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THE bo-ADAMS SPECTRAL SEQUENCE 

WOLFGANG LELLMANN AND MARK MAHOWALD 

ABSTRACT. Due to its relation to the image of the J-homomorphism and first order 
periodicity (Bott periodicity), connective real K-theory is well suited for problems in 
2-local stable homotopy that arise geometrically. On the other hand the use of 
generalized homology theories in the construction of Adams type spectral sequences 
has proved to be quite fruitful provided one is able to get a hold on the respective 
E2-terms. In this paper we make a first attempt to construct an algebraic and 
computational theory of the E2-term of the bo-Adams spectral sequence. This allows 
for some concrete computations which are then used to give a proof of the bounded 
torsion theorem of [8] as used in the geometric application of [2]. The final table of 
the E2-term for wI in dim", 20 shows that the statement of this theorem cannot be 
improved. No higher differentials appear in this range of the bo-Adams spectral 
sequence. We observe, however, that such a differential has to exist in dim 30. 

In this paper we analyze the E 1- and E2-terms of the Adams spectral sequence 
based on real connective K-theory boo As can be seen from applications [2, 8, 10] 
and our sample calculations, this spectral sequence is quite powerful. It converges to 
the 2-local stable homotopy groups 'lTt(X)(2)' 

Unfortunately its E2-term lacks computability due to the fact that an algebraic 
description is not yet known. In this paper we show that the E2-term can be 
embedded into a long exact sequence of which at least one of the other two terms 
does not have this disadvantage: in most interesting cases it can be described 
algebraically (as a certain Ext-functor) and it is completely computable in examples 
like spheres or stunted (real) projective spaces. Tables for X = SO suggest that in 
dimensions ~ 45 nearly all of the classes found in this way detect in fact homotopy 
classes. 

We now give a more detailed account of the contents of the individual chapters. 
In §1 we fix some notations and describe the algebra of operations in bo and bsp 

(up to torsion). This was done additively in [13]. The starting point of the whole 
analysis is the splitting of bo-module spectra 

4n 

bol\bo"=' V LbOI\B(n), 
n;;.O 

where B( n) denotes an integral Brown-Gitler spectrum [8]. 
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Two different constructions of this homotopy equivalence are available. The one 
in [8] gives complete control in Z/2-homology, whereas the one in [13] allows 
complete control in integral homology modulo torsion. We use the second approach. 
We recollect the details and compute the effect of the splitting maps in homotopy 
modulo torsion in §2. In §3 we expand on [7] to produce a fairly good controlled 
splitting of bo /\ bos• This enables us to determine the differential d1 of the 
bo-Adams spectral sequence up to torsion operations factorizing through Z/2-Eilen-
berg-Mac Lane spectra. For any X let KY,(X) denote the maximal Z/2-Eilenberg-
Mac Lane spectrum splitting from bo /\ bo' /\ X. It is shown in §4 that 

is a subcomplex with respect to d1• The study of the quotient complex (<{fS,I( X); d) 
and its homology is the main theme of this paper. We first give an algebraic 
interpretation in case X has the property that the HZ/2-Adams spectral sequence 
for 'IT.(bo /\ bo' /\ X) is trivial for all s. To do this, we derive from bo.(X) and 
bsp.X a comodule over a divided polynomial (Hop f)-algebra over Z(2) in one 
variable given by the dual of the relevant part of the operation algebra. Both this 
comodule and the Hopf algebra are filtered (by HZ/2-Adams filtration). Under the 
hypothesis mentioned above, H(<{f·,·(X); d) can then be interpreted as an Ext-
functor on the appropriate abelian category of filtered comodules and filtration-pre-
serving homomorphisms. 

We remark, however, that this interpretation is not explicitly used in the computa-
tional part of the paper. Nevertheless there are several computational aspects present 
in this approach. See Remarks 4.9 and 4.10 for more hints on these. 

The second part of the paper deals with techniques for an effective computation of 
these Ext-groups. A spectral sequence is introduced in §5 and its Ecterm is 
computed. 

To get the more concrete results needed in applications we restrict our attention in 
§6 to X = So, B(l), and projective space Pt'. This enables us to settle also the 
higher differentials of the auxiliary spectral sequence from §5 and thus to give 
complete results in these cases. 

§7 is devoted to a detailed proof of the "bounded torsion theorem" (Theorem 7.1) 
for various X. This theorem was first stated in [8; 9, Theorem l.l.c] and in some 
more generality in [2; 3, Theorem 3.6]. It asserts that any dccycle 

x E EI,I(X; bo) == 'ITt { bo /\ bo' /\ X), s ~ 2, 

which has HZ/2-Adams filtration ~ 2 is in fact a boundary. 
Applying this to the map given by multiplication with 2 implies that EI,I( X; bo) 

is for 6 ~ 2 at most a Z/4-module, hence the name. The bounded torsion theorem is 
a quite powerful tool in obstruction theory. Typically it will be applied in conjunc-
tion with some sort of vanishing line theorem for the bo-Adams spectral sequence 
using the following kind of argument: Suppose a self-map f of a finite complex X 
(as in 7.1) is given together with a homotopy class a: st --+ X. Suppose further that f 
is of HZ/2-Adams filtration 1 and a can be lifted to as: SI+. --+ bOA s /\ X. Then 
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two-fold composition of f with a is represented in El't+S( X; bo) by a cycle of 
HZj2-Adams filtration at least two and hence a boundary. Therefore f 0 f 0 a has 
bo-Adams filtration at least s + 1. In favorable cases the vanishing line will 
eventually imply the equation f 0 no a ;;; 0 for n » 0 (see [8 or 2] for concrete 
examples in this vein). 

Unfortunately, the proof of the theorem as stated in [8, 9] and [2, 3] has been 
found to be incomplete in case the Adams operation 1J;3 is operating non trivially on 
bo*X. Using our very detailed knowledge of H(ct*,*(X)) for X = So, B(l) from §6, 
we are able to complete the proof for X equal to So, B(l), stunted real projective 
spaces, and all spectra which appear in minimal HZj2-Adams resolution of these. 
This suffices at least for the known applications of the theorem, especially to the 
geometric dimension of vector bundles in [2]. It is likely that the class of spectra 
satifying the bounded torsion theorem is larger than only those mentioned above, 
how big it really is we do not know. 

The final §8 contains a sample table of H(ct*,*(So)) for t - s ~ 50 together with 
a table of the full E2-term of the bo-Adams spectral sequence for 'IT: in dimensions 
t - s ~ 20. 

This table differs in several aspects from the ones derived with help of other 
homology theories such as HZj2 or Brown-Peterson homology BP, the most 
striking difference being the lack of higher differentials in this range of dimensions. 

Moreover the image of the l-homomorphism is completely concentrated in 
filtration 0 or 1, depending on whether an element is detected by the d- or 
e-invariant. 

The tables may also be used to show that the hypothesis of the bounded torsion 
theorem cannot be improved: both" and 1/" have bo-filtration 3, hence 1/" must be 
represented (in E1) with HZj2-Adams filtration 1. Similarly the class j( supports a 
Zj4 c Ei,2\SO, bo). It is finally possible to use the table of H(ct*(So)) together 
with known information on 'IT: to produce the first known nontrivial higher 
differential in the bo-Adams spectral sequence. This occurs in dimension 30 and is 
needed to render p3j( zero in 'lT29 . 

The tables were calculated by hand in the obvious (and, hence, tedious) way 
before the computational tools of this paper became available. Using these together 
with a computer, computations of the bo-Adams spectral sequence for SO should be 
possible up to considerably higher dimensions. 

The first author would like to thank Northwestern University. Working in this 
stimulating environment was a pleasure. 

PART 1. GENERAL ,PROPERTIES OF THE bo-ADAMS SPECTRAL SEQUENCE 

1. Operations in bo and bsp. Let bo and bsp denote connective real or symplectic 
K-theory. It is well known that H*(bo, Zj2) ;;; ~j~(I), where ~(1) denotes the 
sub algebra of the Steenrod algebra ~ generated by Sq1 and Sq2. A convenient way 
to compute bo*X is then given by the HZj2-Adams spectral sequence [1], which, 
using a standard change of rings theorem has E2-term 

Ei,t(bo 1\ X; HZj2);;; EXt~(1)(H*(X),Zj2). 
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Using the homotopy equivalence of bo-module spectra bsp - bo /\ B(l) [8], we get a 
similar spectral sequence 

EXt~~I)(H*(B(l) /\ X); Z/2) => bSPt_sX. 

For X = So, these are given by the charts in Figure 1, where a dot denotes Z/2, a 
vertical line is multiplication by ho representing multiplication with 2, a slanting line 
to the right multiplication by hI representing TJ, and everything is repeated periodi-
cally to the right with period (s, t - s) = (4,8). 

1f. (bo) 1f. (bsp) 

r 
s 

~ 
8 

/ 4 v 
u 

s 

8 

4 

, 
t - s u t-s 

4 8 12 ° 4 8 12 

FIGURE 1 

Let u, u f , and v denote the generators of 'TT4bo, 'TT4bsp, and 'TTsbo =:; 'TTgbsp 
respectively and denote by 'TT both of the standard maps bo ~ bsp "" bo /\ B(l) and 
bsp ~ boo These have Adams filtration ° and 2 respectively and degree 1 and 4 on 
the bottom cell. Moreover 'TT2 = 4 . id. Using the bo-module structure of bsp, u: 
S4 ~ bsp induces a bo-module map p: "2. 4bo ~ bsp of Adams filtration 1. To 
construct a similar map "2.4bsp ~ bo, we first consider 

P /\ 1: "2.4bsp "" "2. 4bo /\ B(l) ~ bsp /\ B(l) "" bo /\ B(l) /\ B(l). 

