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SOME WEIGHTED NORM INEQUALITIES 
FOR THE FOURIER TRANSFORM OF FUNCTIONS 

WITH VANISHING MOMENTS 

CORA SADOSKY AND RICHARD L. WHEEDEN 

ABSTRACT, Weighted LP norm inequalities are derived between a function and its 
Fourier transform in case the function has vanishing moments up to some order. For 
weights of the form IxIY, the results concern values of y which are outside the range 
which is normally considered, 

1. Introduction. Weighted norm inequalities for the Fourier transform with power 
weights have natural constraints on the exponents, as indicated in Pitt's theorem [6], 
which asserts for example that 
(I) foo Ij{x)IPlxl-y+p-2dx~ Cfoo If{x)IPlxIYdx 

-00 -00 

if 1 < P < 00 and max{O, p - 2} ~ Y < P - 1. The result fails for y outside this 
range. We will show, however, that (1) holds for y > p - 1, y"* kp - 1 for 
k = 1,2, ... , provided that enough moments of f vanish. For example, an im-
mediate consequence of Theorem 1 below is that (1) is valid for p - 1 < y < 2 P - 1 
for all f having mean value zero (d. [2], where analytic functions in the unit circle 
are considered). The case y = p - 1 is excluded, even with this restriction on f, as 
shown by the counterexample in §5. 

We work with functions in .9"0.0' the class of Schwartz functions whose Fourier 
transforms have compact support not containing the origin. Note that all the 
moments of a function in .9"0,0 vanish: 

foo f{x)xidx = 0, j = 0,1,2, ... , fE.9"o,o. 
-00 

.9"0,0 is dense in all the weighted spaces that we will consider, and the Fourier 
transform operator has a natural extension to functions (not necessarily locally 
integrable) in these spaces: see §4. 

In what follows, if 1 < P < 00, A P stands for the class of nonnegative, locally 
integrable functions w on RI such that 

C~I i w{x) dx )C~I i w{xrl/(p-l) dx r- l ~ A < 00 

for all intervals I c RI. 
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THEOREM 1. If 1 < P < 00 and WE Ap' then 

(2) f OO A 1 ( 1 ) dx fOO 
-00 If(x)IPTXT W x TXT ~ c -00 If(x)IPlxIPw(x) dx 

for all f with j-~f dx = 0, where C is independent off. 

Inequality (1) for p - 1 < 'Y < 2p - 1 follows from (2) since Ixj"Y-P E Ap if 
-1 < 'Y - P < P - 1. Counterexamples for 'Y = P - 1, etc., are discussed in §5. 

More generally, we have 

THEOREM 1a. If 1 < P ~ q < 00, wq/ p E Al+q/ p" lip + lip' = 1, and k is a 
positive integer, then 

for all f E Yo 0' with C independent off. 

The condition on w above is easily seen to be equivalent to 

(4) ( 1 )P/q( 1 )P-l -f wq/Pdx -f w-1/(p-l)dx ,;::: A < 00 
III J III J ",. 

Moreover, it is equivalent to assuming that WE Ap n RHq/ p, where wE RHr, 
r > 1, means that w satisfies the reverse Holder condition 

( 1 ) l/r ( 1 ) Vi £ wrdx ~ C Vi £ wdx , 

with C independent of I. 
The proof of these results is extremely simple and based only on Hardy's 

inequalities and some properties of Ap weights. As a consequence, the results hold 
under considerably weaker hypotheses than wq/ p E Al+q/ p'. For example, Theorem 
1a together with the density of Y oo in LP(lxlkpw) are valid if w is locally 
integrable and both of the following hold: 

( ( ) q/P ) P/q( )P-l w x dx w(xr1/(p-l) dx ~ C, ~xl>s Ixll+ q/ p' ~xl<s 
(5) 

( )
P/q( ()-I/(P-l) )P-l j Ix lq/ P- 1w(x)q/P dx 1 w x , dx ~ C 

Ixl<s Ixl>s Ixl P 

for all s > O. This will follow for Theorem 1a by combining the comments in 
Remarks la, 2a of §2. For the density, it follows from [5]; see the end of §4. 

