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A BILINEAR FORM FOR SPIN MANIFOLDS 

PETER S. LANDWEBER AND ROBERT E. STONG 

ABSTRACT. This paper studies the bilinear form on Hi( M; Z2) defined by [x, y] = 

xSq2 y[M] when M is a closed Spin manifold of dimension 2j + 2. In analogy 
with the work of Lusztig, Milnor, and Peterson for oriented manifolds, the rank of 
this form on integral classes gives rise to a cobordism invariant. 

1. Introduction. If M 2j+2 is a closed Spin manifold of dimension 2j + 2 one has a 
symmetric bilinear form 

To see that this form is symmetric, one uses the identity 

(XSq2 Y + ySq2x)[M] = (Sq2(xy) + SqlxSql Y)[M] 

= (v2xy + vlxSql y)[M] = 0 

where Vi denotes the ith Wu class of M and VI = 0 = v2 for Spin manifolds. 
The main result of this paper is 

PROPOSITION 1.1. For a closed Spin manifold M 8k + 2 of dimension 8k + 2 and class 
Z E H4k(M; Z) 

where p is the mod 2 reduction and V4k is the 4kth Wu class of M. 

This result arose in answering a question of Edward Witten, who wished to know 
the structure of Q~fin(K(z,4». In the process this formula was seen to hold for ten 
dimensional manifolds. 

Considering [ , 1 as defining a form on integral cohomology via p, one then has 

COROLLARY 1.2. For a closed Spin manifold M 8k + 2 of dimension 8k + 2 

W4WSk - 2 [M] = V4k Sq2 V4k [M] 

is the rank modulo 2 of the form [ , 1 on integral cohomology. 

Note. Here, the rank of the form is the dimension as Z2 vector space of 
H4k(M; Z) modulo the annihilator of the form. 
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Of course, these results are completely analogous to the work of Lusztig, Milnor, 
and Peterson [LMP], or originally Browder [Bt], on the form (x, y) = xSql y[M] 
for oriented manifolds of dimension 4k + 1. The proofs are, unfortunately, rather 
more complicated, and involve the calculation of the Spin bordism of Eilenberg-Mac 
Lane spaces just outside the stable range. As a sidelight, this work helps to explain 
the work of Wilson [W] on the vanishing of Stiefel-Whitney classes in Spin 
manifolds. Knowledge of the form gives 

COROLLARY 1.3. For a closed Spin manifold M Sk + 2 of dimension 8k + 2, the 
Stiefel- Whitney class Sq3 V4k is zero. 

In §2, the proof is begun by showing that there is a class 8 E H *( B Spin; Z2) for 
which pzSq2 pz[M] = pz· T*(8)[M]. In §3, the elementary properties of 8 are 
described, and in the following section, 8 is shown to be unique by a nasty 
calculation. §5 then collects the main results, and the final section contains an 
extension to mod 4 cohomology suggested by Steven Kahn. 

The authors are indebted to Edward Witten, whose questions about the Spin 
bordism of Eilenberg-Mac Lane spaces led to this work; to Steven Kahn, whose 
suggestions led to an extension of the results; and to the National Science Founda-
tion for financial support during this work. 

2. Spin bordism of Eilenberg-Mac Lane spaces. The basic tool for analyzing the 
form [ , ] is given by 

LEMMA 2.1. There are exact sequences 

-4 'lTr+i+1(MSpin 1\ XJ -4 n~~~n(K(Z, j)) 
-4 Hi(BSpin; Z) -4 'lTr+i(MSpin 1\ Xr) -4 

-4 'lTr+i+1(MSpin 1\ Yr) -4 nmn(K(Z2' j)) 
-4 Hi(BSpin; Z2) -4 'lTr+i(MSpin 1\ Yr) -4 

for r large. 