Since the latter spectrum is equivalent to the second term in a minimal Adams 
resolution of bo [8, 2] (see also Corollary 3.6), we may compose with the canonical 
projection to bo to get a map "2.4bsp ~ bo of Adams filtration 3, which will also be 
denoted by p. 

In what follows, we need to deal with bo and bsp simultaneously. It is therefore 
convenient to denote by b*.*( -) the Z X Z/2-graded groups defined by 

if E = 0, 
if f: = 1. 

This is a Z-graded multiplicative homology theory, since the second degree does 
not change under suspension. It has coefficients b*.*(So) "" bo* E9 bsp*. 

We want to describe the algebra of operations for b*.*(-) up to torsion. As usual, 
we restrict our attention to homogeneous operations (in both degrees). Also any 
operation bo ~ "2. k bo induces an operation bsp ~ "2. k bsp by smashing with B(l) 
and similarly vice versa. It is therefore natural to consider only those (additive) 
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operations which commute with 'TT. This algebra will be denoted by (9*'*. Let t/}: 
bo ~ bo be the (stable) Adams operation. It induces an operation 1/;3: b ---4 b in the 
canonical way. The following lemma is well known (cf. [11, §2]). 

LEMMA 1.1. There exists a unique operation cp: b ---4 "2,4b such that (1/;3 - id) = p . cpo 
o 

U sing the standard conventions, we have bidegree( p) = (-4, 1), bidegree( cp) = 
(4, 1), and bidegree( 'TT) = (0,1). 

THEOREM 1.2. Modulo torsion, the algebra (9*'* is isomorphic to the algebra 
Z(2)[ 'TT 1/( 'TT 2 - 4id)« p, cp» of homogeneous power series in p and cp with coefficients 
in Z(2)[ 'TT 1/( 'TT2 - 4id) under multiplication. The generators p and cp are noncommut-
ing, and the relations are generated by 

['TT,p] = ° = ['TT,cp], [cp,p] = 8 ·(id + pcp). 

Moreover, all torsion operations either factorize through Z/2-Eilenberg-Mac Lane 
spectra or have dimensions (s, E) with s '" ° (4). 

REMARKS 1.3. (i) It may be shown that the (additive) generators cpi of (1.2) differ 
from those produced in [13] only by units in Z(2) (see also the remarks on the proof 
of (1.2». 

(ii) For later use it is important to know the Adams-filtration of the operation cpo 
This is given by 

AF{cp: bo ---4 "2,4bsp) = 0, AF{cp: bsp ---4 "2,4bo) = 2, AF{cp2i) = 4k - a(i), 

where aU) denotes the number of l's in the dyadic expansion of i (cf. Theorem B in 
[13], where the 2n - a(n)'s should be changed to 4n - a(n)'s). 

(iii) Using the above theorem, bo*bo/Tors;; bsp*bsp/Tors and bsp*bo/Tors =::: 

bo*bsp/Tors are easily deduced by homogeneity considerations. For example we 
have 

where the notation is as above and u = 'TTP, V = p2, CPl = 'TTCP, CP2 =.cp2. This implies 
relations 

A similar but more complicated relation holds for CP2' 
(iv) It is a corollary of the proof that all operations are (mod torsion) uniquely 

determined by their action in homotopy or (equivalently) rational homology. 
REMARKS ON THE PROOF OF (1.2). The two cases of bo*bo and bsp*bo are handled 

separately. Additively these groups are known from [13]. There it is also shown that 
mod torsion the operations are uniquely determined by their effect in homotopy. It 
is then not difficult to see that our generators cpi differ from the generators produced 
in [13] only by units in Z(2)' (See [5] for a similar but more detailed computation in 
the odd primary case.) 0 . 
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2. The stru~~e of bo /\ boo Let X be any spectrum and denote by x(n) the nth 
t~rJ,ll in a minimal HZ/2-Adams resolution of X: 

X +- X(1) +- X(2) +-

Here H j are Z/2-Eilenberg-Mac Lane spectra, the map H j ~ X(i+l) is of degree 1, 
llnd X ~ Ho ~ HI ~ ... induces a minimal resolution of H * X as an ~-module. 

Let Bn denote the nth integral Brown-Gitler spectrum with bottom cell in 
dimension 4n [8]. 

THEoREM 2.1 [8,2]: There exists a homotopy equivalence of bo-module spectra 

bo /\ B = KV V ' { };4nbo(2n-a(n) 
n n };4nbsp(2n-l-a(n). 

Here Kv" is the Eilenberg-Mac Lane spectrum associated to the Z/2-vector-space y" 
and a( n) is as in 1.3(i). 0 

Theorem 2.1 asserts that modulo operations bo ~ KVn any operation bo ~ 
};i(bo /\ Bn) may be obtained as an operation bo ~ };i+ 4nbo of suitable filtration. 
Write 

(( m)) = (9 m - 1) ... (9 m - n + 1 - 1) 
n (9 n - 1) ... (9 - 1) 

[4] and let pin) be defined by n = 2·2 (n). odd. Since P2(9 k - 1) = 3 + P2(k), we 
have P2« :;')) = P2 ( :;'). Similarly, let 

n!! = (G)) ·(G))··· ((;)) = 2- 3n ·(9n - 1)··· (9 - 1). 
Then P2(n!!) = n - a(n) and «:;')) = m!!jn!!(m - n)!!. Denote by 

'17 . , { bo(2n-a(n) ~ bo n even, 
n· bsp(2n-a(n)-1) ~ bsp, n odd, 

the unique bo-module maps of homology degree 2n . n!! for n even and 2n- 1 . n!! 
for n odd on the bottom cell. Then <pn lifts by 1.3(i) through '17n and induces maps 

n even, 
n odd. 

Recall from (2.1) that bo /\ Bn contains the target spectrum of <Pn with cofactor Ky". 

THEOREM 2.2 [13,8]. <Pn can be extended to <Pn: bo ~ bo /\ Bn, such that 

- V - VlAcjln V /L Al 
<P = <Pn: bo /\ bo ~ bo /\ bo /\ Bn ~ V bo /\ Bn 

n;.O n;.O 

is a homotopy equivalence of bo-module spectra. 0 

Observe that the action of 4>n is completely known in '17*(-)/Tors, since this is true 
for q,n and 'fI'n. 
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Let 'T/v 'T/R: bo ~ bo /\ bo denote the canonical right and left unit maps and write 
u1 = 'T/R(U) and Uo = 'T/L(U) E 'T1'4(bo /\ bo). It is then easy to see that 

u1 - Uo ( ) 11 = 8 E 'T1'4 bo /\ bo . 

There are no obstructions to extend 11: S4 ~ bo /\ bo to t¥1: B1 ~ bo /\ boo Let 

U1 - Uo U1 - 9uo u1 - 9n- 1uo 
(2.3) In =ln(U O'U1)= 8 . 8 ... 8 E'T1'4n(bo/\bo). 

Since P2(9 k - 1) = 3 + P2(k) ~ 3, the element In is well defined. Observe that, via 'T1': 
bo ~ bsp, the element In may also be viewed as an element of 'T1'4n(bo /\ bsp). (We 
write In· 1bsp in this case.) 

PROPOSITION 2.4. 

( 
(('))n!!2nls_n' n even, 

(1 /\ I/>n)(/J = ((~))n!!2n-1/s_n. 1bsp ' n odd. 

PROOF. Onefirst computes (1 /\ pl/»(/s) = (l /\ (t¥3 - l»(1s). Using t¥3(U1) = 9u1 
and multiplicativity, we get 

( )() 9U1 - Uo 9u1 - 9uo 9u1 - 9s- 1uo _ I 
1 /\ pI/> Is = 8 . 8 . . . 8 s 

= [9S-1(9~1 - uo) U1 - 9S- 1UO ] 
- 8 I s - 1 

9s - 1 
= ~U1· Is- 1· 

Using naturality with respect to 'T1': bo ~ bsp and the equations 'T1'(lbo) = 1bsp' 
'T1'(u 1) = 4ui, one gets similarly 

9s - 1 
(1 /\ Pl/>)(Is · 1bsp ) = ~4ui . Is-I· 

Since p(lbsp) = u1 and p(lbo) = ui, this proves 

(1 /\ I/»Is = (G))ls-11bsp, (1 /\ I/»Is · 1bsp = (G)) ·4Is_1· 

The proposition follows by an easy induction. 0 

COROLLARY 2.5. (a) 

_ () {O, 
I/>n* Is = 14n E 'T1'4n(bo /\ Bn) = Z(2)' 

s =F n, 
s = n. 

(b) In: s4n ~ bo /\ bo may be extended 10 t¥n: Bn ~ bo /\ bo, such thaI 

v -V 1/\",. 1'/\1 t¥ n: bo /\ Bn ~ bo /\ bo /\ bo ~ bo /\ bo 
n~O n~O 

is the inverse map to 1>. 
PROOF. (a) follows easily from the fact that IJ..(u1) = IJ..(u o) = u, so IJ..(ts-n) = 0 

if s - n =F O. 
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(b) follows from (a) and the fact that ;p is a homotopy equivalence. D 
REMARK 2.6. Since '1T*(bo A Bn) ® Q is generated by 14n: s4n ~ bo A Bn as a 

bo* ® Q-module, formula (2.4) describes completely the effect of V n ;;. ° ~ n in 
rational homotopy. 

COROLLARY 2.7. For all n > 0, the map p, 0 tPn: Bn ~ bo A bo ~ bo is trivial. 