Theorem 1a also has translated versions. To obtain these, apply Theorem la to the 
function eixbf(x + a) and the weight w(x + a), noting that the condition wq/ p E 

Al +q/p' is translation invariant. Then translating the integral which arises on the 
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right of (3) by a and the integral which arises on the left by b, we obtain 

(6) (J~: 1!~~nX~bw(a+ IX~bl)r/PIX~blr/q 
:;;;; c(i: If(x )IPlx - alkPw(x) dx riP 

with C independent of f, a, and b, provided that wq/ p E A1+q/p' and all the 
moments of eiXbf(x) vanish. Instead of assuming that wq/ p E A1+q/p" we could 
assume only that (5) holds for w(x + a). 

In n dimensions, we have the following result: 

THEOREM 2. Let n ~ 1, 1 < P :;;;; q < 00, {3 = (n - l)p - n, and w be a function 
on Rl such that the function w(p) = Ipl-(.B+1)w(p) satisfies wq/ p E A1+q/p,(R1). If k 
is a positive integer and f E Yo 0' then 

(7) (LnC~~:}n q[lx1.BwC!I) riP I~n f/q 
:;;;; c( Ln If(x )IPlxlkpw(lxl) dx riP 

with C independent off. 

Again, the conclusion of Theorem 2 holds under a weaker assumption on w; it is 
enough to assume that w satisfies the analogue of (5) with all integrations restricted 
to positive values of the variable of integration, i.e., to assume 

(8) 

( 
cc; ~()q/P )P/q( S )P-l 1 w p , dp 1 w(p r1/(p-l) dp :;;;; c, 

S pl+q/p 0 

( 
s )P/q( cc;~( )-l/(P-l) )P-l 10 pq/p-1w(p) q/p dp ~ w P pp' dp :;;;; C 

for all s > 0. 
In §2, we list some auxiliary weighted inequalities used in the proofs of Theorems 

1 and 1a; the proofs themselves are given in §3. In §4, we discuss the extensions by 
continuity of j for general f E LP(lx - alkPw), and in §5 we consider a counterex~ 
ample for power weights. Theorem 2 is proved in §6. 

Throughout the paper, C stands for a constant which may be different at different 
occurrences, and p' denotes the conjugate index of p: lip + lip' = 1, 1 < p < 00. 

2. Basic inequalities. As mentioned in the introduction, the proofs are based 
entirely on Hardy's inequality and a few properties of Ap weights. In the next two 
lemmas, we summarize the facts we shall use. 

LEMMA A. Ifw E A/~), 1 < p < 00, and a ~ p, then 

(9) j raw(t)dt:;;;;Cs-aj w(t)dt, s>O, 
Itl>s 111<s 

with C independent of s. 

For a proof, see (2.3) in [3]. 
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LEMMA B (HARDY'S INEQUALITIES). If 1 < P ~ q < 00 and u and v are nonnegative 
on (0, (0), then the inequality 

( 00 (foo )q )l/q (100 )l/P (10) 10 x f(t) dt u(x) dx ~ C 0 f(xYv(x) dx 

holds for every f;;;. 0 if and only if 

(11) (1r )l/q(lOO , )l/P' sup u(x)dx v(xfP/Pdx <00. 
r>O 0 r 

Similarly, the inequality 

(100 (1X ) q )l/q (100 )l/P (12) 0 0 f(t)dt u(x)dx ~ C 0 f(xYv(x)dx 

for every f;;;. 0 is equivalent to 

(13) (100 )1/q(1r , )l/P' sup U (x) dx v ( x ) -P /p dx < 00. 
r>O r 0 

For a proof, see [1]. 
We will use Lemmas A and B to prove the next four lemmas, which are the 

specific inequalities needed for the theorems in the introduction. Since the case 
q = p is somewhat simpler, we will consider it separately. 

LEMMA 1. If 1 < P < 00 andw E Ap ' then 

(14) 

for g;;;. O. 

