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SUFFICIENCY CONDmONS FOR LP MULTIPLIERS 
WITH GENERAL WEIGHTS 

BENJAMIN MUCKENHOUPT, RICHARD L. WHEEDEN AND WO - SANG YOUNG 

ABSTRACT. Weighted nonn inequalities in Rl are proved for multiplier operators 
with the multiplier function satisfying Honnander type conditions. The operators are 
initially defined on the space Sf'o.o of Schwartz functions whose Fourier transforms 
have compact support not including O. This restriction on the domain of definition 
makes it possible to use a larger class of weight functions than usually considered; 
weight functions used here are of the form Ig( x W V( x) where g( x) is a polynomial 
of arbitrarily high degree and V(x) is in Ap' For weight functions in Ap. the results 
hold for all Schwartz functions. The periodic case is also considered. 

1. Introduction. This paper is concerned with proving norm inequalities of the 
form 

(1.1) foo l(m/)V(x)rW(x)dx~CfOO 1/(x)(W(x)dx 
-00 -00 

for rather general classes of multipliers m and weight functions W. Initially, (1.1) 
will be proved for all f in 9'0.0' the Schwartz functions whose Fourier transforms 
have compact support not including O. Restricting f to 9'0,0 allows a much greater 
variety of weight functions than is possible if (1.1) is required to hold for all 
Schwartz functions, and the additional weight functions are important for applica-
tions. 

This paper is a continuation of [18]; there W(x) was taken to be a power of Ix/. 
As in [18] we consider the usual spaces of multiplier functions of Hormander type, 
called M(s, 'A) here, which for 'A a positive integer and s satisfying 1 ~ s ~ 00 

consists of all m such that 

B(m,s,'A) =llmll oo + sup rA- 1/s [1 Im(A)(t)l s dt]l /
S < 00. 

r>O r<ltI<2r 

For the definition with 'A fractional, see §2; except for s = 1 and s = 00, these are, 
as shown in §7 of [18], two sided versions of the spaces S(s, 'A) used by Connett and 
Schwartz in [6] and the spaces WBVS,A used by Gasper and Trebels in [9]. For fixed s 
and 'A > lis, we derive collections of weight functions W such that (1.1) holds for 
all m in M(s, 'A) and f in 9'0,0' 
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The weight functions considered in (1.1) for a given p are of the form Ig(x)IPV(x) 
where g( x) is a polynomial and V( x) satisfies the A P condition 

[_1 r V(X)dX][_l r V(xtl/(P-lldx]P-l :::;; e, 
IIlll IIlll 

where e is independent of the arbitrary interval I and III denotes the length of I. 
Recent results of Ernst Adams [1] show that these are essentially the only weights for 
which (1.1) can hold. He showed that if (1.1) holds in the Hilbert transform case, 
m(x) = sgn(x), for all f in 9'0,0 and f-oooo W(x)[l + Ixl]-N dx < 00 for some N > 0, 
then W must have this form. He also showed that if (1.1) holds with m(x) = sgn(x) 
for all f in L 2 with a fixed number of moments equal to 0, then W must have this 
form. Since sgn(x) satisfies the condition M(s, h) for all s;;;. 1 and h> 0, this 
restriction on W seems natural. 

Some of the main results proved here are the following. 

THEOREM (1.2). If 1 < P < 00, 1 :::;; s :::;; 00, I;;;. 0, h;;;' 1+ 1, m E M(s, h), V(x) 
E Ap ' g(x) is a polynomial of degree I and W(x) = Ig(x)IPV(x), then for every f in 

9'0,0 

(1.3) [J~: l(mj)V(x) (W(x)dXrIP :::;; eB(m,s'h)[J~: If(x) (W(x) dx flP , 

where e is independent of m and f. 
Theorem (1.5) illustrates the fact that the higher the degree of the polynomial, the 

larger h must be. It is possible to have h < I + 1 in many cases, but the conditions 
are more complicated; detailed statements of such theorems are given in Theorems 
(3.2), (6.1), (6.5) and (8.1). 

The case W(x) = (1 + Ixl)anj=llx - bjla) is also considered separately. This is of 
interest since the periodic version is needed for the proofs in [15], and the results are 
not immediate consequences of the theorems for general weight functions. The 
following result is proved; the notation int(x) is used for the greatest integer less 
than or equal to x. 

THEOREM (1.4). If 1 < P < 00, 1 :::;; s :::;; 00, h > max(t, Ii- - !-I) or h = s = 1, 
m E M(s, h), W(x) = (1 + Ixl)anj=llx - bjla), where the b/s are real and distinct, 
a o = a + r.J=laj , 

max(-l,-ph,-l + p(-h +!-)) 
< aj < min(ph,-l + p(h + !-), -1 + p(h + 1 - t)) 

and (a j + l)jp is not an integer for 0:::;; j :::;; J, r.J=l int[(aj + l)/p] :::;; 
int[(ao + l)/p] and laj - akl < ph for 1 :::;;j, k:::;; J, then for fin 9'0,0 (1.3) holds 
with e independent of m and f. 

The sufficiency theorems such as Theorems (1.2) and (1.4) can all be extended to 
functions f in more general classes than 9'00' As shown in §7, these theorems are 
valid if f is in L 2 and has its first I moment; equal to 0, where I is the degree of the 
polynomial in Theorem (1.2) and I = int[( ao + l)/p] in Theorem (1.4). 
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The last section, §9, is concerned with the periodic versions of these theorems. 
These are the results which, when combined with the transplantation theorems in 
[15], will produce multiplier theorems for Jacobi expansions. This application was 
one of the main reasons for developing the results of this paper. 

The procedure used to obtain the main sufficiency theorems for A > t is given in 
§§2-6. Theorem (1.2) is a corollary of Theorem (6.1); Theorem (1.4) for A > t is 
proved as Theorem (6.7). Three sufficiency theorems for A > t for general weights 
are proved in §§2-6, Theorems (3.2), (6.1) and (6.5). The method consists of finding 
and using estimates of truncated kernels of the form [m(x)q,N(x)] v where q,N is in 
COO, q,N(X) = 0 for Ixl > 2N+ 1 and Ixl < 2- N- 1 while q,N(X) = 1 for 2- N+ 1 < Ixl < 
2N - 1• This procedure has led us to the definition of the classes M(s, A) given in §2. 
Also stated in §2 are results from [18] concerning the kernels associated with 
multipliers in M(s, A). These estimates for integrals of the truncated kernels and 
their derivatives are the only way the M(s, A) assumption on m is used in later 
sections. The main theorems could, as a result, be stated with truncated kernel 
estimates as the hypothesis; this would, however, produce longer theorem state-
ments. 

In §3, results are obtained for (1.1) with f in the class Y' of Schwartz functions. 
This restricts W to being an Ap function but does give the basic result, Theorem 
(3.2), needed for later sections. For the more general theorems, various lemmas 
about Ap functions are needed; these are in §4. The main proofs are in §§5-6; §5 
contains basic norm inequalities that are used repeatedly in §6. 

If s > 2, there are values of A that are greater than l/s but less than or equal to 
t. This case is considered in §S; the method used is an adaptation of a proof by 
Calderon and Torchinsky in [2]. A sufficiency theorem for general weight functions 
for A :s:;;; 1, Theorem (S.l), is proved in §S. Theorem (1.4) for A :s:;;; t is proved in §S 
as Theorem (S.7). 

The following definitions and notations will be used throughout this paper except 
for a few changes in §9 noted at the beginning of §9. Given a nonnegative function 
W and p;;" 1, we define Ilfllp,w = [J~oolf(x)IPW(x) dX]l/p and mw(E) = 
1£ W(x) dx. In addition to the expression int(x) for the greatest integer less than or 
equal to x, the traditional [x] will also be used when unambiguous. The spaces Y', 
Y'o,o and Ap will be as defined above. The space Aoo is the union of the spaces Ap 
for p > 1. 

We will assume the following basic facts about the spaces Ap and Aoo; further 
information and proofs can be found in [14 and 4]. If p > 1 and WE Ap, there is an 
r < p such that WEAr' If W is in Aoo, there are positive constants C and 8 such 
that for all intervals 1 and subsets E of I, 

If W is in Aoo' W satisfies the doubling condition: there is a constant C such that 
for every interval I, mw(2I):S:;;; Cmw(l), where 21 is the interval with the same 
center as 1 and twice as long. 
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For integrable functions f, we define the Fourier transform by 

j{x) = f'~ f{t)e-iX1dt 
-00 

and the inverse Fourier transform by 

v 1 foo f(x} = - f{t}eiX1dt. 
2'1T -00 

For general locally integrable f, we define j to be the function that satisfies 
J':'ooj(x)q,(x) dx = J~f(x)~(x) dx for every q, in Coo with compact support, 
provided such a function exists. The inverse Fourier transform j for locally 
integrable functions is defined analogously. Similarly, the weak derivative of a 
function f on (-00,00) is the function J' such that J~ f(x)q,'(x) dx = 
-J':'ooJ'(x)q,(x)dx for every q, in Coo with compact support, provided such a 
function exists. 

Throughout this paper C will denote constants not necessarily the same at each 
occurrence. The letters i, j, k, I, m and n will be used for integers whether this is 
stated explicitly or not except for cases where i is obviously the square root of -lor 
when they are names of functions. If g is an expression in x, [g(x)] /\ will denote the 
Fourier transform of g at the point x. For a number p with 1 ~ P ~ 00, p' will 
denote pl(p - 1). 

2. Definitions and basic results. Listed here are the definition and properties of the 
multiplier classes M(s, X). For further discussion and proofs, see [18]. 

We define the operator DA by DAg(X) = [g(X)XA] /\, where x A is taken to be 
IxIAe-i"A for x < 0, and the Fourier transforms are as defined in §l. To define the 
multiplier classes, choose a function 1/;(x) in Coo with support in t < Ixl < 2 such 
that Lj __ oo 1/;(2-Jx) = 1 for x * O. Given a function m(x), define mix) = 
m(x)1/;(2-Jx), k/x) = [m/x)] v and KN(x) = L7=_Nk/x). For 1 ~ s ~ 00 and 
A ~ 0, the multiplier class M(s, X) is the set of functions m such that DAm} is a 
locally integrable function for every j and 

(2.1) B(m, s, X) = Ilmll oo + sup 2}(A-l/S)IID AmJ(x} lis < 00. 
J 

The class M(s, X) is independent of the choice of 1/;; this is proved in Theorem 
(2.25) of [18]. Results from [18] that will be needed here are the following. They are 
respectively Theorem (2.12), Corollary (2.29), Lemma (3.1), Theorem (3.2), Theorem 
(3.4) and Theorem (3.11) of [18]. 

THEOREM (2.2). If 1 ~ s ~ 00, 1 ~ t ~ 00, 0 ~ a ~ A, m is in M(s, X) and one of 
the following holds: 

(i) a - lit ~ X - ljs, s > 1 and t < 00, 

(ii) a - lit ~ X - ljs, s = 1 and t = 00, 

(iii) a - lit < X - ljs, 
then m is in M(t, a) and B(m, t, a) ~ CB(m, s, A). 
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THEOREM (2.3). If ).. > 0, 1 ~ s ~ 00, 1 ~ p ~ 00, W( x) is nonnegative and for all 
f in a subset S of L2 and m in M(s,)..) we have lI(m!) vll p.w ~ CB(m, s, )..)lIfllp,w 
with C independent of f and m, then for all N;;?; 0 and f in S, IIKN * fllp,w ~ 
CB(m, s, )..)lIfllp,w with C independent of N, m and/. 

LEMMA (2.4). If 1 ~ s ~ 00, 1 ~ P < 00, t = min(2, p', s), I;;?; 0, ).. ;;?; 0, m(x) is 
in M(s,)..) and r > 0, then 

f IkY)(x) ( dx ~ CB(m, s, )"Y(2ir )p(l-Hl/I)rl-P(l+I), 
r<lxl<2r 

where C is independent of m, rand j. 

THEOREM (2.5). If 1 ~ s ~ 00, 1 ~ P < 00, t = min(2, p', s), 0 ~ 1< ).. - 1/t, 
m(x) is in M(s,)..) andr > 0, then 

f IKAf)(x) ( dx ~ CB(m, s, )..)Prl-p(l+I), 
r<lxl<2r 

where C is independent of r, m and N. 

THEOREM (2.6). If 1 ~ s ~ 00, 1 ~ P < 00, t = min(2, p', s), L is an integer, 
o ~ L < A. -1/t < L + 1, misinM(s,)..), r> 0 and Iyl < r/2, then 

f IKN(X - y) - t (-yrK~n)(x)IP dx 
r<lxl<2r n=O n. 

[ I I ]PX-PII 
~ CB(m, s, )..)P -7- ,I-p, 

where C is independent ofy, r, m and N. 

THEOREM (2.7). If m(x) is in M(s, )..), 1 ~ s ~ 00, ).. > 1, ).. > 1/s and 1 < P < 
00, then there is a C, independent of m, N, y, f and r, such that 

(2.8) 1 IKN(X - y) - KN(X) I dx ~ CB(m, s, )..), 
Ixl>2lyl 

IIf * KNllp ~ CB(m, s, )..)lIf lip, 

and, for r > 0, 

3. Weight functions for multipliers initially defined on Y. In this section, we derive 
some theorems for multipliers defined as (m!) v for all f in Y. As mentioned in §1, 
defining a multiplier in this way, allowing m to be an arbitrary member of a class 
M(s,)..) and requiring that the operator be bounded on Lw implies that W is in Ap. 
For some pairs (s, )..), the weight functions W must be in a proper subset of Ap" 

The main results of this section are Theorems (3.2) and (3.3). For certain classes 
M(s,)..) and p satisfying 1 < P < 00, Theorem (3.2) provides a large class of weight 
functions W for which the multiplier operator (m!) v is bounded on Lw. Theorem 
(3.3) does the same for Wof the form (1 + Ixl)anf=llx - bila,; it is proved using 
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Theorem (3.2) but is not a special case of Theorem (3.2). There are W's that satisfy 
the hypotheses of Theorem (3.3) but do not satisfy the hypotheses of Theorem (3.2). 

