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POLYNOMIAL ALGEBRAS HAVE POLYNOMIAL GROWTH 

DAVID R. FINSTON 

ABSTRACT. The definitions and basic properties of Gelfand-Kirillov dimension are 
extended to algebras over a field which are not necessarily associative. The results 
are applied to the algebra of polynomial functions on an arbitrary finite dimensional 
algebra to obtain polynomial growth (i.e. integral G-K dimension) for these algebras. 
The G-K dimension of the polynomial algebra in one indeterminate is shown to be 
constant on the category of all finite dimensional nomial extensions of an associative 
algebra. 

I. Introduction. The algebra of polynomial functions as an arbitrary algebra was 
introduced in [10] where an elegant generalization of the fundamental theorem of 
algebra was obtained for polynomial functions in one indeterminate over an 
arbitrary finite dimensional algebra. This structure was further investigated in [4] 
where it was shown that a certain amount of classical Galois theory over fields could 
be extended to arbitrary finite dimensional algebras. 

As is the case in the category of commutative, associative, unital R-algebras, the 
algebra of polynomial functions on a nonassociative algebra is a free object in a 
naturally arising category of, not necessarily associative, algebras (namely the 
category of algebras with nomial homomorphisms [3, 11 D. In case the algebra is a 
commutative field, its algebra of polynomial functions on a set X agrees with the 
usual polynomial ring and it is well known [1] that its Gelfand Kirillov dimension 
(henceforth G-K dimension) is equal to the common value of the transcendence 
degree of the rational function field and Krull dimension. It is, therefore, natural to 
investigate the G-K dimension of algebras of polynomial functions. To that end, the 
definitions and basic properties of G-K dimension have been adapted to handle 
nonassociativity. 

§II describes the extension of G-K dimension to nonassociative algebras. The 
treatment follows [1], and the reader is referred there or to [8, Chapters 1-4], for 
complete proofs in the associative case. 

A great deal of information regarding the structure of an algebra can be recovered 
from its multiplication algebra, and the structure of the algebra as a faithful left 
module for its multiplication algebra [5]. The G-K dimension of an algebra com-
puted as a module for its multiplication algebra is discussed in §III. 

The algebra of polynomial functions on an algebra A in a set X is described in 
§IV, in order to keep the exposition as self-contained as possible. Some new 
technical results, needed for the computation of the G-K dimensions are presented. 
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The structure theory of finite dimensional associative algebras carries over nicely 
to the algebra of polynomial functions when the base algebra is associative, allowing 
for a relatively easy proof of polynomial growth. The proof of the special case is 
included in §V since it is similar to, but less technically obscure than, the general 
argument. Moreover, the proof for the associative case allows for the proof, in §VII, 
that Dim A (x) = Dim B (x) for all nomial extensions B of the associative algebra 
A. Finally, the polynomial algebra of an associative algebra and its homomorphic 
images provide a source of infinite dimensional examples of associative algebras 
whose structures are strongly controlled by that of the finite dimensional base 
algebra. 

§VI contains the proof that for arbitrary finite dimensional A and finite set X, 
Dim A( X) is a nll-tural number. 

§VII introduces the category of algebras with nomial morphisms. It is proved 
there that Dim - (x) is an invariant on the category of finite dimensional nomial 
extensions of an associative algebra. It is conjectured that the result holds for 
arbitrary finite dimensional algebras. 

Certain foundational results on the algebra of polynomial functions and nomial 
homomorphisms first appeared in [11]. Since that source may be difficult to obtain, 
reference is also made to [3] for further details about these results. §§II - VI were part 
of ~he author's dissertation written under the supervision of Professor Helmut Rohrl 
at the University of California, San Diego. The author wishes to thank Professor 
Rohrl for his guidance in that effort and for his continued invaluable assistance. The 
author wishes also to thank Professor Adrian Wadsworth for his careful reading of a 
preliminary version and his many valuable criticisms. 

II. Preliminaries on G-K dimension. Let k be an infinite field. A k-algebra A is a 
k-vector space together with a vector space homomorphism JL: A ® k A ~ A giving 
the multiplication. The JL will be suppressed throughout, and JL (a ® b) will be 
denoted ab, except for the following convention. If ai' a 2 , .•• , an E A and f3(n) is a 
bracketting of n symbols, the result of multiplying a1, •.. , an according to f3(n) will 
be denoted JLp(n)(a1, ..• , an). If X is a set, k{ X} will denote the free nonassociative 
algebra on X. A k-algebra will be called finite type if it is a homomorphic image of 
k{ X} for some finite set X. 

Given a finite type k-algebra A, a filtration of A by finite dimensional subspaces 
v" is constructed as follows: let V be a finite dimensional subspace of A containing 
a set of algebra generators. Set Vi = V and Vi = span k {JLp(i)(v 1, V2 , ••• , Vi) I Vj E V, 
f3(i) runs through all possible brackettings of i symbols}. Set Vn = Ll,;; i,;; nVi. 
Clearly, A = Un ;>lv", and n ~ dv(n) = dimkv" is a monotone nondecreasing 
function on the natural numbers N. 

The ordering on ~ = {f: N ~ N I f is nondecreasing}, given by f ~ g iff there is 
an mEN with f(u) ~ g(mn) for all n, induces an equivalence relation - on ~ 
given by f - g iff f ~ g and g ~ f. The equivalence class of f is denoted w(f) and 
is called the growth of f. A routine argument [1, Satz 1.6] shows that w( d v) = w( d w) 
for any pair of finite dimensional generating subspaces V and W of A. Thus the 
growth of A, denoted w( A), is well defined by w( d v ). 
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(2.1) DEFINITION. (1) Dim A = limsuplogndv(n) is the G-K dimension of A. 
(2) DIMA = limsuplognln(dv(n» is the superdimension of A. 

For arbitrary A the G-K dimension and superdimension are 
(3) Dim A = sup{Dim BIB is a finite type subalgebra of A}, 
(4) DIMA = sup{DIMB I B is a finite type subalgebra of A}. 
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Certain of the estimates on G-K dimension and superdimension proved in [1, 
paragraph 2] which carry over to arbitrary algebras can be obtained by considering 
the number of ways to bracket n symbols. An application of Stirling's formula yields 
that this number Cn = (2n - l)-le n,;-l), the nth Catalan number, is bounded by 
k n/(2n - 1)3/2, where k is a constant independent of n. 

(2.2) PROPOSITION. (1) Dim A = 0 if every finite type subalgebra of A is finite 
dimensional. 

(2) w(A) ~ w(n --+ en). 
(3)0 ~ DIMA ~ 1. 

PROOF. For (1) it suffices to consider A finite type. If A is finite dimensional, then 
for some n, v;, = Vn+ 1 for all i, which shows Dim(A) = O. 

(2) 

SO that 
n 

d v ( n) ~ L Ci . [ d v (1) r 
;=1 

~ f [kd v (1)]; ~ k(n+1) 

;=1 (2i - 1)3/2 

where k is a constant independent of n. 
(3) follows immediately from (2). D 
For associative algebras, the converse to assertion (1) is also true. In contrast is the 

following nonassociative algebra, generated by a single element which is infinite 
dimensional with G-K dimension equal to zero. Let A = k {x}, the free nonassocia-
tive algebra on the generator x, and I the ideal in A generated by 
{lJ.P(i)(x)t-tP(J)(x) Ii =1= j}. The following sequence of elements of A: x 2° = x, 
x 2 = X . x, X2i = (X2i-l)(X 2·- 1 ) survive modulo I and in fact A/I:; EB;~okx2i, 
where ii denotes the image of a E A in A/I. A/I is generated by V = kx, and 

Thus dv(n) ~ 1 + log2n for all n, and 

i = 2J, 
otherwise. 