PROOF. The expression on the left side of (14) is at most 2P times 

We want to show that each of these is bounded by the term on the right side of (14). 
We have 

By Hardy's inequality (10) with q = p, this will be bounded by 

C 1000 
g(XYX 2P - 2W( ~) dx 

provided that (11) is satisfied for 
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To check (11), note that by changing x into lit, 

( 
r [( 1 ) (1 )] ) lip ( 00 [ ( 1 )] -p'lp ) lip' 10 XP-2 w ~ + w -~ dx ~ X2p - 2W ~ dx 

( (1) ) lip ( (1)-P'IP ) lip' ~ 1 Ixl p- 2w - dx 1 Ixl- 2w - dx 
Ixl<r x Ixl>r x 

(15) ( ) lip ( ) lip' 
= 1 IWpw(t) dt 1 w(tfP'lp dt , 

111>I/r 111<I/r 

which by Lemma A for ex = p and the fact that w E Ap with constant A is bounded 
by 

( ( ) liP) ( ) lip' C rP 1 w(t) dt 1 w(tfP'IP dt ~ CAlIp. 
111<I/r 111<I/r 

Similarly, 

is bounded by 

1000 g(_XVX2P-2W(_~)dx = i: g(xVIXI2P-2W(~)dx, 
since (11) is satisfied for 

u(x) = x P- 2( w( ~) + w( -~)) and v(x) = X2P - 2W( -~), 
and the lemma follows. 

REMARK 1. The hypothesis in Lemma 1 that w E A P is unnecessarily strong. As 
shown in the proof (see (15», it is enough to assume that 

(1 w(~) dt)(1 w(tfl/(P-I)dt)P-I ~ C 
111>s It I 111<s 

for all s > O. It follows, for example, that the conclusion of Lemma 1 holds if 
w(l/x) is replaced by w(1!lxl), assuming only that 

(f.oow~) dt)({w(tfl/(p-I)dtr-l ~ C 

for s > O. 
More generally, we have 

LEMMA la. If 1 < p ~ q < 00 and wqlp E A1+ qlp" then 

(f OO {lxIIIP'-llqw(l)lIP 1 g(t) dt} q dX)llq 
-00 x 111>lxl 

for all g(x) ~ o. 
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PROOF. The proof is the same as the previous one, using Hardy's inequality for the 
pair of weights u, v defined by 

, [ (1) q/p (1 ) q/P] u(x) = x q/p -1 w X- + w -X- ' 
To verify (11) for this choice of u and v, we use the fact that Lemma A holds for 
wq/p with a = 1 + q/p' since wq/p E Al+ q/p" Moreover, as noted in the introduc-
tion, (4) holds. 

REMARK lao As the proof shows, the conclusion of Lemma 1a holds if w merely 
satisfies 

(1 w(t)q/p dtjP/q(1 w(tfl/(P-lldt)P-l ~ C 
Itl>s Itll+ q/p' Itl<s "" 

for s > O. Thus, the conclusion holds with w(l/x) replaced by w(l/lxl), assuming 
only that 

(100 w(t)q/~ dtjP/q(lS W(tfl/(P-ll dt)P-l =:::;; C. 
s t l +q/ p 0 

LEMMA 2. If 1 < P < 00 and w E Ap' then 

(16) foo (1 h(t) dt) P1 xl-2w('!') dx =:::;; cfoo h(xVIXIP-2W(.!.) dx 
-00 Itl<lxl x -00 x 

for h(x) ~ O. 

PROOF. The argument is similar to that in the proof of Lemma 1. The integral on 
the left of (16) is at most 2P times 

and 

I + III = fooo (foX h ( t) dt f x - 2 [ W ( ; ) + w ( -; ) ] dx, 

II + IV= fooo (foX h(-t)dtfx-2[w(;) +W(-~)]dX. 
Therefore, in order to prove (16), hypothesis (13) has to be checked for the pair u, v 
defined by 

u(x)=x-2[w(;)+w(-;)] and v(x)=xP- 2w(±;). 

By changing x into 1/t. 

( 
00 [( 1 ) (1 )] ) lip ( r [ (1 )] -p' /p ) lip' / x- 2 w X- + w -X- dx fo XP-2W ± X- dx 

(17) ( ) 
l/p ( ) lip' 

=:::;; 1 w(t) dt 1 Itl-P'w(tfP'/p dt 
Itl<1/r Itl>1/r 
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Since the condition that wE Ap is equivalent to W-p'lp E Ap" we see by Lemma A 
applied to w-p'lp and p', with a = p', that the last term is bounded by 

( ) l/P( ) lip' 
C 1 w(t) dt r p'1 w(tfP'lp dt ~ CAlIp, 

Itl<1/r ltj<1/r 

and the lemma follows. 
REMARK 2. The conclusion of Lemma 2 holds if instead of assuming that w E A p' 

we assume (see (17» 

( )( ( )-1/(P-1) lP-1 
1 w(t) dt 1 w t dt ~ C 
Itl<s Itl>s ItI P' 

for all s> O. Hence, the conclusion holds with w(l/x) replaced by w(l/Jxl) 
assuming only that 

s > O. 