Techniques similar to those used to prove Theorem (3.2) will prove a theorem in 
which less is assumed about W; this has a less restrictive Ap condition on W but 
requires that powers of Wor its reciprocal or both satisfy Bp conditions as defined 
in formula (2.3) of [10]. The proof is technically complicated and does not produce a 
better version of Theorem (3.3). This version will not be pursued here. 

The following facts based on §2 and known results are intended to put the 
theorems of this section in perspective. If Tm is initially defined for functions in Y 
as (mj) v, 1 .:;; s .:;; 00, h > max(~, t) and m is in M(s, h), then by Theorem (2.7), 
Tm is a bounded operator on (unweighted) LP, 1 < p < 00. If 1 .:;; s .:;; 00, h ;;;, 1 
and .m is in M(s, h), then Tm is a bounded operator on (unweighted) LP, 
1 < p < 00, by the Marcinkiewicz multiplier theorem [19, p. 108] and Theorem (2.2). 
More generally, we have the following. 

THEOREM (3.1). If 1 < p < 00, WE A p' s;;;, 1, h;;;' 1, mE M(s, h) and fEY, 
then lI(mj) vllp,w':;; CB(m, s, h)llfllp,w, where C is independent ofm andf. 

Theorem (3.1) was proved by Kurtz [11, p. 237], for s = h = 1; the fact that the 
constant can be written as CB(m, 1, 1) is clear from the proof. The form stated here 
is an immediate consequence of the case s = h = 1 and Theorem (2.2). Except for 
the case h = s = 1, Theorem (3.1) is also an immediate consequence of Theorems 
(3.2) and (2.2). 

Since WE Ap is a necessary conditiun for the conclusion of Theorem (3.1), we 
cannot obtain more weight functions by placing more requirements on sand h. We 
will consider, therefore, the case h < 1. The basic results are as follows. 

THEOREM (3.2). If 1 < S .:;; 00, max(t,~) < h < 1, mE M(s, h), 1 < p < 00, 

max(l, l/hp) .:;; U < 00, u[1 - (1 - h)p],:;; 1, W(x)U E Axpu andfis in Y, then 

II(mj) v IIp,w':;; CB(m, s, h)llf IIp,w, 
where C is independent of m and f. 

THEOREM (3.3). Let 1 < S .:;; 00, max(t, D < h < 1, mE M(s, h), 1 < p < 00, 

W(x) = (1 + Ixl)aTIf~llx - bjla], where the b/s are real and distinct, ao = a + 
r.~~laj' max(-I,-Ph) < aj < min(p - l,ph) for O.:;;j.:;; J and laj - akl < ph 
for 1 .:;; j, k .:;; J. Then for all fin Y, we have Il(mj) vllp,w':;; CB(m, s, h)llfllp,w, 
where C is independent of m and f. 

The proof of Theorem (3.2) is based on the following lemma. 

LEMMA (3.4). If 1 < s .:;; 00, max(t,~) < h < 1, mE M(s, h), l/h < p < 00, W 
is in Apx and f is integrable, then IIKN * fllp,w':;; CB(m, s, h)llfllp,w, where C is 
independent off, m and N. 

We will prove Lemma (3.4) using the #-function of C. Fefferman and Stein [8]; 
this proof is essentially the proof of Theorem 1 of [12]. To do this, fix h, m, p and 
Wand choose q so that l/h < q < p, q.:;; 2, q.:;; s and W is in A p / q ' This is 
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possible by Lemma 5, p. 214 of [14]. Let fq*(x) = [(If(xW)*]l/q, where f* denotes 
the Hardy-Littlewood maximal function of f, and let f# be the function 

f # (x) = s~p I ~ I ~ If (y) - fl I dy, 

where fl = (l/IIl)fl f(t) dt and the sup is taken over all intervals I containing x. We 
will first show that for f in !7, 

(3.5) (KN * f)#(x) ~ CB(m, s, "A)fq*(x), 
where C is independent of f, m and N. 

To prove (3.5), fix x and an interval I containing x and let 8 = III. It is sufficient 
to show that 

(3.6) 

where C is independent of f, m, N, x and I. To do this, define 

go(Y) = 1 KN(y-z)f(z)dz 
Ix-zl';28 

and 

g)y) = 1 KN(y - z)f(z) dz 
218.;lx-zl.;2 j + 18 

for j ~ 1. The left side of (3.6) is bounded by the sum of 

(3.7) I~I ~ Igo(Y) -[go]Ildy 

and 

(3.8) 

By Minkowski's inequality and Holder's inequality, (3.7) is bounded by 

[ 1 ] l/q 
21l1~lgo(Y)lqdY . 

By Theorem (2.7), the transformation f ~ K N * f has L q norm bounded by 
CB(m, s,"A) with C independent of N. Therefore, (3.7) is bounded by 

[ 1 ] l/q 
CB(m, s,"A) -1 If(y) Iq dy ~ CB(m, s, "A)fq*(x) III Ix-yl';28 

as desired. 
To estimate (3.8), let cj = g/x). Then (3.8) is bounded by 

00 1 00 

L -f.lgj(Y) - cj -[gj - cj]/ldy ~ 2 L suplgj(Y) - cJ 
)=1 III I )=1 yEI 

The right side equals 

2 f sup I L + 1 [ K N (Y - z) - K N (x - z)] f ( z ) dz \. 
)=1 yEI 218.;lx-zl';21 8 . 
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By Holder's inequality, this is bounded by 

Since y E I, Ix - yl ,,;; S; note also that 1/ q < A < 1 + 1/ q. Hence, applying 
Theorem (2.6) with P = q', L = 0 and r = 2 i S, we see that t = q and that the last 
sum is bounded by 

00 

L [CB( m, s, A )(2- i) A-I/q (2iS r l / q 1 [(2 iS )I/q fq*( x)] . 
j=1 

Since A > 1/ q, this also has the desired bound, and the proof of (3.6) and, 
consequently, of (3.5) is complete. 

To complete the proof of Lemma (3.4), start with the fact from [7] that if WE Ap ' 

then jlKN * fllp,w";; Cjj(KN * f)#llp,w' By (3.5), 

II(KN * f)# IIp,w'';; CB(m, s, A)llfq* "p,w' 

Since WE Ap/ q' the definition of fq* and Theorem 2 of [14] imply that Ilfq*llp,w < 
CJlfllp,w' Combining these facts gives the conclusion of Lemma (3.4). 

To prove Theorem (3.2), fix a W that satisfies the hypotheses. It is sufficient to 
prove that 

(3.9) IIKN * fllp,w";; CB(m, s, A)llfllp,w, 

since this and Fatou's lemma imply the conclusion of Theorem (3.2). 
If u = max(l, I/Ap), there is an r> u such that wr E AApU by Lemma 6 of [14]. 

In this case, u[1 - (1 - A) p] < 1 and if P < 1/(1 - A), we can choose r so that it 
also satisfies r < 1/[1 - (1 - A)p]. Since AApU C AApn wr E AApr' We may, there-
fore, by replacing u by r, assume that u > max(l, 1 /A p). Similarly, if P < 1/(1 - A) 
and u = 1/[1 - (1 - A)p], there is an r satisfying max(l, 1/Ap) < r < u such that 
W U E AApr by Lemma 5 of [14]. Since 0 < r < u, w r E AApr' We may, therefore, 
also assume that u[1 - (1 - A) p] < l. 

Now choose Po and PI such that 1 < Po < 1/(1 - A), 1/A < PI < 00, Po";; P ,,;; 
PI and 

(3.10) PI - Po . u = ------'=---=------=---"------
PI - Po -(1 - A)PO(PI - p)' 

to show this is possible, let g( Po, PI) denote the expression on the right side of 
(3.10) and observe that 

1 
g(PO,PI)= 1 -(1 - A)pO((PI - P)/(PI - Po)) 

1 
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From these it follows that g(po, PI) is an increasing function in both variables for 
the indicated ranges of Po and Pl' The range of g is easily calculated and is seen to 
include u. 

By a result of P. Jones [5], there exist Al functions Vo and VI such that 
WU = vovl-~pu. 

Define 

Wo = V6o~-po+IVl-PO and WI = VOVl-Pl~. 

Now Po> 1/;\, and the function W2 defined as WO-l/(po-l) is in Apo~ as is easily 
seen by using Holder's inequality. By Lemma (3.4), 

IIKN * I Ilpo ,w2 ~ CB(m, s, ;\)11 I Ilpo,w2 • 

A standard duality argument then shows that 

IIKN * I Ilpo,wo ~ CB(m, s, ;\)11 I Ilpo,wo' 
Similarly, PI > 1/;\ and WI is in Apl~' Therefore, by Lemma (3.4), 

IIKN * Illp1,W1 ~ CB(m, s, ;\)ll/llpl,W1 • 

The last two inequalities imply (3.9) by use of the following theorem about 
interpolation with change of measures; this theorem is a special case of Theorem 
(2.11), p. 164, of [20]. 

THEOREM (3.11). II T is a linear operator such that IITlllpj,w, ~ 1I/IIpj,w, lor i = 0 
and i = 1 and 1 ~ Po < P < PI < 00, then IITlllp,w ~ II/l1p,w, where W(x) = 
[WO(X)Pl-PWI(X)p-PO]l/(PI-PO). 

To prove Theorem (3.3), let R = maxI "jo(12b), 2). Given I in Y', let 11 and 12 
be functions in Y' such that 11(X) = 0 for Ixl > 2R, 12(X) = 0 for Ixl < R, and for 
all x we have I(x) = 11(X) + 12(X), I/I(X)I ~ I/(x)1 and I/ix)1 ~ I/(x)l. To 
complete the proof of Theorem (3.3), it is sufficient to show that 

and 

(3.14) foo l[m(x)J2(x)rrW(x)dx~CBPl I/(x)(W(x)dx, 
-00 Ixl;;.R 

where B = B(m, s,;\) and C is independent of I and m. 
We will use Theorem (3.2) to prove (3.12). To do this, we will need the existence of 

a u such that 

(3.15) max (0, -aj' 1 - (1 - ;\)p) < .! < min (1, ;\p,;\p - aJ. 
l".j".J u l".j".J 

The nine inequalities required to show that the left side is less than the right side are 
consequences of the hypotheses. 
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With u chosen to satisfy (3.15), it follows that max.(l, ljX p) ~ u < 00 and 
u[1 - (1 - X)p] ~ 1. Now define V(x) = [1 + Ixl]-aoW(x). The function VU is in 
A Xpu since -1 < a jU < X pu - 1 for 1 ~ j ~ J and V is bounded above and below 
by positive constants for Ixl > R. Therefore, Theorem (3.2) implies 

(3.16) j l[m(x)Jl(X)r(V(x)dx~CBPj Ifl(X) (V(x)dx. 
Ixl,,4R Ixl,,2R 

Since W(x) ~ CV(x) and V(x) = CW(x) for Ixl ~ 4R, this implies (3.12). 
To prove (3.13), let a; = max(aj , 0), a* = ad - r.~_la; and 

From the hypothesis it is easy to see that there is a U satisfying 

(3.17) max(O, 1 -(1 - X)p) < .! < min (I,Xp - a;). 
U O"j"J 

Fix a U that satisfies (3.17). It follows that 

max(l,ljXp) < U < 00 and u[1 -(1 - X)p] ~ 1. 

The function V(x)U is in Axpu since ° ~ a;u < Xpu - 1 for ° ~j ~ J. Therefore 
by Theorem (3.2) 

(3.18) j l[m(x)A(x)r(V(x)dx~CBPj Ifl(X) (V(x)dx. 
Ixl~4R Ixl,,2r 

Now for Ixl> 4R we have V(x) > C(1 + Ixl)at > C(1 + Ixl)ao > W(x) and for 
Ixl ~ 2R we have V(x) ~ W(x). These facts and (3.18) prove (3.13). 

To prove (3.14), let D be the set of j's for which aj < ° and aj < ao, let E be the 
set of j's for which ao ~ aj < ° and define 

Uo ao ~ I laj ~ I lao u( x) = I X I + I X + 11 + £.., X - bj + £.., X - bj . 
JED jEE 

Since W(x) ~ CU(x) for all X, we can replace W by U on the left side of (3.14). 
This produces a sum of integrals of the form f_OOool[m(x)!z(x)] vlPlx - bl A dx with 
max(-I, -pX) < A < min(p - 1, pX). Theorem (3.2) can be applied to each of 
these if there is a u such that 

max(O, -A, 1 - P + pX) < lju < min(l, Xp, Xp - A); 

that there is such a u is easy to see by verifying that each term in the max is less than 
each term in the min. Alternatively, Theorem (1.2) of [18] can be used. It follows that 
the left side of (3.14) is bounded by CB(m, s, X)Pf~lf2(X)IPU(x) dx. The facts that 
U(X) ~ CW(x) on Ixl > Rand If2(X)1 ~ If(x)1 then complete the proof of Theo-
rem (3.3). 

4. Facts about Ap functions. To prove our multiplier results for general weight 
functions, we will need a number of results concerning A p functions. The first seven 
are used in §5; the last is needed in §6. 
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LEMMA (4.1). If 1 < P < 00, V(X) E Ap, b is real and a '" -p, then 

JOO P a+p 
",C If(x)llx-bl V(x)dx, 

-00 

where C is independent off. 