PROOF. One considers the cofibration 2,r-iK('IT, j)! K('IT, r) -4 w;. with 'IT = Z 
or Z2 (Wr = Xr or Yr, respectively) and r large, and applies reduced Spin bordism. 
Of course, Q~~i~(Wr) = 'lTr+i(MSpin 1\ w;.) by interpreting Spin bordism as the 
homotopy of a spectrum, and Q~~i~(2,r-iK( 'IT, j» = Q~~~n(K( 'IT, j» using the sus-
pension isomorphism. Finally, for rand s large 

n~~i~(K('IT,r)) = 'lTss+r+i(MSpinss 1\ K('IT,r)) = HSs+i(MSpinRs; 'IT) 

= Hi( B Spinss; 'IT) = Hi( B Spin; 'IT). 
Here g is intended to be the map for which g*ir = or-iii with 0 denoting 
suspension and ir E Hr(K('IT, r); 'IT) being the fundamental class. 0 

In order to analyze the 2-primary part of 'lTr+i(MSpin 1\ w;.), w;. = Xr or Yr, one 
uses mod 2 cohomology. Heavy use will be made of the structure of M Spin, as 
described by Anderson, Brown, and Peterson [ABP]. In particular, 

H*( MSpin; Z2) ;:: (..#/..# Sql + ..#Sq2)U + (..#/..#Sql +..# Sq2 )wlu 
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plus terms of higher dimension, where U is the Thorn class, w4 E H*(BSpin; Z2) is 
the universal Stiefel-Whitney class, and .;;1' denotes the mod 2 Steenrod algebra. One 
then needs to know the structure of if*(w,.; Z2) as a module over .;;1'1' the 
sub algebra of .;;1' generated by Sq1 and Sq2, which is 

1 
dim ° 

Sql 
dim 1 

Sq2 
dim 2 

From the cofibration 

one has an exact sequence 

if*(-:i. r- JK(7T,j); Z2) !:-if*(K(7T,r); Z2) ~if*(w,.; Z2) 
! t 

Ii 

Within the stable range, if*(K(7T, r); Z2) has a basis given by the classes 
SqK i r = Sqkl ... Sqk'ir where K = (k 1, ••• , k s) is an admissible sequence (k i ~ 

2ki +1) and, for 7T = Z, ks > 1. One knows that H*(K(7T, j); Z2) is the polynomial 
ring over Z2 on the classes SqK iJ where K is admissible, has k s > 1 if 7T = Z, and 
has excess e(K) = (k 1 - 2k2) + (k2 - 2k 3 ) + ... +(ks~l - 2ks) + ks less than 
j. If e(K) = j, SqK iJ = (SqK'i)2' for some K' and t. Since 

g*(SqKir) = SqK g*(ir) = SqKar~JiJ = ar-JSqKiJ, 

one can readily analyze the kernel and cokernel of g*. The kernel of g* has a basis 
given by the classes SqK ir with e(K) > j, and the cokernel of g* is given by classes 
ar-J(Sqkl iJ ... Sqk, i) with t > 1, modulo the classes ar-J«SqK' i)2'). 

As a special case, one can then consider 7T = Z, j = 4k, and write down 
if *( Xr ; Z2) in low dimensions. There is a basis given by 

dim(r + 4k + 1) 
dim(r + 4k + 2) 
dim(r + 4k + 3) 
dim(r + 4k + 4) 

{Sq4k+l i r }, 

{Sq4k+2i r}, 

{Sq4k+3i} l)a r- 4k i Sq2i r , 4k 4k' 
{Sq4k+4i r}, {Sq4k+3Sq2i r }, l)ar-4ki4kSq3i4k 

and terms of higher degree. Here {x} denotes a class mapping by h* to x, i.e. 
h*({x}) = x. 

Being interested in the action of .#1' one needs the Adem relations 

and 

{ Sqh+2 + Sqh+1Sql 
S 2S h - ' q q - S h+1S 1 q q, 

b even> 0, 
b odd, 

b == 0, 3 mod 4, (b > 1). 
b == 1,2 mod 4, 
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Then one has Sql{Sq4k+lir} = 0, Sql{Sq4k+2ir} = {Sq4k+ 3 ir}, i.e., Sql{Sq4k+2ir} 
is a class which maps to Sq4k+3 ir and {Sq4k+3 ir} may be chosen to be Sq10n the 
lower class, and 

Sqll)a r- 4k i4k Sq2 i4k = l)ar-4ki4k Sq3 i4k . 
Also, Sq2 Sq4k+ 1 i r = 0, so there is a p. E Z2 for which 

