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NECESSITY CONDITIONS FOR LP MULTIPLIERS 
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BENJAMIN MUCKENHOUPT 

ABSTRACT. It is shown that if multiplier operators are bounded on LP with weight 
Ixl" for all functions in the space .9'0,0 of Schwartz functions whose Fourier 
transforms have compact support not including 0 and all multiplier functions in a 
standard Hormander type multiplier class, then a must satisfy certain inequalities. 
This is a sequel to a previous paper in which conditions on a that were almost the 
same were shown to be sufficient for the norm inequality to hold. 

1. Introduction. This paper is concerned with conditions that a real number ex must 
satisfy if 

(1.1) 

for all m in a standard Hormander type multiplier class and all f in Yo 0, the 
Schwartz functions whose Fourier transforms have compact support not including O. 
This is a sequel to [5] in which sufficient conditions were obtained on ex for (1.1) to 
hold. 

As in [5] we use the multiplier classes M(s, A); for A a positive integer and 
1 ~ s ~ 00 the class M(s, A) consists of all m such that 

[ 
s ] l/s 

B(m,s,A) =llmll oo + supr X- l / s 1 Im(X)(t)1 dt < 00. 
r>O r<III<2r 

For the definition of M(s, A) and B(m, s, A) with A not an integer, see §2. As 
shown in §7 of [5], these spaces are two sided versions of the multiplier classes 
S(s, A) in [2] and WBVs,x in [3]. 

The following was proved in [5]; it is Theorem (1.2) of [5]. 

THEOREM (1.2). If 1 < P < 00, 1 ~ s ~ 00, A > max(ljs,lljp - 1/21) or A = s 
= 1, m is in M(s, A), 

max( -1, -PA, -1 + p( -A + ~)) 
< ex < min(pA,-I + p(A + ~), -1 + P(A + 1 - t)) 
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and (a + 1)/ p is not an integer, then for fin .9"'00 

(1.3) foo l(mJ)V(x)nx('dx~CB(m,s,AYfoo If(x)nx!a dx , 
-00 -00 

where C is independent of m and f. 

The conditions on a in Theorem (1.2) seem peculiar, both because they are 
complicated and because taking s larger than the minimum of 2 and p' = p/(p - 1) 
does not increase the range of a. The main result of this paper is the fact that, except 
possibly for the strictness of the inequalities, these conditions are also necessary. The 
result is as follows. 

THEOREM (1.4). If 1 < P < 00, 1 ~ s ~ 00, A ~ l/s and (1.1) holds for all m in 
M(s, A) andfin .9"'0,0' then a > -1, 

max(-pA,-l + p(-A + t)) ~ a ~ min(pA,-l + p(A + t), -1 + p(A + 1 - t)) 

and (a + l)/p is not an integer. 

In at least some cases, the end values of the inequalities for a are included in the 
values for which (1.1) holds; a theorem of this type is given in §6 of [5]. It should 
also be remarked that the conclusion that (a + l)/p is not an integer can be proved 
from much weaker hypotheses. In fact, as shown in Theorem (1.2), p. 624 of [6], if 
(1.1) holds for all f in .9"'0,0 for some m that is not a constant almost everywhere, 
then it follows that (a + l)/p is not an integer. The proof given here uses the 
stronger hypothesis and, as a result, is much shorter than the proof in [6]. 

This paper consists of the proof of Theorem (1.4). §2 contains certain facts needed 
in later sections primarily concerning fractional derivatives and the multiplier classes 
M(s, A). These were proved in [5] and are quoted here for convenience. §3 gives 
some general procedures for generating functions in the classes M(s, A). These are 
used in §4 to produce specific examples of functions in M(s, A) that prove the upper 
bounds for a in Theorem (1.4). In §5 the facts that a > -1 and (a + l)/p is not an 
integer are proved directly while the lower bounds on a are obtained from the upper 
bounds by a duality argument. 

The following definitions and notations will be used throughout this paper. Given 
real a and p ~ 1, we define 

[100 p a ]l/P Ilfllp,a = -00 If(x) Ilxl dx 

and L! as the set of f with Ilfllp,a < 00; as usual, a may be omitted if it is O. The 
space .9"'00 will be as defined above. For integrable f we define the Fourier 
transform' !(x) = f_':J(t)e- iX / dt and the inverse Fourier transform 
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For general locally integrable f, we define / to be the function that satisfies 
J':'oo/(x)cp(x) dv = J~f(x)4>(x) dx for every cp in COO with compact support, 
provided such a function exists. The inverse Fourier transform j for locally 
integrable functions is defined analogously. Similarly, the weak derivative of a 
function f on (-00,00) is the function f' such that eJOf(x)cp'(x)dx = 
-J':'oof'(x)cp(x)dx for every cp in Coo with compact support, provided such a 
function exists. 

Throughout this paper C will denote constants not necessarily the same at each 
occurrence. If g(x) is an expression in x, [g(x)] 1\ will denote the Fourier transform 
at the point x. For a number p with 1 ~ p ~ 00, p' will denote pl(p - 1). In 
addition to the expression int(x) for the greatest integer less than or equal to x, the 
traditional [x] will also be used when not ambiguous. 

2. Definitions and basic results. For convenience, we list here the definitions and 
theorems from [5] that will be needed to prove Theorem (1.4). These are various 
properties of the multiplier classes M(s, A) and fractional derivatives plus one 
density theorem. For proofs and further discussion, see [5]. 