By Theorem 1, p. 32, of [13], we need only verify that for r > 0 
(4.2) 

(1 Ix - blaV(x) dx)(1 [Ix - bla+PV(x)]-l/(P-l) dX)P-l '" C 
Ix-bl>r Ix-bl<r 
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with C independent of r. Now since V E Ap, V E A_a. Then the first factor in (4.2) 
is bounded by CraJ1x_bl< r V(x) dx by Lemma 1, p. 232, of [10]. The second factor in 
(4.2) is bounded by 

r-a-p(1 V(x r1/(p-l) dX) p-l 
Ix-bl<r 

since -a - p ~ O. Multiplying these estimates and using the definition of Ap then 
proves the lemma. 

LEMMA (4.3). If 1 < P < 00, V(x) E Ap, b is real and a ~ 0, then 

where C is independent off. 

By Theorem 2, p. 32, of [13], we need only verify that 
(4.4) 

(1 Ix - blaV(x) dx)(1 [Ix - bla+PV(x)t1/(P-l) dx)P-l '" C 
Ix-bl<r Ix-bl>r 

with C independent of r. The proof is essentially the same as for Lemma (4.1) using 
the fact that V(X)-l/(p-l) E A p' and -(a + p)/(p - 1) '" _p'. 

LEMMA (4.5). If 1 '" P < 00 and V E Ap, then there is a q > 1 such that for every 
interval I, 

[f ]l/q -l+l/qf 
I v( x) q dx '" CI I I I V( X ) dx, 

where C is independent of I. 

This is proved in [14, p. 214]; the conclusion is equivalent to the statement that V 
is in AOO" 
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LEMMA (4.6). If 1 :::;; P < 00, V E Ap and g is a polynomial, then there is a q > 1 
such that for every interval I 

[1. [ p ] q ]l/q -l+l/Q1. p I Ig(x)1 Vex) dx :::;; ClII Ilg(x)1 V(x)dx, 

where C is independent of 1. 

It should be noted that although Lemma (4.6) will be used in this form, the proof 
requires only that V satisfies Aoo' 

To prove Lemma (4.6), let I denote the degree of g and fix an interval I. Then 
there is an open subinterval J c I with IJI ~ 111/[3(1 + 1)] such that 3J contains no 
roots of g. For such a J and I, it is easy to verify by considering the individual 
factors of g that sUPIlg(x)1 :::;; CinfJlg(x)l, where C is independent of I and J. Let 
q > 1 be a number for which Lemma (4.5) holds for this V. Then the left side of the 
conclusion of Lemma (4.6) is bounded by 

ClII-l+l/q[i~flg(x)(]~ V{x)dx. 

Since V is in Ap ' V satisfies the doubling condition and this is bounded by 

ClII-1 +1/ Q[ i~flg(x) (]~ Vex) dx. 

Since this is bounded by the right side of the conclusion, the proof is complete. 

LEMMA (4.7). If 1 :::;; P < 00, b is real, Rand C are positive, U(x) and V(x) are in 
Ap' U(x) :::;; CV(x):::;; C 2U(x) for R :::;; Ix - bl :::;; 2R, W(x) = U(x) for Ix - bl < 
Rand W(x) = V(x) for Ix - bl ~ R, then W(x) is in Ap' 

Typical of the applications of the preceding lemma is the fact that if R > 0, 
[Ix - bl/(R + Ix - bIWU(x) E Ap and (R + Ix - bl)au(x) E Ap' then U(x) E Ap' 

To prove Lemma (4.7), observe that W satisfies the definition of Ap trivially if 
Ie (-00, b - R], Ie [b - 2R, b + 2R] or I c [b + R, 00). If [b + R, b + 2R] c 
I, 

f W(x) dx :::;; l b+ R U{x) dx:::;; C l b+ 2R U(x) dx; 
In[b-R,b+R] b-R b+R 

the last inequality follows from the fact that U E Ap. Therefore, 

1. W(x) dx:::;; C l b+ 2R Vex) dx, 
In[b-R,b+R] b+R 

and we obtain 

1. W( x ) dx :::;; C 1. V( x ) dx. 
I I 

Similarly, from the fact that U E Ap we obtain 

[~W(xfl/(p-l)dXr-l :::;; C[~ V{xfl/(p-l)dXr-l, 
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and the defining inequality for Win Ap follows for I::> [b + R, b + 2R] since V is 
in Ap. The case I::> [b - 2R, b - R] is similar. 

LEMMA (4.8). If 1 ~ p < 00, b is real, 0 < a < A, R> 0, h(x) = Ix - bl, R + 
Ix - bl or Ix - bl/(R + Ix - bl), V(x) E Ap and h(x)AV(x) E A p' then h(x)av(x) 
EAp. 

To prove this, use Holder's inequality to obtain 

Doing the same for the other integral, multiplying the estimates and using the 
hypotheses completes the proof. 

LEMMA (4.9). If 1 < P < 00, b is real, R ~ 0, V(x) E Ap and h(x) = Ix - bl, 
R + Ix - bl or Ix - bl/( R + Ix - bl), then there is an E > 0 such that 0 ~ e ~ E 
implies h(x)'V(x) E Ap" 

Because of Lemmas (4.7) and (4.8), it is sufficient to prove that there is an E > 0 
such that Ix - bIEV(x) E Ap" To do this, use the fact that V(X)-l/(p-l) E A p' and 
Lemma (4.5) to show that there is a q > 0 such that 

(4.10) [£ V(xrq/(p-l) dx r/q ~ CIIr1+l/q£ V(xrl/(p-l) dx, 

where C is independent of I. Choose E so that E> 0 and Eq'/(p - 1) < l. 
HOlder's inequality and (4.10) imply that 

£ [V(x)lx - bIE]-I/(P-I) dx ~ CIII-I +I / q[£ V(xrl/(p-l) dX] 

[ ']I/q, 
X £ Ix - bl-Eq /(p-I) dx . 

With d equal to the distance from b to the more distant end of I, we get 

j [V(x)lx - bIE]-I/(P-I) dx ~ Cd-E/(p-I) j V(xrl/(p-l) dx. 
I I 

It is immediate that 

These estimates and the fact that V is in Ap then show that Ix - bIEV(x) is in Ap" 

LEMMA (4.11). Assume that f~ooxjf(x)dx = 0 for 0 ~j ~ 1- 1, V(x) is in Ap 
and g(x) is a polynomial of degree I whose real roots are b l < b2 < ... < bJ • Let d 
be positive, and, if J ~ 2, assume that d < mini .. /lbj - bil/4). Then there exist 
functions /;(x), 0 ~ i ~ J, such that 'f.{=o/;(x) = f(x), /;(x) = f(x) for 1 ~ i ~ J 
and Ix - bil ~ d, /;(x) = 0 for 1 ~ i ~ J and Ix - bil ~ 2d, f_~xjfi(x) dx = 0 for 
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o ~ j ~ [ - 1 and 0 ~ i ~ J, and for 0 ~ i ~ J, 

f oo P P foo P P 
(4.12) -00 Ij;(x)llg(x)1 V(x)dx ~ C -00 If(x)llg(x)1 V(x)dx, 

where C is independent off. Iff is in Coo, then fi can be chosen to be in Coo. 

To prove this, first choose hi' 1 ~ i ~ J, such that hi(x) = f(x) if Ix - b;1 < d, 
hi(x) = 0 if Ix - bil > 2d, Ihi(x)1 ~ If(x)1 for all x and hi is in COO if f is in COO. 
For 1 ~ i ~ J and 0 ~j ~ [- 1, choose COO functions cp;,/x) with support in 
(bi + d, bi + 2d) so that J::'XkCPijX) dx = lJi,k for 0 ~j, k ~ [- 1; this is possi-
ble by the proof of Lemma (2.6), p. 182, of [3]. For 1 ~ i ~ J, define 

/-1 

/;(x) = hi (x ) - L CPijX) foo tihi(t) dt 
i=o -00 

and define fo(x) = f(x) - r.{=l/;(X). The asserted properties other than (4.12) are 
then trivial. To prove (4.12), it is sufficient to show that 1J.2"'ooxihi(X)dxIP is 
bounded by the right side of (4.12) for 0 ~j ~ [- 1 since Ihi(x)1 ~ If(x)1 and 
lI«Pi,/x)g(x)llp,v ~ c. Now 

If xihi(x)dxIP ~ [f Ix1i1f(x)ldX]P; 
d<lx-bil d<lx-bil<2d 

that this is bounded above by the right side of (4.12) is immediate by using Holder's 
inequality, the fact that Ig(x)1 has a positive lower bound on d < Ix - bil < 2d and 
the fact that V-1/(p-l) is locally integrable. It is, therefore, sufficient to prove that 

(4.13) I~x_bi'<dxif(x)dxr ~ ci: If(x)(lg(x)(V(x)dx 

for 0 ~ j ~ [ - 1. 
To prove (4.13), let r.kn(x) be the partial fraction decomposition of xi jg(x). 

Then the left side of (4.13) is bounded by a constant times a sum of terms of the 
form 

(4.14) 

Now if the denominator of k n is not a power of x - bi' k n is bounded on 
Ix - bil < d and Holder's inequality shows that (4.14) is bounded by the right side 
of (4.13). If kn(x) = C(x - b;)-N with N ~ 1, then since kn(x)g(x) is a poly-
nomial of degree at most [ - 1, it follows that (4.14) equals 

ell (x - byNf(X)g(x) dxl
P

. 
IX-b.l>d 

By Holder's inequality, this is bounded by the product of the right side of (4.13) and 

(1 V(xrl/(p-l)lx - b,I-NP'dX)P-l 
IX-b,l >d 
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Now since V(x)-l/(p-l) is in A p" it is also in A Np' and Lemma 1, p. 232, of [10] 
shows that this last expression has the bound 

d-NP(I V(xr1/(p-l) dX)P-l, 
Ix-bil<d 

which is finite. This completes the proof of Lemma (4.11). 

5. Four lemmas for general weight functions. The weighted LP results proved here 
contain weight functions of the form Ig(x)IPV(x) where V(x) E Ap and g is a 
polynomial. They are the basis for the main theorems in §6. Also stated here is 
Lemma (5.13) which is stated and proved as Lemma (4.3) of [18]. The proofs of 
Lemmas (5.1) and (5.5) use Lemma (5.13) and are essentially the same as the proof 
of Theorem (1.2) in [18]. Various technical problems occur since the weight functions 
are more general. The proofs are given after all of the lemmas are stated. 

The results are obtained here for f in Y; this is convenient for these proofs but 
not essential. In §7 there are strengthened versions for more general classes of 
functions and more general weight functions. 

LEMMA (5.1). Assume that 1 ~ s ~ 00, 1 < P < 00, I ~ 1, V(x) E Ap, b is real, 
R ~ 0 and Q is the least upper bound of all q such that 

(5.2) 1 V(x)qdx ~ cr1- q[1 V(X)dx]q 
r<lx-bl<2r r<lx-bl<2r 

for all r satisfying r> R. Let T = min(2, (pQ')" s), W(x) = Ix - bIIPV(x) and 
assume that A> 1- 1 + liT and m E M(s, A). For every h in Y, assume that 
IIKN * hllp,v1 ~ HB(m, s, A)lIhllp,v1, where V1(x) = Ix - blaV(x) and a and Hare 
constants independent of m, Nand h. If A < I + liT, assume in addition that 
(R + Ix - bj)pU-,\+l/T)V(X) E Ap. Then for fin Y, 

(5.3) I II K(x,Y)f(Y)dyIP W(x)dx 
Ix-bl>R ly-bl>4R 

~ C(l + HP)B(m, s, A)P I If(x) (W(x) dx, 
Ix-bl>4R 

where 

(5.4) 

and C is independent off, m and N. 

LEMMA (5.5). Assume that 1 ~ s ~ 00, 1 < P < 00, I ~ 1, V(x) E Ap, b is real 
and R > O. Let Q be the least upper bound of all q such that (5.2) holds for all r 
satisfying 0 ~ r ~ 2R, let T = min(2,(pQ')" s), W(x) = Ix - bIIPV(x) and assume 
that A > 1- 1 + ljT and mE M(s, A). For every h in Y, assume that IIKN * hllp,v, 
~ HB(m, s, A)lIhllp,v" where V1(x) = Ix - blaV(x) and a and H are constants 
independent of m, Nand h. If A < I + liT, assume in addition that 

[ Ix - bl ]PU-,\+l/T) 
V(x) E Ap-

R +Ix - bl 
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Then for f in !/, 

{5.6} 1 11 K{X,Y}f{Y}dyI
P 
W{x}dx 

Ix-bl<4R ly-bl<R 

~ C{l + HP}B{m, s, 'AY 1 If{x} (W{x) dx, 
Ix-bl<R 

where K(x, y) is as defined in (5.4) and C is independent off, m and N. 

LEMMA (5.7). Assume that 1 ~ s ~ 00, 1 < P < 00, Vex) E A p' I and a are 
integers with I ~ 1 and I ~ a ~ 0, W(x) = [R + Ix - bl](/-a)Plx - blapV(x) and b 
is real, R > O. Let Q be the least upper bound of all q for which there are constants C 
and RI such that (5.2) holds for all r ~ R I. Let T = min(2, (pQ')', s) and assume that 
'A> 1- 1 + liT" and mE M(s, 'A). If 'A < I + liT, assume in addition that 
[R + Ix - bIJP(/-}.+I/T)V(X) E Ap; if 'A < a + liT (which implies a = I), assume 
in addition that Ix - bI P(/-}.+1/T)V(x) E Ap. Then there exist positive Ro and C such 
that for all f in !/, 

{5.8} 1 11 K{X,Y}f{Y)dyIP W{x)dx 
Ix-bl>Ro ly-bl<R 

~ CB(m,s,'AY 1 If(x)(W(x)dx, 
Ix-bl<R 

where K( x, y) is as defined in (5.4) and C and Ro are independent off, m and N. 

