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THE MACRAE INVARIANT 
AND THE FIRST LOCAL CHERN CHARACTER 

PAUL ROBERTS 

ABSTRACT. The first local Chern character of a bounded complex of locally free 
sheaves on a scheme Y is given by intersection with a Cartier divisor. In the case of 
the resolution of a module of finite projective dimension, this is the invariant defined 
by MacRae. 

Let R be a commutative Noetherian ring, and let M be a finitely generated 
module of finite projective dimension. In his investigation of invariants of these 
modules, MacRae [6] constructed an invertible ideal G( M) associated to M which 
describes the part of the support of M of codimension 1. The fact that G(M) is 
invertible implies many properties of the support of M, and it has recently been used 
by Foxby [3] to prove some conjectures on intersection multiplicities of modules of 
finite projective dimension with modules of Krull dimension one. 

In this paper we generalize the construction of MacRae to a bounded complex E* 
of locally free sheaves on a Noetherian scheme Yand show that this can be used to 
describe the first local Chern character of E*. A bounded complex of locally free 
sheaves of finite rank will be called a perfect complex. For technical reasons, we 
assume that Y is connected and quasi-projective over an affine scheme. Let X be the 
support of E*, denoted Supp(E*); this can be defined as the set of points of Y 
where E* is not exact, or, equivalently, as the union of the supports of the homology 
modules Hj(E*). We assume that X is contained in some Cartier divisor. Locally, 
this means that the ideal defining X contains a non-zero-divisor, and if E* is a 
resolution of a module, our assumption follows whenever X is a proper subset of Y. 
An equivalent formulation of this condition is that X contains no points y of Y such 
that the local ring f!Jy has depth zero; such a point will be called a point of depth 
zero. In this situation we construct a Cartier divisor G( E*) on Y generalizing the 
MacRae invariant. 

If Y is quasi-projective over a regular local ring (this includes, among others, the 
case where Y = Spec R and R is a complete local ring), there is a theory of local 
Chern characters defined for perfect complexes on Y. For a complex E* with 
support X as above, for any scheme Y' together with a map of finite type f: Y' - Y, 
and for integers n and j, the jth local Chern character ch/E*) defines an 
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"intersection operator" 

ch/E*): An(Y') ~ An_j (t-1(X)), 

where, for any scheme Z, A*( Z) = A*( Z) ® Q is the rational Chow group of cycles 
on Z modulo rational equivalence. We refer to Fulton [4, Chapter 18] for definitions 
and properties of these operators. We show below that in our situation ch1(E*) is the 
operator defined by intersecting with the Cartier divisor G(E*). This implies that if 
the codimension of X in Y is at least 2, then ChI (E*) = 0, a result which is used in 
Roberts [7] to prove a vanishing conjecture on multiplicities for rings with singular 
locus of dimension 1. It should be remarked that in higher codimensions the 
corresponding statement is not true; Dutta, Hochster, and McLaughlin [2] have 
constructed an example in which the codimension of the support of E* is 3, but 
ch 2( E*) =1= O. 

An invariant similar to the one described here has been constructed for complexes 
by Iversen [8]; his is an element of the local cohomology group Hi(/L), where Z 
contains the support of E* and IL is the sheaf of units. He also outlines a proof that 
this gives the first Chern class in etale cohomology; in this context, it appears to be 
possible to reduce the "global" case; a technique which has not been successfully 
carried out for the Chern characters defined as operators in the Chern group which 
we use here. 

Before constructing G(E*), it is necessary to deal with one technical point. We 
need to know that the following two constructions are possible: 

1. If K is a coherent sheaf on Y, then there is a locally free sheaf F and a (locally) 
surjective map: F ~ K. 

2. Suppose we are given a finite subset T of Y containing all points of depth zero. 
If we have a diagram of maps of locally free sheaves: 

Fo 
! 

Ei+1 ~ E j 

d, 
~ E j _ 1 

such that Im(Fo) ~ Kerd j, Fo has rank r, and the support of Hj(E*) contains no 
points of T, then there is a locally free sheaf F1, also of rank r, together with maps 

<P 
F1 ~ Fo 

! 
d, 

E j ~ E;_l 

such that the diagram commutes and Supp(Coker<[» contains no points of T. 
If Y is affine, the first construction is accomplished by mapping generators of a 

free module onto generators of K, and the second by choosing elements of Fo which 
map to the image of dj + 1 and which avoid the prime ideals corresponding to points 
of T. The first construction is in fact standard in more generality; a proof can be 
found in Borelli [1]. The method of proof is to find a line bundle L on Y and a 
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global section s of L such that Y,. = {y E Y I s does not generate L at y} is affine. 
One makes the construction on Y,. using eI~ as above, then, using EGA I (9.3.1) 
(reference [5]), one deduces the construction ~n Y using (L'l!J(-m»k for some integer 
m, at least up to the support of s. The same method works for the second 
construction, provided that L and s can always be chosen so that the support of s 
contains no point of T; if Y is quasi-projective over an affine scheme, this can 
always be done. 