We define the operator DA by DAg(x) = [g(x)x A] \ where x A is taken to be 
IxIAe-i'7l"A for x < 0 and the Fourier transforms are as defined in §l. To define the 
multiplier classes, choose a function 1/;(x) in COO with support in 1/2 < Ixl < 2 such 
that Lj_-oo 1/;(2- ix) = 1 for x '* O. Given a function m(x), define m/x) = 
m(x)1/;(2- ix ). Then for 1 ~ s ~ 00 and A > 0, the multiplier class M(s, A) is the set 
of functions m such that DAm i is a locally integrable function for every j and 

(2.1) B(m,s,A) =llmll oo + sup 2i (A-l/S)IID Am/x) lis < 00. 
J 

We will need the following two results concerning the classes M(s, A). The first 
shows that the classes are independent of the choice of the function 1/;; the second is 
an imbedding theorem. They are Theorem (2.25) and Theorem (2.12) of [5]. 

THEOREM (2.2). Ifm is in M(s, A), 1 ~ s ~ 00, A> 0, and cp has [A + 1] bounded 
derivatives and support in 1/2 ~ Ixl ~ 2, then D A[m(x)cp(2- ix)] is a locally integra-
ble function and 

where C is independent ofm and cp andA(cp) = SUPO<:;k<:;[A+l]llcp(k)lloo. 

THEOREM (2.3). If 1 ~ s ~ 00, 1 ~ t ~ 00, 0 ~ a ~ A, m is in M(s, A) and one of 
the following holds: 

(i) a - 1/t ~ A - l/s, s > 1 and t < 00, 
(ii) a - lit ~ A - lis, s = 1 and t = 00, 

(iii) a - lit < A - 1/s, 
then m is in M(t, a) and B(m, t, a) ~ CB(m, s, A) with C independent ofm. 

The following facts about the fractional derivative operator will also be needed. 
These are respectively Lemma (2.6), Lemma (2.15) and Lemma (2.18) of [5]. 
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LEMMA (2.4). If f(x) is integrable, f(x) = 0 for x not in a compact interval I, 
A > -1 and DAf(x) is a locally integrable function, then there is a C, depending only 
on A, such that DAf(x) = 0 for almost every x to the right of I and 

DAf(x)=C{ f(t) dt 
JT (t _ X)A+l 

for almost every x to the left of I. 

LEMMA (2.5). If 0 < A < 1, f is in Ll and either the function 

GAf(x) = ~foo f(t) A dt, 
dx x (t-x) 

where the derivative is taken in the weak sense, or DAf(x) is a locally integrable 
function, then the other is a locally integrable function and there is a nonzero constant 
C such that DAf(x) = CGAf(x). 

LEMMA (2.6). If 0 ~ A < 1, 1 ~ s ~ 00, f is integrable, DAf is a locally integrable 
function, cP is differentiable with IWlloo < 00 and cp has support in a finite interval I, 
then DA( cpf) is a locally integrable function and 

IIDA( cpt) lis ~ C(II cp 1100 + I I IIWlloo)(11 XIDAf lis + I I I-All fils), 

where C is independent off and cpo 

Finally, we shall need the following density result; it is Theorem (1.5) of [5]. The 
space Qk in Theorem (2.7) for k ~ 0 is the set of functions f in L 2 II Ll such that 
f~f(x)xJ dx = 0 for 0 ~j ~ k; the space Q-l is L2. 

THEOREM (2.7). If 1 < p < 00, a > -1, k is an integer, k ~ -2 + (a + I)lp, m 
is bounded, and 

(2.8) 

for all fin Y o.o, then (2.8) is true for all fin Qk II L! with the same C. 

3. Lemmas for Theorem (1.4). To prove Theorem (1.4), we need a way to construct 
examples of functions in M(s, A), and we will need a modified form of (1.3) for 
these functions. The results needed are Lemmas (3.1), (3.5), (3.14) and (3.22). 

LEMMA (3.1). If 0 < A ~ 1, Im(x)1 ~ AI(I + IxIA) and Im'(x)1 ~ Alxl-\ then m 
is in M(oo, A) and B(m, 00, A) ~ CA, where C depends only on A. 

For A = 1 this is immediate; therefore, assume that 0 < A < 1. It is sufficient to 
show that 

(3.2) 
d 100 m(x + t)I/I(2- J(x + t)) - dt 

dx 0 t A 

has absolute value bounded by CA2-}A for almost every x since Lemma (2.5) will 
then imply that DAm/x) equals a constant independent of j times (3.2), and 
IDAm/x)1 ~ CA2-}A is what is needed. 
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To estimate (3.2) for 2J- 2 < Ixl < 2J+2, j > 3, write (3.2) as the sum of 

(3.3) 
d 11 m(x + 1)o/(2-J(x + I)) 

d A ~ 
X 0 I 

and 

(3.4) ~joo m(I)I/;(2-JI) d 
d A I. 
X x+1 (I-X) 

The absolute value of (3.3) is bounded by 

11 Im'(x + 1)1/;(2-J(x + I)) I + 1 2- Jm (x + 1)1/;'(2-J(x + t)) I d 
A t. 

o I 

This has the bound 

11[ A 2-JA 1 I I-A . ·A C A + -A- dl ~ CA X + C2- JA ~ CA2- J • 

o Ix + I I IA I 

The absolute value of (3.4) is bounded by 

Im(x + 1) I/; (2- J(x + 1)) I + C joo Im(I)o/(2::~) I dt 
x+1 (I-X) 

which is bounded by 

CA2- JA + CA2- JA joo (I - xrA-1dl ~ C2- JA . 
x+1 

We next estimate (3.2) for j > 3 and Ixl < 2J- 2 or Ixl > 2J+2. If Ixl < 2J- 2, the 
integrand in (3.2) is 0 for I not in [2 J- 1 - x,2J+1 - xl and a change of variables 
shows that the absolute value of (3.2) is 