LEMMA (5.9). Assume that 1 ~ s ~ 00, 1 < P < 00, Vex) E A p' I ~ 1, g(x) is a 
polynomial, b is real, R > 0, g(x) '* 0 for Ix - bl ~ 4R, Ro> 4R, and W(x) = 

Ig(x)(x - b)'IPV(x). Let Q be the least upper bound of all q such that 

(5.10) 1 W(x)q dx ~ cr l - qll W(x) dX)q 
r<lx-bJ<2r r<lx-bl<2r 

for 2R < 2r < Ro and define T = min(2, (pQ')', s). Assume that 'A > 1- 1 + liT 
and m E M(s, 'A). If 'A < I + liT, assume in addition that 

[ Ix - b I ] p(/-}.+1/T) 
(5.n) V(x} E Ap-

R +Ix - bl 
Then for all fin !/ 

(5.12) 1 11 K{x,Y)f(Y)dyIPW{x)dx 
4R<lx-bl.;;Ro ly-bl<R 

~ CB(m,s,'AY 1 If(x) (W(x)dx, 
Ix-bl<R 

where K(x, y) is as defined in (5.4) and C is independent off, m and N. 

LEMMA (5.13). If Tf(x) = f_oooo K(x, y)f(y) dy, a and b are real, U(x) and W(x) 
are nonnegative and there is an A independent of hand r such that 

(5.14) 1 ITh(x}(Jx-blaU(x)dx~Afoo Ih(x)(Jx-blaW(x)dx 
r.;;lx-bl<2r -00 
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for all h in Coo with support in r18.,;; Ix - bl.,;; 16r, then for f in Coo, IITfII;,u is 
bounded by the sum of 

(5.15) cioo (1 [1 IK(x, y) (U(x) dX]l/Plf(Y) I dY ) P dr, 
o ly-bl<r/4 r/2<lx-bl<2r r 

(5.16) CAllfll~,w 
and 

(5.17) C 1000 (~v-bl>4r [~/2<lx-bl<2r I K(x, y) (U(x) dx r/P1f(Y) I dy r ~ , 
where C is independent off, K and W. 

We will first prove Lemma (5.1) for f with support in Ix - bl > 4R and 
X < I + liT. For this we will prove the existence of a number q such that if 
T = min(2,(pq')', s) and r ~ R, then (5.2) holds, q> 1, 

(5.18) (R + Ix - bI)PU-A+l/T)V(X) E Ap 

and 

(5.19) I - 1 + liT < X < I + liT. 

The existence of q is shown as follows. By Lemma (4.5), Q > 1 and by Holder's 
inequality (5.2) holds for r ~ R for each q satisfying 1 .,;; q < Q. Since lim q ~ Q T = T, 
the inequalities (5.19) will follow from the hypothesis 1- 1 + liT < X and the 
condition X < I + liT if 1 < q < Q and q is sufficiently close to Q. Furthermore, 
the hypothesis and Lemma (4.9) also imply (5.18) for q sufficiently close to Q. For 
the rest of this proof, q will denote a number satisfying these conditions. 

We will now use Lemma (5.13) with a = a - Ip, U(x) = W(x)x{lx-bl> R}(X) 
and K(x, y) as defined in (5.4). To prove inequality (5.14), fix an h in Coo with 
support in r18.,;; Ix - bl.,;; 16r. By hypothesis, IIKN * hllp,vl .,;; BHllhllp,vl; here 
and throughout the proof B will denote B(m, s, X). Since V1(x) = Ix - blaW(x), 
this implies (5.14) with A = C(BH)P and Th replaced by KN * h. To complete the 
proof of (5.14), we must estimate 

1 p a I Th (x) - (K N * h )( x ) I I x - b I U( x ) dx. 
r",lx-bl,,2r 

From the definition of K(x, y), we see that this is bounded by a sum of terms of the 
form 

(5.20) CI~/8"IY-bl"16r (b - y)nh(Y)dyI
P 

x[l IK~n)(x - b)nx - blaU(X)dX] 
r" Ix-bl ,,2r 

with 0 .,;; n .,;; 1- 1. We will show that these terms are bounded by Cr"BPllhll;,v' 
This is sufficient since r"V(x) .,;; Clx - blaW(x) on the support of h. 
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Holder's inequality shows that the first term in (5.20) has the bound 

(5.21) crpn[fOO Ih(Y)(V(Y)dy ][l V(yr1/(p-1ldy]P-l. 
-00 r/8.;;ly-bl.;;l6r 

For the second term in (5.20), use Holder's inequality with exponents q' and q. If 
r ~ R, use (5.2) to get the bound 

(5.22) crll - lN[l V(x)dx][l IK*nl(x - b)lpq'dx]l/q'. 
r.;;lx-bl<2r r.;;lx-bl.;;2r 

This bound also holds trivially if r ~ R/2 since the second term in (5.20) is 0 in this 
case. If R/2 < r < R, use the facts that 

(5.23) 1 U(x)qdx~CRlpql. V(x)qdx, 
r.;;lx-bl.;;2r R.;;lx-bl.;;2R 

(5.2) and then 

(5.24) 1. V(x) dx ~ C 1 V(x) dx, 
R.;;lx-bl.;;2R r/2<lx-bl<2r 

which follows from the hypothesis V E Ap. These show that (5.22) is a bound for the 
second term in (5.20) for this case also and that, therefore, this bound is valid for all 
r> O. 

Since n ~ 1- 1, we have from (5.19) that n < A - 1/1'. Theorem (2.5) then shows 
that (5.22) is bounded by 

(5.25) CBPr ll - p(n+lll V(x)dx. 
r.;;lx-bl.;;2r 

Multiplying (5.21) and (5.25) and using the definition of Ap then shows that (5.20) is 
bounded by CrIlBPllhll:,v as asserted. This completes the proof that (5.14) holds 
with A = C(1 + HP)BP and C independent of m, Nand h. 

To complete the proof of Lemma (5.1) for f with support in Ix - bl > 4R and 
A < 1+ 1/T, we must show that (5.15) and (5.17) are bounded by the right side of 
(5.3). Because of the support restriction, it is sufficient to show that (5.15) and (5.17) 
are bounded by 

(5.26) C(l + HP)BP foo If(x) (W(x) dx 
-00 

for these f's. 
To show this for (5.15), use Holder's inequality with exponents q' and q and then 

use (5.2) to show that the inner integral in (5.15) has the bound 

[ ]
l!q' 

(5.27) Crpl-l+ l/ q 1 IK(x,y)IPq'dx 1 V(x)dx 
r/2<lx-bl<2r r/2<lx-bl<2r 

provided r> 2R. Since (5.19) holds and Iy - bl < r/4 in (5.15), we can use 
Theorem (2.6) with L = I - 1 to estimate (5.27); the result is 

CBP [ I y - b I] p"A-p/T rP(I-lll V( x) dx. 
r r/2<lx-bl<2r 
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Now replace the inner integral in (5.15) with this estimate for r > 2R. Since I(y) is 
o for Iy - bl < 4R, we see that (5.15) is bounded by 

CBP 100 [1 V(X)dx]g(r)Pr-l+PU-l-A+ljT)dr, 
16R r/2<lx-bl<2r 

where 

g(r) = 1 Iy - bIA-1/TI/(y)ldy. 
ly-bl<r/4 

Now interchange the order of the first two integrals to get 

CBP 1 [1 r-l+PU-l-A+ljT)g(rV dr]V(x) dx. 
Ix-bl>8R Ix-bl/2<r<2Ix-bl 

Next, replace g(r) by g(2lx - bl), which is larger, and perform the integration in r 
to obtain the bound 

CBP 1 g(2lx - blYlx - bIPU-I-A+l/T)V(x)dx. 
Ix-bl>8R 

Since Ix - bl > SR, we have 

Ix - bIPU-A+l/T)V(X):::; C(R +Ix - bIYU-A+ljT)V(X), 

and this is in Ap by (5.1S). Lemma (4.1) then gives the bound 

CBP Joo I/(x) (Ix - bIP(A-l/T)(R + Ix - bIYU-A+1/T)V(x) dx. 
-00 

Since 1 is supported on Ix - bl ;;:, 4R, this is bounded by (5.26) as asserted. 
To estimate (5.17), observe that the inner integral is the same as the inner integral 

in (5.15) and, therefore, has the bound (5.27) for r > 2R. For Rj2 < r < 2R, the 
bound (5.27) is also valid; the proof uses the obvious modification of (5.23) and 
(5.24). Note also that for r < Rj2 this integral is 0 by the definition of U. We will 
estimate the first integral in (5.27) for Iy - bl > 4r by estimating the integral of 
each term in the definition of K(x, y). First 

1 !KN(X - y)!pq'dx:::; 1 !KN(u)!pq'du 
r/2< Ix-bl <2r ly-bl/2< I ul <2Iy-bl 

since Iy - bl > 4r. Then since (5.19) holds and I ;;:, 1, we can use Theorem (2.5) to 
get the estimate 

[1 pq' ]l/q' -p+ljq' 
!KN(x-y)! dx :::;cBPly-bl . 

r/2<lx-bl<2r 

The other terms are 

Iy - b(p[l IK*n)(x - b)lpq'dX]l/q, :::; CBq( Iy - bl )nPr_p+l/q, 
r/2<lx-bl<2r r 

for 0 :::; n :::; 1- 1; the inequality follows from Theorem (2.5) by using (5.19). Since 
Iy - bl > 4r, we can combine these to obtain 

( )
l/q' ( I bl )U-l)P 1 IK(x, y) IPq'dx :::; CBP y - r- p+1/ q'. 

r/2<lx-bl<2r r 
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Using this in (5.27) and replacing the inner integral in (5.17) by the resulting 
estimate shows that (5.17) has the bound 

CBP1. oo [1 V(x)dx][1 IY_bll-ll/(y)ldy]Pdr 
R/2 r/2<lx-bl<2r ly-bl>4r r 

since the integrand in (5.17) is 0 for r ... R12. Now, as in the estimation of (5.15), 
interchange the order of the first two integrals, enlarge the integration set in the y 
integral to Iy - bl > Ix - bl and perform the integration in r. This gives the 
estimate 

CBP1 [1 IY-bll-ll/(Y)ldy]PV(X)dX. 
Ix-bl>R/4 ly-bl>lx-bl 

Now' since V(x) E Ap ' we can use Lemma (4.3) to show that (5.17) also has the 
bound (5.26). This completes the proof of Lemma (5.1) for I with support in 
Ix - bl > 4R and A < I + l/T. 

We will now consider the case with I 's support in Ix - bl > 4R and A ~ I + liT. 
For this, choose p, such that (R + Ix - bI)P(/-Jdl/T)V(X) E Ap and 1- 1 + liT < 
p, < I + l/T; this is possible by Lemma (4.9). By the case just proved with A = p" 

the left side of (5.3) is bounded by C(1 + HP)B(m, s, p,)PII/II:.w' Theorem (2.2) 
then completes the proof of this case. 

Finally, we consider general I in Y. Given such an I, choose a sequence of 
functions In in Y such that In(x) = I(x) for Ix - bl > 4R + l/n, In(x) = 0 for 
Ix - bl'" 4R and Iln(x)I"'I/(x)1 for all x. Then In converges to IXlx-bl>4R in Lfv 
and J::'ooK(x,y)ln(y)dy converges pointwise to J1y-hl>4RK(X,y)/(y)dy. Apply-
ing the case already proved to the In's and then using Fatou's lemma completes the 
proof of Lemma (5.1). 

The proof of Lemma (5.5) is similar to the proof of Lemma (5.1), and only the 
differences will be described. For the case A < I + liT and I with support in 
Ix - bl ... R, we choose q> 1 such that if 'T = min(2, (pq')', s) and 0 ... r ... 2R, 
then (5.2) holds, 

(5.28) ( 
Ix-bl )PU-X+l/T) 

vex) E A 
R +Ix - bl P 

and (5.19) is true. Lemma (5.13) is applied with a = a - Ip and U(x) = 
W(x)x{lx- hl<4R}(X) and the same K(x, y). The proof of inequality (5.14) is the 
same. 

To estimate (5.15), note first that the inner integral has the bound (5.27) for 
r < 8R; for r < 2R this is done as before while for 2R < r < 8R use is made of the 
facts 

1 U( x ) q dx ... CR1pq 1. V( x ) q dx 
r/2<lx-hl<2r R~lx-hl~4R 

and 

1. Vex) dx ... C 1 vex) dx. 
R~lx-hl~4R r/2~lx-bl<2r 
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As in the last proof, (5.27) is estimated by using Theorem (2.6); this shows that 
(5.15) is bounded by 

18R (1 ) CBP V(x) dx 
o r/2<lx-bl<2r 

x(1 IY - bIA-l/Tlf(Y)ldy)Prf3dr, 
Lv- b l<r/4 

where f3 = -1 + p(l- 1 - A + ljT). The same procedure as before leads to the 
bound 

CBP 1 [1 IY - bIA- 1/ Tlf(Y) IdY]P lx - bl f3 +1v(x) dx. 
Ix-bl<16R ly-bl<lx-bl 

Since Ix - bl < 16R, 

Ix - bIP(I-A+l/T)V{X) ~ C x - V{x) [ I bl ]P(I-A+l/T) 

R+lx-bl 
and this is in Ap by (5.28). Lemma (4.1) then gives the bound 

[ I bl ]P(I-A+l/Tl 
CBPjOO If(x)(ix _ b(A-l/Tl x - V{x)dx. 

-00 R + Ix - bl 
Since f is supported on Ix - bl ~ R, this is bounded by CBPllfll~,w as asserted. 