We now define G(E*) when E* is a perfect complex of length 1. In this case E* is 
just a map between locally free sheaves of the same rank (recall that Supp( E*) is 
always assumed to contain no points of depth zero). Let 

with rank(E;) = rank(Ei +1) = r. We then have a map 

A rEi+ 1 ~ A rEi 

II II 
L i+1 ~ Li 

where L i+1 and Li are locally free sheaves of rank one. These give a map 
Li+l ® Li1 ~ ely. 

The image of this map is a Cartier divisor D, with Li+l ® Li1 ~ ely(-D), and we 
define G(E*) to be (-l)iD (using additive notation for divisors). Locally, the map on 
rth exterior powers is given by the determinant of a matrix defining di+l' so this is 
the same as the MacRae invariant for a module of projective dimension 1. 

PROPOSITION 1. Let E* be a perfect complex of length 1. If a is a cycle in AnY', 
where f: Y' ~ Y is a map of schemes, then 

PROOF. Since all of the operations used in defining G(E*) are compatible with 
pullbacks, we can assume that Y' = Y, and, replacing Y' by a component of a, we 
can assume that Y is an integral scheme of dimension n and a = [Y]. The proof is 
divided into two cases. 

Case 1. X = Y. In this case, 

We use the equality 

ch1{EJ = c1{Ej ) = c1(ArEj ) = ch1(ArEj ), 

where c1(E) denotes the first Chern class of E (see Fulton [4, Remark 3.2.3]). Thus 

ch1(E*)(a) = (_1)i(c1(L;) - c1(Li+1))(a) = (-lrc1(Li ® Lil1)(a) 

= (-1)ic1(eI(D))(a) = G(E*) n a. 
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Case 2. X =/= Y. In this case X is a proper subset of Y, and, since ch1(E*)[Y] is a 
cycle of codimension 1, we can localize and assume that Y = SpecR, where R is a 
local domain of dimension 1 and X is the closed point of Y. By normalizing, we can 
then assume that R is a discrete valuation ring; let t generate its maximal ideal. 

t m 
Then the complex E* decomposes into a sum of complexes ... 0 ~ R ~ R ~ 0, 
and it suffices to prove the result in this case. However, in this case both sides can 
easily be computed and we obtain 

PROPOSITION 2. Let 0 ~ E~ ~ E* ~ E~' ~ 0 be a short exact sequence of perfect 
complexes of length 1 with E; = Ej = Ej' = 0 for j =/= i, i + 1. Then G(E*) = G(E~) 
+ G(En· 

PROOF. Let r', r, and r" be the ranks of E/, E;, and E;" respectively. We then 
have r = r' + r", and 

ArE. == Ar'E' ® Ar"E~' 
) ) ) 

or 

Lj == Lj ® Lj' for j = i, i + 1. 

Furthermore, the embedding Li+l ~ L; factors as follows: 

The corresponding Cartier divisors of these factors are G(E~') and G(E~) respec-
tively, so the assertion follows. 

Now that G(E*) has been defined for complexes of length 1, the general case can 
be defined by approximating a general complex by complexes of length 1. More 
precisely, let E* = 0 ~ Ek ~ ... ~ Em ~ 0, so that k is the largest integer j for 
which Ej =/= 0, and let i be the smallest integer j for which HiE*) =/= O. We define 
G(E*) by induction on k - i. 

It is impossible for k - i to equal zero, since the support of E* contains no points 
of depth zero. 

If k - i = 1, we map a free module Fk - 1 to the kernel of d k - 1 so that the map 
from Fk- 1 to Hk_1(E*) is surjective. We then have a diagram 

Fk - 1 

!</> 

Let Fk = cp-l(Im(dk». Since Hk_1(E*) has a resolution by locally free sheaves 
which stops in degree k, we deduce that F* is locally free, and we define G( E*) = 
G(F*), where F* is the complex 0 ~ Fk ~ Fk- 1 ~ O. 

If k - i > 1, we map a locally free sheaf F; to Kerd; so that it induces a 
surjection onto H;(E*) as above. If the rank of F; is r, we can find another locally 
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free sheaf F; + 1 of rank r so that we have a diagram 

O~ F;+1 
f 

F; ~ 

! </>i+l ! </>; 
... ~ E;+2 ~ E;+l ~ E; ~ E;_l ~ 

In addition, if T is any finite subset of Y disjoint from X and containing all 
points of depth zero, we can assume that Supp(Cokerf) Ii T is empty. Let C. be the 
mapping cone of </>: F. ~ E •. From the long exact sequence 

and the surjectivity of H;( F.) ~ H j ( E.) we deduce that Hi C.) = 0 for j "" i. 
Furthermore, since i - k ~ 2, S = 0 for j > k. Hence, by induction, we have 
defined G(C.). Let G(E.) = G(C.) + G(F.). 