~12J+I m(I)o/(2-JI) dl = C 1 2J+1 m(I)I/;(2-JI) dl . 
dx 21-1 (I - X)A 2J- 1 (I _ x)A+l 

Since Im(t)1 ~ A and 11/;(2-Jt)1 ~ C, we obtain the upper bound CA2-JA. 
If j > 3 and X > 2J+2, the integral in (3.2) is 0 and the estimate is trivial. If j > 3 

and X < 2J+2, the integrand in (3.2) is 0 for I not in [_2J+l - X, 2J + 1 - xl. A 
change of variables shows that (3.2) has absolute value bounded by 

d 12J+1 m(I)I/;(2-Jt) I 12J+1 Im(I)I/;(2-JI) I - dl ~ C dl. 
dx _2J+I (t _ x)A I -2J+I IxIA+ 1 

The facts that Im(I)1 ~ A and 11/;(2-JI)1 ~ C then show that CA2- JA is also an 
upper bound for this case. 

To estimate the absolute value of (3.2) for j ~ 3, perform the differentiation to get 
the bound 

100 Im'(x + 1)1/;(2-J(x + I)) I + Im(x + t)2-JI/;'(2-J(x + I)) I 
A ~. o I 
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This is less than or equal to 

This completes the proof of Lemma (3.1). 

LEMMA (3.5). For 0 < A < 1, assume that 1m (A, x)1 ~ C(1 + Ixl)-A for all x and 
Idm(A, x)/dxl ~ ClxrA for Ixl ~ 1, where C is independent of x, and assume that 
m(A, x) is in M(oo, A). For A > 1 and not an integer, define m(A, x) recursively by 

m{A, x) = fX g{A - 1, t) dt, 
-00 

where 

g{A _ 1, t) = m{A - 1, t) - ~(t)m{A - 1,0) 

_ cj> (t) foo m (A - 1, u) - 0 ( u) m (A - 1,0) du, 
t -00 u 

where 0 and cj> are in Coo with support in [-1,1], 0 is even, 0(0) = 1, cj>(0) = 0 and 
j!1( cj>(t)jt) dt = 1. Then m(A, x) is in M( 00, A) for A > 1 if A is not an integer. 

Note that although a version of this theorem is true for integer values of A, a 
modification would be needed since Im(l, x)1 ~ C(1 + Ixl)-1 for all x and 
Idm(l, x)jdxl ~ Clxl-1 for Ixl ~ 1 do not imply the integrability of g(l, t) on 
(-00, 00). Since a version valid for integer values is not needed in the proof of 
Theorem (1.4), we will not give one here. 

To prove the existence of m(A, x) for A> 1, we will show inductively that 

(3.6) Im{A,x)l~ C{1 +lxlfA+[A] 

and 

(3.7) I a I -A+[A] ax m ( A, x) ~ ci x I , Ixl < 1. 

Inequalities (3.6) and (3.7) are hypothesized for 0 < A < 1. Now assume that they 
hold with A replaced by A-I for some A > 1. Then for It I < 1, since -(A - 1) + 
[A - 1] = -A + [A], 

I ( ) ( ) I l ltl I I-A+[A] I 11- A+[A] m A-I, t - m A-I, 0 ~ 0 C x dx ~ Ct. 

This, the fact that 10(t) - 11 ~ Cltl and (3.6) for A-I imply that 

(3.8) I m{A - 1, t) - O{t)m{A - 1,0) I ~ f Cltl-H[A], 
t \ Cit I-A-1+[A], 

It 1< 1, 

It I > 1. 
Therefore, g(A - 1, t) exists and is integrable on (-00,00). The estimates in (3.8) 
also directly imply (3.6) for -00 < x < 1 and (3.7). From the definition of g(A - 1, t) 
we see that j~oog(A-l,t)dt=O. Therefore m(A,x)= -jxoog(A-l,t)dt, and 
(3.8) implies (3.6) for x ~ 1. This completes the induction. Note that in particular we 
have IIm(A, x)lloo < 00 for all A > 0, A not an integer. 
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We will now show inductively that IIDAm/A, x)lloo ~ C2- JA for A> 1 and not 
an integer, where C is independent of j. Therefore, fix A, let k = [A] and assume 
that m(A - i, x) is in M(oo, A - i) for 1 ~ i ~ k. By the definition of m(A, x), 
DAm/A, x) is the sum of 