For the estimation of (5.17), we obtain the bound (5.27) for the inner integral if 
r < 2R and, as before, show that (5.27) is bounded by 

CBPly - bl(l-I)P 1 V{x) dx 
r/2<lx-bl<2r 

and (5.17) has the bound 

CBP1R/4 [1 V(x) dX] [1 I Y - b 11-11 f{y) I dY ] P dr. 
o r/2<lx-bl<2r ly-bl>4r r 

With the same procedure as before, we get the bound 

CBP1 [1 IY-bl/-llf(Y)ldy]PV{X)dX. 
Ix-bl<R ly-bl>lx-bl 

Since V E Ap ' Lemma (4.3) gives the needed bound. This completes the proof of 
Lemma (5.5) if A < I + liT and f has support in Ix - bl ~ R. The extension to 
A ~ I + liT and general f in Y is done as it was in the proof of Lemma (5.1). 

To prove Lemma (5.7) for A < I + liT, define for Ro > 4R the quantity Qo 
as the least upper bound of all q for which (5.2) holds for r > Ro and let To = 
min(2, (pQ~)" s). Since To ~ T and To -+ T as Ro -+ 00, choosing Ro sufficiently 
large will make 
(5.29) 1- 1 + ljTo < A < 1+ ljTo. 
Because of Lemma (4.9), we will also have 

(5.30) (R + Ix - bI)P(I-A+l/Tol V{x) E Ap 
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for Ro large. Similarly, if A < a + l/T, then 

(5.31) Ix - bIP(I->.+l/To)V{x) E Ap 

for large Ro. Choose Ro so that (5.29) and (5.30) hold and so that (5.31) holds if 
A < a + liT. Note that Ro is independent of f, m and N. 

To estimate the left side of (5.8) for this R o, choose q so that 1 < q < Qo and 
(5.18) and (5.19) hold, where T = min(2, (pq')', s); this is possible by (5.29), (5.30) 
and Lemma (4.9) since T ~ To and T ~ To as q ~ Qo' Furthermore, if A < a + liT, 
choose q so that 

(5.32) 

this is possible by (5.31) and Lemma (4.9). 
By Minkowski's integral inequality, the left side of (5.8) is bounded by 

(5.33) [1 [1 IK{x, y) (W{x) dX]1/P1f{y) I dyjP. 
iy-bi<R ix-bi>Ro 

The inner integral is bounded by 
00 

C n~o hnRo<ix-bi<2n+1Ro IK{x, y) ([2 nR o] 1PV{x) dx. 

Now apply Holder's inequality with exponents q' and q and then use (5.2) to show 
that this is bounded by 

00 [ ]l!q' C L 2n(lp-l+l!q) L n+1 IK{x,y)lpq'dx 
n=O 2 Ro.;;ix-bi<2 Ro 

Since 41y - bl < Ro and (5.19) holds, Theorem (2.6) gives the bound 

00 [I bl ]P>'-P/T CL BP y~ 2np(I-l)1 V{x)dx. 
n=O 2 2nRo.;;ix-bi<2n+1Ro 

This is bounded by 

[R + Ix - bl] p(/->.+l/T) 
CB PI y - b IP>'-P/T1 V{ ) d -'----'---"'--P--- x x. 

ix-bi;'Ro Ix - bl 
Lemma 1 of.[10] and (5.18) then show that this has the bound 

(5.34) 

Now replace the inner integral in (5.33) with (5.34). This shows that (5.33) is 
bounded by a constant times the product of 

(5.35) 
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and 

(5.36) BP 1. V(X) dx. 
Ro.;lx-bl< 2Ro 

If A > a + 1jT, then since A < 1 + liT we conclude that a ~ 1 - 1. By (5.19) we 
have A - 1jT > a and, therefore, Iy - bl~-l/'T ~ C[W(y)jV(y)]l/P on Iy - bl < 
R. Using this and Holder's inequality, we see (5.35) is bounded by 

c[J V(yf1/(P-l)dy]P-l j If(y)(W(y)dy. 
ly-bl<R ly-bl<R 

Now multiply by (5.36), enlarge the interval of integration in the two integrals 
containing V to (b - 2Ro, b + 2Ro) and use the definition of Ap" This shows that 
the left side of (5.8) is bounded by the right side of (5.8) if A > a + IjT and 
A < 1 + liT. If A < a + liT, then since A > I - 1 + liT and a ~ I, we conclude 
that a = I. Holder's inequality then shows that (5.35) is bounded by 

c[J [IY_b((l-~+1/T)V(y)]-1/(P-l)dy]P-1J If(y)(W(y)dy. 
ly-bl<R ly-bl<R 

Now (5.36) is bounded by 

CBP J Ix - b((l-~+l/'T)V(x) dx; 
Ix-bl< 2R o 

multiplying these two expressions and using (5.32) then completes the proof of 
Lemma (5.7) for A < 1 + liT. The extension to A > 1+ IjT is done as it was for 
Lemma (5.1). 

To prove Lemma (5.9) for A < 1 + liT, use Lemma (4.9) to choose a q such that 
1 < q < Q, (5.19) holds and 

[ Ix - bl ]P(l-~+l/'T) 
(5.37) V(x) E Ap ' 

R +Ix - bl 
where T = min(2, (pq')', s). The left side of (5.12) is bounded by 

(5.38) [J (1 IK(X,Y)(W(X)dX)l/Plf(Y)ldyjP. 
Lv-bl<R 4R<lx-bl.;Ro 

Following the procedure used to estimate (5.33), using (5.10) in place of (5.2), shows 
that the inner integral in (5.38) is bounded by 

(5.39) CBPly - bIP~-PI'T 1 W(x) dx. 
4R<lx-bl.;Ro 

Since the integral in (5.39) is finite, we need only show that 

CBP[J Iy - b(-l/'Tlf(y) IdY]P 
ly-bl<R 

(5.40) 

is bounded by the right side of (5.12). 
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Since Iy - bIIPV(x) ~ CW(y) on Iy - bl < R, Holder's inequality applied to 
(SAO) gives the bound 

CBP[l [Iy - b(U-A+l/T)V(y}]-l/(P-l) dy]P-l l If(y} (W(y) dy. 
ly-bl<R ly-bl<R 

The first integral is finite because of (5.37). This completes the proof of Lemma (5.9) 
if A < 1+ l/T; the extension to A ~ 1+ l/T is done as it was for Lemma (5.1). 

6. Results for general weights. Here we prove results of the form Il(mj) vllp,w ~ 
Cilfllp,w for general W. The W's will all have the form Ig(x)IPV(x), where g(x) is 
a polynomial and V(x) is in Ap. As mentioned in §1, this form is necessary if such 
inequalities are to hold for Schwartz functions f with a fixed number of zero 
moments and m(x) = sgn(x). This form is also a necessary condition for the 
inequality with m(x) = sgn(x) for all f in Yo,o if the weight satisfies a doubling 
condition. 

The general results proved here are Theorem (6.1) for A ~ 1 and Theorem (6.5) 
for t < A < 1. Theorem (6.7) concerns Wof the form (1 + Ixl)an;=llx - b)aj ; it is 
the case A > t of Theorem (lA). Theorems (6.1) and (6.7) are stated for f in Y oo 
and Theorem (6.5) for fin Y. As shown in §7, however, the conditions on f can be 
weakened. 

THEOREM (6.1). Assume that 1 ~ s ~ 00,1 < P < 00, A ~ 1, 10 ~ 0, m E M(s, A), 
V(x) E A p' g(x) is a polynomial of degree 10 and W(x) = Ig(x)IPV(x). Let Qo be 
the least upper bound of all q for which there are constants C and R such that with 
b=O 

(6.2) !'~lx-bl~2r W(x}q dx ~ Crl-q[!'~IX_bl~2r W(x} dx r 
for all r > R. Let Qi be the least upper bound of all q for which (6.2) holds for all 
r > 0 with b = bi' where {bi }{=l is the set of distinct real roots of g. For 0 ~ i ~ J let 
1'; = min(2,(pQ;)', s), for 1 ~ i ~ J let Ii be the multiplicity of the root bi in g, and 
for 0 ~ i ~ J assume that A > Ii - 1 + 1/1';. If A < 10 + liTo, assume in addition 
that 

(6.3) 

if A < Ii + 1/1'; for 1 ~ i ~ J, assume in addition that 

(6A) [ Ix - b.1 ]PU,-A+l/Ti) 
--,---',-,-- V( x} E A p-
I + Ix - bil 

Then for every f in Yo,o' 

where C is independent of m and f. 
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Note that Theorem (1.2) is an immediate corollary of this for A ~ t. 
For A < 1, Theorem (3.2) provides norm inequalities with W in Ap" If A < 1 and 

the weight function has the form IxIQ, Theorem (1.4) of [16] shows that a < -1 + 
3p/2. This suggests that if A < 1, V is in Ap, g is a polynomial and Ig(x)IPV(x) is 
a weight function for (mj) v for all m in M(s, A), then g has degree at most one. 
Note also that if 1 < A .:;; t, Theorem (6.1) requires that g's degree is at most one. 
Norm inequalities for weights of this type are provided by using the following 
theorem with Theorem (3.2). 

THEOREM (6.5). Assume that 1 .:;; s .:;; 00, 1 < P < 00, A < 1, m E M(s, A) and 
V(x) E Ap. Let W(x) = Ig(x)IPV(x), where g(x) is a polynomial of degree 1, and 
assume for every m E M(s, A) and hEY' that lI(mh) vllp,v\ .:;; HB(m, s, A)llhllp,v\, 
where V1(x) = Ig(x)IPV(x) and f3 and H are constants independent of f and m with 
f3 .:;; p. Let Qo be the least upper bound of all q for which there are constants C and R 
such that (6.2) holds with b = 0 and r > R. Let To = min(2,(pQoY, s) and assume 
that A > ljTo and (1 + Ixl)p(l-A+l/TolV(x) E Ap. If the root b of g(x) is real, let Q 
be the least upper bound of all q for which (6.2) holds for r > 0; let T = min(2,(pQ'Y, s) 
and assume that A> l/T and 

[
Ix - bl ]P(l-A+l/Tl 

(6.6) V(x) E Ap. 
l+lx-bl 

Then for every fin Y' withj(O) = 0 and every m in M(s, A), we have 

II{mj) v IIp.w':;; C(H + l)B(m, s, A)llf IIp,w, 

where C is independent of m and f. 
An important consequence of Theorems (6.1), (6.5) and (3.3) to be proved in this 

section is the following. This is Theorem (1.4) for A > t. 
THEOREM (6.7). Assume that 1 .:;; s .:;; 00,1 < P < 00, A> max(t, t), or A = s = 

1, mE M(s, A), W(x) = (1 + Ixl)an;=llx - bJiai , where the b/s are real and dis-
tinct. Define t = min(2,p',s), ao = a + r.~=laj and Ij = int[(aj + l)/p]. Assume 
that r.~=llj':;; 10 and for O.:;;j.:;; J that aj > -1, aj > -Ap, (aj + l)/p is not an 
integer, and aj < (A + 1 - l/t)p - 1. For 1 .:;; i, j .:;; J, assume that la i - ajl < pA. 
Then for fin Y'o 0' 

II(mj) v IIp,w':;; CB{m, s, A)llf IIp,w, 

where C is independent of m and f. 

Theorem (6.1) will be proved by showing that for fin Y'o,o, 

(6.8) IIKN*fll~,w':;; CB(m,s,AYllfll~,w, 
where C is independent of f, m and N. This is sufficient since for f in Y'o.o, 
KN * f = r.;=_N[m/x)j(x)] v equals (mj) v for sufficiently large N. We may as-
sume 10 ~ 1 since for 10 = 0 Theorem (6.1) is an immediate consequence of Theorem 
(3.1). 
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Now fix d with d > 0 and 4d < rnin; •• )b; - bjl if J ~ 2. Let h(x), 0 ~ i ~ J, be 
the functions whose existence is asserted by Lemma (4.11); if g has no real roots, 
take 10 = 1 and J = O. Since by Lemma (4.11) we have J~ooxjh(x)dx = 0 for 
o ~j ~ 10 - 1, 

(6.9) (KN * I;)(x) = i: [KN(X - y) - n~o (b:/ r K~n)(x - b) k;(y) dy 

for any L ~ 10 - 1 and any b. 
By Minkowski's inequality, the left side of (6.8) is bounded by a constant times 

the sum of 

(6.10) foo I(KN * lo){x) (W(x) dx, 
-00 

J 

(6.11) L J I(KN*h)(x)(W(x)dx 
;=1 IX-bil > 8d 

and 
J 

(6.12) L J I(KN*h)(x)(W(x)dx. 
i= 1 Ix-bil.,;; 8d 

The proof of Theorem (6.1) will be completed by showing that (6.10)-(6.12) are 
bounded by the right side of (6.8). 

To estimate (6.10), we must first choose a large number Rm as follows. Given 
Rm > 0, let Qm be the least upper bound of all q for which (6.2) holds with b = 0 
and r> Rm and let Tm = rnin(2, (pQ;")', s). Since Tm ~ To as Rm ~ 00, if Rm is 
sufficiently large we will have 
(6.13) A> 10 - 1 + l/Tm . 

We also want to choose Rm so that if A < 10 + l/Tm' then 
(6.14) (1 + !x!)P(lo-A+1/Tm )V(X) E Ap. 