Sq2{Sq4k+lir} = p.l)ar-4ki4kSq2i4k' 
Claim. p. '* O. To verify this, one may consider the effect of the assumption that 

p. = O. To begin, one notices that rationally Q~kin(K(Z, 4k» has a nonzero class 
detected by i~k which goes to zero in Q;~i~k(K(Z, r», and so 'lTr+4k +1(MSpin /\ Xr) 
= Z + torsion. One may then find a map 

F ~ M Spin 8s /\ Xr ~ K ( Z, Ss + r + 4k + 1) X K ( Z2' Ss + r + 4k + 2) 

with F being the fiber, so that 
a*(i8s+r+4k+l) = U·{Sq4k+li r }, a*(i8s+r+4k+2) = U·{Sq4k+2i r}. 

There must then be a class b E H 8s+ r+4k+2(F, Z2) transgressing to kill 
Sq2i8s+r+4k+l' with Sq1b transgressing to Sq3i8s+r+4k+I' Thus 'lT8s+r+4k+2(F) ~ Z2 
and 

modulo odd torsion. 

i = 4k + 1, 
i = 4k + 2, 

If one now considers the case k = 1, one has the exact sequence 

Q~tn( K( Z, 4)) b 
H6 (BSpin; Z) 'lTr+6 (MSpin /\ Xr) ~ ~ 

Z2 + Z2 Z2 
~ Q~pin( K( Z, 4)) ~ Hs(BSpin; Z) 

II II 
Z2 0 

in which the groups Q~pin(K(z,4» are known from [S]. Here b is epic; there is a 
closed Spin manifold MlO and integral class Z E H4(M; Z) reducing to w4 for 
which w6Pz[M] = W6w4 [M] '* O. (Note. A specific example of such a manifold is 
given in [F, p. 21S].) Thus 'lTr+6(MSpin /\ Xr) = Z2' and so p. = 1 when k = l. 

One then has a commutative diagram 

HPoo/\~r-4kK(z,4) ..... HPoc/\K(Z,r-4k+4) ..... Hp oo /\ xr (k' = 1) 
~ ~c ~ C ~d 

~r-4kK(Z,4k)..... K(Z,r) 
e 

..... X. 

in which c*(ir) = U k- l i r_4k+4' U E H4(HPOO; Z) = Z being a generator, with LC 
being obtained by suspending the similar map, and with d being the induced map 
on cofibers. 

c*e* {Sq4k+ Ii r} = Sq4k+ IC*(i r) 

= u 2k - 2SqS i r - 4k+4 + terms with smaller powers of u, 
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SO 

d*{Sq4k+li } = U 2k - 2{Sq5 i } r-4k+4 r-4k+4 
+ terms with smaller powers of u. 

Since Sq2 u = ° = Sql u, this gives 

d*(Sq2{Sq4k+lir }) = u2k-2Sq2{Sq5ir_4k+4} 

+ terms with smaller powers of u. 

Thus Sq 2 {Sq 4k + 1 i r} *" 0, and hence Jl. *" ° for all k, completing the proof of the 
claim. 

LEMMA 2.2. There is a class 0 E H4k + 2( B Spin; Z2) for which 

pZSq2pz[M] = r*(O)pz[M] 
for all Spin M 8k+2 and z E H4k(M; Z), where r: M -+ BSpin classifies the tangent 
bundle. 

PROOF. Consider the diagram 

Q~ki~Z(K(Z,4k)) -+ H 4k +z(BSpin; Z) 

!<I> 
Zz 

where cp assigns to f: M 8k +2 -+ K(Z,4k) the characteristic number f*(i 4k )' 
SqZf*(i4k)[M8k+Zj. Then cp 0 a(a) is the value on a of the characteristic number 
U'· 8ar-4ki4k Sq2 i4k = Sqz(U· {Sq4k+l ir}) and cohomology classes of this form 
vanish on homotopy (Sqi is zero in a sphere), so cp is zero on the image of a. 