PROOF. By (2.5) and (2.6) the map bo A Bn ~ bo induced from P,tPn is trivial. 
Since H*bo ;::= 2r/ /2r(1) is monogenic over 2r, p, 0 tPn is trivial in H*(-; Z/2) too. 
Use the Adams spectral sequence for bo*Bn to see that this implies the assertion. 
(See [13] for a computation of E2 of the Adams spectral sequence.) D 

3. The differential d 1 of the bo-Adams spectral sequence. We first recall the 
general technique to analyse 

- s pr 1\ 1 - S t 1\ 1 - s + 1 
d 1 : bo A bo ----+ bo A bo ~ bo A bo 

This technique is discussed for example in [7], in event the spectrum which plays the 
role of bo is a Thorn spectrum. As opposed to our case, the map d 1 is then induced 
by a particularly nice map between the base spaces. 

Let Y be an associative ring spectrum with multiplication p" unit L: SO ~ Y, and 
t pr _ 11\ t 1 1\ pr 

canonical cofibration SO ~ Y ~ Y. Then the cofibration Y A SO ~ YAY ~ Y 
A Yof Y-module spectra has the following property. 

LEMMA 3.1. There exists a unique Y-module map 
r: YAY ~ YAY 

such that id y 1\ y = r 0 (1 Apr) - (1 i'lL) 0 p,. The map r is natural with respect to 
maps of ring spectra. D 

PROOF. Since id = p, 0(1 i'lL): Y = Y A SO ~ YAY ----+ Y, the following se-
quence is split short exact: 

_ (ll\pr)" (ll\t)" 
O~[YAY,YAY] ~ [YAY,YAY] P- [Y,YAY]~O. 

p." 

Let r be such that (1 A pr)*( r) = id - (1 i'lL) 0 P, and suppose r is not a Y-module 
map. We may then consider the module map r induced from r: 

_ _ll\tl\l _ll\r p.1\1 r: YAY = Y A SO A Y ~ YAY A Y ~ YAY A Y ~ YAY. 

Since id - (1 A L)p, is a (left) Y-module map it coincides with its induced module 
map. Therefore 

(1 A pr) * (r) = id - (1 i'lL) P, = (1 A pr) * ( r ) 
and, by injectivity, r = r is a module map itself. To see that r is also natural, 
suppose we have a map f: Y ----+ Z of ring spectra inducing j: Y ~ Z. We then need 
to show the commutativity of: 

r,' 
YAY ~ 

rz 

YAY 

![I\[ 

ZAZ ~ ZAZ 
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Using the easy to establish equation (1 1\ pr) 0 ry = id y /\ Y we have 

(fl\f)ory= (fl\f)o(r y o(ll\pr)ory) 

= (f 1\ f) 0 (id y /\ y - (1 1\ t y) fL y) 0 r y 

= (id z /\ z - (1 1\ t z ) fL z )( f 1\ f) 0 r y 

= rz 0 (1 1\ pr z) 0 f 1\ f 0 ry 

= r z 0 f 1\ j 0 pr y 0 r y = r z 0 f 1\ .f. 0 

Define rs: Y 1\ ys ~ Y 1\ ys as the composition 

(3_2) 
_ 1/\ ( r 0 ( , /\ 1»' ,./\ ... /\,./\ 1 

rs: Y 1\ ys ~ Y 1\ (y 1\ y)' ~ Y 1\ ys. 

Then rs is a natural y-module map and splits the canonical projection 
y 1\ ys ~ Y 1\ ys. 

rs is identical to the composition 
_ r/\l _ l/\r/\l _ 

y 1\ ys ~ Y 1\ Y 1\ ys-l ~ Y 1\ Y 1\ Y 1\ ys-2 ~ ... ~ Y 1\ ys. 

LEMMA 3.3. Let 
d S = (t 1\ l)o(pr 1\ 1): Y 1\ ys ~ Y 1\ ys+1 

be the standard boundary type map and let 
8;': Y 1\ ys ~ Y 1\ yS+1 

601 

for 0 ~ i ~ s + 1 be given by the unit map t: S 0 ~ Y into the ith factor of Y 1\ ys + 1. 

Then the following diagram is commutative: 

Y 1\ ys 

~ r, 

Y 1\ ys 

d' 
~ 

~ 

~(-1 )'8,' 

Y 1\ yS+1 

Y 1\ yS+1 

PROOF. The proof is by induction over s. For s = 0 we have 

rod 0 = r 0 (t 1\ 1) 0 pr = r 0 (1 1\ pr) 0 (t 1\ 1) 

= [id)" /\ y - (1 1\ t) fL 1 0 (t 1\ 1) = (t 1\ 1) - (1 1\ t). 

For s > 0 we may use the case of s = 0 to show the commutativity of 
d' Y 1\ ys ---_~ Y 1\ Y 1\ ys 

......... , 
,/\1/\1-1/\,/\1 ~-" -, 

--.....,. 
~r/\l 

y 1\ Y 1\ ys 
It therefore suffices to show that the following diagram is commutative: 

1/\,/\1 Y 1\ ys ~ Y 1\ Y 1\ ys 

~ r, ~l/\l/\r, 

y 1\ ys ~ Y 1\ Y 1\ ys 
1/\ ~(-l)'O,' 
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This is done inductively by chasing the following diagram: 
Y A Y s _______ 

II . 
YAY A ys-I 

!rAl 
1 AprA 1 

YAY A ys-I --+ YAY A ys-I --+ YAY A ys 
L-_____________________________~ 

!lArs_ 1 

YAY A y s - I --+ 
1 A ~(_l)iW-l 

Let 1/1 = V" .. 0 1/1,,: V" .. 0 B" --+ bo A bo be as in (2.5). Define 

I/I(s): ( V B"),,s --+ bo A bo 
".,0 

as the composition 

! 1 A rs 

YAY A y s 

V B" --+ (bo A bO)AS --+ bo A bos. ( ) 
As .p'" 1 A/.IA ... A/.IA/.I 

".,0 
The following lemma is an easy consequence of definitions and (2.7). 

LEMMA 3.4. There exists a commutative diagram: 

( V B,,)"s 
.p(s) 

bo A bo s --+ 
,,>0 

1- ! rs 

( V B,,)"S 
.p(s) 
--+ bo A bos 

".,0 

Moreover, the bo-module map 

~(s): bo A ( V B"),,s --+ bo A bo S 
,,>0 

induced from I/I(s) is a homotopy equivalence. 0 

REMARK. 3.5. By construction, I/I(s) restricted to the bottom cell of B"l A ... A B", 
is given by the homotopy class 

t"l(UO' ul ) • t"2(UI, u2) ... t",(Us-I, us) E '1T4,,(bo A bos), 

where Uj E '1T4(bo A boS ) "lives" in the ith factor (0;;:. i ;;:. s) and t" is as in (2.3). 
Given n = (n l , ... , ns) ENs, we write Inl = L j nj and a(n) = L j a(n;), and set 

bo A Bn = bo A B"l A ... AB",. Then (2.1) implies 

COROLLARY 3.6. There exists a homotopy equivalence of bo-module spectra 

bo A B ::! KV V ' ( 
~41n Ibo(2ln I-,,(n» 

n n ~4Inlbsp(2Inl-I-"(n», 

Inl even, 
Inlodd. 0 
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We abbreviate the second summand in (3.6) by bO(n)' 
Let m = (m 1, ••• , m s+ 1)' We call m a successor of n = (n1, ... , ns) if m = 

(n 1, ... , n;_l' j, n; - j, n;+l"'" ns) for some j. In this case Iml = Inl and 

21nl- a(n) -(2Iml- a(m)) = aU) + a(n; - j) - a(n;} = 1'2((;;))' 
Let 'lTn,m: bo /\ Bn -+ bo /\ Bm denote any map induced from the canonical map 
bO(n) -+ bO(m) of degree «j;)) on the bottom cell. 

THEOREM 3.7. Modulo torsion operations factorizing through Z/2-Eilenberg-Mac 
Lane spectra, the components 

;j,(S) -s dS -s+l pro(;j,(S+l»-l 
d~,m: bo /\ Bn Y bo /\ bo -+ bo /\ bo -+ bo /\ Bm 

of the differential d S are given by 

s = {cfJno ~ id: bo /\ Bn -+ bo /\ Bno /\ Bn if m = (no,n), 

dn,m (-1) 'lTnm : bo /\ Bn -+ bo /\ Bm if m succeeds n, 
o elsewhere. 

PROOF. As it is with operations bo -+ ~kbo, any operation bo /\ Bn -+ bo /\ Bm is 
determined up to the torsion operations mentioned in (3.7) by its effect in homo-
topy. Using (3.5), (3.3), and (2.4) (in this order) this effect can be computed. The 
result follows. 

4. The bo-essential part of the Ecterm and its algebraic interpretation. We write 

(4.1) bo /\ bos /\ X::: V (bo /\ Bn /\ X)::: KV,(X) V V(bo /\ X)(n)' 
neNS n 

Here KV,(X) is a maximal Z/2-Eilenberg-Mac Lane spectrum and 

(bo /\ X)(n) = ' ( 
~4Inl(bo /\ X)(2I nl- a(n» n even, 

~4Inl( bsp /\ X)(2I n l- 1 - a(n», n odd. 

By Margolis's theorem [12] one may think of V,( X) as the Z/2-vector space 
spanned by an ~-basis of a maximal ~-free submodule of H*(bo /\ bos /\ X) or, 
equivalently, by an ~l-basis of a maximal ~l-free submodule of H*(boS /\ X). We 
call V n(bo /\ X)(n) the "bo-essential" part of the bo-resolution. 

LEMMA 4.2. The Z/2-vector spaces 

v,(X) = 'IT*KV,(X) C El'*(X; bo) = 'IT*(bo /\ bos /\ X) 

constitute a subcomplex of (El*'*(X; bo); d 1). 

