = 0 is 
bounded by CBPf~ Ixkf(xWlxl a- kp dx as asserted. 

For 1 ~ j ~ k, we use the fact that a - kp = min(p - 2,0) to apply Theorem 
(6.4) to the left side of (6.5). This gives the bound 

(6.6) foo Im(J)(x)[xk-if(x)] 1\ (lxlkP+p-a-2 dx. 
-00 

To estimate (6.6), use the fact that f is in Y'oo to write it as 

£: m(j)( x) £: [e-;" - ~~: (-~nt'-'f( t) dt 'I x 1',+,-.-2 dx. 
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This is bounded above by a constant times the sum of 

(6.7) 100 [lm(J)(x) If ItxIJ-1Itlk-Jlf(t) I dt] PlxlkP+p-a-2 dx 
-00 Itl;;.l/Ixl 

and 

(6.8) 100 [I m(J)(x) If ItxlJltlk-JI f( t) I dt] PI X IkP+p-a-2 dx. 
-00 Itl..;l/Ixl 

These will be estimated separately. 
To find a bound for (6.7), make the change of variables t = lju to get 

(6.9) 

We will show that this is bounded by 

(6.10) C[B(m,s, X))P i: IX- k- 1f( ~) (lxlkP+p-a-2 dx, 

which equals the right side of (6.2). By Theorem 1 of [9], (6.9) is bounded by (6.10) 
provided that for r > 0 
(6.11) 

[f IxIJP+kp-a-2Im(J)(x) ( dx][f Ix(a+2-kP- P)/(P-l)dX]P-l ~ CBP, 
Ixl;;'r Ixl";r 

where B = B(m, s, X). Since a - kp = min(p - 2,0), we have 

(a + 2 - kp - p)/(p - 1) > -1; 

therefore, the left side of (6.11) is bounded by 

(6.12) 
00 

Cr a+1- kp L 1 [2 nr ]JP+kp-a-2Im(J)(x) ( dx. 
n=O 2"r..;l x l..;2"+l r 

Since j ~ k ~ X and j - ljp ~ k - l/p ~ X - l/s, Theorem (2.12) shows that m 
is in M(p, j) and B(m, p, j) ~ CB(m, s, X). Therefore, (6.12) is bounded by 

00 

Cr Jp - 1 L 2n (Jp+kp-a-2)[2nr ]l-JPBP. 
n=O 

Since kp - a - 1 < 0, this is bounded by CBP. This completes the proof that (6.7) 
is bounded by the right side of (6.2). 

To estimate (6.8), make the change of variables t = l/u to get 

(6.13) 100 [f IU I-k- 2If (!) Idu]PlxIJP+kP+p-a-2Im(J)(x) ( dx. 
-00 lul;;'lxl u 

To show this is bounded by (6.10) we need, by Theorem 2 of [9], the inequality 

[f IxIJp+kp+p-a-2Im(J)(x) ( dx][f Ix l(a+2-kP-2Pl/(P-l)dX]P-l ~ CBP. 
Ixl";r Ixl;;'r 
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Since 0. - kp = min(p - 2,0), we have (0. + 2 - kp - 2p)/(p - 1) < -1, and the 
left side is bounded by 

° Cra+l-kp-p L 1 [2 nr ]ip+kp+p-a- 2Im(J)(x) ( dx. 
n=-oo 2n- 1r.;;lxl.;;2nr 

As before, we use the fact that B(m, p, j) ~ CB(m, s, A) to show this is bounded by 

° Cr ip - 1 L 2n(Jp+kp+p-a-2)[2 nr ]l-PiBP. 
n=-oo 

Since kp + p - 0. - 1 > 0, this is bounded by CB P as desired. This completes the 
proof of Theorems (6.1) and (6.3). 

7. Equivalence of various multiplier conditions. It was shown in Lemma (2.3) that if 
1 < s < 00 and A> 0, then the classes M(s, A) are equivalent to similar classes 
defined using Bessel potentials. In this section, we will relate M(s, A) to the classes 
WBVs,x of [5] and S(s, A) of [4]. Since functions in M(s, A) are defined on (-00, 00) 
while functions in WBVs,x and S(s, A) are defined on (0,00), the classes are not 
identical. The appropriate comparison is to show that a function m is in M(s, A) if 
and only if m(x) and m(-x) restricted to (0,00) are in WBVs,x and S(s, A). This 
will be done by showing that m is in M(s, A) if and only if these restrictions are in 
the space RL(s, A) of [3] and using the facts, proved in [3 and 5], that RL(s, A) is 
equivalent to WBVs,x and S(s, A). We shall prove the following, 

THEOREM (7.3). If 1 < S < 00 and A> Ijs, then m is in M(s, A) if and only if 
m1(x) = m(x) and m 2(x} = m(-x) restricted to (0,00) are in WBv."x, Furthermore, 
there is a constant C, independent of m, such that 

(7.4) B(m, s, A) ~ C(iimliis,x;w + iim2iis,x;w) ~ C 2B(m, s, A). 
It should be noted that Theorem 3, p. 246 of [5] asserts that WBVs,x is the same as 

S(s, A) of [4] and the norms are equivalent for 1 < S < 00 and A > lis. Therefore, 
Theorem (7.3) remains true if WBVs,x is replaced by S(s, A}. 