There are a number of choices in this definition, but the next theorem shows that 
the result is independent of these choices. 

THEOREM 1. (a) G(E.) is independent of the choices of complexes F;+1 ~ F; and 
maps into E. used in the construction. 

(b) If 0 ~ E~ ~ E. ~ E~' ~ 0 is a short exact sequence of perfect complexes, 
then G(E.) = G(E~) + G(E~'). 

PROOF. We prove both of these assertions by induction on k - i, where k and i 
are defined as above for (a), while for (b) we let k = sup{j I Ej , EJ, or EJ' =i= O} and 
i = inf{j I HiE.), HiE~), or HiE~') =i= O}. 

As before, the lowest value of k - i which must be considered is k - i = 1. 
To prove (a) in this case, suppose that Fk - 1 and Gk - 1 are surjective maps of 

locally free sheaves into Ker(dk _ 1) which induce surjections onto Hk _ 1(E.). Replac-
ing Fk- 1 with Fk- 1 E9 Gk- 1, we can assume that there is a map fk-1 from Fk- 1 
onto Gk- 1. The map fk-1 will induce a map f. on kernels, and we have 

0 0 
! ! 

Fk 
fk 
~ Gk ~O 

! ! 

Fk- 1 
fk-l 
~ Gk- 1 ~O 

! ! 
Hk_1(E.) Hk_1(E.) 

! ! 
0 0 

with exact rows and columns. Statement (a) now follows from Proposition 2 applied 
to the short exact sequence of complexes in the top two rows. 
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To prove (b) in this case, we note that we have a short exact sequence 

o --+ Hk_l(E~) --+ Hk_1(E.) --+ Hk-l(E~') --+ o. 
Let F£-l be a locally free sheaf mapping onto Hk_l(E~), and let F£'-l map onto 
Hk_1(E.). We form the diagram 

000 
~ ~ ~ 

0--+ F' k --+ Fk --+ F{' --+0 
~ ~ ~ 

0--+ F£_l --+ F£-l EB F£'-l --+ F£'-l --+0 
~ ~ ~ 

0--+ Hk-l(E~) --+ Hk_1(E.) --+ Hk_l(E~') --+0 
~ ~ ~ 
0 0 0 

where the top row consists of the kernels of the vertical maps. From (a), we can use 
these complexes to compute G(E~), G(E.), and G(E~'), and (b) now follows from 
Proposition 2. 

We now prove (a) by induction, assuming that k - i = s ~ 2 and that (a) and (b) 
hold whenever k - i < s. Let F. --+ E. and G. --+ E. be two maps of complexes of 
length 1 to E. as in the above construction. We then have a map F. EB G. --+ E. of 
the same type, and it suffices to compare the definition of G(E.) by means of 
F. EB G. with that by means of G •. Denote C: the mapping cone of F. --+ E. and 
C:GlG the mapping cone of F. EB G. --+ E •. We have exact sequences 

o --+ F. --+ F. EB G. --+ G. --+ 0 
and 

We thus have 

G(E.) (computed from G.) = G(C,f) + G(G.) 

= (G(C:GlG ) - G(F.[-l])) +(G(F. EB G.) - G(F.» 

(by induction and Proposition 2) 
= G( C:GlG ) + G(F. EB G.). 

This completes the proof of (a). 
We now prove (b), assuming that (a) holds for k - i ~ s and that (b) holds for 

k - i < s. Take complexes F; --+ E~ and F;'--+ E. as in the construction of G(E~) 
and G(E.). Since Hi-l(E~) = 0, the map from H;(E.) to Hi(E~') is surjective, and 
the composition F;'--+ E. --+ E~' can be used to define G(E~') (this uses assertion 
(a) for k - i = s). We now take the diagram of maps of complexes 

o --+ E~ --+ --+ E~' --+ O. 
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If C~, C., and C~' are the respective mapping cones, there is a short exact 
sequence 0 -+ C~ --+ C. --+ C~' -+ O. The result now follows from the induction 
hypothesis applied to this sequence and from Proposition 2. 

The uniqueness of G( E.) is needed in the next result. 

THEOREM 2. Let E. be a perfect complex on Y with support X. Iff: Y' -+ Y is any 
map offinite type, and if a E An(Y'), then chI(E.)(a) = G(E.) n a inAn_IU-I(X)). 