PROOF. The minimality condition imposed onto (bo /\ X)(n) above implies that 
any map ~rKZ/2 -+ (bo /\ X)(n) has to be trivial on the bottom cell, hence in 
homotopy. 0 

Let (~*'*(X), d) denote the quotient complex 
~s,*(X) = Ei'*(X; bo)/V,(X). 

Then this "bo-essential complex" ~*'*(X) may be computed from (4.1) and (3.7). 
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COROLLARY 4.3. Under the natural isomorphism 
~s,t(X} == E9 (7Tt(bo 1\ X}(nJ, 

nEN' 

the differential d has components 

d = i {
cfJno : bo 1\ X(n) --+ bo 1\ X(no.n) 

n.m ~ -I} 7Tn,m: bo 1\ X(n) --+ bo 1\ X(m) 

if m = (no, n), 

if m succeeds n, 

elsewhere. 
PROOF. The only point in question is the possible operation of the torsion 

operations of (3.7) on ~s,t( X). As in (4.2) this is prohibited by minimality of 
(bo 1\ X)(m)' 0 

To construct an algebraic functor describing the homology of the bo-essential 
complex we need spectra X fulfilling the following property. 

DEFINITION 4.4 [14]. A spectrum X is called (bo, H)-prime if the HZ/2-Adams 
sectral sequence for 7T*(bo 1\ bos 1\ X) converges and is trivial from E2 for all s. 

From (3.4) and (3.6) we have immediately 

LEMMA 4.5. A spectrum X is (bo, H)-prime if the Adams spectral sequences for 
bo*X and bsp*X converge and are trivial from E 2 • 0 

Examples of (bo, H)-primary spectra X are given by the Brown-Gitler spectra 
B( n), stunted projective spaces plk+ 1, arbitrary products between these, their 
Spanier-Whitehead duals, and also their coverings X(i) in an HZ/2-Adams resolu-
tion. This may easily be seen from a computation of the ~(I)-module structure of 
H*(X) [8] (see also Chapter 7) together with the fact that any ~(I)-free submodule 
of H*(X) splits of a KZ/2 from bo 1\ X. This follows from [12]. 

Suppose X is (bo, H)-prime. Then obviously 

(b 1\ X) ?Tn (bO*_4Inl(X), 
7T* 0 (n) --+ 

bSP*_4In I( X}, 

Inl even, 

Inlodd, 
is injective and onto elements of suitable Adams filtration. Here 7Tn is defined similar 
to 7Tn in §2 as induced by lhe canonical map of homology degree 21nl • n1!!n 2 !! ... 
ns!! for n even and 21nl - 1 . n1!! . n 2 !! ... ns!! for n odd. 

Using this identification we may derive a convenient notation: Let f(t) == 
Hom z(2)(Z(2)[t], Z(2») denote a I-dimensional divided polynomial Hopf-algebra over 
Z(2) with (Z(2»)-generators ti of dimension 4i, product titj = C~j)ti+j' and coprod-
uct 1/I(t;) = '2.tj ® ti_j. 

LEMMA 4.6. Suppose X is (bo, H)-prime. Then, via the identification maps 7Tn , the 
elements of ~S'\X) can be written uniquely as 

L Xn [tn,1 ... Itn,l. 
nEN 

where Xn E bOt-4Inl(X) for Inl even, or Xn E bSPt-4Inl(X) for Inl odd satisfy: 

d fi' '( ) (21n 1- o:(n), In I even, A ams litratlOn x n ~ 
21nl- o:(n} -1, Inlodd. 
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The differential d is then given by the formula 

l,j 

Observe that if m succeeds n (as in §3), then 'TTm 0 'TTo,m = 'TTo' This explains the lack 
of binomial coefficients «(j'» in the formula of (4.6). 

Our way of describing C(j *'*( X) is more than just convenient: Let ~: b*,*( X) ---> 

b* *(X) 0 z f(t) be given by x ---> L<j/x 0 t i. Assign bidegree (-4i, 1) E Z X Z/2 
, (2) 

to ti and define a filtration on b*,*(X) and f(t) by 

y( x) = {Adams filtr( x) 
Adams filtr( x) + 1 

y(tJ = -2i + o:(i); 

for x E b*,o( X), 
for x E b* l(X); 
y(2) = L 

Then ~ as well as coproduct and product on f(t) are filtration preserving and may 
be viewed as structure maps in a suitable abelian category of filtered comodules and 
filtration preserving comodule homomorphisms over the filtered Hopf algebra f( t), 

The comodule b* *( X) 0 z f( t) is an extended f( t) comodule and can be used 
, (2) 

as an injective envelope of b*,*( X), Thus injective resolutions exist. 
Let Hom/%" ( -,-) denote the group of filtration preserving co module homomor-

phisms which raise bidegree by (t, 0). Define Ext~( M, -) as usual as the s th derived 
functor of Hom/y( M, - ), 

With Z(2) concentrated in bidegree (0,0), the above discussion can be summarized 
1ll 

THEOREM 4.7, Suppose X is (bo, H)-prime, Then the "bo-essential" homology 
H(C(js,t(X), d 1 ) is naturally isomorphic to Ext~(Z(2); b*,*(X», 

REMARK 4,8, (i) The somehow unpleasant bigrading (on b*,*(-» is forced by the 
fact that one half on the bo-operations take their natural values in bsp instead of bo, 
If one is dealing with odd primes or bo /\ M1) "" bu, no such problems arise and one 
works simply in the category of graded filtered comodules over a divided polynomial 
algebra in one variable of degree 2, 

(ii) The filtration induces a natural spectral sequence converging to Ex tt-" * ( -,-), 
In the geometric case, this spectral sequence corresponds to the "geometric May 
spectral sequence" of (14), 

REMARK 4.9, From the definition we have a short exact sequence 

o ---> V,( X) ---> E{'*( X; bo) ---> C(js,*( X) ---> 0, 

This induces a long exact sequence 

••• ---> HS'*(V. (X)· d) ---> E S '*( X- bo) ---> Ext'~*(Z 'b (X))---> *' 2' .Y-' (2)' * ,* 
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valid for all (bo; H)-primary spectra X. We shall describe computational methods 
for dealing with Ext}*(Z(2); -) in the second part of this paper. To deal with V*(X) 
observe that y'(X) = 'IT*(KY.(X» C 'IT*(bo /\ bos /\ X) is concentrated in HZ/2-
Adams filtration O. Therefore Y.( X) c H*(boS /\ X) is precisely the span of all those 
21:(l)*-primitives in H*(bo' /\ X) which support a full copy of 21:(1)* (as an 
21: (l)*-comodule). It is then easy to see that 

y.(X) = im((Sq2)3: H*( bos /\ X) ~ H*( bos /\ X)). 

The differential on Y.( X) is, under a suitable isomorphism, induced from the 
standard differential of the bar resolution. Since all these formulae are quite 
manageable it is possible to pass the problem to a computer. Details will appear 
elsewhere. 

REMARK 4.10. From an algebraic standpoint one can improve slightly on the long 
exact sequence in Remark 4.9. Consider the short exact sequence 

o ~~l('IT*(bo /\ bos /\ X)) ~ E{'t(X; bo) 

~ E{'t(X; bO)/~l( 'IT*(bo /\ bos /\ X)) ~ O. 

Here ff;( -) denotes the submodule of elements of HZ/2-Adams filtration ~ i. 
Since all elements of 'IT*(KY.(X» have Adams filtration 0 it is easily seen that there 
is a natural isomorphism 

~1( 'IT*(bo /\ bos /\ X)) ~ ~s·*(X(l»). 

On the other hand the quotient complex above for (bo; H)-primary X is given as 

E{'*(X; bO)/~l('IT*(bo /\ bo s /\ X)) ~ Hom~(H*(bo /\ bos /\ X); Z2) 

~ Hom~(21: ®~(l) 9i ®~(1)'" ®~(l)H*(X); Z/2). 

Its homology may be interpreted as a "relative Ext" Ext~.~(l)(H*(X); Z/2) in the 
category of 21:-modules where the class of exact sequences is restricted to those 
which split when viewed as a sequence of modules over 21:(1). (See [6] for a more 
detailed construction in the odd primary case.) We therefore get a natural long exact 
sequence 

~ Ext3<-*(Z(2); b*.*(X(l»)) 

~ E{'*(X; bo) ~ Ext2i;~(l)(H*(X); Z/2) ~ 

PART 2. COMPUTATIONAL PROPERTIES OF THE bo-ADAMS SPECTRAL SEQUENCE 

5. The weight filtration spectral sequence. Recall from (4.3) the isomorphism 

~s.t(X) ~ €a 'lTt(bo /\ X(nJ. 
DEN' 

Define the weight-filtration w on ~*'*(X) by 

w('IT*(bo /\ X(D»)) =Inl = ~ni' 



THEb~ADAMSSPECTRALSEQUENCE 607 

From (4.3) we also know that the components of the differential d are given by 

{ 
CPno' 

d - i n,m - (-1) wn,m' 
0, 

m succeeds n, 
elsewhere. 

This shows that the differential cannot decrease the weight. We therefore get a 
weight-filtration spectral sequence {E/J,s,t('6'( X»; ar } with 

E;,s,t(C(X)) ~ E9 7Tt(bo 1\ X(n») 
nENs 
Inl=1J 

and differential ao = Lmsucc.n(-l)i7Tn,m. 
Suppose now that X is (bo, H)-prime. Then we may write the elements of 

7T.(bo 1\ X(n) as Lxn[tn,I'" ItnJ with Xn E bo.X or bsp.X of suitable Adams 
filtration by (4.6). 