(3.9) 2-iD A- 1 [m(A - l,x) !J;(2-JX)], 
2-Jx 

(3.10) 2-lDA-1[-m(A _ 1,0)O(x) !J;(2-JX)], 
2- Jx 

(3.11) -2-lDA-1[cf>(X) !J;(2-Jx) foo [m(A - 1, u) - O(u)m(A - 1,0)] dU] 
2- Jx -00 U 

and 

(3.12) 
Since m(A - 1, x) is in M(oo, A-I), Theorem (2.2) with cf>(x) there taken to be 
!J;(x)jx implies that (3.9) is bounded by CB(m(A - 1, x), 00, A - 1)2-lA ~ C2- JA 
as desired. For (3.10) and (3.11) use the fact that O(x) and cf>(x) are in M(oo, i) for 
all integers i. Then use Theorem (2.3) to deduce that 0 and cf> are in M ( 00, A-I) 
and use Theorem (2.2). For (3.12) differentiate again to obtain a sum of terms like 
(3.9)-(3.12) with the initial2- l replaced by 2- 2l, D A- 1 by D A- 2, and !J; replaced by 
!J;'. These are treated in the same way; this process continues until the term 
(3.13) 2-JkD A- k [m (A, x )1j;(k)(2- Jx )] 

is reached. Now since Im(A - 1, x)1 ~ C, the definition of m(A, x) implies 
13m(A, x)j3xl ~ C/lxl and, therefore, m(A, x) is in M(oo, 1). Theorem (2.3) implies 
that m( A, x) is in M( 00, A - k) and Theorem (2.2) shows that (3.13) also is 
bounded by C2- JA. This completes the proof of Lemma (3.5). 

LEMMA (3.14). If 1 ~ s ~ 00, 1 < p < 00, k is an integer, k > 0, k < A < k + 1, 
-1 + pk < a ~ -1 + p(A + 1), a =1= -1 + p(k + 1), (1.3) holds for all fin 9'0.0 and 
all min M(s, A) and m(A, x) is a set of functions as described in Lemma (3.5), then 
there is a constant C such that 

(3.15) foo l[m(A-k,x)g(x)]Vnxl"-kPdx~Cfoo Ig(k)(x)(lxl"dx 
-00 -00 

for all g with compact support, k bounded derivatives and 1':'00 g(x) dx = O. 

Since (1.3) holds for all m in M(s, A), it holds in particular for m(A, x) by 
Lemma (3.5) and Theorem (2.3). Now since -1 + pk < a < -1 + p(k + 2) and 
a =1= -1 + p(k + 1), we have j = int«a + l)/p) equal to k or k -I:- 1, G(x) = xl is 
a polynomial, V(x) = Ixl"-JP is in Ap and W(x) = Ixl" = IG(x)IPV(x). Applying 
Theorem (2.7) to (1.3) then shows that (1.3) holds for any f in Qk n Lt. if 
m(x) = m(A, x). In particular, 

(3.16) foo l(m(A, X)[g(k)(X)] A r IPlx!" dx ~ C fOO Ig(k)(x) (Ix!" dx 
-00 -00 

for any g of the type described by the lemma. 
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If k = 0, we are done. If k > 0, the left side of (3.16) is bounded below by 

(3.17) 

minus 

(3.18) 

Now since -1 + pk < a :s;;; -1 + p(l + A) and a =1= -1 + p(k + 1), (a - p + l)/p 
is not an integer and a - p :s;;; -1 + pA < -1 + p(l + A - l/t), where t = 

min(2, p', 00). Furthermore, since f~ g( x) dx = 0, we have 

.foo [xg(k)(X)]xidx = 0 forO:S;;;j:S;;; k - l. 
-00 

Therefore, Theorem (2.7) in conjunction with Theorem (1.2) implies that (3.18) is 
bounded above by the right side of (3.15) since int«a - p + l)/p) :s;;; A < k + 1. 
This implies that (3.17) is also bounded above by the right side of (3.15). 

Using the definition of m(A, x), we find that (3.17) is bounded below by 

(3.19) 

minus 

(3.20) c foo I( 8(x)[g(k-I)(x)r r IPlxl"-P dx 
-00 

and 

(3.21) cfoo 1(q,(x)[g(k-l)(x)]"rIPlx!"-P dx. 
-00 

Since 8 and q, are in M(oo, j) for any integer j and (a - p + l)/p is not an 
integer, Theorem (1.2) and Theorem (2.7) show that (3.20) and (3.21) are bounded 
by 

and this is bounded by the right side of (3.15) by Hardy's inequality. Therefore, 
(3.19) is also bounded by the right side of (3.15). Repeating this procedure k times 
completes the proof of lemma (3.14). 

To estimate one of the counterexamples, we will need the following lemma. 

LEMMA (3.22). If -2 < b < 1 and a = 0 or 1, then 

f(x) = [l x lbsin(x 2 )(sgnx)"] " 

is a function and 

(3.23) If(x)l:s;;; C(l +Ixi)max(-l.b). 

To prove this we will use the following lemma which is a simple consequence of 
the Leibniz alternating series theorem. 



NECESSITY CONDITIONS FOR U MULTIPLIERS 511 

LEMMA (3.24). If g(x) > ° and is monotone on a ~ x ~ band d is any real number, 
then 

lIb . I IS+ 1 
a sm(x + d)g{x) dx ~ TT S g{x) dx, 

where s = b - 1 if g is increasing and s = a if g is decreasing. 

The following corollary of Lemma (3.24) will also be used. 

LEMMA (3.25). If g(x) > ° and is monotone on a ~ x ~ band d is any real number, 
then 

I ~b sine x + d) g{ x ) dx I ~ TTg{ S ), 

where s = b if g is increasing and s = a if g is decreasing. 

Lemma (3.22) will be proved by showing that 

(3.26) 

exists for every x and 

(3.27) 

where C is independent of Nand x. This is sufficient since (3.26) and (3.27) imply 
that (3.26) equals f(x) and (3.27) then shows that the absolute value of (3.26) has 
the bound asserted for If(x)l. By symmetry, we need only prove these facts for 
x ~ 0. 

To show that (3.26) exists for x ~ 0, we will use the identity 

(3.28) 2 sine t 2 )cos{ xt + a2TT) = sin( t 2 - xt - a;) + sin( t 2 + xt + a2TT). 