Now H4k+2(BSpin; Z) is a Zz vector space and sits inside H4k+z(BSpin; Z2), 
so there is a homomorphism 1/;: H4k +z(BSpin; Zz) -+ Zz or equivalently class 
o E H4k+Z(B Spin; Z2) for which 1/; restricts to cp on the image of Q~ki~2(K(Z, 4k». 
Now for z E H4k(M; Z), 1/;(r*([Mj n pz» = r*(O)pz[Mj then gives cp on the class 
of (M, z), i.e., pZSq2 pz[Mj. 0 

Notice that the proof of the proposition has now been reduced to the identifica-
tion of the class O. This will require more work. 

3. Describing O. From the previous section one knows that there is a class 0 in 
H4k+2(BSpin; Zz) so that r*(O)pz[Mj = pzSqZ pz[Mj for all M and z. One now 
wishes to find this class. 

LEMMA 3.1. The class 0 is only well defined in 

H4k+Z(BSpin; ZZ)/Sql H4k+l(BSpin; Z2)' 

PROOF. For.,., E H4k+l(BSpin; Z2)' 

r*(O + Sql.,.,)pz[M] = r*(O)pz[M] + (Sq1r*(.,.,)) . pz[M] 

= pZSqZpz[M] + (vlr*(.,.,)pz + r*(.,.,) Sqlpz)[M] 

= pzSqZ pz[M]. 

Thus, the class 0 + Sql.,., has the same property as does O. 0 
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Note. This corresponds to the fact that n~~i~2(K(Z,4k)) maps into 
H4k +2(BSpin; Z) C H4k +2(BSpin; Z2)' 

with the classes in the image of Sql vanishing on integral homology. 

LEMMA 3.2. () is nonzero in H4k+2(BSpin; Z2)!Sql H 4k+1(BSpin; Z2)' 

PROOF. It is sufficient to exhibit a manifold M 8k+2 and integral class z E 
H4k(M; Z) for which pZSq2 pz[M] =I=- O. For this one lets Me Cp2 X Cp4k be the 
Milnor hypersurface dual to a + {3, a E H2(Cp2; Z) and {3 E H2(Cp4k; Z) being 
the generators, and lets z = a{32k-1, or more precisely, the pullback to M. This is a 
Spin manifold, and the desired number is nonzero. 0 

LEMMA 3.3. Sql() E H4k+3(BSpin; Z2) is a nonzero class with T*(Sql()) = 0 in 
the cohomology of every closed Spin manifold of dimension 8k + 2. Further, () E 

H4k+2(BSpin; Z2)!SqlH4k+l(BSpin; Z2) is determined by Sql(). 

PROOF. According to Anderson, Brown, and Peterson [ABP, Proposition 6.1] 
H(H*(BSpin; Z2)' Sql) = Z2[1 . Sq2', Pj ] with i ~ 2, j =I=- 2\ is a polynomial ring 
on generators of dimensions divisible by 4, so Sql maps 

H4k+2(BSpin; Z2)/Sql H4k+l(BSpin; Z2) 

monomorphically into H4k +3(BSpin; Z2)' 
For any closed Spin manifold M 8k +2 and class wE H4k-l(M; Z2) one has 

T*{Sql ())w[M] = Sql T*( ())w[M] 

= (V1T*(())W + T*(()) Sq1w)[M] = T*(())p{3w[M] 
where {3: H4k-1(M; Z2) ~ H4k(M; Z) is the Bockstein. Then 

T*{Sq1())w[M] = p{3wSq2p{3w[M] = Sq1w· Sq2Sq1w[M] 

= {V1wSq2Sq1w + W· Sq1Sq 2Sq1w)[M] = W· Sq 2Sq 2w[M] 

= {v2 ' wSq2 w + Sq2 w· Sq2 w + Sq1w· Sq1Sq2w)[M] 

= {V4k+1Sq2w + V1{WSq1Sq 2 W))[M] 
and VI = 0 = V4k + 1 in M, so this is zero. By Poincare duality, this gives T *(Sq1 ()) = 
O. 0 

Note. Because H7(BSpin; Z2) = Z2' for k = lone has Sq1() = w7, and has 
Wilson's result [W] that w7 is zero in every 10 dimensional Spin manifold. Also 
w7 = Sq3 V4 and () = Sq2 V4 E H 6(B Spin; Z2) = Z2' 