LEMMA 2a. If 1 < P ~ q < 00 andwqlp E A1+ qlp" then 

( {
lip } q ) l/q fOO IxrlIP-llqw(.!.) 1 h(t) dt dx 

-00 x 1/1<lxl 

for all h(x) ~ O. 

PROOF. As usual, it is enough to check (13) for 

u(x) = X-qIP-l[w(~rIP + w(-~rIP] 
In fact, changing x into l/t, 

(18) (jOO u(x) dx flq (f v(x fP'IP dx riP' 
~ (1 Itlqlp-1w(t)qIP dt)1Iq(1 Itl-P'w(tfP'IP dt)l IP' 

Itl< l/r III> l/r 

The first factor on the right is at most 

( )
lIq 

r- qIP+ 11 w(t)qIPdt 
Itl<1/r 

since q/p ~ 1, and the second is bounded by 

( ) 
lip' 

C r P'1 w(tfP'lp dt 
1/1< 11r 
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by Lemma A applied to W-p'/p E Ap' with a = p'. (Recall that wq/p E A1+q/p' 
means that wE Ap n RHq/p; in particular, wE Ap' and so w-p'/p E Ap'.) Thus, 
(18) is bounded by 

c(r 1 w(t)q/p dt)l/q(r 1 w(tfP'/P dt)l/P', 
Itl<l/r Itl<l/r 

which is at most a constant independent of r since wq/p E A1+q/p'. 
REMARK 2a. The conclusion of Lemma 2a holds if 

(1 IW/p-lw(t)q/p dt)P/q(1 w(tflj~P-l) dt)P-l ~ c, 
Itl<s Itl>s Itl P 

s > 0, 

as can be seen from (18). In particular, the conclusion holds with w(l/x) replaced 
by w(I/lxl) if 

({ tq/p-1w(t)q/p dt r/q (~oo w(t):~(P-l) dt r- 1 ~ C, s> 0. 

3. Proofs of Theorems I and la. We first prove Theorem 1. For an integrable f 
with f_oooc; f = 0, we can write 

/(x)= foo f(y)(e iXY -l)dy= 1 + 1 =1+11. 
-00 Ixyl<l IxYI>l 

Using the estimate le ixy - 11 ~ Min{ Ixyl, 2} and letting y = 1/t, we obtain 

III ~ 1 Ixyllf(y)ldy = Ix l1 It- 3f(1/t)ldt 
lyl< l/Ixl Itl> Ixl 

and 

1111 ~ 21 If(Y)ldy = 21 It- 2f(1/t)ldt. 
IYI>l/lxl Itl>lxl 

If we estimate 1/(x)1 in (2) by the sum of these expressions, apply Lemmas 1 and 2 
with g(t) = It- 3f(1/t)1 and h(t) = Jr2f(l/t)l, respectively, and then make the 
change of variables y = 1/x, we obtain i: 1/(X)IPIX I-2w(;)dx 

~ cfoo (1 g(t) dt)PlxIP-2W(!) dx 
-00 Itl>lxl x 

+cfoo (1 h(t) dt) Pl x l-2w(!) dx 
-00 Itl<lxl x 

~ C foo g(yVIYI2P-2W(!) dy + c foo h(y)PIYIP-2W(!) dy 
-00 y -00 y 

= C foo If(x)IPlxIPw(x) dx. 
-00 

This completes the proof. 
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To prove Theorem la, note that for f E Y'o,o and any fixed positive integer k, 

J(x) = 1_0000 f(y)[e iXY - }kL=-Ol _(ix_y_)J] dy = J + J = I + II 
j! IxYI<l IxYI>l . 

Again, setting y = l/t, we have 

1111 ~ C J Ixylk-1If(y)ldy = qxl k - 1! It- k- 1f(l/t)ldt. 
IxYI> 1 It I < Ixi 

The theorem follows from these estimates as before, except that instead of Lemmas 1 
and 2 we now use Lemmas la and 2a with g(t) = Ir k- 2f(l/t)1 and h(t) = 
It- k- 1f(l/t)l, respectively. 