If x < M < N, the change of variables t - x/2 = IU shows that 

If.N b· ( 2 aTT)d I !(N-X/2)2 (IU + X/2)b . ( x 2 aTT) t sm t - xt - - t = sm u - - - -
M 2 (M-x/2)2 21U 4 2 

and since b < 1, Lemma (3.25) shows this is bounded by CM b - 1• Therefore, 

J~oo ioN tbsin( t2 - xt - a;) dt 

du, 

exists by the Cauchy convergence criterion. The proof of the existence of the other 
limit obtained by substituting (3.28) in (3.26) is similar. 

To prove (3.27), observe that since b > -2, t b sin(t 2 ) has a positive derivative at 0. 
Let r be the smaller of i and the least positive t for which t b sin( t 2) has derivative 0. 
Then r depends only on b, and t b sin(t 2 ) is increasing on [0, r]. We will now show 
that for x> l/r and N > x/(l - b) 

(3.29) 
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{3.30} I~X/2 tbsin[( ~ - t r + d] dtl ~ Cx b + Cx- i , 

{3.31} li~2 tbsin[(t - ~ r + d] dtl ~ Cx b 

and 

{3.32} 

where d = ±a'IT/2 - x 2/4 and C is independent of N and x. This is enough to 
prove (3.23) for x > l/r since the left side of (3.27) is bounded by the sum of the 
left sides of (3.29)-(3.32). 

To prove (3.29) for x > 1/r, make the change of variables xt = u in the left side 
and use Lemma (3.25) to get the bound 

and (3.29) follows. 
To prove (3.30) for x > 1/r, make the change of variables t = - /U + x/2 in the 

left side to get the bound 

II foP g{u}sin{u + d} dul, 

where g(u) = U- i/ 2(_ /U + X/2)b and {3 = (x/2 - r)2. Now if g(u) is decreasing 
on [0, {3], let s = {3; otherwise let s be the unique point in [0, {3] where g( u) has a 
local Ininimum. By Lemma (3.24), 

If g{u}sin{u + d} dul ~ 'IT f g{u} du 

and this is bounded by Cx b since x ~ 4. If s < {3, Lemma (3.25) shows that 

11..8 g{u}sin{u + d} dul ~ 'lTg{{3} = x/'";~ r' 

which is bounded by CX-i. This completes the proof of (3.30). 
To prove (3.31) for x > l/r, substitute t - x/2 = /U to get 

II tN - X/ 2)2( ~ + /Uf u- i / 2sin{u + d} dul· 

Since b < 1, (x/2 + /U)bU-i/2 is decreasing for u > 0 and Lemma (3.24) com-
pletes the proof. 

For (3.32) with x> l/r, substitute t + x/2 = /U to get III g(u)sin(u + d) dul, 
where {3 = (r + X/2)2, Y = (N + X/2)2 and g(u) = lU-i/2(-x/2 + /U)b. If {3 < S 

= [x/2(1 - b)]2, then b> 0 and g is increasing on [{3, s] and decreasing on [s, y]. 
Apply Lemma (3.25) to each part; both parts have the bound qxlb - 1. If {3 ~ s, g is 
decreasing on [{3, y] and Lemma (3.25) can be applied directly to get the bound 
qxl-i. This completes the proof of Lemma (3.22) for x > 1/r. 
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To prove (3.27) for 0 ~ x < Ilr, it is sufficient because of (3.28) to show that for 
a = 2[r(I - b)]-l and N > a that 

(3.33) 

(3.34) 

and 

(3.35) 

where C depends only on b. 
Inequality (3.33) follows from the fact that the integrand is bounded. In (3.34) and 

(3.35), make the respective substitutions t - xI2 = iii, t + xI2 = iii and apply 
Lemma (3.25). This completes the proof of Lemma (3.22). 

4. Examples: proof of the upper bounds in Theorem (1.4). The proof that (1.3) for 
all I in Yo,o and m in M(s, X) implies the asserted upper bound for IX will be done 
in three parts. We will first prove IX ~ -1 + P (1 + X-I Is), next IX ~ P X and third 
IX ~ -1 + p(X + 1). The proof that (IX + I)/p cannot be an integer and the proof 
of the lower bounds are given in §5. 

To prove that IX ~ -1 + p(I + X - lis), let tP(x) be in C"" with tP(x) = 1 for 
Ixl ~ 1. tP(x) = 0 for Ixl ~ 1 and 0 ~ tP(x) ~ 1 for all x. Let 

"" m(x) = L 8k(l/S-A)tP(X - 8k), 
k=l 

and for k ~ 2 let 
!k(X) = tP(x81- k - 8). 

Since X ~ lis, IImll"" ~ 1. Because of Theorem (2.2), we may assume that the 
function!f; used in the definition of B(m, s, X) has !f;(x) = 1 for ~ ~ Ixl ~ *' Then 
mix) == 0 for j not of the form 3k and 

m3k (x) = 23k(1/s-A)tP(x - 23k ). 
From this, 

//D Am3k (x)//S = 23k(l/s-A)//( DAtP)(x - 23k )//s. 
Therefore, for all j ~ 1, 

IIDAm)lls ~ 2)(1/s-A)II DAtP(x) lis. 
Now DAtP is bounded; therefore, Lemma (2.4) implies that IIDAtPlis < 00. This and 
the definition then show that m is in M(s, X). 