In( 1 + log (n)) 
DimA ~ lim sup I 2 = O. nn 
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The bounds in (3) are sharp as the free associative, nonassociative, and Lie 
algebras on two or more generators all have superdimension equal to one. For 
example, let A be the free Lie algebra on generators x and y. 

V=kx+ky, 

V2 = spank { xy}, 

V 3 = spank{(xy)x,(xy)y}. 

Using the Lie identities one shows that 

V n = span k { (( . . . (xy) a 3 a 4) . . . ) a n I a i E {X, Y } } , 

whence, for n ~ 2, dv(n) = 2n - 2 + 2n- 3 + ... + 1 + 2 = 2n - 1 + 1. That DIMA 
= 1 follows easily. 

(2.3) DEFINITION. w(A) is called limiting if limn ..... oologndv(n) exists for every 
finite dimensional subspace V of A. 

The elementary properties of G-K dimension in [1, Lemma 3.1J which carry over 
easily to arbitrary algebras are included in 

(2.4) PROPOSITION. Let A and B be nonzero algebras over the field k. 
(1) DimAIIB = max{DimA,DimB}. 
(2) Max{DimA,DimB} ~ Dim A ®kB ~ DimA + DimB. 

DimA ®k B = Dim A + DimB if both A2 = A and B2 = Band w(A) or weB) is 
limiting. 

(3) DimC ~ Dim A for all quotients and subalgebras C of A. 
(4) Dim A/lIn· .. nIT = maXI..;)..; T{Dim A/I)} for ideals II' ... ' IT of A. 
(5) If R is a commutative, associative, unital k-algebra, and A has the structure of 

an R-algebra as well, then for any multiplicative set S c R with 0 ft S, Dim A = 
Dim(S- l R ® A). 

PROOF. Except for (2) the proofs are routine and identical to those given in [1, 
Lemma3.1J. 

For (2), let V (resp. W) be a finite dimensional generating subspace for A (resp. 
B) and X c A ® k B a finite dimensional subspace. Then Xc Vn ® Wn for some n, 
so that 

for all m. 

By taking the supremum over finite type subalgebras of A ® k B, Dim(A ® k B) ~ 
Dim A + Dim B follows. 

With V and Was above, V ® W generates a subalgebra of A ® B. Clearly, 

dim k ( V ® W + (V ® W) 2 + ... + (V ® W r) ~ Max { d v ( n ), d w ( n ) } , 

from which Dim A ® B ~ Max{Dim A, Dim B} follows. 
Assume that A2 = A, B2 = B, and let V' and W' be finite dimensional generating 

subspaces of A and B respectively. Since A2 = A, 

V' C (V,)2 + (V,)3 + ... + (V'r for some n. 
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Set V = L?=I(V,)j; then V c V 2. Similarly, let W be a finite dimensional generating 
subspace for B with We W 2. Note that v" = vn and Wn = wn for all n. Let 
U = V 2 ® W2 and observe that vn ® wn C un for all n. To see this, we can 
reduce this, by induction, to showing that for v E V and WI' ... ' Wn E W, v ® 
JLP(n)(WI, ... , Wn) E un, and for VI' ... ' Vn E V, W E W, JLp(n)(V I, ... , Vn) ® W E un. 
We can write 

JLP(n)( WI'···' Wn) = JLp(l) { WI'···' W,)JLP(n-l)( W'+I'···' wn), 

and v = LCXjVjV: where Vj' v: E V and CX j E k. Thus 

v ® JLP(n)( WI'···' Wn) = LCXjVjV; ® JLp(I) ( WI'···' W,)JLP(n-1) ( Wl+l'···' Wn) 

= L[CXjVj ® JLP(I){W1' ••• 'W')][V; ® JLp(n-I){Wl+l, ... ,WJ] E U'U n-' C un. 
i 

The identical argument shows JLp(n)( VI' ... , Vn) ® W E un. Now vn ® wn C un 
implies 

Dim A ® B ~ limsuplogn(dv(n)· dw(n)) 

= limsup[logndv{n) + logndw(n)]. 

If either A or B is limiting, 

limsup[lognddn) + logndw(n)] 
= limsuplogndv(n) + limsuplogndw(n), 

and Dim A ® B = Dim A + DimB. 0 
The following lemma provides some information on the behavior of G-K dimen-

sion under restriction and extension of scalars. 

(2.5) LEMMA. Let A be a k-algebra and L a finite extension field of k. 
(1) If A has the structure of an L-algebra then Dim LA = Dim A. 
(2) DimL(L ®kA) = DimA. 

PROOF. (1) If V is any finite dimensional L subspace of A then dim k V = 
[L:k]dimLV. In particular, logndimkv" = 10gn[L:k] + 10gndimLVn, taking limits 
superior, we obtain Dim A = Dim LA. 

(2) If V is a finite dimensional k subspace of A then L ® k V is a finite 
dimensional subspace of L ® k A, and dim L( L ® k V) = dimk V. If B is a finite type 
subalgebra of L ® k A, we can enlarge B, if necessary, to obtain B' == L ® Bo for 
some finite type subalgebra Bo of A. Now choose a basis for a finite dimensional 
generating subspace U of B' of the form {l ® vj } where {v;} is a k basis for a 
generating subspace of Bo. Then Un == L ® (Un () A) == L ® (U () A)n, where U () A 
(resp. Un () A) denotes the intersection of U (resp. Un) with the image of A in 
L®A. 0 

III. The multiplication algebra. The multiplication algebra ..H R(A) of an R-alge-
bra A is the subalgebra of End R A generated by the identity and all right and left 
multiplications by elements of A considered as R-endomorphisms of A. The 
multiplication ideal ..H~(A) is the R subalgebra of ..H R(A) generated by the right 
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and left multiplications by elements of A. Multiplication algebras were investigated 
in [5] and we make frequent use of the following result from that paper: 

(3.1) LEMMA. Let A be an R-algebra finitely generated projective as an R module and 
S a commutative associative unital R-algebra. Then vi( s(S ® R A) =: S ® R vi( R(A). 

(3.1)' LEMMA. If k is a field and A a possibly infinite dimensional k-algebra, then 
L ® k vi( (A) =: vi( L (L ® R A) for any commutative associative unital k-algebra L. 

PROOF. If {e i liE I} is a k basis for A, then vI(A) is generated as an algebra by 
{hei, Pei liE I} U {idA}. vI(L ® k A) is generated by {I ® hei, 1 ® Pei} U {I ® 
idA}' since {I ® eili E I} constitutes an L basis for L ® A. 0 

Clearly, A has the structure of a left vI(A)-module, and hence a Gelfand Kirillov 
dimension as a module for vI(A). The definition of the G-K dimension of a module 
is included to make the exposition self-contained. More details can be found in [7 or 
8, Chapter 5]. 

Let A be a finite type, associative unital k-algebra and M a finitely generated left 
A-module. Let V be a finite dimensional generating subspace of A and U a finite 
dimensional subspace of M generating M as a left A-module. Construct a filtration 
of M by finite dimensional subspaces U; as follows: 

Uo = U, 

Un = VnU, where Vn = L Vi is a filtration of A. 
i~n 

Clearly, the function d~(n) = dimk(Un ) is monotone nondecreasing on the natural 
numbers, and a routine argument shows that its growth is independent of both U 
and V. 

(3.2) DEFINITION. (1) If A is a finite type associative unital k-algebra and M a 
finitely generated left A-module, the G-K dimension of M, denoted DimA M, is 
w(d~(n)). 