To do this if A > 10 + ljTo we will choose Rm so that A > 10 + l/Tm and (6.14) is 
not needed. If A ~ 10 + ljTo, then since (1 + IxI)P(lo-A+1/To)V(X) E Ap ' we will 
have (6.14) for sufficiently large Rm by Lemma (4.9). Choose Rm so large that (6.13) 
holds, (6.14) holds if A < 10 + ljTm' and Ig(x)1 has a positive lower bound on 
Ixl ~ Rm' 

To estimate (6.10), we will first use Lemma (5.7) to show the existence of 
Ro> 16Rm and C independent of I, m and N such that 

(6.15) J IJ K(x,Y)/o(Y)dyI
P 
W(x)dx 

Ixl>Ro lyl< 4R m 

~ CBP J I/o(Y) (W(y) dy, 
lyl< 4Rm 

where K(x, y) is as in (5.4) with 1 = 10 , To do this, take I, a, b, R and V in Lemma 
(5.7) to be respectively 10 ,0,0, Rm and V. Then Q and T of Lemma (5.7) are Qo and 
To respectively, and the hypotheses of Lemma (5.7) are restatements of those of 
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Theorem (6.1). The conclusion of Lemma (5.7) gives (6.15) since [R + Ix - bl]/PV(X) 
~ Cig(x)IPV(x) on the support of 10' 

Using (6.9) with L = 10 - 1, then (6.15) and (4.12), we see that the proof that 
(6.10) is bounded by the right side of (6.8) can be completed by estimating 

(6.16) 

and 

1 11 K(x, Y }/o(Y} dy IP 
W(x} dx 

Ixl;;'Ro lyl;;. 4R m 

(6.17) 

where K(x, y) is as in (5.4) with I = 10 , For (6.16), use the fact that g is bounded on 
Ixl ~ Ro to obtain the bound 

(6.18) 

By Theorem (3.1) and Theorem (2.3), this has the bound CBPll/oll:.v since V EAr 
Since V(x) ~ CW(x) on the support of 10 and (4.12) holds, it follows that (6.16) is 
bounded by the right side of (6.8). 

We will apply Lemma (5.1) to (6.17) with R = Rm, 1= 10 , b = 0, Q = Qm' 
T = Tm , a = ° and the same V. Note that the Wof Theorem (6.1) is not the Wof 
Lemma (5.1). The inequality IIKN * hllp,v ~ CB(m, s, A)llhllp,v follows from Theo-
rem (3.1) and Theorem (2.3). The other hypotheses of Lemma (5.1) are properties of 
Rm established before. Lemma (5.1) shows that (6.17) is bounded by CBPll/oll:,w 
since V(x) ~ CW(x) on Ixl ~ 4Rm. Inequality (4.12) shows this is bounded by the 
right side of (6.8); this completes the estimation of (6.10). 

To estimate the terms in (6.11), fix an i and first apply Lemma (5.7) with 1= 10 , 

a = Ii' b = bi' R = 2d, Q = Qo and T = To. That A > 10 - 1 + 1/To and that 
(6.3) holds if A < 10 + 1/To are hypothesized in Theorem (6.1). If A < Ii + liTo, 
then Ii = 10 , Since 1'; ~ To, the hypothesis asserts that (6.4) holds. Then since ° ~ p(lo - A + 1/To) ~ P(/i - A + 1/1';), Lemma (4.8) shows that 

[ Ix - bl ]P(lO-X+IITO) 
---,-_~l-,--- v( x} E A p-
I + Ix - bil 

Combining this with (6.3) and using Lemma (4.7) then shows that 

I - b IP(l,-x+l/To) () A x i V X E P' 

Thus, the hypotheses of Lemma (5.7) are verified. Using (6.9) with L = 10 - 1, and 
the facts that W(x) ~ Cix - bilp1i[R + Ix - biIF(lo-/;)V(X) for all x and the re-
verse inequality holds on the support of Ii' we obtain an R i , independent of N, m 
and I, such that 

1 P foo P I(KN*./;)(X} I W(x}dx ~ CBP I/i(X}1 W(x}dx. 
Ix-bil>Ri -00 

Inequality (4.12) is then used to show that this is bounded by the right side of (6.8). 
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To complete the consideration of (6.11), we must show that 

(6.19) 1 P foo P I(KN*/;)(x) I W(x)dx ~ CBP I/(x)1 W{x)dx. 
Rd<lx-b;I<R, -00 

For this we will apply Lemma (5.9) with R = 2d, Ro = R i, I = Ii' b = bi and g(x) 
the g(x) of Theorem (6.1) divided by (x - bY" Take Q to be the least upper bound 
of all q for which (6.2) holds with b = bi and 4d < 2r < R i; then Q ~ Qi and 
T = rnin(2, (pQ')', s) ~ T;. The hypotheses of Lemma (5.9) are then immediate 
consequences of the hypotheses of Theorem (6.1). Using (6.9) with L = Ii - Ion the 
left side of (6.19) and then applying Lemma (5.9) and (4.12) completes the proof of 
(6.19). 

For the estimate of (6.12) we will apply Lemma (5.5) to each term with R = 2d, 
I = Ii' b = bi' Q the least upper bound of all q for which (6.2) holds with b = bi 

and 0 ~ r ~ 4d, T = rnin(2, (pQ')', s) and a = O. Then Q ~ Qi and T ~ T;; from 
this and the hypothesis A > Ii - 1 + liT; we conclude that A > Ii - 1 + liT. The 
inequality IIKN * hllp,v ~ CB(m, s, A)llhllp,v follows from Theorem (3.1) and Theo-
rem (2.3). If A < Ii + liT;, then (6.4) holds by hypothesis. Therefore, using (6.9) 
with L = Ii - 1, the fact that Ig(x)1 ~ Ix - bill; for Ix - bil ~ Sd and Lemma (5.5) 
shows that the ith term in (6.12) is bounded by 

CBPi l.t;(x)(Jx-bJ'T{x)dx. 
Ix-b,I<2d 

Since bi is the only root of g(x) in Ix - bil < 4d, we can use (4.12) to show that this 
is bounded by the right side of (6.S). This completes the proof of Theorem (6.1). 

The proof of Theorem (6.5) is like the proof of Theorem (6.1). As in Theorem 
(6.1), it is sufficient to prove (6.S). The same decomposition of I is used; note that 
there will be at most two functions in this decomposition and that d can be taken to 
be l. The proof is completed by estimating (6.10)-(6.12). 

The estimation of (6.10) is the same as in Theorem (6.1) until we reach the 
estimation of (6.16). For this, instead of (6.1S), we use the bound 

i I ( K N * 10)( x ) ( V1 ( X ) dx; 
Ixl.;Ro 

this is valid because the boundedness of g on Ixl ~ Ro and the fact that /3 ~ p 
imply W(x) ~ CV1(x) on Ixl ~ Ro. By the hypothesis and Theorem (2.3), this has 
the bound CBPHPll/oll;,vj' Since /3 ~ p, we have V1(x) ~ CW(x) on the support of 
10' and it follows that (6.16) is bounded by the right side of (6.S). 

For (6.17), Lemma (5.1) is applied with R = R m, 1= 1, b = 0, Q = Qm' T = Tm 
and a = /3. As before, this gives the bound CBPll/oll;,w; this completes the 
estimation of (6.10). 

There can be at most one term in (6.11); if there is one, then b1 is real and 11 = 1. 
The proof that (6.11) is bounded by the right side of (6.S) is done as it was in the 
proof of Theorem (6.1). In (6.12) there is also at most one term, and if there is one, 
then b1 is real and 11 = 1. We apply Lemma (5.5) with R = 2, 1= 1, b = b1, Q the 
least upper bound of all q for which (6.2) holds with b = b1 and 0 ~ r ~ 4, 
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T = min(2, (pQ')', s) and a = {3. The inequality IIKN * hllp,v\ ~ CB(m, s, A)lIhllp.v\ 
for hEY follows from the hypothesis lI(mh) vllp,v\ ~ CB(m, s, A)lIhllp,v\ and 
Theorem (2.3). This part is completed in the same way as it was in the proof of 
Theorem (6.1). This completes the proof of Theorem (6.5). 

To prove Theorem (6.7), we will assume that W(x) has the equivalent form 
Ix + wflf=llx - b)Q1 , where i = g. Define L = 10 - L]=l Ij' g(x) 
= (x + i)Lflf_l(X - bY) and V(x) = W(x)lg(xW p • The hypothesis insures that 
L ~ 0 and that, therefore, g(x) is a polynomial. The degree of g is 10 , It is easy to 
see by Lemma (4.7) that a function of the form Ix + wflf=llx - bXl, where the bj 

are real and distinct, is in Ap if and only if -1 < uj < P - 1 for 1 ~ j ~ J and 
-1 < U + L]=l uj < P - 1. When written in this form, V has uj = aj - plj for 
1 ~ j ~ J, and since U = a - pL, we have 

U + j~l uj = ao - j~l aj - p (10 - j~l Ij) + j~l (a j - plj) = ao - plo· 

To show that V is in Ap ' therefore, we need to show that -1 < aj - plj < P - 1 for 
o ~ j ~ J. This follows from the definition of Ij and the fact that (1 + a)lp is not 
an integer; therefore V is in Ap-

For the case A ~ 1, we will apply Theorem (6.1) with this V(x) and g(x). Since 
(6.2) holds for all q if r > 1 + 2 max(lb;l), we have Qo = 00 and To = t. For 
1 ~ i ~ J, (6.2) will hold for r > 0 with b = b; provided qaj > -1 for 1 ~ j ~ J and 
j"* i. Therefore, Q; = 1/max1 .;j";(0, -aj ) and 

T; = min(t, p ) 
p - 1 + max1';j";(0, -a;) 

for 1 ~ i ~ J. To show that A > I; - 1 + liT; for 0 ~ i ~ J, observe that since 
I; < (a; + l)/p, it is sufficient to prove that 
(6.20) PA > a; + 1 - P + piT; 

for 0 ~ i ~ J. If T; = t, this is hypothesized; otherwise, i ~ 1, max1';j .. i(0, -a) > 0 
and (6.20) reduces to PA > a; + max1.;j .. ;(-a). This holds since la i - ajl < PA for 
1 ~ i, j ~ J. 

If 0 ~ i ~ J and A < I; + 1/T;, we must verify that 
-1 < p(l; - A + 1/T;) + a; - pI; < p - 1 

to prove (6.3) if i = 0 or (6.4) if i "* O. The left inequality follows from the facts that 
A < Ii + liT; and a; + 1 ~ pi;. If T; = t, the right inequality follows from the 
assumption a i < -1 + p(A + 1 - 1/t). If T; "* t, then i ~ 1 and the right inequal-
ity reduces to -PA + max1.;j .. ;(-a) + ai < 0 which follows from the assumption 
la i - a) < PA for 1 ~ i, j ~ J. This completes the proof that W satisfies the 
conditions of Theorem (6.1) for the case A ~ 1; Theorem (6.1) then implies the 
conclusion of Theorem (6.7) in this case. 

For the case max( 1, t) < A < 1, we will use Theorems (3.3) and (6.5). Note first 
that since t ~ p', the condition aj < -1 + p(A + 1 - 1/t) implies aj < Ap. If 
Ij = 0 for 0 ~j ~ J, we also have aj < p - 1 for 0 ~j ~ J and W(x) satisfies the 
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hypotheses of Theorem (3.3). The conclusion of Theorem (6.7) then follows from 
Theorem (3.3) in this case. 

There remains the case A < 1 and Ij > ° for some j satisfying ° ~ j ~ J. We will 
show for this case that W(x) satisfies the hypotheses of Theorem (6.5). Since A < 1, 
we have ao < -1 + p(A + 1 - lit) < 2p - 1, and, therefore, 10 ~ 1. Since 10 ~ 
r.~=llj and Ij ~ ° for ° ~ j ~ J, we must have 10 = 1 and at most one other Ij can 
equal 1 while the rest are 0. Therefore, g( x) has degree 1. It was shown previously 
that V(x) is in Ap-

If Ik = 1 for some k> 0, define V1(x) = Ix - bkl-PAW(x) = Ix - bkIP-PAV(x); 
otherwise, let V1(x) = Ix + il-PAW(x) = Ix + W-PAV(x). We will prove that 
lI(mh) vllp,v1 ~ CBllhllp,v1 for h in Y by showing that VI satisfies the hypotheses 
of Theorem (3.3). Since t ~ p', we have aj < -1 + p(A + 1 - ljt) ~ pA and 
the exponents that are the same in VI and W clearly satisfy the hypotheses of 
Theorem (3.3). Since p - 1 < ao < PA, we also obtain max(-l, -pA) < ao - PA < 
min(p - 1, Ap). The same holds with ao replaced by ak if Ik = 1. If k ~ 1, lk = 1, 
j ~ 1 and j"* k, we must also show that -PA < aj - a k + PA < PA; this follows 
from the hypothesis laj - akl < PA and the fact that since Ij = 0, we have aj < ak' 
Also note that the f3 of Theorem (6.5) equals P - PA ~ p. 

The Qo of Theorem (6.5) is 00 and To = t. Since 10 = 1 and t ~ p', we have 
p - 1 < ao < -1 + p(A + 1 - ljp'), which implies A> ljp' and A > lit = liTo. 
The requirement (1 + Ixl)p(l-A+I/To)V(X) E Ap will be satisfied provided -1 < 
p(l - A + lit) + ao - p < P - 1. The left inequality follows because A < 1 and 
ao > p - 1; the right side is a consequence of ao < -1 + p(l + A - ljt). 

If the root of g(x) is real, it equals bk for the k with Ik = 1, and a k > P - 1 > 0. 
In this case, Q = ljmaxj;>I(O, -a) and T = min(t, pl(p - 1 - minj;>I(O, a)). 
To show A> 1lT,itissufficienttoprove A> lit and AP > P - 1 - minj;>I(O,a). 
That A> lit was shown in the preceding paragraph; AP > P - 1 is a consequence 
of A > lit ~ ljp'. The inequality AP > P - 1 - aj for j ~ 1 follows from the 
facts that a k - aj < PA for j ~ 1 and ak > p - 1. To prove (6.6), we need to show 
that 

-1 < p(l - A + ljT) + ak - P < P - 1. 

The left inequality follows from A < 1 and a k > P - 1. If T = t, the right inequality 
follows from ak < -1 + p(l + A - lit). If T < t, the right inequality becomes 
-AP - minj;>l aj + ak < 0, which follows from lak - a) < AP for 1 ~j, k ~ J. 