Now it is immediate that Ik is in Yoo. Since!k has support in [8 k - 8k-I, 
8k + 8k- 1] and is 1 in [8 k - 8k- 2,8k + 8k~2], we have 

m(x)!k(X) = 8k(l/s-A)tP(X - 8k) 
and 

l[m(x)!k(X)] v I = 8k(1/s-A)I~(x) I. 
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Therefore, 

(4.1) foo l[m(x)!k(X)r nxla dx = Skp(l/s-A) foo I~(x) (lxla dx. 
-00 -00 

Similarly, 

and 

(4.2) foo Ifk(x)(lxladx=S(k-l)(p-a-l)f oo I~(x)(lxladx. 
-00 -00 

Using (4.1) and (4.2) in (1.3) then shows that 

Skp(ljs-A) foo I~(x) (Ix ( dx ~ CS(k-l)(p-a-l) foo I~(x) (Ix la dx 
-00 -00 

for all k ~ 0, and this implies a ~ -1 + p(l + ;\. - 1/s). 
To prove that a ~ p;\. for ;\. not an integer, fix ;\., s, p and a and define 

m(;\., x) = e- ixI(l + X 2 )A/2 

for 0 < ;\. < 1. Note that m(;\., x) satisfies the hypothesis of Lemma (3.5), and 
define m(;\., x) for ;\. > 1 and not an integer as was done in Lemma (3.5). We may 
assume that a ~ -1 + p(l + ;\. - 1/s) ~ -1 + p(l + ;\.) by the first proof of this 
section. We may also assume a > -1 + pk, where k = [;\.], since otherwise a ~ -1 
+ pk < p;\. and there is nothing to prove. As mentioned before, we also assume 
(a + l)lp is not an integer. Now let cp be a COO function with support in [1,2] and 
cp(x) > 0 on (1,2) and define 

gn(x) = 2cp( -2nx) - cp( -nx). 
Then Lemma (3.14) implies that (3.15) holds for this m(;\. - k, x) and gn. Now 

f oo p a 
Ig~k)(X) Ilxl dx = Cn kp - a- 1• 

-00 
(4.3) 

Also, since [m(;\. - k, x)gn(x)] v = m(;\. - k, x) * gn(x), 

[m(;\.-k,x)gn(x)r= ~t [m(;\.-k,x+ {n)-m(;\.-k,x+ *)]cp(Y)dY. 

By [7, p. 132], since 0 < ;\. - k < 1, 
A-k-l ( A-k-l) m(;\. - k, x) = Alx - 11 + 0 Ix - 11 , 

where A *- O. Since 1 ~ Y ~ 2, for 1 + lin ~ x ~ 1 + 21n we have 

Ix - 1 + YI2nl ~ tlx - 1 + Ylnl· 
It follows that 

A-k-l A-k-l A-k-l Ix - 1 + yI2n I -Ix - 1 + Yin I > Clx - 1 + yI2n I 
and, therefore, 

Im(;\. - k, x + Y12n) - m(;\. - k, x + Yin) I> Cn k+ 1 - A forlarge n. 
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Thus, for n large and 1 + lin ~ x ~ 1 + 21n, we have 

l[m{A - k, x)gn{x)r I ~ Cn k- A 

with C > 0. Therefore, for n large, 

f oo I[ ]VIP a-kp A m{A - k,x)gn{x) Ixl dx ~ CnP(k- )-1. 
-00 

(4.4) 

Using (4.3) and (4.4) in (3.15) then shows that 
Cn P(k-A)-l ~ Cn kp - a - 1 

for sufficiently large n. We conclude that a ~ pI. for A not an integer. 
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If A is an integer, choose a sequence {A n} with A < An < A + 1 and lim n ~ 00 An 
= A. If (1.3) holds for all f in 9'0,0 and m in M(s, A), then by Theorem (2.3) it also 
holds for all f in 9'00 and m in M(s, An). By the part already proved, a ~ AnP. 
Since this is true for all n, we obtain a ~ Ap. 

Next we shall prove that a ~ -1 + p(A + 1). As in the proof that a ~ pI., we 
need only prove this for A not an integer. As before, we may also assume 
a ~ -1 + p(l + A). We will also assume that a > -1 + p(A + i); from this we will 
derive a contradiction and conclude that a ~ -1 + p(A + i). 

For ° < A < 1, define 

[ -2A 2 ]" m ( A, x) = I x I sin{ x) . 

We will use Lemma (3.14) with k = [A]. Since a > -1 + p(A + i), we have 
a > -1 + pk. We must verify that m(A, x) satisfies the hypotheses of Lemma (3.5). 
By Lemma (3.22), Im(A, x)1 ~ C(1 + Ixl)max(-l,-2A). Since max( -1, -21.) ~ -A, 
this implies that Im(A, x)1 ~ C(1 + IxO->-' Similarly, since am(A, x)/ax = 
[lxll-2A sin(x2)sgn x] ", Lemma (3.22) implies 

(4.5) I a I ( )1-2A ax m ( A, x ) ~ C 1 + I x I , 
which is bounded for Ixl < 1. 

To show that m(A, x) is in M(oo, A), start with the fact that DAm(A, x) = 
[xAlxr 2A sin(x2)] ". By taking a linear combination of the functions in Lemma 
(3.22) with b = -A, we see that 

(4.6) IDAm{A,x)1 ~ C(l +Ixl)-A 

for all x. By Lemma (2.6) then with I equal to [2 i -1,2 i +1] or [_2i+1,-2i-1], 
cp(x) = XI(x)t/I(2- ix) and f(x) = m(A, x) we get 

IIDAXI{x)mi A, x) 1100 ~ c[llxI{x)DAm{A, x) 1100 + 2-iAllm{A, x) 11001· 
These inequalities combined with (4.6) and the boundedness of m(A, x) show that 
m(A, x) is in M(oo, A). Therefore, m(A, x) satisfies the hypothesis of Lemma (3.5). 