4. Extensions. Let W(x) = Ixlkpw(x), where k is a positive integer and w is a 
weight such that w E Ap ' 1 < P < 00. If we define 

!F[(x) ~ 1: [(Y)['''' - :~: (i~)j]<o/, 
then the proof above shows in particular that the integral defining ~ f converges 
absolutely almost everywhere for any f E LP(W). We will now show that ~f(x) 
converges absolutely for all x for every f E LP(W), with Was above. If x = 0, the 
integrand is zero. For any fixed x =1= 0, there are constants C = Cx > ° such that 

l~f(x)1 ~ C J lykf(Y)ldy + C J lyk-1f(y)ldy 
lyl<C lyl>C 

( ( ) 
lip' ( ) lip' ) 

~ CIIfllu(w) J w-P'IPdy + J lyl-P'w-p'IPdy 
lyl<C lyl>C 

by Holder's inequality. Thus, l~f(x)1 ~ CIIfllu(w) < 00, C = Cx,w' 
Furthermore, since Y'o,o is dense in such LP(W) (see [5]), if {In} C Y'o,o con-

verges to fin LP(W), then ~f(x) = limn -00 In(x) for every x E R: in fact, by the 
previous argument, 

and the right side tends to ° as n -+ 00. Thus, by Fatou's lemma, we obtain under 
the hypotheses of Theorem la that 

(19) (J~: 1~~~~)nl!lw(~)rIP~rlq ~ c(J~: IXkf(X)IPW(X)dxfIP 

for any f E LP(lxlkw), with C independent of f. 
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For weights of the form W(x) = Ix - alkPw(x) (see the right side of (6», it is 
necessary to use a variant of :Ff in order to obtain an inequality like (19). In fact, if 
for given a we define 

~f(x) = joo f(y)[e iXY - &'k-I,a.)y)] dy, 
-00 

where 
k-I (ixfe iXa . 

&'k-I,a,x(y) = j~O j! (y - a f 
is the Taylor polynomial around a of e ixy as a function of y, it follows by changing 
variables that if w E Ap n RHqlp' then 

(20) (i: I ~~~~) n I!I w( a + ~) riP ~~ f/q 

~ c(i: If(x)IPlx - alkPw(x) dx riP 

with C independent of a and f. 
Inequality (20) is actually valid assuming only that w(x + a) satisfies (5). This 

will follow as before if we show that 9'0,0 is dense in LP(lx - alkPw) for such w. It 
suffices to consider the case a = O. By Theorem (6.19) of [5], since w is locally 
integrable, we have only to show that 

We assume that 

~f w(x)dx-+O asn-+oo. 
n Ixl<n 

f w(x)q/P 
---'----'--dx < 00 

Ixl> 1 Ixil +q/p' 

(see the first factor in the first inequality of (5». For N large, write 

~ f wdx = ~f wdx + ~ { wdx = A + B. 
n Ixl<n n Ixl<N n IN<lxl<n 

Clearly, A -+ 0 as n -+ 00 for any fixed N. By Holder's inequality, 

B ~ ~(f W q/PdX)P/q(2n)I-P/q 
n N<lxl<n 

( 
w(x)q/p )P/q 

~ C f dx 
Ixl> N Ixil +q/p' 

Thus, B -+ 0 uniformly in n as N -+ 00, and the result follows. 

5. A counterexample. In this section, we show that Theorem 1 fails for w( x) = 
1!lxl, i.e., that inequality (1) fails for y = p - 1 for the class of f with integral zero. 
In fact, we will show that no norm inequality of the form 

(i: li(x)lqu(x) dx r/q ~ c(i: If(x)IPlxI P- 1 dx riP, 



SOME WEIGHTED NORM INEQUALITIES 531 

1 < P < 00,0 < q ~ 00, U(X) ¥= 0, can hold for all f with integral zero. It will then 
follow immediately from the density result in Theorem (6.1) of [5] that no such 
inequality can hold for all f E Yo,o' A similar statement can be made if the weight 
Ixl p - 1 on the right above is replaced by Ixlkp-l, k = 1,2, .... For simplicity, we 
consider only k = 1. 