4. A calculation. One now turns attention to the cofibration (for k ~ 2) 
g h 

~r-4kK(Z2,4k) ~K(Z2,r) ~ Y,. 

with r large, and may write down H*(Yr; Z2)' The kernel of g* has a basis given 
by the classes SqI ir with I admissible and having excess greater than 4k, and 
writing a for a r - 4 \ i for i 4k , the kernel of h* or image of l3 has a basis given by 
classes l3aSq I 1i ... Sql'i for which the Ii are admissible, have excess less than 4k, 
and for which s> 1 and (/1"'" Is) =I=- (1, ... , J) with 21 J's, t> 0; i.e., not the 
21th power of an indecomposable. 
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In order to study H*(MSpin 8s 1\ Yr; Z2)' one recalls that H*(MSpin 8s; Z2) is a 
free did Sql + d Sq2 module on U and wlu in dimensions 8s and 8s + 8 with 
additional generators in dimension 8s + 10 and higher. Here s is to be large. 

Because n~pin(K(Z2,4k» and H*(BSpin; Z2) are purely 2-primary, so is 
'1T*(MSpin ss 1\ Yr). If one then examines the Bockstein spectral sequence for 
H*(MSpinss 1\ Yr; Z2) (see [B2]), then 

and £00 is zero since H*(MSpin 8s 1\ Yr ; Z) consists entirely of torsion. Thus all 
classes in ker Sql lim Sql are related by higher order Bocksteins. 

One may begin by finding a map 

II 
MSpinss 1\ Yr ---+ K(Z2t, 8s + r + 4k + 1) 

for which 

f *(" ) - U{S 4k+l " } 1 18s+r+4k+l - q Ir' 

where {x} denotes some class with h*{x} = x, and for which fI*({3iSs+r+4k+l)' {3 
being the Bockstein operation, is a nonzero class in the kernel of Sql. Of course, if 
t -IIJ-SIS' S IS4k+2"-S4k+3" =1=0 th f*(IJ" ) - 'f' - q" lllce q q Ir - q Ir , one mus ave 1 f'ISs+r+4k+I 
= U8aiSql i. 

LEMMA 4.1. t = 1. 

PROOF. Clearly 

is the bottom stable homotopy group. Applying stable homotopy to the cofibration 
gives an exact sequence 

o -+ '1TSs+r+4k+I(SSs 1\ Y,.) -+ '1T8s+r+4k(SSs 1\ ~r-4kK(Z2,4k)) -+ 0 

II 

and according to Brown [B3, Lemma (1.2)], the stable homotopy group of K( Z2' 4k) 
is Z2' 0 

Because MSpinss is a product (corresponding to the decomposition of cohomol-
ogy) there is also a map 

il 
MSpinss 1\ Y,. -+ K(Z2' 8s + r + 4k + 9) 

for which 

f-*(" ) - 2U{S 4k+I" } 1 ISs+r+4k+9 - W4 q Ir 

and 

f *(S 1" ) - 2rrs> "S 1 " 1 q ISs+r+4k+9 - W4 uual q l. 
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Note. This is the only class in the range up to dimension 8s + r + 4k + 9 
involving the generator wlu. 

One then has h*/l* sending Sq2iSs+r+4k+l to USq4k+2Sqlir, Sq3iss+r+4k+l to 
USq4k+3 Sql ir and Sq2Sq3 i Ss +r+4k+l to USq4k+5 Sql i r. Also, under 
It Sq2Sql iSs+r+4k+l goes to U8aiSq2Sql i + U8aSql iSq2i, Sq3 Sql iSs+r+4k+l goes 
to 

U8aSql iSq2 i + U8aSql iSq2 Sql i + U8aiSq3 iSql i, 

and Sq2Sq3Sql iSs+r+4k+l goes to 
U8aiSq5Sqli + U8aSq2 iSq3 Sql i + U8aSq3 iSq2 Sql i 

+ U8aSql iSq5 i + U8aSql iSq4 Sql i. 
Because the action of don U gives a free d/dSql + dSq2 module, one then sees 
that 11* is monic. 