(2) If A is as above and M is arbitrary, DimA M = sup{DimA N I N is a finitely 
generated submodule of M }. 

(3) If A and M are arbitrary DimA M = sup{DimA' M I A' is a finite type subalge-
bra of A}. 

Most of the following proposition appears in [7]. 

(3.3) PROPOSITION. Let A be an associative, unital, finite type k-algebra and M a 
finitely generated left A-module, then 

(1) If M = Ml + ... + Mn, a sum of left A-submodules, then DimA M = 
Maxi {DimA Mi}, 

(2) DimA M ~ DimA. 
(3) Dim A N ~ Dim A M for all quotients and submodules N of M. 
(4) If I is an ideal of A contained in the annihilator of M, then DimA/I(M) = 

DimAM. 
(5) If there is an element mE M with AnnA(m) = (0), then DimA M = DimA. 
(6) Ifm l , ... , mn E M satisfy niAnnA(m;) = (0), then DimA M = DimA. 
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PROOF. For (1)-(4) see [7]. 
(5) Suppose AnnA(m) = (0). Let U be a finite dimensional subspace of M 

containing m and a set of left module generators, and V a subspace of A. From 
Ur = v,.U:J V,m ~ V, as vector spaces we obtain d ~(r) > d v( r). This inequality 
together with (2) proves the assertion. 

(6) The element (m 1, ••. , m n) E EEl~M satisfies AnnA«m1, .•. , m n)) = 
n i Ann A (m J = (0). Parts (1) and (5) prove the assertion. 0 

Any algebra A is a faithful left module over its multiplication algebra. Moreover, 
if A is finite type, then algebra generators, a1, .•• , an E A, serve as left .A(A) 
module generators: any monomial M(a1, ••• , an) in which a1 appears is certainly in 
the .A (A) submodule generated by a1• 

(3.4) LEMMA. Let A be a (not necessarily associative) finite type k-algebra. Then 
DimA = Dim.K(A)A. 

PROOF. Let U c A be a finite dimensional generating subspace with basis 
u1, ••• , urn' Let V c .A(A) be a finite dimensional subspace containing idA and all 
right and left multiplications by the ui• 

For any s > 0, /LP(s)(u1, ••• , us) E vs- 1U from which U. c Vp follows, proving 
DimA ~ DimM(A)A. 

Let Vi"'" vrn be a basis for V. Each Vi is a sum of products of left and right 
multiplications by elements from various [1;. In particular, VU C Un + 1 for suffi-
ciently large n, and in fact Vi C Uni+l for all i. Since idA E V, we have ViU = V;U 
C Uni+ 1' and dv(i) ~ du«n + l)i). This shows (d~) ~ (du ) from which 
DimM(A) (A) ~ Dim A follows. 0 

If A is a graded (nonassociative) algebra, .A(A) inherits the grading in a natural 
way. Let A = EEl ~An where An is the space of degree n homogeneous elements. 
Denoting the operator of left (resp. right) multiplication by a E A by A. a (resp. Pa ), 

we have .A(A) = EEl.A(A)n where .A(A)n = span k { A. a , Ph I a, bEAn}' Alterna-
tively, Endk(A) is a graded k-algebra whose subspace of homogeneous elements of 
degree n is EElj'~'_ooHomk(Aj' Aj+n). Clearly, .A(A) is a graded subalgebra of 
End k A and if A is positively graded, .A(A), with the induced grading, is again 
positively graded. 

The following lemma appears in [3, Chapter 5 and 8, Chapter 6]. 

(3.5) LEMMA. Let B be an associative unital graded k-algebra of finite type. Suppose 
further that B is positively graded by finite dimensional subs paces. Let M = EEl r:oiM 
be a finitely generated graded B-module graded by finite dimensional subspaces. Set 

Then W(BM) = w(g). 

n 

g{n} = L dimkMi • 
;=0 

(3.6) COROLLARY. Let A be a finite type, positively graded, k-algebra that is not 
necessarily associative. If A = EEl':oAi and g(n) = [7= odim k Ai' then w(A) ~ w(g) 
with equality if .A ( A) is of finite type. 
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PROOF. Lemma (3.4) yields wCu(A)A) = w(A). If U c .A(A) and V c A are finite 
dimensional then U ~ L7_0.A(A)i and V ~ Lj_oAm for some m, n. Clearly, UiV C 

L~"=+omAj for all i, from which wCu(A)A)..,;;; w(g) follows. Lemma (3.5) gives equality 
for .A(A) finite type. 0 

As an example, consider Gd , the generic algebra for d-dimensional k-algebras. Gd 

is free as a k[tij 11 ..,;;; i, j, k ..,;;; d] = k[T] module with basis el, ... , ed satisfying 
i j _ .... d t k k W t D· G e e - ':"'k-1 ije. e compu e 1m d. 

As a k[T]-submodule of Endk[T](Gd ), .A(Gd ) is finitely generated and torsion 
free. The following standard lemmas apply. 

(3.7) LEMMA [7, PROPOSITION 5.5]. If B is a subalgebra of the associative algebra A 
and A is finitely generated as a left or right B-module, then Dim B = Dim A. 

(3.8) LEMMA. Dimk[X] = IXI for X a finite set. 

Thus d 3 = Dimk[T] = Dim.A(Gd ). Furthermore, n1_1Ann...H(Gd)(ei) = (0), so 
by (3.3) and (3.4) DimGd = d 3• 

IV. The algebra of polynomial functions on a nonassociative algebra. Given an 
arbitrary algebra A over a commutative, associative unital ring R, the algebra of 
formal polynomials in a set X is the solution to the following universal problem: for 
all R-algebras B with an R-algebra homomorphism 1/;: A --+ B and a set map </>: 
X --+ B, A(X)fl is the unique (up to isomorphy) algebra with algebra homomor-
phisms 1/;0: A --+ A(X)fl, 1/;1: A(X)fl --+ B and set map i'oX --+ A(X)fl making the 
following diagram commute: 

A B X 

Full details can be found in [10], but it should be noted that A( X)fl can be 
realized as R{X}UA, and thus its elements are represented as R linear combina-
tions of formal words whose letters come from A U X, and are bracketted in a 
meaningful way. 

Evaluation of a formal polynomial amounts to a set map e: X --+ A which, 
together with id: A --+ A, induces an algebra homomorphism e*: A(X)fl --+ A. A 
formal polynomial P is called inessential if e*(P) = 0 for all e: X --+ A. The ideal 
no: x~ A kere* is denoted In(A, X) and the quotient A(X)nlIn(A, X) is the algebra 
of polynomial functions on A in the set X, denoted A( X). When X = {x} we 
write A(x) in place of A( {x}). 

In case R contains an infinite field, a Vandermonde determinant argument [10 or 
3] shows that In(A, X) is a homogeneous ideal with respect to the grading by degree 
in X, so that A( X) inherits this grading. 

Certain formal properties of A( X) needed in the subsequent development are 
collected in the following proposition. Their proofs can be found in [11 or 3]. 
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(4.1) PROPOSITION. (1) If X and Yare disjoint sets, thenA(XU Y) ~ (A(X»)(Y). 
(2) If {Ai liE I} is a family of R-algebras and X a set, then there is an injective 

homomorphism (llA;)(X) -+ nAi(Xi) which is surjective if I is finite and vH*(A;) 
= vH(A;) for each i. 

(3) If S is a commutative associative unital R-algebra, there is a surjective S-algebra 
homomorphism S ® R A( X) ... (S ® R A)( X) which is injective if S is a free R-mod-
ule. 