For N > 1, define 
1 

f(x) = fN(X) = ~ {X(l/N,l)(X) - X(l,N)(X)}, 

where X(a,b) denotes the characteristic function of the interval (a, b). First note that 

f oo fdx=11 dx -IN dx =lnN-lnN=O, 
-00 liN X 1 X 

and that 

(22) (fOO If(x )IPlxIP- 1 dX)l/P = (IN x-px p - 1 dX)l/P = (2 In N)l!P. 
-00 liN 

Next, we will show that 
(23) li(x)I~lnN-2Ixl-3/lxl forallx. 
To see this, write 

If(x)1 = -dt - -dt = - + dt - -dt A III eixt lN e ixt I III dt lN e ixt - 1 lN eixt I 
liN tIt ljN t liN tIt 

~ 11 dt -Ill e ixt - 1 dtl-llN e ixt dtl = InN - A - B, say. 
liN t liN tIt 

Then 

1 1 21xlt 
A ~ --dt ~ 21xl, 

liN t 
and 

B = 11N !!£{ e ixt } dtl = I! e ixt It~N + lN eixt dtl 
1 t dt ix t ix t~l 1 ixt 2 

1 1 1 100 dt 3 
~ Nlxl + N + ~ 1 t ~ ~. 

Combining estimates leads immediately to (22). 
Now, if u(x) ~ 0 and u(x) ¥= 0, pick a, b with 0 < a < b < 00 and fa<lxl<bUdx 

> O. Then pick N = Na,b so large that, by (23), 
li(x)1 ~ inN - 21xl- 3/lxl ~ HnN for a < Ixl < b. 

Thus, 

( 
00 )l/q ( )l!q f li(x)lqu(x)dx ~ (tInN) J udx. 

-00 a<lxl<b 

In view of (22) and the fact that p > 1, this contradicts (21). 
We note in passing that a similar construction is given in [4]. 
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6. Proof of Theorem 2. Let f E 9'o,o(Rn), n > 1. Using (x . y) to denote the 
ordinary dot product in Rn and noting that (x· y)i is a polynomial in y for 
j = 0,1, ... , we can write 

= j + j = I + II. 
IYI<l/lxl IYI>l/lxl 

Since for the change of variables y = 1/1112 the Jacobian is bounded in absolute 
value by a constant times 111- 2n, we have the estimates 

1111::::; Cixlk-1j lylk-1If(y)ldy::::; Cixlk-1j 111-k+1-2n!f(~) !dl. 
lyl>l/lxl 111<lxl III 

Inequality (7) will then follow from showing that both 

and 

are bounded by the right side of (7). Note that the right side of (7) is equivalent to 

(26) 

To estimate (24), change to polar coordinates I = TI', T = Itl, and x = px', 
p = Ixl; in this way, (24) becomes 

where O'n-l is the surface area of the unit ball in Rn. Letting 

g(T)=j If(~)IT-k-n-ldl" 
11'1=1 T 

and 

w(p) = Ipl-(p-l)(n-l)w(p), 
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and recalling that f3 = (n - l)p - n, we may rewrite (27) as a constant times 

( [ ( 1 ) l/p ] q ) 1/ q 1000 pl/p'-l/qw P ~oo g( T) dT dp 

Since wq/ p E Al+q/p,(Rl ), Lemma la implies that this is at most 

(28) c(looo g(pVP2P-2W(;) dp r/p 

Since by Holder's inequality 

g(p V ~ CJ';!( f If( x') IP p-p(k+n+l) dx', 
Ix'I=1 P 

it follows that (28) is bounded by 

c( r ~XH If( ~) r p-P(hdl -',,(; )dx' dP) lip 

This, however, is easily seen to be a multiple of (26), and the estimation of (24) is 
complete. 

To estimate (25), we argue similarly, rewriting (25) in the form 

( 
00 ( ( ) l/p p ) q ) 1/ q C 10 p-l/P-l/qW; 10 h ( T) dT dp 

where w is as before and 

h(T) = f If(~) IT-k-ndt" 
1/'1=1 T 

Thus, by Lemma 2a, (25) is bounded by 

c(looo h(pVpP-2W(;) dp r/p 

Using Holder's inequality to estimate h(p)P and arguing as before, we see this is at 
most a constant times (26), and the proof is complete. 
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