Let d: f( t r~s .....) f( t) ®s+ 1 denote the standard differential in the cobar complex 
of f( t). Then the differential ao may be written as 

ao(xn[tn,1 .. ·Itn .]) = x nL(-lr[tn,1 .. 'ItniJtj!tn,-) .. 'It/l,] 

= xnd([tn,1 ... It n ,]). 

This linearity in "xn" looks as if one were dealing with cohomology of f(t) with 
trivial coefficients bo.X or bsp.X. This is, however, misleading, since it does not 
take into account the filtration condition imposed on the xn's. We illustrate this by 
the following example. 

Consider the differential d[t 2 ] = [tlltIl. In the summand of EJ.l,*('6'(X» associ-
ated to [t 2 ] the coefficient x(2) E bo.X has Adams filtration AF(x(2j) ~ 3. In the 
summand associated to [tl I tIl the condition on x(l.l) E bo.X is AF(x(I,l) ~ 2. This 
produces homology classes x[tll tIl for x E ff2(bo.X)/ff3(bo*X), where .9';(bo.X) 
denotes the submodule of elements of HZ/2-Adams filtration ~ i. As we observed 
in [3], this is the only type of exceptional behavior one encounters in these 
computations. 

to 
PROPOSITION 5.1 [2]. Suppose X is (bo, H)-prime. Then Ers.t(~(X» is isomorphic 

(a) 7Tt(bo 1\ X(O» = 7Tt(bo 1\ X)/Vo(X), s = a = 0, 
(b) 7Tt _ 4(bsp 1\ X(O», s = a = 1, 
(c) 

(d) ° in all other cases. 

s ~ 2, 
a = L2 e, even, 

s ~ 2, 
a = L:2e, odd, 
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REMARK 5.2. Observe that it follows from the hypothesis that the groups in (c) are 
isomorphic to 

Ext~~-2.t-20-2(H*X; Z/2) and Ext~~-S-I.t-2o-S-1(H*(X 1\ B(l)); Z/2) 

respectively. 
PROOF OF 5.1. To compute the homology of ao, we use a spectral sequence 

induced from the Adams filtration on 'IT.(bo 1\ X(n)' 
Assign the filtration y to bo.(X) ® f(t)®S by y(t;) = -2i + aU), y(2) = 1, and 

y(x) = AF(x) for x E bo.X, y(x) = AF(x) + 1 for x E bsp.X. Then Eo*···*(~(X» 
is generated by all classes 

xn[tn,! .. . !tn ,] E g:;:x} ® f(t) ®s 

such that y(xn[tn,I' .. Itn,D ~ O. Since y(d[tiD ~ y([tiD, the differential ao is filtra-
tion preserving and we get a spectral sequence converging to Et·*··(~(X». Denote 
its differentials by Br • 

Consider first the case of coefficients Z(2) instead of bo.X with no restrictions on 
the filtration imposed. (We are then computing the cohomology of f(t).) The 
associated graded algebra to f( t) is a primitively generated exterior algebra in 
generators {f2i I i ~ O} over a polynomial algebra Z/2[a o], where ao corresponds to 
2 E Z(2)' Therefore the Ecterm of the y-filtration spectral sequence in this case is a 
polynomial algebra over Z/2[ao] in generators {[t 2,] I i ~ O}. 

To compute the E2-term, observe that Bd t 2,] = [t r' It r']' It was shown in [2] 
that a basis for the submodules of boundaries and cycles for Bl can then be written 
down in the following way (boundaries = cycles for s ~ 2): 

s=O 
1 

boundaries 
o 
o 

~ 2 { d [ t 2e I! ... ! t 2e S _ 1] leI::::;; ... ::::;; e S - 2 < e S - 1 } 

cycles 
{[ ]} 
{[tIl} 

Moreover, Bl restricted to the submodule spanned by {[t 2e11' .. !t2es -dle1 ::::;; 
::::;; es - 2 < fs-d is injective. (This certainly exhibits H·f(t) as an exterior algebra in 
one generator [td ever Z(2)' as is well known.) 

If, instead of Z(2)' we now introduce coefficients bo.X and bsp.X, respectively, 
together with the filtration condition, we see that nothing changes in the first step of 
the argument (Bo): Since Bo does not change the y-filtration on f( t) ®s the condition 
on the Adams filtration of the coefficient is the same in source and target of Bo. 
Therefore the Ecterm of the y-filtration spectral-sequence is given as 

span{x[t2e,! ... !t y .] leI::::;; ... ::::;; es ; y(X[t2e,! .. ·!ty .] ~ O)}. 
For B1, however, we have y(Bdt2,D = y[t2,] + 1, so in the target space of Bl 
elements of Adams filtration one less than in the source are allowed, and this may 
occur for all possible cycles 

{d[t2'l!···!t2e.,]le1 ::::;; ... ::::;;es - 2 <eS - 1}' 0 

The result as stated follows. 



THE bo-ADAMS SPECTRAL SEQUENCE 609 

From the proof of 5.1 one easily extracts the following observations: 
REMARK 5.3. Let x E EO,S,I(<'6'(X)), s ~ 2, be any ao-cycle such that x is 

represented in HZ/2-Adams filtration ~ 1 (as an element of E9 n '17.( bo /\ X(n)' 
Then x is actually a ao-boundary. 

REMARK 5.4. Suppose cJ> operates trivially on bo.X and bsp.X. Then 
ErS,I(<'6'(X)) = E;',S,I(<'6'(X)) and we have computed H(<'6's,I(X)). An important 
example is X = M2 , or X = M2 , /\ M.". 

6. Computation of the weight filtration spectral sequence for various X. The first 
case of interest is X = SO(;). Recall the Adams spectral sequence charts for '1T.bo 
and '1T.bsp from §1 and observe that the corresponding chart for '1T.bo(;) or '1T.bsp(;) 
is constructed out of these by deleting all rows below filtration s = i. A typical 
example is '1T.bsp(3) as shown in Figure 2. 

8 

4 

t-s 

o 4 8 12 16 

FIGURE 2 

With u, u' and v as in §1, the operation of cJ> is given by 

cJ>(vm)=(92m-1){~}vm-l and cJ>{~,}vm=(92rn+l_1)vm. 

In particular this implies 
cJ>n( 'Ij"um) = 0 = cJ>n( 'Ij'U'v rn ) for all m ~ 0,0 < e ~ 2. 

As a consequence, the differential d1 in <'6'*'·(SO(;») operates on classes 'Ij"u m or 
'Ij'U'Vm only through the projections '1Tn ,rn considered in the last section. Since cJ>" 
shifts dimensions only by numbers == 0 (4), no operation cJ>n can hit these classes 
either. It follows that 

E1,s,I(<'6'(SO(;»)) = E;',S,I(<'6'(SO(;»)) for t ¥= 0 (4). 

This implies the following corollary to Proposition 5.1. 

COROLLARY 6.1. (a) 

E~·o.I(<'6'(S°(i»)) ~ Z/2 fort == 1,2mod8, t ~ 2i - 2, 

(b) 

E~'l,t( <'6'(SO(;»)) ~ Z/2 for t == 1,2 mod (8), t ~ 2i + 4, 
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(c) for any sequence E = (e 1,··., es- 1) s.th. 0 ~ e1 ~ ... ~ es- 2 < es - 1 and 
i - s == 1,2 mod 4, there is exactly one nontrivial E:o,s,t(~(SO(i») ~ Z/2 with t ;f= 0 
(4). This occurs with 

a=[2e, and t={8a+2i-2s-1, i-s==lmod4, 
i 8a + 2i - 2s - 2, i - s == 2 mod 4. 

In these cases 
_ ={2-imOd4, ifi-s==lmod4, 

t s - -i mod4, ifi - s == 2 mod 4. 
(d) If (a, s, t) is none of the above and t ;f= 0 (4) we have E:O,',1 = O. 0 

To deal with E(J,s,t(~(SO(i») for t == 0 (4), we introduce the following notational 
conventions. 

Let Tn = 2nn!!tn E r(t), SO Tn equals Tt up to multiplication by a unit in Z(2)' Let 
e = e(n1, ... ,ns) = e(n) denote either a generator of 7To(bo) ~ Z(2) for Inl = Ln i 
even or 2-1 (generator of 7Tobsp) for Inl odd. Finally let wE H4(bo; Z(2))/Torsion 
be a generator. Then 

wme[T I ... IT 1 = 21nln !! ... n !!wme[t I ... It .1 
nl n.~ 1 S III Ils 

can be identified with a generator of 
H4m+4Inl(bo(n); Z(2»)/Tors ~ 7T4m +4lnl(bo(Il»)/Tors 

via the canonical map 

7T 'bo ~ ~4Inl{ bo 
n' (n) bsp, 

Figure 3 explains this notation (bO(l,2) = '~Pbsp(3», 

8 

4 

t-s 
~_€~[T~1~IT~2~] __ +-__ ~ __ ~_W __ 2€_[~T~I_IT~2~] ______ ~~ ____ ~ 0, 1 

<i> ~ p' 
~ ~ 2 
I [tllt2] w [t l lt2 ] I 
~ _____ • -'_ - • - - • - _I. ___ • __ J - - - - - - • - - - - - - >-
12 16 20 24 28 

FIGURE 3 
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Let [k 1 denote the largest integer ~ k and define a function Pi: N ~ {O, I} by 

pi(n) = {01" n == i (4), 
elsewhere. 

Then one can easily compute 

LEMMA 6.2. 

<t*'*(SO)/Tors = spanZm{awme[Tn,1 "'ITn,] la E Z(2l' m ~Iol 

611 

[v2 (a)-0:(0)] } + 2 - P2(v2(a) - 0:(0)) . 