We will now define the function g(x) to be used in Lemma (3.14). Let cp(x) be a 
Coo function with support in [0,1] which is positive in (0,1). We will consider two 
cases. If a < -1 + p(k + 1), define 

(4.7) g{x) = cp{x) - ncp{nx). 
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The inequality a < -1 + p(k + 1) implies 

Joo p a 
(4.8) Ig(k){x) Ilxl dx ~ Cn(k+1)p-a-1. 

-00 

The rest of the proof will consist of showing that for n sufficiently large, 

(4.9) Joo I vIP a-kp [m (:\ - k, x) g (x) 1 I x I dx ~ Cn Y, 
-00 

where y = (k - 2:\)p + a + 1 and C is independent of n. Combining (3.15), (4.8) 
and (4.9) shows that (k - 2A)p + a + 1 ~ (k + l)p - a-I, and this contradicts 
the assumption a > -1 + p(:\ + i). 

To prove (4.9), start with the fact that for x > 1 

[ '1 v Joo 2k-2A . 2 m{:\ - k,x)g{x) = C g{/)lx - II sm{x - t) dt. 
-00 

Since f~ g(t) dt is 0, the right side equals 

Joo [ 2k-2A 2 2k-2A ] (4.1O) C g{t) Ix - II sin{x - I) -Ixl sinx 2 dl. 
-00 

Then by the definition of g, [m(:\ - k, x)g(x)] v equals a constant times the sum of 

11 2k-2A . )2 
q{x) = 0 </I{t)lx - tl sm{x - t dl,. 

2k-2>-. . 11 r ( x) = -I x I sm x 2 0 </I ( t) dt 

and 

11/n [ 2k-2A . { 2 2k-2A. 2] 
S ( x) = -n 0 </I ( nl) I x - t I sm x - t) - I x I sm x dt. 

We shall show that if ° < a < 1 and n > 3/a, then 

(4.11) i an p 
2 Iq{x)1 xa-kpdx ~ C1, 

(4.12) 

and 

(4.13) 

where C1, C2 and C3 are independent of nand a. By choosing a so that 
C3a P < iC2 , it is clear that these imply (4.9) provided y > 0. To show that y> 0, 
compare the end terms of the inequalities 

-1 + p(:\ + i) < a < -1 + p{k + 1) 

to see that k > :\ - i. This lower bound for k and the fact that a > -1 + p(:\ + i) 
imply y > 0. 

To prove (4.11), integrate the definition of q(x) by parts to get 

11 11 2k-2A . 2 q{x) = 0 </I'{t) 0 Ix - ul sm{x - u) dudt. 
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Assume that x > 2 and make the change of variables x - u = IW in the inner 
integral to get 

q(x) = .! {l </>'(t)jx2 wk->"-l/2sinwdwdt. 
2 Jo (X_I)2 

Now apply Lemma (3.25) to the inner integral; this shows that Iq(x)1 :s:; Cx 2k- 2A -1, 
and (4.11) follows since 0: < -1 + p(k + 1) implies p(2k - 2A - 1) + 0: - kp < 
-1. 

Inequality (4.12) is immediate. To prove (4.13), use the facts that for 0 :s:; t :s:; lin 
and x> 2, 

(4.14) 

and 

(4.15) Ix 2k - 2A [sin(x - t)2 - sinx2] I:s:; Ctx 2k - 2A + 1• 

These show that Is(x)1 :s:; (cln)x 2k - 2A + l for x > 2, and (4.13) follows. This com-
pletes the proof that 0: :s:; -1 + p(A + t) for the case 0: < -1 + p(k + 1). 

For the case 0: > -1 + p(k + 1), let 
g(x) = n</>(nx) - n2</>(n 2x). 

This condition on 0: implies that (4.8) also holds for this g and we will prove (4.9). 
To do this, use the fact that [m(A - k, x)g(x)] v equals (4.10) to write it as the sum 
of constants times 

(lin [ 2k-2A 2k-2A] 2 Q(x) = Jo n</>(nt) Ix - tl -Ixl sin(x - t) dt, 

R(x) =lxI2k-2Afln n</>(nt)[sin(x - t)2 - sinx2] dt 
o 

and 

() l l/n2 2 ( 2 )[1 12k - 2A . ( 2 2k-2A. 2] S X = 0 n </> n t x - t sm x - t) -I x I sm x dt. 

The inequalities to be proved are 

(4.16) [~anIQ(x)(x"-kPdxrIP:s:; ~l, 

(4.17) 

and 

(4.18) 

for 0 < a < 1 and n > 31 a; as in the last case these are sufficient to prove (4.9) 
since 0: > -1 + p(k + 1) implies k - 2A + 1 + (0: + l)lp > o. 