One may now find maps 12: MSpinss 1\ Yr ~ K(Z2' 8s + r + 4k + 2) and k 
MSpinss 1\ Yr ~ K(Z2' 8s + r + 4k + 3) for which 12*(iSs+r+4k+2) = 
U{Sq4k+2i r}, where {Sq4k+2i r} is some class mapping to Sq4k+2i r under h* and 
It(iSs+r+4k+3) = U8aiSq2i. 

Now 
h*f*(S 1· ) - US 4k+3' 2 q ISs+r+4k+2 - q lr 

h*f*(S 2· ) - US 4k+3s 1· - h*f*(S 3· ) 2 q ISs+r+4k+2 - q q lr - 1 q ISs-rr+4k+l . 
Thus 

11*( Sq3 i 85+ r+4k + 1) + 12*( Sq2 i Ss+r+4k +2) 

= AU8aiSq3 i + p.U8aiSq2 Sql i + pU8aSql iSq2 i 
for some A, p., P E Z2. One now applies Sq3 to this relation, using the fact that 
Sq3Sq2 = 0 to obtain 

U8aiSq5 Sq1i + U8aSq2 iSq3 Sql i + U8aSq3 iSq2 Sql i 

+ U8aSql iSq5 i + U8aSql iSq4 Sql i 

= A(U8aSqli(Sq5 + Sq4 Sql)i + U8aiSq5Sqli) 

+ p.( U8aSq3 iSq2 Sql i + U8aSq2 iSq3 Sql i) 

+ p( U8aSq2 iSq3 Sql i + U8aSq2 Sql iSq3 i) 
so A = 1 = p. + P. One also has 

alt(Sq2Sql iS5+r+4k+l) + bI3*(Sql iSs+r+4k+3) 
= bU8aiSq3i + aU8aiSq2Sq1i +(a + b)U8aSq1iSq2i 

so that proper choice of a and b gives all possible A, p., P with A + p. + P = o. 
Thus, one has a relation 

(*) It(Sq3 iXs+r+4k+l + p.Sq2 Sql iSs+r+4k+l) + 12* (Sq2 iSs+r+4k+2) 

+/3* (Sql iSv+r+4k+3) = o. 
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For convenience, one lets 

g = Sq3 iSs+r+4k+l + /LSq2Sql i 8s + r+4k+l + Sq2 i8s+r+4k+2 + Sql i8s+r+4k+3 

in the cohomology of the product of Eilenberg-Mac Lane spaces. One now continues 
to describe the homomorphism. Applying h*/2* to Sq2Sql i8s+r+4k+2 gives U· 

Sq4k+5 ir + U· Sq4k+4Sql ir' and all other operations yi8s+r+4k+2 with y E Sill 
actually lie in SillSq2, so that 

~ = Sq2 i8s+r+4k+2 + 
Sql g = Sq3 i8s+r+4k+2 + 
Sq2 g = Sq3Sql i8s+r+4k+2 + ... , 

Sq2Sql g = (Sq5 + Sq4Sql )i8s + r+4k+2 + 
Sq3Sql g = Sq5Sql i 8s + r+4k+2 + .... 

Applying 13* to Sql i8s+r+4k+3 gives Uc5aiSq3 i + Uc5aSql iSq2 i, a fact used above 
without mention, Sq2 i8s+r+4k+3 gives Uc5aiSq3 Sql i + Uc5aSql iSq3 i, Sq3 i8s+r+4k+3 

gives Uc5aSql iSq3 Sql i, Sq2Sql i8s+r+4k+3 gives 

Uc5aSq2 iSq3 i + Uc5aiSq5 i + Uc5aiSq4 Sqli 

+ Uc5aSq2 iSq2Sql i + Uc5aSql iSq3Sql i, 

and Sq2Sq3 iSs+r+4k+3 = (Sq5 + Sq4Sql)i8s+r+4k+3 gives Uc5aSq2Sql iSq3Sql i + 
Uc5aSqliSq5Sql i. Finally, Sq3Sql i8s+r+4k+3 goes to 