For a E Z(2) the differential takes the form 

d( awme[ Tn,1 ... ITn,}) = L( (;))awm-jeh I Tn,1 ... ITn.1 
j 

t.j 

+(-1)s+law me[Tn,I·"ITn,11). 0 

For the remaining part of the paper we abbreviate <t*'*(So)/Tor = <t*,* and, 
similarly, let ~<t*,* = <t*'*(SO(i»/Tors be the Z(2)-submodule spanned by 

(6.3) {awnei [ Tn, I ... ITnJ la E Z(2l' m ~ 101 

+[v2(a) -20:(0) + i] - P2(v2(a) - 0:(0) + i)}. 
where e; = 2ie. Write d = Do + D1 with 

Do(aWme[TnII .. 'ITnJ) = L a((;))wm-je[TjlT",1 ... I Tn.) 
j,«j»=O (2) 

+ L 0:( Ci) )wme[ Tn, I ... ITni - j I Tjl ... ITnJ 
i.j .«;'» = 0 (2) 

Finally, let hi = [T2i] and, for i = (io, ... ,i l ), hi = h~ ... h~' = [TrI'" IT1IT21'" 
IT21' .. IT2,J, where i j is the number of T2,'S. With II/II = Lij 2j and s = Lij we have 
from (6.3) 

(6.4) awmeihIE~<t*'*_m~!lIII+[i-s~v2(a)]-p2(i-s+v2(a». 
The following proposition is a technical result which is needed for the computation 
of H(~<t*·*). Its proof is postponed until after this computation. Let llk = 
(0, ... ,0,1,0, ... ), with "1" in slot k. 

PROPOSITION 6.5. (i) Suppose 1= (io,"" i l ), Lij = s - 1, and m ~ II/II + 
[(i - s)j2} - P2(i - s). Then DO(w meihl )/2 E ~<t*,*. 

(ii) /f moreover io = ... = ik - l = 0, ik > 0, and m == ° (2 k +1). then 
dDl(wm+2'e1hl-ll, )/2 E ~<t*,*. 
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THEOREM 6.6. The groups H S( ~C(l*'*) are vector spaces over Z/2 for s ;;;. 2 and in 
degree == 0(4). A basis is given by 

{ ldD wm+2ke"hl-tJ.k} 
2 1 I ' 

where I = (0, ... ,0, i k , .. • , iI_I' 1), ik > 0, Lj_o ij = s - 1, and m satisfies the condi-
tions m == ° (2k + I ) and 

11111 + [ i ; s] + P3 (i - s) - 2 k + 1 < m ~ II I II + [ i ; s] - P2 (i - s). 

REMARK 6.7. Observe that there may not be an "m" satisfying the conditions if 
(i - s) == 2, 3 mod 4. In the remaining cases there is exactly one such m. See Table 
8.1 for a concrete computation up to t - s = 50. 

PROOF OF 6.8. We use the weight spectral sequence 
(Er",S,I(i),ar) = Er",S,I((SO(;»),ar) = HS,I(~C(l). 

Recall that d(h e) = d['T2e] = L;~-/(<3'))[1j1'T2'-j] and similarly for d(hl). With 
these notations we have from (5.1) 

E *'*'*(")- {! md(hl)II-(" "1) ~"--1 1 I - spanZ/2 2 w e; - 10 , ... ,1 1 _ 1 , ,L.- I j - S , 

J=O 

m ~ II I II + [ i ; s] - P2 (i - s) }. 
To get the higher differentials we shall prove 

CLAIM 6.9. (i) twme;d(hl) E Ers'*(i) can be represented by tDowme;hl E .%1C(l*'* 
for I, m as above; 

(ii) if moreover io = ... = i k - 1 = 0, i k > 0, and m == 2e mod2 e + I for some 
e ~ k, the class tDowme;hl represents a cycle through E2'-I(i) and a2,(tDowme;hl) 
= tDowm-2'e;hehl; 

(iii) if I is as in (ii), but m == ° (2k+l) and m ~ 11111 + [(i - s)/2] - P2(i - s), 
then tDowme;hl can be represented by tdDl(Wm+2ke;hl-tJ.k) E ~C(l*'* and is an 
infinite cycle. 

ad(i) Since 

Dowme;hl = wme;d(hl) + L ((7))w m- jd'Tj ]h l 
j,«j'))=O (2) 

==wme;dhl modweight >11111, 

the claim follows from (6.5). 
ad(ii) Under the conditions of the hypothesis, we have 

Dl(wme;hl) == wm-2'e;hehl mod weight >11111 + 2e. 

This implies 

d( tDowme;hl) == d( tDlw me;hl) 

== d{twm-2'e;hehl) mod weight> 11111 + 2e 

== Do{ tw m- 2'"e;hehl ) mod weight> III II + 2e. 
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Therefore ay (1Dowmeihf) = ~Dowm-2"hehf. 
ad(iii) By (6.5) we have ~dDI(Wm+2'e,hf-t.,) E ~¥?*'*. Since D1(w m+2\h f-t.,) 

== wme,h' mod weight> lilli, and d(wmeihf) == Dowme,hf mod weight> lilli, we 
can take ~dDlWm+2'eihf-t., as a representative. This clearly is a cycle under d, so an 
infinite cycle in the spectral sequence. 

Observe that any element of the basis of Et*'*(i) is dealt with in case (ii) or (iii) 
of the claim. Moreover, those of case (ii) are mapped injectively to those of case (iii) 
by the various differentials a2" where different differentials take their values in 
different sub vector spaces. It is then easy to see that a case (iii) basis element 
~DOWmeihf can be the boundary only of ~Dowm+2\hf-t., and this happens only if 
the latter is actually in ~¥?*'*. This is the case exactly if 

The theorem follows. 0 
PROOF OF 6.5. (i) We need to show that 

Do( w m ei hf )/2 E .~¥?*'* 

if I = (io, iI"'" it), "Dj = s - 1, and m ~ 11111 + [(i - s)/2]- P2(i - s), The com-
ponents of Do(w m e,hf)/2 are of the form h(j')w"'-jeJTJ]h f for «(j» == 0 (2) and 
h(3'»wmeJTd'" ITll'" ITjIT2'-,l'" IT2']' For the former we need to show by 
(6.3) 

[ "2( m) - 1 - (s - 1) - aU) + i] 
m - ) ~ II I II + ) + J 2 - pI, 

where p or pI denote the appropriate values of P2' Using [(a - b)/2] = -b + 
[(a + b)/2] this is equivalent to 

[ i - s + "2( m) + aU) ] 
m ~!IIII + 2) - aU) + 2. - pl. 

Since 2) - a(j) = "2(2 J • )!) ~ 1 for ) ~ 1, this follows from the hypothesis. Simi-
larly, the conditions imposed by the second type of summands are shown to be 
equivalent to the hypothesis. 

(ii) For (6.5)(ii), we need to show that 

[ i - s] m ~IIIII + -2- - P2(i - s). 

To that end, let 

§!!.&*.* = span{awme[T I .. ·IT J/a E Z } 
I I n] fl" (2) 
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with the boundary induced from ~'6'*,4 by the canonical map ~'6'*'* ....... ~~*'*. 
Let W;*'* c ~'6'*'* denote the submodule generated by 

{awme;['Tnll .. 'l'TnJ/a E Z(2)' m :::;101 + [i - ;(0)] - P2(i - a(o))}. 

W; is precisely the submodule which is mapped directly (i.e. with torsion free 
cokernel) by the canonical map ~'6'*'* ....... ~~*'*. Since 0 = dd = dDo + dDI, and 
Do is divisible by 2 in ~~*'*, so is dD I = DoDI + DIDI. 

ASSERTION 6.10. With I, k, and m as above, the following are true: 
(a) lD D (wm+2ke.hl-llk) E $;'6'*'* 

2 ° 1 , ,. 
(b) D D (wm+2ke.hl-llk) E W 

1 1 , " 
Suppose 6.10 is true. Then from the equation DI DI = dDI - DoDI we have 

D D (wm+2ke.hl-llk) E W*,* Ii 2$"~*'* 1 1 , , ,. 

Therefore 
DIDI (w m+2ke;hl-llk) E 2~'6'*'* 

and the proposition follows. 
The proof of 6.10(a),(b) is obtained by checking the different components of the 

elements versus condition (6.3). It is very similar to the proof of 6.5(i) and best left 
to the reader. 0 

For the remaining cases s = 0 and s = 1 we have 

PROPOSITION 6.11. (a) H°,4k('6'*'*) = 0, 
(b) H I,4k('6'*'*) == Z/23+v 2(k)Z == ImJ4k _ I. A generator is given by the class of 

«kiI »-Id(22k wk+Ie[]) for k even and «kjI»-Id(22k-Iwk+Ie[]) for k odd. 

PROOF. By Proposition (5.1), we have isomorphisms 
E?·o.t('6'(SO)) == '1Tt(bo).[]' 

E{'l,t( '6'(SO)) == '1Tt _ 4 (bsp) . [tI], 
ErI,/('6'(SO)) = 0 if (J"* 1. 

Since 

and 

d( (( k ~ I) rI22k-Iwk+Ie[ ]) == 22k- I wke[ 'TI] mod weight> I, 
we see that these classes represent generators of E{,l,*('6'(So» if they exist in '6'1.*. 

Consider the case k odd first; the other is similar. We need to check whether for 
j>2 

(( k ~ I) rI22k-I( (k; I) )wk+I-Je[ 'T] E '6'1,*. 

By (6.2) this is the case if 

.. f- P2 (k+I)+2k-I+P2((k;I))-au)j 
k + 1 - } :::; } + 2 - P2 ( ... ). 
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This is easily checked in the usual way. It follows that all elements of E;·1.4k(~(SO» 
are infinite cycles. The only possible differential is al : E?,O,4k ~ E;,l,4k. It is given 
by </>: bo ~ '2:,4bsp with cofiber Im(J). This implies the proposition. 0 

REMARK 6.12. A similar computation can easily be made for .fi';~*'*. 
Similar to the computations for X = SO<i) are those for X = B(l)<i). We therefore 

only state the results. 