To prove Theorem (7.3), we will need two lemmas: Lemma (7.5) and Lemma 
(7.10). 

LEMMA (7.5). If 1 ~ s ~ 00 and A ~ 0, then m is in M(s, A) if and only if mx[O,oo) 
and mX(-oo,Oj are in M(s, A). Furthermore, 

(7.6) B(m,s,A)~ [B(mx[o, OO),s,A)+B(mX(_oo,oj,S,A)] ~CB(m,s,A) 

with C independent of m. 

To prove Lemma (7.5) observe first that if both mx[O,oo) and mX(-oo,Oj are in 
M(S,A), then the fact that m is in M(s, A) and the first inequality in (7.6) follow 
immediately from the definition of M(s, A}. For the converse, assume that m is in 
M(s, A). Then since 

[ 
j+l 1 

m(x)x[O, oo)(x) 1/1 (2- ix) = X[O, oo)(x) k!i-l 1/1 (2-kX) [m(x)I/I(2- ix)], 
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Lemma (2.18) shows that D\m(x)x[O,00)(x)1f!(2-ix)) is a locally integrable func-
tion. From this and the fact that D""mi is a locally integrable function, it follows 
that D\mX(-oo,Ol)i is a locally integrable function. Then Minkowski's inequality 
shows that IID\mX[o,oo»))ls is bounded by the sum of 

(7.7) [ 
00 S] 1/s 10 ID""(mi ) I dx , 

(7.8) 

and 

(7.9) 

By the definition of B(m, s, A) we have (7.7) bounded by 2i(-",,+I/s)B(m, s, A). By 
Lemma (2.6), (7.8) is ° and (7.9) is bounded by 

[fO [12J+l 1m (t) I dt 1 s ]1/S oS:: 2illmll002i/S 
C "" 1 dx "" C .. "" 

-00 2J - 1 (2i - x) + 2)+) 

From these facts and the definition of B(m, s, A), we have 

2i(",,-I/S)IID""(mx[o, 00») Js ~ CB(m, s, A). 

This shows that mx[O,oo) is in M(s, A) and B(mx[O,oo)' s, A) ~ CB(m, s, A). 
Minkowski's inequality then shows that B(mX(-oo,Ol' s, A) ~ CB(m, s, A). This com-
pletes the proof of Lemma (7.5). 

The other lemma needed to prove Theorem (7.3), Lemma (7.10), relates the space 
M(s, A) to the space RL(s, A) of [3] .. The space RL(s, A) is defined as follows for 
1 .:;; s ~ 00 and A > 0. A locally integrable function m on (0, (0) is in RL( s, A) if, 
given a nonnegative Coo function <1> with support in [1, 2], the quantity 

IImIIRL(s,""l = supIID""(<1>(x)m(tx)) lis 
1>0 

is finite. We shall prove the following. 

LEMMA (7.10). If m(x) = ° for x ~ 0, m1(x) is the restriction of m to (0, (0), 
1 .:;; s ~ 00 and A> 0, then m(x) is in M(s, A) if and only if m1(x) is in RL(s, A). 
Furthermore, there is a C, independent of m, such that Ilm1I1RL(s,",,) ~ CB(m, s, A) 
and B(m, s, A) ~ cllm11IRL(s,""l' 

To prove that if m is in M(s, A) then m1 is in RL(s, A), fix a nonnegative Coo 
function <1> with support in [1, 2]. By a change of variables we have for t > 0, 

(7.11) 

Now let j be the least integer with 2i ~ t and let <1>1(X) = <1>(2 ix/t). The right side 
of (7.11) is bounded by C2i(",,-I/s)IID""m(x)<1>1(2- ix)lls' Since <1>1 has support in 
[t,2], we can apply Theorem (2.25) to get the bound CB( m, s, A). This proves that 
m1 is in RL(s, A) and the first inequality of the lemma. 
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Conversely, if m1 is in RL(s, A), let I/; be a nonnegative function in COO with 
support in t ~ Ixl ~ 2 such that L 1/;(2-ix) = 1. A change of variables shows that 

By Lemma 1 of [3] the right side is bounded by Cilm 11IRL(s,A)' This completes the 
proof of Lemma (7.10). 

To complete the proof of Theorem (7.3), it is sufficient by Theorem 2 of [3] to 
prove a version of Theorem (7.3) with WBVs,A replaced by RL(s, A) and IllIs,A;w 
replaced by IIIIRL(s,A)' To prove this version, assume first that m is in M(s, A). Since 
the Hilbert transform is bounded on V for 1 < s < 00, we have 

B(m(-x)I/;[O, oo)(X),S,A) ~ CB(m(x)I/;(_oo, O](X),S,A). 

Combining this with the second inequality in (7.6) and Lemma (7.10) shows that 

Conversely, if m 1 and m 2 are in RL(s, A), the boundedness of the Hilbert transform 
gives 

B(m(x)l/l(_oo, O](X),S,A) ~ CB(m(-x)I/;[O, oo)(X),S,A). 

Combining this with the first inequality in (7.6) and Lemma (7.10) shows that 

B(m, s, A) ~ C(llm1 1IRL(s,A) + Ilm 2 1IRL(S,A»)' 

This completes the proof of Theorem (7.3). 
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