Uc5aSq2 iSq3Sql i + Uc5aSq2Sql iSq3i + Uc5aSql iSq5 i 
+ Uc5aSql iSq4Sql i + Uc5aiSq5Sql i 

= It (Sq2Sq3 /3i8s+r+4k+l) 

and Sq5Sql iSs+r+4k+3 goes to zero. 
One then notices that 

and 

Sq2Sq3 g = Sq5Sql i8s+r+4k+3 

giving the two relations which just occurred. One then observes that the map 
flXhxh 

MSpin 8s 1\ Yr ~ K(Z2,8s + r + 4k + 1) X K(Z2' 8s + r + 4k + 2) 

XK(Z2,8s + r + 4k + 3) 
has kernel in mod 2 cohomology generated over SiI by g. 

One now has a map 

14 x I:: MSpin 8s 1\ Yr ~ K(Z2' 8s + r + 4k + 4) X K(Z2' 8s + r + 4k + 4) 
with 1/(iSs+r+4k+4) = U{Sq4k+4i r } and 1:*(i~s+r+4k+4) = Uc5aSql iSq2 i so that 

h*/4*(Sql i8s+r+4k+4) = USq4k+5 ir 
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and 

1:*(Sql i~s+r+4k+4) = U8aSql iSq3 i. 

This brings one to dimension 8s + r + 4k + 5 in which questionable behavior 
occurs. No class described so far hits U· Sq4k+3Sq2ir in MSpinss /\ K(Z2' r) and 
Sql(U· Sq4k+3Sq2ir) = O. One may choose a class {Sq4k+3Sq2ir} = x and Sqlx 
will lie in the image of 8, and also in the kernel of Sql. Thus Sqlx is a linear 
combination of 

8aiSq5 i + 8aSql iSq4 i = Sql( 8aiSq4 i), 

8aSq1 iSq3Sqli = Sql(8aiSq3Sqli), 

and 8aSq2 iSq3 i. By changing x to some x + a8aiSq4 i + b8aiSq3Sql i, one may 
assume that Sqlx = c8aSq2 iSq3 i. If c"* 0, one may let 15: MSpinss /\ Y ~ 
K(Z2,8s + r + 4k + 5) with 15*(iSs+r+4k+5) = U· x and then 15*(Sql i8s+r+4k+5) 
= U8oSq2iSq3i. If c=O, then x represents a nonzero class in kerSql/imSql. 
There is then a higher-order Bockstein /3 defined on x so that /3x represents a 
nonzero class in (kerSql/imSql)r+4k+6' Because Sq4k+5Sql ir = Sq1Sq4k+4Sql ir' 
Sq1Sq4k+6 ir = Sq4k+7 ir and Sq1Sq4k+4Sq2 ir = Sq4k+ 5Sq2 ir' and the facts on Sql 
for the image of 8, this group is Z2 with generator 8aSql iSq3 i. Since U is an 
integral class, one can find a map Is: MSpinss /\ Yr ~ K(Z2V, 8s + r + 4k + 5) for 
which 15*(iSs+r+4k+5) = U· x for which 15*(/3iSs+r+4k+5) = U8aSq2 iSq3 i modulo 
the image of Sql. By allowing the possibility that v = 1, one may use this description 
to cover the c "* 0 case as well, giving a map 

Is: MSpinss /\ y,. ~ K(Z2V,8s + r + 4k + 5) 
with 15*(iSs+r+4k+5) = U· {Sq4k+4 ir} and 15*(/3iss+r+4k+5) = U8aSq2 iSq3 i mod-
ulo an appropriate term. 