COROLLARY 6.13 (compare 6.1). (a) E~,o.t(~(B(l)<i») == Zj2, for t == 5,6 mod 8 
and t ~ 2i, 

(b) E!;I,t(~(B(l)(i») == Zj2, for t == 5,6 mod 8 and t ~ 2i + 2, 
(c) for any sequence E = (e l , ... , es- I) such that ° ~ e l ~ .•• ~ es- 2 < es- I 

and i - s == 2, 3 mod4 there is exactly one nontrivial E:;"s,t(~(B(l)(i») == Zj2 with 
t ¥= ° mod 4. This occurs with a = I:2 ej and 

t = {80 + 2i - 2s + 1 for i - s == 2 mod 4, 
80 + 2i - 2s for i - s == 3 mod4. 

In these cases t - s == 3 - i mod 4 and (1 - i) mod 4 respective/yo 
(d) If (0, s, t) is none of the above and t == ° mod 4 we have 

E:;"s,t(~(B(l)<i»)) == 0. 0 

Elements in ~s,4k(B(l)<i» may be written as 

L awmrd 'Tn! I ... I 'Tn,] , 

where a E Z(2) and 1Ji = 1Ji(n) denotes either a generator of 7Tobsp (I:n i even) or 
2(generator of 7Tobo) for I:n i odd. Furthermore m is restricted by 

[ i - s + 1 + V 2 (a) ] 
m~lnl+ 2 -po(i-s+1+v2 (a». 

As an analogue to Proposition 6.5 and Theorem 6.6 one proves 

PROPOSITION 6.14. (i) Suppose I = (io, ... , it), Lij = s - 1, and 

m ~ II I II + [ i - ~ + 1 ] - Po (i - s + 1). 

Then !Dowm1Jihl E ~s·*(B(l)<i». 

(ii) Suppose that in addition io = ... = ik - I = 0, i k > 0, and m == ° mod 2k+l. 
Then 

!dDI(wm+2'1Jih'-tlk) E ~s'*(B(1)<i»). 0 

THEOREM 6.15. The groups HS(~(B(l)<i») are vector spaces over Zj2 for s ~ 2. 
A basis is given by 

{ ldD wm+2k"'.hl-tl, } 2 I '/, , 

where 1= (0, ... ,0, ik, ... , it-I, 1), ik ~ 1, I:j~k ij = s - 1, and m satisfies the condi-
tions m == ° mod 2k+1 and 

[ i-S+1] 11/11+ 2 +PI(i-s+1)-2k +1 

[ i-S+1] < m ~ II I II + 2 - Po (i - s + 1). o 
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For filtration s = 0,1 we have 

PROPOSITION 6.16 (compare 6.11). (i) 

H0.4k(~(B(l))) ;: {~(2) fork = 0, 
fork> O. 

(ii) H1.4k(~(B(1») is cyclic of order 2r where r = 1 for k = 1 and r = 3 + v2(k) 
fork> O. 0 

We now describe various computations for spaces different from SO(i), B(l)(i). 
Let .\: ,£Pt ~ Sl be any stable map which is 1/ on the bottom cell and denote by 

R the fiber of .\. Then SO ~ R ~ ,£Pt is a cofibration where SO ~ R is the 
inclusion of the bottom cell. It is well known that bo 1\ R ~ V n;. ° "2. 4nK Z(2) [8]. So 
bo*R is generated by w,m, where L is the inclusion of the bottom cell. We may think 
of w as a generator of H4(bo; Z(2»/Tors = k'lT4(bo). Similarly bsp 1\ R ~ 
V Il ;.0"2.4nKZ(2) V V n>O "2. 4n +2KZ/2. It follows that ~S.t(R(i» is totally con-
centrated in dimensions t == 0 (4) and, using the notations from (6.2), we see that 

~s.t(R) = span{awm[Tn,I···ITn.ll a E Z(2)}' 

The inclusion of the bottom cell SO ~ R induces a map ~s.t(So) ~ ~s.t(R), which 
is the canonical one suggested by the notations. 

Since ~*'*(R) is torsion free, this forces the following differential on ~S,l(R): 

d(aWm[TIl,1 .. 'ITn,]) = L ((7))aw m-Je hI Tn,1 . "ITn,] 
/;;,0 

+ L(_l}j((~i))awme[Tn,1 .. ·ITn,_)Tjl .. · ITn.] 
n./ 

I t is then obvious that 
=-----;c---.-®s 

~s·*(R) ;: Z(2)[ T1] ® Z(2)[ T1] 
and that the differential is the differential of the cobar-resolution of a polynomial 
algebra over Z(2) (with the one exception that all binomial coefficients are replaced 
by their counterparts based on powers of 9). This complex is trivially contractible. 

A similar argument for R(i) completes the proof of the following lemma. 

LEMMA 6.17. 

HS(~*'*(R(i»),d*) = {Z(2). s = t = 0, 
0, elsewhere. 0 

To compute H*·*(~(Pt(i»), we use the cofibration SO ~ R ~ '£Pt. From (6.2) 
and the discussion above we see that there is a short exact sequence 

o ~ ~s.4k(SO(i») ~ ~s.4k(R(i») ~ ~s.4k('£PtO(i») ~ 0 

and an isomorphism 

~s.4k +/( Pt,(i») .: ~s,4k + 1+ 1( SO(i+ 1») for I = 0,1,2. 
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This implies 

PROPOSITION 6.18 . 

Hs.t('G'(poc(,»)) ~ , 
. (HS+1.t+l('G'(SO(i»)) 

1 Hs.t+l('G'(SO(i+l»)), 
t == -1 (4), 
t == -1 (4). 0 
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REMARK 6.19. Similar computations are possible for stunted projective spaces 
p}Ni. They are based on the fact that, as a module over the operation algebra, 
bo*(p}Ni) can be computed as the third term in a cofiber sequence whose other two 
terms are of the form bo*(sO(n») or bo*(B(l)(m») and the map between these is 
induced by a map of degree 1 on the bottom cells. Using the results of this section 
this map can be computed in H*'*('G'(-)). A suitable long exact sequence provides 
the results for (Pl£+l)(i). (See (7.3), (7.4) for details.) 

7. The bounded torsion theorem. In this section we shall prove 

THEOREM 7.1. Let X be in {S°O>, B(l)(i), (Pl£+l)(i) II .;:;; oo} and suppose x E 

E{'t(X; bo), s ~ 2, is a cycle under d1 and is represented in '1Tt(bo 1\ bos 1\ X) by an 
element of HZj2-Adams filtration ~ 2. Then x is a boundary under d1. 

The proof will be quite computational. We use our detailed knowledge of 
H('G'*'*(X)) for X = SO(i) and B(l)(i) to show that a similar statement is true for 
H('G'*'*(X)) and deduce (7.1) from that. 

As for the precise class of spectra X for which (7.1) is true, nothing is known to 
date. 

The hypothesis "HZj2-Adams filtration ~ 2" is necessary. A hand computation 
of EI"t(So, bo) for t - s .;:;; 20 shows that K E '1T{4 and 11K E '1T{5 both have bo-filtra-
tion 3 and that K and 2K E '1T{o both have bo-filtration 4. See §8 for the tables. Let t: 
X(i) --> XO- 1) denote the canonical map. (7.1) will be deduced from 

PROPOSITION 7.2. Let X be as in (7.1). Then t*: Hs,t('G'(XO») --> Hs,t('G'(X(i-l»)) 
is trivial for all i ~ 1 and s ~ 2. 

PROOF OF 7.1 FROM 7.2. We use the short exact sequence of chain complexes 
pr 

0--> '1Tt(KY,(X)) --> E{'I(X,bo) --> 'G's.t(X) --> O. 

Suppose y E E{'I(X; bo) has AF(y) ~ 1 and satisfies prey) = 0 E 'G'S,I(X), Then 
y = 0 since it cannot be hit by an element of '1Tt( KY,( X)), which splits off the 
elements of exactly Adams filtration O. So given any x E E{'I( X, bo), AF(x) ~ 2 as 
in 7.1, there exists y' E 'G's-l.t(X), AF(y') ~ 1 such that dy' = pr(x) by (7.2) for 
i = 2. Therefore y' = prey) with AF(y) ~ 1 and hence d1y = X. 0 

We now start proving (7.2). We shall first consider the case X = SO(i); the case 
X = B(1)(i) is similar and will be omitted. Finally we deal with stunted projective 
spaces. 

Let x = ldD wm +2'eh l -t':., E 'G's.t(SO(i») t == 0 (4) be any of the generators mJ 2 1 I " 

of HS,I('G'(SO(i»)). (By (6.6), this means that 1= (0, ... ,0, ik , ..• , it-I' 1), 'Li j = s -
1, ik > 0, m == 0 (2k+l), and 

II I II + [ i ; s ] + P3 (i - s) - 2 k + I < m .;:;; II I II + [ i ; s ] - P2 (i - s ) .) 
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We need to show that 

is a boundary. 
This is certainly true if D1w m + 2k Ei- 1 h [-!:>.k E 'tfs-l,t( SO(i-l». A calculation simi-

lar to those of §6 gives the result. 
If t ;t= ° (4), we see from (6.1) that HS,I('tf(SO(i») is concentrated in dimensions 

t - s == i mod 2. Therefore t* is trivial for dimensional reasons. 0 
We now proceed to the case of stunted projective spaces piNi with k < I ~ 00. 