With the identifications Aa >-+ ax and Pa >-+ xa, it is apparent that vH(A) can be 
identified with the submodule A(X)(I) of A(x) consisting of polynomial functions 
of degree one in the single indeterminate x. 

In case A is free as an R-module, R6hrl [10] proved the following embedding 
theorem which allows for a convenient representation of polynomials in A( X) and 
brings the study of their zeros into the realm of classical algebraic geometry [10,4]. 

(4.2) THEOREM. If A is free as an R-module with basis e\ ... , ed, then for any set X 
the algebra homomorphism A -+ k[XI, ... , Xd] ®R A given by a >-+ 1 ® a and set map 
X -+ k[XI, ... , Xd] given by x >-+ L1=IX j ® e i (where Xi is a copy of X and Xi E Xi 
the copy of x E X) induce an injective R-algebra homomorphism X: A( X) -+ 

R[XI,···,Xd]®RA. 

An immediate consequence of (2.3) and (4.2) is that for A finite dimensional over 
a field, the growth of A(x) is polynomial bounded (i.e. w(A(X») ~ w(P) for some 
polynomial P). Indeed, if dimkA = d, DimA(x) ~ DimdxI' ... ' x d] ® A = d. 

It should be noted that if A is commutative, associative, unital, then A (X) ~ A[ X] 
the ordinary polynomial ring over A. Since G-K dimension agrees with Krull 
dimension [1] in this case, and A(X) is of finite type if X is finite, polynomial 
growth is clear. 

Ideals in A and A( X) are related by the assignments, 
I.6.A -+ {PEA(X)le*(P)EI'v'e: X-+A} =5.6.A(X), 

5.6.A(X) -+5·A = U {e*(p)lp E5}.6.A. 
" X--+A 

If A is finitely generated free as R module, the evaluation of a polynomial can be 
carried out in a convenient manner via (4.2). Indeed, for any set map 1/;: X -+ A we 
have the evaluation homomorphism 1/;*: A(X)n -+ A and the evaluation homomor-
phism A( X) -+ A also denoted 1/;*. With a fixed basis for A, say e\ ... , ed, we can 
write 1/;(X) = Lriei where ri E R, and for P = P(xl , ... , xn) E A(X) we have 

X(p) = LPi(Xll,···,Xld,X21,,··,X2d, ... ,Xnd) ® e; 
in R[X1, ••• , Xd] ® A. If we set '1': Xl U ... UXd -+ R to be the set map Xi} >-+ rij 
where 1/;(x) = Lri}e}, and '1'*: R[XI, ... , Xd] -+ R the induced algebra homomor-
phism, then we have a commutative diagram: 

A(X) 

",.~ 
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d 

1jJ*(P) = L Pi (rll' ... , rId"'" r2d ,···, rnl ,··., rnd)e i. 
i=l 

As a consequence we have the 

(4.3) LEMMA. If A is finite dimensional over a field and I is an ideal of A, then 
A(X)/.1"= (A/I)(X). 

PROOF. The homomorphism A ~ A/I ~ (A/I)(X) and set map X ~ 
(A/I)(X) into the degree 0 and degree one subspaces of (A/I)(X) induces a 
surjective homomorphism w: A(X)n ~ (A/I)(X) by the definition of A(X)n and 
the fact that (A/I)(X) is generated as an algebra by the images of A/I and X. 
Clearly, In(A, X) c kerw and .1" is contained in the kernel of the induced surjection 
'IT: A(X) ~ (A/I)(X), inducing a surjection A (X)/.1" ~ (A/I)(X). 

To see that .1" = ker'IT, choose a basis e\ ... , ed for A with e\ ... , e' a basis for 1. 
Commutativity of the following diagram for all e: X ~ A yields ker'IT C .1". 

w x 
A(X) ~ (A/I)(X) ~ k[X'+l"'" Xd] ® A/I 

e* ! 
A A/I k ®A/I 

(Here e* is the homomorphism (A/I)(X) ~ A/I induced from the set map e 
obtained from e by composing with the canonical map A ~ A/I.) 0 

The prime radical of an associative ring consists of all strongly nilpotent elements 
of that ring [2, vol. II, p. 255]. The corresponding idea for a nonassociative algebra 
leads to the r radical [11 or 3]. For a E A, let e! denote the evaluation homomor-
phism e*: A(x) ~ A induced by ea: x ~ a. Denote by A(x) .. n the ideal in A(x) 
consisting of all polynomials of degree ~ n, and by m(a) the ideal e!(A(x) .. n) in 
A. The readily verified inclusions m(ab) c m(a) n rn(b) and r2n(a + b) c 
m( a) + m( b) allow for the following 

(4.4) DEFINITION. The r radical of A, denoted y(A), is the ideal {a E A I m(a) = 
(0) for some n}. 

(4.5) LEMMA. Let A be a finite dimensional algebra over a field. Then y( A (X») = 
ker(A(X) ~ (A/y(A))(X)). 

PROOF. Let P E y(A(X») and e: X ~ A. Since e*(m(p)) = m(e*(p)), we 
obtain e*(P) E y(A); hence, by (4.3), y(A(X») c ker(A(X) ~ (A/y(A))(X). 

Conversely, suppose e*(P) E y(A) for all e: X ~ A. Again e*(m(p)) = 
rn(e*(P)) shows e*(P) E y(A). 0 

In case A is associative, and· of arbitrary dimension, y( A) is equal to the prime 
radical of A. If, in addition, A is right or left artinian, the r radical and the 
Jacobson radical coincide [2, vol. I, p. 398]. 

Certain improved bounds on Dim A (x) can be derived from the following 
representation of a polynomial. Given a monomial ME A(x) of degree n, label the 
occurrences of x with Xl"'" x n ' obtaining a multilinear homogeneous element 
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ME A(x l , ... , xn) of degree n. Under the surjection A(x l , ... , xn) ""* A(x) in-
duced by Xl ~ X for each i and a ~ a for each a E A, it is clear that M ~ M. 
Furthermore, 

and 

X(M) = 

By taking sums of such monomials we can express xU) for any homogeneous 
fE A(xy as 

(4.6) xU) = L Xil, ... ,Xin ®j(eil, ... ,e in ) 
1~il~i2~ ... ~d 

where j E A(XI' ... ' xn) is multilinear homogeneous of degree n. 
(4.7) DEFINITION. (1) An algebra A is said to be a subdirect product of a family 

{ Ai: i E I} of algebras provided A is isomorphic to a subalgebra of the product 
Pj ni E fAi and the composition A ~ ni E fAi ~ Ai is surjective for all j E I, where Pi is 

the jth projection. 
(2) A is said to be subdirectly irreducible provided that in every representation of A as 

a subdirect product e: A ~ ni E fAi' Pi 0 e is an isomorphism for at least one j. 
Otherwise A is said to be subdirectly reducible. 

It should be noted that subdirect reducibility is equivalent to no * fll.A I = (0) since 
in this case, the homomorphism no * hA qf: A ~ no * hA A/lis injective, where 
qf: A ~ A/I is the canonical map. Thus sub direct irreducibility is equivalent to the 
existence of a unique nonzero minimal ideal. 

(4.8) PROPOSITION. Let A be a finite dimensional k-algebra. Then 
(1) DimA(x) ~ dimkA - dim k y(A). 
(2) If A is subdirectly reducible, DimA(x) ~ max 0 * hAdimk A/I. 