For (4.16), use (4.14) to show that IQ(x)1 :s:; (Cln)x 2k - 2A - 1 for x> 2. This and 
the fact that 0: < -1 + p(A + 1) imply (4.16). For (4.17), use a trigonometric 
identity to show that 

2k-2A {lin ( t 2 ) • ( t 2 ) R(x) = -Ixl Jo n</>(nt)2cos x 2 - xt + "2 sm xt -"2 dt. 
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Now if 0 ~ t ~ l/n and 1 ~ x ~ n, then sin(xt - t 2 /2) ~ Cxt, and if we also have 
2j7T ~ x 2 ~ (2j + t)7T, then COS(X2 - xt + t 2/2) ~ C> O. Therefore, if j ~ 1 and 
..j2j7T ~ x ~ J(2j + t)7T ~ n, we have IR(x)1 ~ (C/n)x2k-2Hl. Inequality (4.17) 
follows from this. For (4.18), use (4.14) and (4.15) to show that IS(x)1 ~ 
(C/n 2)x2k - 2A+l for Ixl ~ 2. This completes the proof that a ~ -1 + A(p + !-) and 
completes the proof of the upper bounds in Theorem (1.4). 

5. Completion of the proof of Theorem (1.4). This will be done in three parts. The 
proof that a > -1 is done directly. This result and a duality argument based on the 
upper bounds proved in §4 then prove that a ~ max(-pA, -1 + p(-A + 1». Fi-
nally, we show that (a + l)/p cannot be a positive integer. 

To prove a > -1, we will show for every integer k that -kp < a ~ -1 is 
impossible. To do this, fix k and a and choose g in COO with support in [1,2] such 
that 112 g( x) dx = 1 and N xig( x) dx = 0 for 1 ~ j ~ k; the existence of such a g is 
shown in Lemma 2.6, p. 182, of [1]. Define f(x) = g(x) - g(-x). Then f(x) is in 
9'00 and f(J)(O) = 0 for 0 ~ j ~ k. Therefore, 

(5.1) r~ If{x) (lx,a dx < 00. 
-00 

Since (1.3) is assumed to hold for f in 9'00 and all m in M(s, A), it holds in 
particular for this f(x) and m(x) = i sgnx. Therefore, (1.3) and (5.1) imply that 

(5.2) foo li{x) (Ix!" dx < 00, 
-00 

where 

i (x) = 1.. lim 1 f (x - t) dt 
7T £-+0+ 111>£ t 

is the Hilbert transform of f. 
We will now show that (5.2) cannot hold. To do this, define 

G{x) = fX [g{t) - g{-t)] dt. 
-00 

Since g has support in [1,2] and g(t) - g(-t) has integral 0, G(x) has support in 
[-2,2]. Therefore, G is integrable and 

xG{x) = i[g{x) - g{-x)] = if{x). 

From this we see that 

G{O) = i foo f{t) dt 
-00 t 

and 

j(0) = 1..fOO f{-t) dt = iG{O) = -i. 
7T -00 t 7T 7T 

Since i is in Coo and a ~ -1, this shows that 1_""ooIj(x)IPlxla dx = 00 and con-
tradicts (5.2). This completes the proof that a > -1. 
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To prove that a;;;:. max(-pA,-l + p(-A + !-», we may assume by the previous 
part that a > -1. We may also assume a < p - 1 since if a ;;;:. p - 1 there is 
nothing to prove. Now since (1.3) holds for all I in sPoo , Theorem (2.7) shows that 
(1.3) holds for all I in L2 n Lt. Now if g is any functio~ in sPoo, 

(5.3) [I: I[m(x)g(x)] v (Ixl-a/(P-l) dx riP' 

sup I f'~ [m (x) g( x)] v I( x) dx I, 
feA -00 

where A is the set of all I in L2 with f~oo I/(x)IPlxla dx ~ 1. Since I and g are in 
L 2 , the right side equals 

sup If 00 g(x )[m( -x )j(x)] v dx I. 
feA -00 

Now use Holder's inequality and (1.3) to conclude that 

foo I[m(x)g(x)] v (Ixl-a/(P-l) dx ~ C foo Ig(x) (Ixl-a/(P-l) dx. 
-00 -00 

Since this is true for all g in sPo,o and m in M(s, A), the proof in §4 shows that 

-a/(p - 1) ~ min[p'A, -1 + p'(A + !-)]. 
Multiplying by 1 - p then gives the asserted inequality. 

Finally, we show that (a + I)! p can not be a positive integer. Since m (x) = sgn x 
is in M(s, A) for all A> 0 and s satisfying 1 ~ s ~ 00, it is sufficient to show that 
(1.3) cannot hold for this m if (a + l)!p is a positive integer. To do this, fix p 
satisfying 1 < P < 00 and a positive integer k. Let a = -1 + pk and m(x) = sgnx 
and assume that (1.3) holds for all I in sPo,o' We then have for all I in sPo,o 

(5.4) foo l1(x)(jxladx~Cfoo I/(x) (jxladx. 
-00 -00 

By Theorem (2.7), (5.4) will also hold for all I in Lt n Qk-2' 
Now choose I(x) in LOO n Qk-2 with support in [0, 1] such that 

(5.5) foo Xk-1/(x) dx = 1; 
-00 

such an f exists by Lemma 2.6, p. 182, of [1]. Now since f is in Qk-2' we see that 

f oo Xk-l - tk- 1 
----f(t)dt = 0; 

-00 x - t 

therefore, for x > 2 

Xk-lj(X) = 1..foo tk-1f(t) dt. 
'TT -00 X - t 

This and (5.5) show that for x large we have lj(x)l;;;:. x- k/2'TT and that, therefore, 
the left side of (5.4) is infinite. Since the right side of (5.4) is finite, we have a 
contradiction. This completes the proof that (a + l)/p is not a positive integer. 
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