To this end we need to describe bo*(piNi) as a module over the algebra of 
bo-operations, where Z/2's arising as homotopy of Eilenberg-Mac Lane spectra may 
be ignored. 

Let So': So(j) and So': B(l)<J> be the inclusion of the bottom cell and denote 
the corresponding cofibers by X(j) and Y(j) respectively (SO(oo) = B(l)(oo) = R). 

To motivate and illustrate the following lemma, we need to describe the stable 
%f(l)-structure of some of our modules. Recall from [8 and 13] that, as a stable 
%f(l)-module, H*(S°(j» may be described by the following diagrams. (We have 
taken j == 0, 3 mod 4 for simplicity. A dot denotes a Z/2, a curved arrow denotes 
the operation of Sq2, and a straight arrow indicates a nontrivial Sql.) 

j = 4k: 

... ~ 

j = 4k + 3: 

... ~ 

(In the first example there are 2k copies of" ~ " and 2k + 1 occur 
in the second.) 

Similarly, H*(B(l)<J» may for j == 0,1 mod 4 be described by the diagrams: 

j = 4k: 

... ~ 

j = 4k + 1: 

... ~ 

(Here 2k and 2k + 1 " ~ "occur.) 
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Together with the stable isomorphism 
H*(B(l) /\ B(l)) ~ H*(S°(2») 

m(l) 

one easily deduces the following examples of short exact sequences of stable 
~ (1 )-modules which correspond to the geometric cofibrations we have in mind. 

a* 
(a) H*('LPj6) ~ H*(X(5)(3») ~ ker[H*(SO(8») ~ H*(SO(3»)]. 

m(l) ~I(l) SO(8): 
- - -1 

o 8 17 I 
I- _. - - - ~ - - - - -. - - - - - - - J pI 6 

7 

r-----------------~ 
I 
I 
1 
I 

1 19 L8 ____ -- - - - - _. - - - - - - - - - J 18 
'LP7 

o 

I 

o 1_ 6 _________ . _ _ _ _ _ _ _ _ _ _ _ 

a* 
(d) H*('Lp;6) ~ H*(B(l) /\ Y(l)<6») ~ ker[H*(SO<8») ~ H*(B(l))]. 
SO(8): 

o 

,- - - - - - - - - - - - - - - -- - -

1 
14 

I 
I 

17 1 _J 
'Lp I6 

3 

LEMMA 7.3. Modulo a Z/2 vector ~pace arising as the homotopy of Eilenberg-Mac 
Lane spectra, bo*( p}l~V) is isomorphic to one of the following: 

7T*(bo /\ X(j)(/»), 7T*(bo /\ Y(y)(i»), 7T*(bo /\ B(l) /\ X(j)<i») or 

7T*(bo /\ B(l) /\ Y(j)(i») for suitable values ofi,J. 

These isomorphisms are valid as modules over the algebra of bo-operations. 
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PROOF. The proof is similar to the one for k = 0 and 1= 00. It rests on the fact 
that, similar to the cohomological case studied above, we can represent all the 
occurring modules naturally as subquotients of bo*R (in dimensions == 0 mod 4). 
Thus everything is determined by the module structure of bo*( So) c bo*( R). 
Denote by C(2k) and C(2k + 1) the (4k + 1) and (4k + 3) skeleta of R. They 
trivially have the ~(I)-stable type of either an SO(4k), SO(4k+3), B(I)(4k), or 
B(l)(4k+l). 

Lifting the standard inclusions SO -+ Rand B(l) -+ R, we get canonical maps 
SO(i) -+ R(i) and B(I)(i) -+ R(i). The Adams lift of 2i: R -+ R then induces an 
isomorphism bo*(R) -+ bo*(R(i» (modulo Z/2's) which in turn generates an iso-
morphism of bo*(C(j» with either of bO*(SO(4k», bO*(SO(4k+3», bo*(B(I)(4k», 
or bo*(B(I)(4k+l». This is obviously also true as modules over the operations. 

To prove the lemma, it therefore suffices to present pl£+l as a quotient of C(j),s. 
This is trivial from the cofibration SO -+ R -+ pro. D 

In view of 7.3 it therefore suffices to prove 

PROPOSITION 7.4. The conclusion of Proposition (7.2) holds also for X = X(j), 
Y(j), X(j) 1\ B(I), and Y(j) 1\ B(I). 

PROOF. Let X be one of the spaces mentioned above and suppose t =/= 0 (4). Then 
it is easy to see that there is no possible nontrivial action of <p on ,??s.t( X(i». This 
shows that the differential ao of the weight filtration spectral sequence coincides with 
the total differential don ,??s.t(X(i». We have computed Et·s.t(X(i» in Proposition 
(5.1). It was shown that any cycle in 7Tt_sCbo 1\ bo' 1\ X(i», s ~ 2, which has at least 
HZ/2-Adams filtration 1 is a boundary (see Remark (5.3». 

For t == 0 (4) a more detailed analysis is necessary. We only do the case X(j) 
here, the others are similar and left to the reader. In this case we have a short exact 
sequence 0 -+ ,??s.t(SO(i» -+ ,??s.t(SO(i+J» -+ ,??s.t(X(j)(i» -+ O. It induces a dia-
gram of long exact sequences: 

H"t( ~(sO('+i») 13. H"t( ~(X(j)(i»)) ---> 

'.! = 0 '.! = 0 ! '* 
w.t( ~(SO(i+j-I») 13. H"t( ~(X(j)('-l»)) 

HS+ l.t (SO(i» a. W+I.t( ~(SO(i+j») ---> 

'.! = 0 '.! = 0 

HS+ I.t (SO(i-I» 13. w+l.t( ~(SO(i+j-I») ---> 

We already know that L* is trivial on H*('??(SO(i»). We therefore only need to show 
that for any x E Hs+1.t(SO(i» such that O'*(x) = 0 we can find a preimage 
y E Hs.t(X(j)(i» with L*(Y) = O. By (6.6) a basis for Hs+1.t(SO(i» is given by the 
classes 
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where 1= (0, ... ,0, ik , ••• , it - i , 1), ik > 0, Lij = S, m == 0 (2k + i ), and 

(7.5) III II + [i - ~ - 1 ] + P3(i - S - 1) - 2k + i 
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< m < II I II + [ i - ~ - 1 ] - P2 (i - S - 1), 

and similarly for H s+1.t(SO(i+j»). It also follows from the proof of that theorem that 
a class of the above form is a boundary if it satisfies all the conditions except that 
m < 11111 + [(i - S - 1)/2] + P2(i - S - 1) - 2k+i. Since cx*(J.dDiWm+2Aeihl-tlA) 
= J.dDiWm+2Aei+jhl-tlk we see that ker(cx*) is spanned by 

{ ldD wm+2ke.hl-tlk} 2 1 1 , 

where (I, k, m) are as above and moreover 

(7.6) III II + [i - ~ - 1 ] + P3(i - S - 1) - 2k + i 

< m < II I II + [ i + j ~ S - 1 ] + P3 (i + j - S - 1) - 2 k + 1 . 

In this case x = ldD wm+2ke.hl-tlA = d(lD Wm+2ke .. h l - tlk ) Therefore Z 2 1 l+j 2 0 l+j . 
= J.DOwm+2kei+jhl-tlk E ~s,t(SO(i+j») is mapped under f3* to a preimage y of x. 

We now consider L*Z = Dowm+2kei+j_ihl-tlk. Using (7.6) it follows easily that 

w m+2ke. . hl-tlk E ~s-l,t(SO(i+j-i») l+j-i . 

Therefore L*Z and DiWm+2kei+j_ihl-tlk are homologous through 

d(w m+2Ae. . h l - tlk ) l+j-i . 

Using (7.5) it follows easily that 

Therefore L*( z) is homologous to an element in im( cx*) and consequently L*Y = L*f3*Z 
is homologous to zero. This finishes the proof of (7.4). 0 

8. Some tables. The following charts display the homology of the bo-essential 
complex ~*'*(So) for t - S < 50 (Table 8.1) and the E 2-term of the bo-Adams 
spectral sequence for t - s < 20 (Table 8.2). 

The notation is as follows: 
a dot"· " represents a Z/2; 
a number "2"" represents a Z/2"; 
a vertical line represents a nontrivial extension by 2; 
a horizontal or slanting line represents a nontrivial extension by 1] E w{; 
a name" hI" indicates that the element is represented with leading term h I, i.e. on 

bo /\ Bi /\ ... /\ Bi /I. B2 /I. ... /I. B2k with i j copies of B 2J 'so 
Observe that the complete Im( J) is concentrated in filtration 0 or 1, depending on 

whether the element is detected by the d- or the e-invariant. The class with name h~ 
in dimension 14 of 8.1 represents K E w{4' Certainly 1]K = 0 in H3,1R(~(SO)) since 
the HZ 2-Adams filtration of its representative is as least 1. Nevertheless we find that 
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1/K =1= 0 in Ei·18(SO, bo). Therefore its representative in El,18(SO, bo) must be 
homologous to a class living on the subcomplex given by the Eilenberg-Mac Lane 
spectra. From this we may deduce that the differential d1 of the bo-resolution really 
mixes between the quotient complex <6'*'*(So) and the subcomplex V*(So). A 
corresponding phenomenon occurs in dimension 20: here K is represented with name 
h~ in Table 8.1, dimension 20, but 2K =1= 0 in Ei·24(SO, bo). This produces the first 
known Z/4 with filtration at least 2 in the bo-resolution. We are also able to 
produce the first known higher differential in the bo-Adams spectral sequence: Since 
0=1= p3K (= h~) in H 7,29(<6'(SO», the same is true in E],29(SO, bo). But p3K = 0 in 
7T29 , so the class must be hit by a differential. 
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