PROOF. (1) Let e\ ... , ed be a k basis for A with e l , ... , e g a basis for y(A). Let q 
be the nilpotency degree of y( A), and MEA (x) q a nonzero monomial. From (4.6) 

X(M) = Xi ... Xi ® M(eil, ... ,eiq ), 
I n 

1~il,···,i2::e;d 

and from the definition of q, it is clear that the nonzero summands in X(M) are of 
degree at most q - 1 in Xl' ... ' X g. In particular, 

Since 

imX C L x{I.·· x~.k[Xg+I, ... ,Xd] ®A. 
il + ... +i."'q-l 

L X{I ... x~.k[Xg+I'.··' x d] ® A 
JI + ... +J.",q-l 

is a finitely generated k[xg+l , ... , xdl module, we obtain Dim A(x) ~ 
Dim k[xg+I •...• xdl = d - g. 
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(2) Since A is finite dimensional and subdirectly reducible, there is a finite 
collection of nonzero ideals II"'" In satisfying II n 12 n ... nln = (0). Thus 
q == n7-Iqi: A -+ A/lIn·· . nA/ln expresses A as a product of algebras of strictly 
smaller dimension. The universal property defining A( X)fl applied to q and the 
map x >-+ x gives rise to a monomorphism A(X)n -+ n/A/I)(X)n' One checks 
that the image of In(A, X) lies inside InmjA/lj' X), inducing a homomorphism 
q(X): A(X) -+ n/A/I)(X). If P E kerq(X), then E* . q(X)(P) = 0 for all E: 
X -+ njA/lj from which E*(P) c n/j = (0) follows. Thus q(X) is a monomor-
phism, and q induces a subdirect decomposition q( X) of A( X). 

The result now follows from (2.4) and the remarks following (4.2). 0 

(4.9) COROLLARY. An indeterminate Xi occurs to only finitely many powers among 
the coordinate polynomials in the image of X iff e i E y( A). 

PROOF. (=) is contained in the proof of Lemma (4.8). 
(=) if e" fE y(A), then for each I> 0, r/(e") -=1= (0). In particular, there is a 

monomial M E A(X)I whose evaluation at e" is nonzero: 

X(M) = LXii'" Xi, ® M(e\ ... ,ei,). 
l~il,···,il:r;;;.d 

Evidently, the x~ term is nonzero. 

(4.10) THEOREM. Let A be a finite dimensional k-algebra. Then the following are 
equivalent: 

(1) DimA(x) = dimkA. 
(2) A is subdirectly irreducible with unique nonzero minimal ideal I satisfying 

12 -=1= (0) and L ® k A has this property for all field extensions L of k. 
(3) A is subdirectly irreducible with minimal ideal I satisfying 12 -=1= (0) and 

J(A)/AnnI == EndkI. 

PROOF. (1) = (2) From Proposition (4.8) we have A subdirectly irreducible. If 
12 = (0) then Ie y(A) since r2(a) c 12 for any a E I. But y(A) = (0), again by 
(4.8). Since L ® A(x) == (L ® A)(x), (4.1), and DimL ® A(x) = DimA(x) we 
have (2). 

(2) = (3) J(A)/Ann I is a simple associative k-algebra, by the minimality of I 
as an J(A) module. If J(A)/Ann I is not k central, then k ® J(A)/Ann I is 
isomorphic to a product of k-algebras and k ® I is a direct sum of nonzero ideals of 
k ® A, contradicting (2). 

Suppose then that J( (A)/ Ann I == End D I for some k central division algebra D 
with n 2 = dimkD. Let r = dirnDl and note that k ®J(A)/Ann 1== Mnr(k). 
Thus k ® I is isomorphic to a direct sum of simple Mnr(k) submodules of k ® A 
each of dimension nr over k. But J(k ® A)/ Ann(k ® I) == J( nr(k) so that k ® I 
is isomorphic to a direct sum of ideals, again contradicting (2). 

(3) = (2) k ® J(A)/ Ann I == k ® J(A)/k ® Ann I == Endk(k ® I). More-
over, by (3.1)', k ® J(A) == J(k ® A), and the image of k ® Ann I is contained 
in Ann(k ® I). But simplicity of Endk(k ® I) forces k ® Ann I == Ann k ® I, so 
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that k ® .Jt(A)/ Ann I == .Jt(1e ® A)/ Ann(1e ® 1) == End7«1e ® 1). Thus 
.Jt(k ® A) acts densely on Ie ® I, proving that k ® I is the unique minimal ideal of 
k ®A. 

(2) => (1) Without loss, we assume k is algebraically closed and A has a unique 
minimal ideal I with 12 =f= (0). Choose a basis el, .. . , ed for A compatible with a 
composition series of ideals (left .Jt(A) submodules) of A: (0) = 10 c I = II C ..• 

C In = A (i.e., el, ... ,el, is a basis for II' el, ... ,e\ el,+1, ••• ,el,+/2 is a basis for 
12 , etc). Relative to this basis, the matrices in .Jt(A) have block upper triangular 
form. 

Let / denote the radical of .Jt(A). Since k is algebraically closed, the Wedder-
burn principal theorem [6, p. 116] asserts that .Jt(A) == (Il7~lR;) (fJ/, where the R; 
are simple k-algebras. Relative to the above basis for A, the matrices corresponding 
to R can be taken to be the upper left block of dim I X dim I matrices. Let 7"11 be 
the idempotent in .Jt(A) defined by 7"n: e j >-+ 81je1 where 81j is the Kronecker 8. 

We show Dim A(x) = dim A = d by showing that the ideal J = {p E 

A(x) I e*(P) E I for all e: {x} ~ A} is isomorphic to k[x1, ••• , x d ] ® I. The proof 
is by induction on degree, with the degree 0 case trivial. 

To prove that for any linear homogeneous f E k[x1, ••• , x d ], f ® a E J for all 
a E I, it suffices to prove that the vector space dimension of the right ideal 7"ll.Jt(A) 
is exactly d. Suppose dimk7"n .Jt(A) = 1< d, and 0'1, ... ,0'1 is a basis. Consider the 
linear system 

1 ~ i ~ I, 

where 0'; are matrices with nonzero entries only in the first row. These are I linear 
equations in d unknowns for which a nontrivial solution (a1, ... , ad) exists. Let 
a = I:a;e 1• By minimality of I, Ie .Jt(A)a, but e1 E 7"nI c 7"n .Jt(A)a = (0), a 
con tradiction. 

Now suppose that for all monomials M of degree n in Xl"'" X d , M ® a E J for 
all a E I. Let xi' ... X:? have degree n + 1, and assume a; =f= O. Then for each 
a E I, xi' ... Xf,-l ... Xd" ® a E J. Choose a, bE I with ab =f= O. Then 

IS nonzero and in the image of X. Since .Jt(A) acts densely on I we have 
J==k[xl, ... ,Xd]®l. 0 

An important special case of this theorem is the case of A strictly simple [10] (i.e. 
A is simple and remains so under all base extensions L ® A to field extensions L of 
k). The monomorphism X is an isomorphism precisely when A is strictly simple. 

If A is simple, but not strictly simple, then A is strictly simple viewed as an 
algebra over its centroid Z, a proper field extensions of k. In this case, A(x) == 
Z[x1, ... ,xd]®zA where d=d'·[Z:k]. By Lemma (2.5), DimA(x)=d'= 
(dimA)/[Z: k]. 
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v. Integrality theorem for associative algebras. Let A be an associative unital 
algebra finite dimensional over the field k. Since (k ® A)( x) == k ® k A (x) and 
Dim(k ® A)(x) = DimA(x), we will assume that k is algebraically closed. Denote 
by J the Jacobson radical of A. Then A/J == nRi where the Ri are simple 
k-algebras. The Wedderburn principal theorem asserts that A has a separable 
sub algebra S isomorphic to niRi so that A == S Ell J. Moreover, one easily shows [3] 
that Is = 1A • We identify each Ri with its image in S. 