This completes the verification that W satisfies the hypotheses of Theorem (6.5) in 
this case. Since an f in Yoo has /(0) = 0, the conclusion of Theorem (6.5) implies 
the conclusion of Theorem (6.7) for this case. This completes the proof of Theorem 
(6.7). 

7. Extensions. As mentioned in §§5 and 6, the basic norm inequalities can be 
extended to more general classes of functions than Y or Yo,o by using density 
theorems. This section contains a few such results and comments on the possibility 
of further extensions. 
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To state our results we need the following definition. Let Qk be the set of 
functions in L2 II Lf4 such that f_OOoo/(x)xidx = 0 for 0 ~j ~ k and define Q-l 
to be L2. The main density result is the following. 

THEOREM (7.1). III < P < 00, I ~ 0, g(x) is a polynomial 01 degree I, V(x) E A p' 
W(x) = Ig(x)IPV(x) and I is in LW II QI-l' then there is a sequence ollunctions in 
9'00 that converges to I in L 2 and Lw. 

To prove this, observe first that the definition of Ap implies that f~n V(x) dx ~ 
Cn P for n ~ 1. Since any V in Ap is also in Ar for some r < p, we also have 
f_nn V(x) dx = o(n P) as n -+ 00. From this, rn W(x) dx = o(n lp +p), and Theorem 
(6.13) of [17] gives the asserted sequence. 

The following is the principal extension theorem; it can be applied to Theorems 
(1.2), (1.4), (3.2), (3.3), (6.1), (6.5) and (6.7). 

THEOREM (7.2). II 1 < p < 00, I ~ 0, m(x) is bounded, V(x) E A p' g(x) is a 
polynomial 01 degree I, W(x) = Ig(x)IPV(x) and 

(7.3) 

lor all I in 9'00' then (7.3) is true lor all I in QI-l II LW with the same C. 

To prove this, fix an I in QI-l and let {In} be a sequence of functions in 9'0.0 

that converges to I in L2 and Lw by using Theorem (7.1). Theorem (7.1) and (7.3) 
imply that the operator (mj) von 9'0,0 has a unique extension to QI-l II Lw. Call 
the image of I under this operator Tmf. Then IITmlllp,w ~ Cil/llp,w, and there is a 
subsequence In such that Tmln converges to Tml almost everywhere. Since In 
converges to lin L2 as j -+ ~, then (mjn) v converges to (mj) v in L2 and ~ 

• J • 

subsequence converges to (mf) v almost everywhere. Therefore, (mf) v = Tml and 
the result follows. 

If W(x) = IxIIPV(x), where V E A p' Theorem (6.19) of [17] shows that 9'0,0 is 
dense in Lw and the operator (mj) v, defined initially on 9'0,0' has a unique 
extension. More generally, if W(x) = Ig(x)IPV(x), where g is a polynomial with no 
complex roots, then 9'0,0 is dense in Lw as shown in Corollary (8.11) of [22]. This 
density can also be obtained by modifying the proof of Theorem (6.19) of [17]. 
Therefore, in this case the operator also has a unique extension. 

If the polynomial g has complex roots, it is not hard to show that 9'0,0 is not 
dense in Lw and the extension is not unique. If g(x) = gl(X)g2(X) where gl has 
complex roots, g2 has real roots and gl has degree d, then by Theorem (8.13) of 
[22], 9'0,0 is dense in the subspace of Lw with f Ig2Xk dx = 0 for 0 ~ k ~ d - 1. 

Even if the extension is unique, the extended operator will not, in general, equal 
(mj) v even for I in L2 II Lw. Various ways of expressing Tml for the case p = 2, 
g(x) = Xl, V(x) = Ixl a with -1 < a < 1 are given in §7 of [17], similar expressions 
can be obtained for the general case. 

8. The case A ~ t. This section contains the proof of two multiplier theorems for 
A ~ t. Theorem (8.1) is a result for general weight functions and resembles Theorem 
(3.2). Theorem (8.7) is the case of Theorem (1.4) for A ~ t. The proof of Theorem 
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(8.1) is based on a similar one in §4 of [2] and is like the proof of Theorem (5.1) of 
[18]. Theorem (8.7) is proved from (8.1) in the same way that Theorem (3.3) was 
obtained from Theorem (3.2). The first theorem to be proved is as follows. 

THEOREM (8.1). If 1 < P < 00, 2 < S ,.; 00, max(t, Ii - tl) < A ,.; t, m E 

M(s, A), u ~ max(2/(2pA + 2 - p), l/Ap), u(l - p/2),.; 1, W(x)U E Al\pu and f 
is in !/, then 

II(mj) v IIp,w''; CB(m, s, A)II f IIp,w 
with C independent of m and f. 

We will use the following notation. Define 8(x) = 0/(x/2) + o/(x) + 0/(2x), 0/ as 
in §2, and define the operator D[ by 

DN(x) = [(1 + 221IxI2)1\/2j(x)r. 

Given a bounded function m(x), complex z and A, positive e and a, and an integer 
N, define 

N [<1(1-Z)/2] (8.2) m(z,x) = L 8(2- lx)D?-1)/2-E ID[mll sgnD[ml' 
l=-N 

where sgn z = z/Izl for z -=1= 0 and sgn 0 = O. We will need the following fact proved 
as Lemma (5.3) of [18]. 

LEMMA (8.3). If a> 2, ~ < A ,.; t, e = A - t m is in M(a, A) and v is real, then 

(8.4) m(l-~,x)= tml(x), 
l=-N 

(8.5) Ilm(l + iv, x) 1100 ,.; C(l + v2) 
and 

(8.6) B(m(iv,x),2,e + t),.; C(l + v)2[B(m,a,A)]<1/2, 
where C is independent of v and m. 

To prove Theorem (8.1) for the case B(m, s, A) = 1, fix m, let a satisfy l/A < a 
,.; s, let e = A -l/a and define m(z,x) by (8.2). Let r = 4p/(2p + 2a - pa). By 
taking a - l/A sufficiently small we will have Ii - tl < t and this implies that 
1 < r < 00. Next define t = 2pu/ra and U(x) = W(X)U/I. As in the proof of 
Theorem (3.2), we may assume, by changing u if necessary, that the hypothesized 
inequalities for u are strict. It is then easy to verify that 

and 

lim .!..max(l 1 ) = max( 2 _1_) < 1 
<1--->I/l\t 'r(e+t) U(2Ap+2-p)'ApU' 

,,~T;i\t[l-(l-(e+ I))r]=u(l- ~)<1 

lim (e + -21 )rt = ApU. ,,->I/i\ 
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Consequently, if a is chosen sufficiently close to I/A, we have 1 < r < 00,2 < a ~ s, 
max(1, l/r(e + t) < t < 00 and t[1 - (1 - (e + 1»r] < 1. Furthermore, since 
U(x)t = W(x)U E Ab for some b < ApU, we also have U(x)t E A(f+l/2)rt for a 
close enough to 1/A. Then with such a a apply Theorem (3.2) with s = 2, m(x) 
replaced by mUu, x), p replaced by r, A by e + 1 and U by t. This, (8.6), Theorem 
(7.2) and Theorem (2.2) imply that for fin Lt(X)-2/' n U that 

foo IT(iu)f(x)( dx ~ C(1 + u2)'foo If(x)( dx, 
-XI -00 

where 

T(z )f(x) = U(x )(l-Z)/r[ m(z, x )(f(x )U(x )(Z-I)/r)''' 1 v. 

Because of (8.5), we also have 

foo IT(I+iV)f(x)12dx~C(I+v2)2foo If(x)1 2dx 
-00 -00 

for fin L 2. Complex interpolation, Theorem 4.1, p. 205 of [21] then implies for fin 
LP n Lt(X)4/a, that i: IT( 1 - ~ )f(X) IP dx ~ C i: If(x) ( dx. 

Since 2pu/art = 1, this is equivalent to 

( 1[/(x) '~N m,(x) n W(x) dx '" c( If(x) (W(x) dx 

Letting N ~ 00 completes the proof if B(m, s, A) = 1; the general case follows from 
the fact that B(ym, s, A) = lyIB(m, s, A). 

THEOREM (8.7). If 1 < P < 00, 2 < s ~ 00, max(+, Ii> - 11) < A ~ t m E 

M(s, A), W(x) = (1 + Ixl)anf~dx - b)a" where the b/s are real and distinct, ao = 
a + L.;~1 aj' max( -PA, -1 + P(1 - A» < aj < min(pA, -1 + peA + 1» for ° ~ j 
~ J, laJ - akl ~ PA for 1 ~ j, k ~ J and fEY', then lI(m!) vll p.w ~ 
CB(m, s, A)llfllp.wwith C independent off. 

This is proved using Theorem (8.1) in essentially the same way that Theorem (3.3) 
was proved using Theorem (3.2). Given fEY', the functions fl and f2 are chosen 
as in the proof of Theorem (3.3) and the proof is reduced to proving (3.12)-(3.14). 
In the proof of (3.12), the requirement (3.15) is replaced by 

max (O,-aj ,l- 3:") < 1:. < min (AP - aj,Ap,AP + 1- 3:"). 
1 <;",j u 1 <;<J 

The hypotheses insure the existence of such a u, and it follows easily that u > 
max(2/(2pA + 2 - p), I/Ap), u(l - p/2) ~ 1 and -1 < aju < APU - 1 for 1 ~j 
~ J. Theorem (8.1) then implies (3.16) with Vex) = [1 + IxlJ-aow(x) and (3.12) 
follows. 

In the proof of (3.13), define aj*, a* and Vex) as in the proof of (3.13) for 
Theorem (3.3). The requirement (3.17) is replaced by 

max(o, 1 - !!..) < 1:. < min (1 + AP - !!..,Ap - aj). 
2 U O<J<J 2 
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The hypotheses imply the existence of u, u> max(2/(2pA + 2 - p), l/Ap), 
u(l - p/2),,;;:; 1 and -1 < ua)* < Apu - 1 for 0 ,,;;:;j,,;;:; 1. Theorem (8.1) then implies 
(3.18) and (3.l3) follows as before. 

The proof of (3.14) is the same as in the proof of Theorem (3.3). This completes 
the proof of Theorem (8.7). 

9. The periodic case. Periodic results are needed for the applications to Jacobi 
polynomials in [15]; for this the weights considered are usually (1 - x)a(l + x)f3 
and Theorem (9.17) is the one that will be used. The periodic theorems for 
multipliers are similar to the nonperiodic ones. In some cases the proofs are the 
same, and in other cases they are simpler. We will sketch the theory and point out 
the major differences. 

For this section, we will assume that all functions have period 27T and will define 

Ilfllp,w= [.C If(X)(W(x)dxf/p
• 

As usual, define IP to be the set of sequences g with Ilgllp = [Llg(k)I P ]1/p < 00. 

For a sequence g in 1\ define g(x) = Lg(k)e ikx, and for integrable f, let j(k) = 

(27T)-1f~'TTf(x)e-ikx dx. For a sequence gin /1 and A > -1, we define 

(9.1) b">'g(k) = [g(x)[l - e-ixf'l" (k), 
where [1 - e- iX ]" is defined to have argument equal to A arg(l - e- ix ) with 
arg(l - e -IX) taken between -7T /2 and 7T /2. We will need the following equivalent 
formulation. 

LEMMA (9.2). If A > -1 and g is in 1\ then 

t:lg( k) = f (A) (-1) j g{j + k). 
J=O } 

Lemma (9.2) is proved by starting with the identity 

[1 - re-iXr\ = f (~)(-rVe-'jX, 
J=O ) 

which holds for Irl < l. Since K)I ,,;;:; CAr"-\ it follows that 

[g(x)[l - re-iX]"]"'(k) = j~J~ )(-r))g(j + k) 

for Irl < l. Since both sides of this identity are continuous functions of r for 
o ,,;;:; r ,,;;:; 1, the conclusion follows by letting r ~ 1 -. 

We will define the periodic class M *( s, A) of multipliers as follows. As in the 
nonperiodic case, let 1/; be a COO function with support in ~ < Ixl < 2 satisfying 
LJ=-oo 1/;(2- jx) == 1, and given a sequence m(k), define m;Ck) = 1/;(2- 1k)m(k). For 
A > -1 and 1 ,,;;:; s ,,;;:; 00, let 

B*(m,s,A) =llmll oo + sup 2j(A-l/S)II~Amj(k)lls 
j 

and define M*(s, A) to be the set of all sequences m such that B*(m, s, A) is finite. 
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For A an integer, it follows immediately that t:i\g(k) is (-1) A times the usual 
difference operator and, as a result, M *( s, A) for A an integer is the traditional 
multiplier space. Note that if f).A were defined with [1- e-iX]A replaced by 
11 - e-ixlA, then M*(s, A) is unchanged for 1 < S < 00 by the following reasoning. 
Let 

11 - e- iX ( 
g(x) = [1 _ e-iX]A ; 

then g(x) = e iA(x-'lT)/2 for 0< x < 2'17, and for A not an even integer, g(k) = 
2 sin( '17 A/2)/'17( A - 2k). The boundedness of the discrete Hilbert transform on l' 
shows the spaces are the same. If A is an even integer, g(k) = (_I)A/2 for k = A/2 
and g( k) = ° for k '* A/2 and the equivalence is trivial. Similar reasoning shows 
that replacing [1 - e-iX]A by [1 - eiX]A in the definition of f).A would also produce 
the same spaces for 1 < S < 00; this shows that if 1 < s < 00, then m(k) is in 
M*(s, A) if and only if m(-k) is in M*(s, A). Since f).Am/k) for k ~ ° does not 
depend on values of m(i) for i < 0, it also follows that if 1 < s < 00 then m is in 
M *(s, A) if and only if mx[O, 00) and mx(-oo,O) are in M*(s, A). 