PROOF. As before, we can assume that Y' is an integral scheme of dimension n 
and that a = [Y'). The proof is by induction on k - i, where, as above, k = 
sup{j I Ej =fo O} and i = inf{j I H/E.) =fo O}. If k - i = 1, then the construction of 
G(E.) gives a quasi-isomorphism F. -+ E •. Thus 

chI(E.)(a) = chI(F.)(a) 
= G(F.) n a by Proposition 1 

= G(E.) n a by definition. 

Assume now that k - i > 1. 
Case 1. The function f maps Y' into X. Let F. -+ E. be as in the inductive 

construction of G( E.). The short exact sequence 

0--+ /*(E.)·-+ /*(C.) --+ /*(F.[-l]) -+ 0 

gives the equation 

ChI (E.)[ Y'] = ChI ( C.)[ Y'] + chI (F.)[ Y'] 

in An-I(Y'). By definition, we have G(E.) = G(C.) + G(F.), so that 

G(E.) n [Y'] = G( C.) n [Y'] + G(F.) n [Y'] 

in An-I(Y'). By induction, the result is true for C. and F., so it is true for E •. Since 
f maps Y' into X, Y' = f -I( X), and this proves the result. 

Case 2. Suppose now that f(Y') c;, X. Let y be the generic point of f(Y') in the 
scheme Y. Since y f/= X, in the inductive construction of G(E.), we can assume that 
y f/= Supp( F.). Let X = Supp( F.) U X. Then, using the short exact sequence 

0--+ E. --+ C. --+ F.[ -1] -+ 0, 

we have that 

ChI (E.)[ y,] = chI (C.)[ y,] + ChI (F.)[ Y'] 

in An_IU-I(X)). Since y f/= Supp(F.), f-I(X) is a proper closed subset of Y', and 
any integral subscheme of f -I( X) of dimension n - 1 is a component. Hence the 
coefficients of each compon.ent in chI(E.)[Y') and G(E.) n [Y') must be equal, and, 
since we could exclude any component not lying in f-I(X) in the same way as we 
excluded Y', the coefficients of these components must be zero. Hence 

chI(E.)[Y'] = G(E.) n [Y'] in An_1(J-l(X)) 

as required. 
We now use Theorem 2 to show that ChI (E.) vanishes if the codimension of X is 

greater than 1. However, we first show that G( E.) may itself not vanish in this case. 
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EXAMPLE. Let Y = SpeeR, where R = K[[X, Y, S, T]]/(X, y) n (S, T). Let E* 
be the complex 

where a "* 0, 1 is an element of K. Then G(E*) is defined by (X + as)/(X + S), 
which is not a unit in R. However, the support of E* has codimension two. It can be 
verified directly that ChI (E*) = 0 in this case; it also follows from the third case of 
the following theorem. 

THEOREM 3. Let E* be a perfect complex on Y with support X. Assume that one of 
the following three conditions holds: 

(a) Y = SpecR, where R is a local ring, E* is the resolution of an R-module M, and 
dimR - dimM ~ 2. 

(b) Y is normal, and dim Y - dim X ~ 2. 
(c) For every component Z of Y, dim Z - dim(X n Z) ~ 2. 
Then chl(E*) = O. 

PROOF. In case (a), MacRae [6, Proposition 5.2] shows that G(E*) is defined by a 
principal ideal of R. Hence, if G( E*) is a proper ideal, the codimension of the 
support of M is at most one. Thus G(E*) is trivial, so, by Theorem 2, chl(E*) = O. 

In case (b), G(E*) is given locally by a quotient x/y, for x and y in R, where R 
is an integrally closed domain, and Spec R is part of an affine cover of Y. Since R is 
integrally closed and x/y is not a unit in R, then the support of x/y has 
codimension at most one, and the conclusion follows as in part (a). 

To prove (c), let f: Y' - Y be a map of schemes, where, as before, we can assume 
that Y' is an integral scheme of dimension n and we wish to find chl(E*)[Y']. Since 
Y' is integral, it must map into a component of Y, and, replacing Y by this 
component, we can assume that Y is integral as well. Let Y be the normalization of 
Y, and consider the diagram 

YX Y' y 

d 
Y' 

f -
Y 
! 

Y 

Since Y X y Y' - Y' is finite and surjective, there is an integral sub scheme Y' of 
Y x y Y' of dimension n such that g*([Y']) = m[Y'] for some positive integer m. 
Then 

m(chl(E*)[Y']) = chl(E*)(g*([Y'])) = g*chl(E*)([Y']) 
= 0 by part (b). 

Since we are using the Chow groups with rational coefficients, this implies that 
ChI (E*) = 0, as was to be proven. 
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