The Wedderburn decomposition of A extends to A( X) as follows: Choose a basis 
for A of the form 

{ei, ... ,efl} u{ei, ... ,ef2} U ... u{e~, ... ,e~n} U{fl, ... ,fs} 

where {ej} constitutes a basis for R j and {F} constitutes a basis for J. Relative to 
this basis, 

and 

x: A(X) -+ k( XP),···, XJ~), ... , xi n ), ••• , xt), Yl ,···, y,] ® A, 

k [XP), ... , XJ~), ... , xi n ), ••• , xt), Yl ,···, y,] ® A 

== k( XP),···, xt), Yl ,···, y,] ® (TIR i Ell J). 

By (4.6), for any monomial term M of positive degree in Y l , ... , Y, and any 
evaluation e: (Ui,jX/j» U (UkYk) -+ A, e*(M) E J. Thus, the image of X lies in 
(n;~lk[Xl, ... , XJn )] ® R;) EllJ' where J' = k[XP>' ... , XJn ), Yl ,·.·, Y,] ® J is the 
Jacobson radical ~f k[XP), ... , xt), Yl , ... , Y,] ® A. Inde"ed, if J denotes the 
Jacobson radical of A(X), 

A(X)/J== (A/J)(X) == (URi)(X) == URi(XJ 

n - n k [X(i) X(i)] ,0, R = . 1 , ... , d j '01 i· 
,~l 

We thus obtain A(X) == n;~lk[xii), ... , XJ;)] ® Ri Ell J where 
n;~lk[xF), ... , XJ;)] ® Ri is a separable subalgebra of A( X). 

For each sequence a = (il'" ., if) of distinct integers 1 ~ i j ~ n, denote by V( a) 
the k-vector subspace RJRi/ ... JR i, of A. Note that V(a) = (0) if I is greater 
than or equal to the nilpotency degree of J. 

Set di = dimkR i, and for each nonzero V(a), set sea) = LijEadij' Let g denote 
Max{Max a { s( a), Maxi {d i }}}. 

(5.1) THEOREM. DimA(x) = g. 

PROOF. Since n;~lk[xP, ... , xY,)] ® Ri is a sub algebra of A(x) of G-K dimen-
sion Maxi { d;}, we obtain DimA(x) ~ Maxi{ di }. 

Suppose V(a) =1= (0), and let a = rIal'" a'_Ir, be a nonzero element in V(a), 
where a = (iI"'" if), 1j E R ij , and aj E J. For each j E a, let Mj be monomial in 
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k[xF),···, X~)], Mr E A(x) with X(Mr) = MJ. ® 'J.' 
J J J 

X( Mr1a1Mrp2 ... a l- 1MJ = (Ml ® '1)(1 ® a1) ... (1 ® al_ 1)(MI ® 'I) 

I 

= TI Mi ® a =1= O. 
i=l 

549 

Since any monomial in k[{xiij)lij E 0',1 ~ a ~ di }] can arise as Il~=IMi' and 
Dim k[{ xii) I i j E 0', 1 ~ a ~ di)] is exactly s(O'), we ~btain Dim A(x) > g. 

For any P E A(x), X(P) = Li,aPi,a ® eU) + LkQk ® fk, where the Qk are of 
degree bounded by 'IJ, the degree of nilpotency of J, in Yl,"" Ys ' Furthermore, by 
the decomposition of A(x), for each fixed i, Pi a E k[x~i), ... , x~)]. In particular, a 
monomial term involving xii) and x~j) for i =1= j can occur only ~ong the Qk' and 
then only if RJRj or RJRi is nonzero, using the orthogonality of the distinct R i• 

In particular, such monomial terms can arise only if V( 0') =1= 0 for 0' containing i 
and j. Since there are only finitely many sequences 0', the collection of coordinate 
polynomials Pi,a and Qk arising in the expansions of the polynomials in A(x) can 
be identified with a subset of a finite sum of vector spaces: 

If t(n) denotes the dimension of the vector space EB:IA(x)(i), we have w(t) ~ 
W(k[X~ij) I ij E 0', 1 ~ f3 ~ di)) for any 0' with s(O') = g. By Lemma (3.5), with 
B = A(x) = M, we obtain DimA(x) = w(t) ~ g. 0 

A simple example illustrating the theorem is given by Tn,k( x) the algebra of 
polynomial functions in one indeterminate over the n x n upper triangular matrices 
with entries in k. The Jacobson radical, J, consi~ts of all strictly upper triangular 
matrices, and Tn,klJ == Il~=lk. Denoting by eij the (i, j)th matrix unit, we have 
e1n = elle12e22e23 ... en-lnenn with each eii+l E J. Thus DimTn,k(x) = n = 

dim Tn,k - dim J. 
The algebra T2 i x) has the explicit representation 

k[x1, x 2] + x 3k[x1, x 2] 1 
k[x 2 ] 

from which DimT2,ix) = 2 is clear. 
By a result of Lorenz and Small [9], Tn ix) is not both right and left Noetherian 

if n> 1, since Dim Tn,ix)IJ = DimIlki[xi] = 1 < DimTn,ix) = n. From the 
representation above, it is clear that Tn,k( x) is neither right nor left noetherian. 

VI. The integrality theorem for general algebras. As in §V, the base field is 
assumed to be algebraically closed, and A is assumed to be a finite dimensional 
k-algebra. The integrality of Dim A (x) is obtained by proving Dim ..I( (A (x») to be 
integral. Since A(x) is finite type, (3.2) yields DimA(x) = Dim.A(A(x»A(x). The 
following lemma together with this observation shows that integrality of ..1( A (x») 
is sufficient. 
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(6.1) LEMMA. Let A be a finite dimensional k algebra. Then DimA(x) = 
Dim.4t(A(x». 

PROOF. We have observed that DimA(x) = Dim..K(A(x»A(x). Let el, ... , ed be 
a basis for A, and consider these elements as lying in the degree 0 subspace of A(x). 
Suppose ct> E.4t(A(x» annihilates el, ... ,ed. Let P E A(x), e: {x} --+ A, and 
e*(P) = La;e;, 

{e* . ct>}{p} = e*(ct>· e*{P}} = e*~act>(ei} = o. 
Since e and P were arbitrary, ct> = O. By Proposition (3.3), Dim..K(A(x»A(x) = 
Dim .4t(A(x». 0 

In case k is not algebraically closed, we have 

Dim.4t{A(x)} = Dimk ®k.4t(A(x)} = Dim.4t(k ® A(x») 

by (3.1)' and (4.1), so that indeed there is no loss in assuming k to be algebraically 
closed. 

(6.2) LEMMA. The monomorphism X: A( X) --+ k[X1, ••• , Xdl ® A induces a mono-
morphism ct>x: .4t(A(X» --+ k[X1, .•• , Xdl ®.4t(A). 