Other definitions have been used for discrete multiplier spaces by Gasper and 
Trebels in [9] and Connett and Schwartz in [6] for sequences defined on the positive 
integers. Gasper and Trebels define the weak bounded variation space wbvs,A 
essentially as the set of m for which 

Ilmlls,A;W=llmll oo + SUP 2J(A-l/S)[2£1 If).Am(k)i']l/S < 00 

J~O k=2J 

for A > 1 and 1 ~ s ~ 00. Connett and Schwartz define s(s, A) for 1 < S < 00 and 
A> l/s to be sequences m(k) for which there is a continuous function f(x) in 
M(s, A) with f(k) = m(k) for k a positive integer. They prove in [6, pp. 48-55], 
that s(s, A) is the same as wbvs,A' That these spaces are the same as M*(s, A) is 
shown by the following lemma. 

LEMMA (9.3). If m(k) = ° for k < 0, 1 < S < 00 and A> 0, then there is a C, 
independent of m, such that 

Ilmlls,A;W ~ CB*(m, s, A) and B*(m, s, A) ~ CIIm Ils,A;W' 

To prove the first of these, observe that 

(9.4) 

for I ~ 1 and Im(l + k) - r.~~J mn(l + k)1 is bounded by IImlloo for all I and k and 
equals ° for 2J ~ 1+ k ~ 2J+2. These facts show that Ilmlls,A,W is equivalent to 

(9.5) 11m 1100 + s~p 2J(H/" [I ,~o {-1)'D (~: m"(t + k) T' 
Minkowski's inequality and the definition of B*(m, s, A) then show that (9.5) is 
bounded by CB*(m, S,A). 
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For the opposite inequality, start with the facts that for k> 2J + 1 we have 
t:l\m/k) = 0, and for k ~ 2J- 2 we can use (9.4) to show that 

2 j + 1 

I~~m/k) I ~ ,=~Jm{l)C ~ k) I ~ C2Jllmll oo [2J-1 - kr~-l. 
From this, 

2j - 2 

L 1~~mJ(k) IS ~ C2J(1-S~)llmll:a. 
k=-oo 

If j satisfies 2J+ 2 ~ A + 1, it also follows from (9.4) that 
2j + 1 

(9.6) L I~~m/k)i' ~ C2J(l-S~)llmll:.~.w. 
k= 2j - 2 

To complete the proof that B*(m,s,A)~ Cllmlls.~.w' we must, therefore, prove 
(9.6) for j satisfying 2J+ 2 > A + 1. 

To prove (9.6) for 2J+2 > A + 1, define N = 1 + [AJ and use Taylor's theorem to 
write 

I/; (2-J(k + i)) = Ntl 2-;n I/;(n)(2-Jk) + O(2-JNIN). 
n=O n. 

Using Lemma (9.2) and this on the left side of (9.6), we see that (9.6) can be proved 
by showing that 

(9.7) 

for 0 ~ n ~ N - 1 and 

(9.8) 

are bounded by the right side of (9.6). 
To prove (9.7), start with the identity I" = L7=oCn.i(~)' where the constants CIl .; 

are independent of I. Multiplying bye) gives 1"(7) = L7=oC" ;c)e~/). Using this 
and the fact that 1I/;(n)1 is bounded, it is sufficient to show that 

(9.9) 2£1 2-J"s 2£2 (_1)'( ~ ~ :)m(k + i) IS 
k=2J-2 '=0 

is bounded by the right side of (9.6) for 0 ~ i ~ n ~ N - 1 = [AJ. To do this, use 
the fact that 2J+2 > N > i and (9.4) to show that 

J, [2 1" I-I ~2J( ~ .::-n m (k + i) I]' " C2J" ~"III mil:' 
if i < A, and note that this inequality is trivial if i = A. Therefore, since (7~/) = 0 
for I < i, we can prove the asserted bound for (9.9) by showing that 

2J+1 

L 12-J"Il~-im(k + i)l s ~ C2J(1-S~)llmll:.~;w. 
k=2J- 2 
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This follows from the fact that IImlls.f';w ~ CIImlls.A;w for 0 < P, < ,\ and 1 ~ s ~ 00 
proved in Lemma 1 of [9]. Finally, replacing m(k + I) by IImll"" and using (9.4) 
shows that (9.8) is bounded by C2j(1-SA)lImll~. This completes the proof of Lemma 
(9.3). 

Lemma (9.3) can also be proved using Lemma 2 of [9]. 
The periodic analogues of the results in [18] are easily proved; in most cases the 

proofs are simpler. Lemma (9.2) serves as the replacement for Lemma (2.6) of [18], 
and the analogue of Corollary (2.10) of [18] follows immediately. The conclusion of 
Lemma (2.11) of [18] becomes 

flaf(k) = i~k (~~; )(_I)i-kflAf(i) 

for'\ > 0, ,\ - 1 < a < ,\ and f in 11. This is proved by writing the right side as 

(9.10) f (-lr-k(~ ~ '\)[f (-If- i (. ~ i)fU)]. 
i=k I k j=i } 

Using (9.4) and the fact that f is an 11 sequence shows that the double sum in (9.10) 
is absolutely convergent. Therefore, the summation order can be reversed to give 

f (-If-kfU)[ t (~~ ,\)( . ~ i)]' 
j=k i=k I k } 

which is equivalent to the assertion. 
The periodic version of Theorem (2.1), which is Theorem (2.12) of [18], is proved 

as before. The analogue of Lemma (2.15) of [18], 

flaf(k) = -fl[i~O (-lr(a ~ 1 )f(k + i)], 
for fin [1 and 0 < a < 1, follows easily from Lemma (9.2). The periodic version of 
the rest of the results in §2 of [18] are proved as they were before. 

The results of §§3-5 of [18] are also carried over easily to the periodic case. 
Various modifications are needed; some are obvious, such as replacing M(s,'\) and 
B(m, s,'\) by M*(s,'\) and B*(m, s,'\) and changing intervals of integration from 
(-00, (0) to [-'IT, 'IT]. Powers of Ixl are replaced by powers of 11 - e-ixl, and Ix - bl 
is replaced by le- ib - e-ixi. The periodic versions of Lemma (3.1), Theorem (3.2) 
and Theorem (3.4) of [18] have the added restriction r < 'IT, and the integration set in 
(3.12) of [18] becomes 21yl < Ixl < 'IT. In the theorems of §§4 and 5 of [18], the set Y' 
is replaced by the set S of functions f with J(j) = 0 for all but a finite number of 
j's. To adapt Theorem (1.2) of [18] to the periodic case we need a replacement for 
Y'o.o. For this we define Sk to be the subset of S with J(j) = 0 for 0 ~ j ~ k. In the 
statement of Theorem (1.2) of [18], the set Y'o.o is replaced by S'-l where 
[= int«a + l)/p). The proofs in §§4 and 5 remain essentially unchanged. 

SiInilarly, the results in §§2-6 and §8 of this paper can easily be modified for the 
periodic case in the same way. The results in §2 are from [18] and were mentioned 
above. The most significant change in §3 is in Theorem (3.3) which has the following 
periodic version. 
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THEOREM (9.11). If 1 < s ~ 00, max(t t) < A < 1, mE M*(s, A), 1 < p < 00, 

W(x) = n;=lle-ibj - e-iXlaj, where the b/s are real, distinct and lie in (-'IT, 'IT], 
max(-l, -pA) < a j < min(p - 1, pA) for 1 ~j ~ J, la j - akl < pA for 1 ~j, k ~ 
J andfis in S, then lI(mj) vllp,w ~ CB*(m, s, A)lIfllp,w, where C is independent ofm 
and/-

Theorem (9.11) has a simpler proof than Theorem (3.3) since it is not necessary to 
write f as a sum of two functions. The proof of Theorem (9.11) is like the proof of 
(3.12) with Vex) taken to be W(x). 

In §4, Lemma (4.11) is true for the periodic case with [1 - e-iX]i used to replace 
x j and e- ib - e- ix to replace x-b. In §5, no analogues of Lemmas (5.1) and (5.7) 
are needed. Lemmas (5.5) and (5.9) are modified in the obvious way with Ro in 
Lemma (5.9) taken to be 'IT. The periodic versions of the theorems about general 
weight functions in §§6 and 8, Theorems (6.1), (6.5) and (8.1), are as follows. 

THEOREM (9.12). Assume that 1 ~ s ~ 00, 1 < P < 00, A > 1, I> 0, m E 

M*(s, A), Vex) E A p' g(x) is a trigonometric polynomial of degree I and W(x) = 
I g( x) I PVC x). Let Q j be the least upper bound of all q for which 

(9.13) W(x)qdx ~ Cr1 - q W(x)dx [ ]
q 

!.;;IX-b,I';;2r !.;;IX-bj l';;2r 

holds for 0 < r < 'IT /2, where {bj };=1 is the set of distinct real roots of gin (-'IT, 'IT]. 
For 1 ~ j ~ J, let T) = min(2, (pQj)', s), let Ij be the multiplicity of the root bj in g 
and assume that A > Ij - 1 + 1/T). If A < Ij + 1/T) for 1 ~ j ~ J, assume in 
addition that le- ib, - e- ix IP(lj-;\+I/1j)V(x) E Ap" Then for every fin SI-l we have 

!!(mj) v IIp,w ~ CB*(m, s, A)llf IIp,w, 

where C is independent of m and/-

The proof is a simplified version of the proof of Theorem (6.1). The analogue of 
(6.9) holds for L ~ 1- 1 since f is in SI-l' The analogue of (6.10) has limits -'IT and 
'IT and is estimated as (6.16) was. The analogue of (6.11) has region of integration 
8d < Ix - bil < 'IT and is estimated as (6.18) was. The analogue of (6.12) is treated as 
(6.12) was in the proof of Theorem (6.1). 

THEOREM (9.14). Assume that 1 ~ s ~ 00, 1 < P < 00, A < 1, m E M*(s, A) and 
Vex) E Ap" Let W(x) = n;=lle-ibj - e-iXIPV(x), where the b/s are real, distinct 
and lie in (-'IT, 'IT], and assume that for every m E M*(s, A) and h E S that 
II(mh) vllp,v1 ~ HB(m, s, A)llhllp,vl' where V1(x) = n;=Iie- ibj - e-iXla,V(x) and H 
and the u/s are constants independent of f and m with u j ~ p. Let Q j be the least 
upper bound of all q for which (9.13) holds for 0 < r < 'IT /2; let T) = 

min(2, (pQj)', s) and assume that A> 1/T) and le- ibj - e- ix IP(I-;\+I/1jlV(x) E Ap. 
Then for every fin SJ-l and every min M*(s, A), we have 

where C is independent of m and /-
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To prove Theorem (9.14), apply the periodic version of Lemma (4.11); the left side 
of the conclusion is bounded by L~=oll<m~) vllp,w' For II(mJo) vllp,w, we use 'the 
facts that W ~ CV1, that lI(mJo) vllp,v, ~ BHllfollp,v, and that VI ~ CW on the 
support of fo. For the others, define K(x, y) = KN(X - y) - KN(X - b) and 
observe that since ~(O) = 0, we have (KN*Jj)(x) = J~7TK(x,y)Jj(y)dy. Next use 
Lemmas (S.S) and (S.9) with this kernel, let N approach 00 and use Fatou's lemma 
to complete the proof. 

THEOREM (9.1S). If 1 < P < 00, 2 < s ~ 00, max(t, If, - ~I) < A ~ t mE 
M(s, A), u;;. max(2/(2pA + 2 - p), ljAp), u(1 - p/2) ~ 1, W(x)U E AApu and f 
is in S, then Il<mJ) vllp,w ~ CB*(m, s, A)lIfllp,w, where C is independent ofm andf. 

This follows from the periodic version of Theorem (3.2) in the same way that 
Theorem (8.1) was proved from Theorem (3.2). 

The periodic version of Theorem (1.4) is as follows. 

THEOREM (9.16). If 1 < P < 00, 1 ~ s ~ 00, max(t, If, - ~I) < A or A = s = 1, 
m E M*(s, A), W(x) = nj=lle-ibjx - e-iXlaj, where the b/s are real, distinct and lie 
in (-'17,'17], 1= L{=lint[(1 + a)/p], 

max( -1, -pA, -1 + p( -A + ~)) 
< aj < min(pA,-1 + p(A + ~), -1 + p(A + 1 - t)) 

for 1 ~j ~ J, (a j + 1)/p is not an integer for 1 ~j ~ J and laj - akl < pA for 
1 ~ j, k ~ J, then for f in S'_I' we have Il<mJ) vllp,w ~ CB*(m, s, A)llfllp,w with C 
independent of m and f. 

Like Theorem (1.4), Theorem (9.16) is an amalgamation of two results: a periodic 
version of Theorem (6.7) and a periodic version of Theorem (8.7). The periodic 
version of Theorem (6.7) is proved from Theorems (9.11), (9.12) and (9.14) in the 
same way that Theorem (6.7) is proved from Theorems (3.3), (6.1) and (6.S). The 
periodic version of Theorem (8.7) is proved from Theorem (9.1S) in the same way 
that Theorem (8.7) was proved from Theorem (8.1). 

The following corollary of Theorem (9.16) will be applied to Jacobi expansions in 
[15]. 

THEOREM (9.17). Assume that 1 ~ s ~ 00, 1 < P < 00, A> max(t, If, - ~I) or 
A = s = 1, mE M*(s, A), W(x) = 11 - e- ix la'il + e- ix la2, Ij = int«aj + 1)/p), 
(a j + 1)/p is not an integer, 

max( -1, -pA, -1 + p( -A + ~)) 
< aj < min(pA,-1 + p(A + ~), -1 + p(A + 1 - t)) 

for} = 1 and} = 2, and la1 - a 2 1 < pA. Then for fin S"+'2- 1' we have 

II( mJ) v "p,w ~ CB*( m, s, A) II f IIp,w, 

where C is independent of m and f. 
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