PROOF. Relative to a prescribed basis eL ... , ef, X sends an element P E A(x) to 
L1=lPi ® ei. Set 

d d 
ct>xU\p} = L P; ® Ae' and ct>x{pp} = L P; ® Pe;· 

;=1 ;=1 

To see that the extension to .4t (A ( X» is well defined, consider the following 
diagram for Q E A(X): 

.4t(A(X)} A(X) 

~x 

where eQ(T) = T(Q) for T E.4t(A(X», and EQ(~si ® T;) = L1.i=1QiSi ® Ti(e i ). 
Commutativity is easily verified, from which one deduces that ct> x is well defined 
and injective. 0 

Let J denote the Jacobson radical of .4t(A), and let .4t(A) == (I17=lR;) EB J be a 
Wedderburn decomposition. With respect to the grading on .4t (A ( X» by degree in 
X, .4t(A) is isomorphic to the degree zero subspace. Consequently, D7=lR; is 
isomorphic to a separable subalgebra of .4t (A ( X». We identify DR i with its image 
in .4t(A) and .4t(A) with its image in .4t(A( X». 

Note that k[X1, ••• , Xdl ® J is a nilpotent homogeneous ideal in k[X1,···, Xdl ® 
.4t(A), modulo which k[X1, •.• , Xdl ® .4t(A) is semisimple. Thus, k[X1, .•• , Xdl ® J 
is the Jacobson radical of k[X1, ... , Xdl ®.4t(A). We have a graded k-algebra 
homomorphism: 

~x q n 
.4t{A(X)} --+ k[X1 , ••• , Xd] ®.4t{A} --+ nk[X1 ,.··, Xd] ® Ri 

;=1 
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where q is the quotient homomorphism. The kernel of q 0 <P x is a homogeneous 
nilpotent ideal in ...H (A ( X», denoted j. Denote by ci> x the induced graded 
monomorphism 

Let 
n 

'1Ta: n k[Xl ,···, Xd] ® R j - k[Xl ,···, Xd] ® Ra 
;=1 

be the ath projection. The image of '1Ta 0 ci>x is a graded subalgebra SX,a ® Ra of 
k[Xl , ... , Xd] ® R a, and SX,a is a graded subalgebra of k[Xl , ... , Xd]' This follows 
because <Px, ci>x, and '1Ta are all graded and the image of '1Ta 0 ci>x contains an 
isomorphic copy of the central simple algebra R a' 

Consider the case X = {x}. To simplify the notation we drop the subscript {x} 
in <p{x}' ci>{x}, j{X)' and S{x},Q' Note that Dim Sa ~ d for each 1 ~ a ~ n. For each 
sequence of distinct integers a = (il"'" if), 1 ~ if ~ n, indexing the simple factors 
...H(A)/J, let V(a) be the subspace RJR j/ ... JR jl of ...H(A), and let k[a] be the 
graded subalgebra of k[xl , ... , xd] generated by {Sjj I if E a}. Set 

g = Max{ M"ax {Dim k[ 0] W( 0) * (O)}, M;UC {Dim Sj} }. 

(6.3) THEOREM. Dim...H(A(x» = g = DimA(x). 

PROOF. We first show Dim...H(A(x» ~ g. Let V c ...H(A(x» be finite dimen-
sional with basis PI"'" Pm' and let N be the maximum of the degrees of the Pj' 
Applying <P and the direct sum decomposition of k[xl,oo., xd] ® ...H(A) we can 
write 

<p(P) = p(l) + ... +p(n) + Q. where pU) E S ® R. 
I I I I I } J 

and Qj = L.Qj .• ® a. where Qj,. E k[Xl , ... , Xd] and a. E J. Using the ortho-
gonality of the distinct R f' and hence that of the distinct Sf ® R f' and the 
nilpotency of J, we have 

<p(VI) c span k { n (Pj?) + ... + Pj~n) + Qd} 
1 ::;;;lj~t 

n 
C L Sj ® R j + LM(o) ®J 

;=1 " 
for all t. Here, M(o) is a finitely generated graded k[o] module. We may take as 
generators for M( 0) all homogeneous summands of all products of the Qj,' with at 
most as many factors as the nilpotency degree of J. In particular, for sufficiently 
large t, <p(VI) is contained in the subspace of L7=lSj ® R j + L"M(o) ® J of terms 
of degree ~ Nt. The inequality Dim...H(A(x» ~ g now follows from (3.6) and (3.7). 

Let 0=(i1,00.,i[) satisfy V(o) * (0), and Dimk[o]=g. There are positive 
integers aI' ... , a[_l satisfying 

R. JaIR. Jaz ... Jal-IR. * (0) 
'1'2 'J' 
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and 

for each 1 ~ s ~ /- 1. Indeed, take for a l the largest integer for which R;/i>.IR;/ 
... JR il =1= (0), a2 the largest integer for which R;/i>.IR;2Ji>.2R;/R;1 =1= (0), etc. 

Let P/ E Si for each ij E a. By construction, P/ ® 1; = ci>(Pi) for some P; E 
J _1 } J J }_ 

A(A(x»//, where Ii is the unit in R i . Let P; E A(A(x» be a preimage of P; 
J J J J 

and write <P(P;) = P/ ® 1; + QJ' where QJ' = I:Q;. ® b. for some bv E J and 
J J j , 

Qj,. E k[x l, ... , x d]. Consider the product 

(1 ® IJ[P;: ® IiI + Qd(1 ® 1;J(1 ® al )(1 ® I;,) 
. [p;: ® 1;2 + Q2](1 ® 1;,}(1 ® a2) 

... (1 ® a/_ l )(1 ® 1;)[ P{I ® 1;1 + Q/] (1 ® 1;), 
where a; E Ji>.i and 1;lal1;P;2 ... a/_ ll;1 =1= O. Multiplied out, the only nonzero term 
is 

by the choice of a l , ... , a/- l . 

By definition, the integral domain k[ a] is generated by the sub algebras S;, and 
J 

Dim k[ a] is equal to the transcendence degree of its field of quotients. In particular, 
there is a sub algebra of k[a] generated by polynomials 0 1 "'J''''/P/, P/ E S;, whose 

'""""..." J J J 

G-K dimension is equal to Dimk[a]. By choosing a subspace of A(A(x» 
generated by the P; corresponding to the P/, and A(A), a finite type sub algebra of 

J J 

A (A ( x) ) can be constructed whose G-K dimension is at least Dim k [a ]. D 

(6.4) COROLLARY. For any finite set X, Dim A( X) = IXI Dim A(x). 

PROOF. The proof is a modification of the proof of Theorem (6.3) and we use the 
notation of that proof. We may, without loss of generality, assume that k is 
algebraically closed. 

Let X = {Xl"'" x n } and {y} be disjoint sets. There are algebra homomor-
phisms 

A(X) ~ (A(X»)(y) == A(X, y), 
e: A(A(X») ~ A(A(X, y»), 

<Px: A(A(X») ~ k[Xl , ... , Xd] ®A(A), 
<Px,y: A(A(X, y») ~ k[Xl , .. ·, Xd, Yl,"" Yd] ®A(A), 

all of which are graded k-algebra monomorphisms. Note that the set Xl U ... U Xd 
U {Yl'"'' Yd} consists of d(n + 1) algebraically independent indeterminates over 
k. 

Set 
jx= <Pxl(k[Xl,,,,,Xd] ®J), 

jx,y = <Px~Ak[Xl'"'' Xd, Yl,"" Yd] ® J), 
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and note that ix = e-1(ix,y)' Thus, there is a monomorphism e: v1t(A(X»)!ix ~ 
v1t(A( X, y»)/ix,y, and a commutative diagram 

~x ~ 
.A(A(X»jJx TIk[Xj, ... ,xdl ® R j ..... k[Xj"",xdl ® Ra 

where 1/;: k[X1,···, Xd] ~ k[X1,·.·, Xd, YI"'" Yd] is the embedding induced by 
Xi ~ Xi for 1 ~ i ~ d. 

Denote the image of tfa 0 «i>x by SX,a and the image of tfa 0 «i>x,y by SX,y,a' By 
induction we may assume Dim S X,a = n . Dim Sa' and that a transcendence base for 
the field of quotients of S X,a over k is given by 
{PI (XU,···, X1d ),···, P1(Xnl ,···, Xnd ),···, pt(XU"'" X1d)"'" pt(Xnl ,···, x nd )} 
where {Pi(X I, ... , x d) 11 ~ i ~ t} C Sa is a transcendence base for the field of 
quotients of Sa as in the proof of (6.3). The polynomials Pi(YI"'" Yd) are 
algebraically independent over k and independent from 

{ Pi ( X jl' ... , X jd) 11 ~ i ~ t, 1 ~ j ~ n } , 

proving that Dim S X,y,a ~ Dim S X,a + Dim Sa = (n + 1) Dim Sa. On the other hand, 
S X,y,a is a homomorphic image of S X,a ® k Sa' from which Dim S X,y,a ~ Dim S X,a + 
Dim Sa follows. 

Defining k[aJx (resp. k[aJx,y) to be the sub algebra of k[X1, ••• , Xd ] (resp. the 
sub algebra of k[X1, ... , Xd, Yt, ... , Yd] generated by {SX,a I a E a}, (resp. {SX,y,a I a 
E (J}), we obtain Dim k [ a ] X,y = (n + 1) Dim k [ (J]. The remainder of the argument 
goes as in Theorem (6.3). 0 

VII. Concluding remarks. If B is a commutative, associative, unital ring extending 
a unital subring A with lA = I B , then B is a homomorphic image of A( X) for some 
set X. Also, any homomorphism of commutative associative unital R-algebras, 
A ~ B, where R contains an infinite field, extends naturally to a homomorphism 
A(X) ~ B(X). In this case, A[X] ~ A(X), and the condition that algebra homo-
morphisms extend to the algebra of polynomial functions leads to the notion of a 
nomial homomorphism [11 or 3]. 

Given a homomorphism 1/;: A ~ B of arbitrary R-algebras and any set X, I/; 
together with the set map X ~ B( X) given by X ~ X induces an algebra homomor-
phism I/; x,n: A( X)n ~ B( X). 

(7.1) DEFINITION. A homomorphism ~): A ~ B of R-algebras is said to be nomial 
provided In( A, X) c ker( I/; x n) for all sets X. 

In other words, I/; is nomial provided I/; extends to a homomorphism I/; x: 
A( X) ~ B( X) which agrees with I/; in degree O. 

(7.2) THEOREM [11]. An injective homomorphism of R-algebras 1/;: A ~ B is nomial 
if and only if there is a set X and a surjective homomorphism 4>: A (X) ~ B so that 
4> IA = 1/;. Moreover, X may be taken to be finite if B is finitely generated over the 
image of A. 
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If k is an infinite field, then every homomorphism of commutative associative 
unital k-algeras is nomial. It is easily checked that all surjective homomorphisms of 
arbitrary R algebras are nomial. 

If A is commutative, associative, unital and finite dimensional, then Dim A = 0 
and DimA[x] = 1. Expressed another way, if k is infinite, then A is a nomial 
extension of k and we have Dim - (x) is constant and equal to 1 on the category of 
finite dimensional nomial extensions of k. This remark is true in greater generality. 

(7.3) THEOREM. If «1>: A ~ B is a nomial extension of finite dimensional associative 
k-algebras then DimA(x) = DimB(x). 

PROOF. It is easily verified that if L is a field extension of k, the injection 
id L ® «1>: L ®k A ~ L ®k B is again nomial since, by (4.1), (L ® A)(X) ~ L ®k 
A( X). We may thus assume, without loss of generality, that k is algebraically 
closed. Furthermore, finite dimensionality of B implies that there is a finite set X 
and a surjective l/;: A( X) ~ B so that l/; I A = «1>. 

As in §IV, we lift a Wedderburn decomposition A ~ n7=lR i Ee lA to a Wedder-
burn decomposition A(X) ~ D7=1(k[X{i), ... , XJ;)] ® R i) Ee/. Denote by Sx the 
separable sub algebra nik[X{i), ... , XJ?] ® R i, and identify Sx and / with their 
image is in A(X), obtaining a homomorphism, denoted '1', from Sx Ee/ onto B. 
Note that '1'(/) is a nilpotent ideal in B, so that '1' induces a surjection Sx ~ BllB 
where lB is the radical of B. 

Sx has a basis of the form {P",(X{i), ... , XJi) ® efJ) 11 ~ i ~ n, 1 ~ j ~ di } and 
/ has a basis {Qp(X{l), ... , xt), Yl"'" Yn)' ® F} where {e{i) 11 ~ j ~ di } is a 
basis for Ri and {F 11 ~ i ~ r} a basis for lA' Together with the fact that 
'1'IA = «1>, and «I> is injective, we obtain B ~ '1'(Sx) Ee '1'(l). Setting '1'i = 
'1' I k[Xli), ... ,X~i)l®Ri' a Wedderburn decomposition of B is given by B ~ SB Ee lB 
where SB is' a homomorphic image of Sx' Indeed, SB ~ n?=ln:'=lRi,,,, where 
n:i_lRi,,,, ~ (im'1'iVrad(im'1';), and R i,,,, ~ R i• Therefore, '1' decomposes as '1' = 
(0'1') Ee '1' I / with 

'1'i: k[XP), ... ,XJ;)] ®Ri~ (DRi.a) EelB • 
a=l 

The kernel of '1'i has the form (Ll n ... nLn) ® Ri where the La are ideals in 
k[Xfi), ... , XJ;)] primary to distinct maximal ideals Ma' Thus 

[ 0 0] [0 0] . _ k Xl' , ... , Xd: _ n k Xl' , ... , Xd: 
lm'1'i = n ® Ri = L ® Ri 

L", '" a 

ni 

rad(im'1';) ~ n (M,,/LJ ® R i · 
a=i 
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A complete description of B is given by 

By Theorem (5.1) and the observation that R; a = R; for each a, DimA(x) = 
Dim B(x) will follow if it is shown that every nonzero subspace R,. a JBR,. a JB I. 1 2. 2 

... JBR; a of B with distinct R;, a; has all i j . distinct. For this, it suffices to 
m' m J } 

show that R; JBR; = (0) for a * /3. 
The orthoionali~y of the distinct R; in A, and the distinct k[XF), ... , XJ;)J/La in 

A( X), yields 

[ [ () ()] 1 [ 1 [ [C) ()] 1 = k Xl' , ... , Xd: Mj,y k Xl' ,00', Xd: 
(O) M ® R; L ® Rj M ® R; . 

',a j,y I,P 

We are thus reduced to showing R;,a'¥(/)R;,p = (0) for a * /3. To that end, let 

P = Llj(Xii),oo., XJ;) ® e(i) E i';-I{R;,a)' 

Then 

Q = LQk(XP),oo.,Xt),YI,'oo,Ys) ®fk E/, 
T = L 1/( X{i), 00', XJ?) ® eii) E i';-I(R;,p). 

i'{PQT) = '1'( L ljQkT/ ® e(i)fkeii)) 
j,k,l 

= L ~~Qk ® e(i)fke!i) ) 
j,k,/ 

where Pj and ~ are the images of lj and 1/ in the orthogonal rings 
k[Xii), 00', XJ;)J/M;,a' k[XF), 00., XJi)J/M;,p. In particular, i'(PQT) = O. 0 

It is conjectured that Theorem (7.3) holds in the full generality of the category of 
finite dimensional, not necessarily associative, algebras with nomial homomor-
phisms. 
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