One also has a map I;: MSpinss /\ Yr ~ K(Z2' 8s + r + 4k + 5) for which 
t;*(i~s+r+4k+ 5) = U8aiSq4 i. Similarly, in higher dimensions one can find maps into 
Eilenberg-Mac Lane spaces K(Z2' 8s + r + 4k + i) for which 

i = 6: 1/(iSs+r+4k+6) = U{Sq4k+4Sq2ir }, 

1;*( i~s+r+4k+6) = U8aiSq5 i, 
i = 7: It(iSs+r+4k+7) = U{Sq4k+4Sq2Sqlir}' 

1{*(i~s+r+4k+7) = U8aiSq6i, 

I{'*( i~:+r+4k+7) = U8aiSq5Sql i, 

1/" *(i;;'+r+4k+7) = U8aiSq4Sq2i, 
i = 8: 18*(iSs+r+4k+S) = U{ Sq4k+S ir }, 

( 

U8aiSq7 i, 

/: (J)*( i(J) ) _ U8aSq2 iSq5 i, 
S Ss+r+4k+8 - TTf>'S 5S 2· vual q q I, 

U8aiSq4Sq2Sql i, 

j = 1, 
j = 2, 
j = 3, 
j = 4. 
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By tedious and unpleasant calculation, one may then verify that the product of all 
of these maps 

where 

i 1 

G; 22 

8 

f: MSpinSs 1\ y,. -+ Il K( G;, 8s + r + 4k + i) 
;=1 

2 3 4 5 6 7 

22 22 222 2 2v + 22 222 422 

8 

522 

induces an epimorphism in mod 2 cohomology through dimension 8s + r + 4k + 8, 
and that through dimension 8s + r + 4k + 9 the kernel is generated over sd by g. 
One may then choose a minimal set of additional generators in dimension 8s + r + 
4k + 9, giving 

9 

/: MSpinss 1\ Yr -+ n K( G;, 8s + r + 4k + i) 
;=1 

so that /* is epic through dimension 8s + r + 4k + 9, and has kernel generated by 
g over sd through this dimension. 

Letting F be the fiber of /, one then has a fibration 

J 9 
F -+ MSpinss 1\ Yr -+ nK(G;,8s + r + 4k + i) 

;=1 

and may calculate 

H*{F; 2 2 ) = sd/sdSq5Sql JSs+r+4k+3 
+ terms of dimension 8s + r + 4k + 9 or higher 

where jSs+r+4k+3 transgresses to g. The map e: F --+ K(22' 8s + r + 4k + 3) with 
e*(iss+r+4k+3) = jSs+r+4k+3 induces an isomorphism in mod2 cohomology in di-
mension less than or equal to 8s + r + 4k + 8. Thus e induces an isomorphism in 
homotopy through dimension 8s + r + 4k + 7 and is epic in dimension 8s + r + 
4k + 8 (which is obvious). 

One may now read off the homotopy groups to obtain 

LEMMA 4.2. For J = 4k with k ;;:, 1, 

'lTr+4k +7 {MSpin 1\ Y:-) = 22 + 22 + 22 + 22 

with the nonzero classes being detected by U{Sq4k+4Sq2Sql ir}, U8(JiSq6 i, 
U8(JiSq5Sql i, and U8(JiSq4Sq2 i. In addition, there is a class in 'lTr+4k+3(MSpin 1\ Yr) 
which is detected by U8(JiSq2 i. 

Note. The class in 'lTr+4k +3(MSpin 1\ Yr) also occurs for k = 1, since for k = I, 
the description of H*(Yr , 2 2) is correct through dimension r + 4k + 5, the first 
problem being the class 8(JiSq5 i. 
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PROOF. One has 

and 

II 
o 

o 

II 
o 

5. The main results. Having done all the hard work, one can now obtain 

PROPOSITION 5.1. For a closed Spin manifold M 8k+2 of dimension 8k + 2 and class 
z E H4k(M; Z), pZSq2 pz[M] = pZSq2 V4k[M]. 

PROOF. For k = 1, 0 = Sq2v4 is the only nonzero class in H6(BSpin; Z2)' 
Assuming k ~ 3, SqlO E H 4k+3(BSpin; Z2) is zero in every Spin manifold of 
dimension 8k + 2 and hence in every Spin manifold of smaller dimension. If one 
considers the sequence 

~~fi~\(K(Z2,4k - 4)) ! H4k+3(BSpin; Z2) ! '7Tr +4(k-I)+7(MSpin 1\ Y,.) 

! ~~f~2(K(Z2,4k - 4)), 

then k - 1 ~ 2 and '7Tr +4(k-l)+7(MSpin 1\ y") = 4Z2. The classes detected by 
U8criSq6 i, U8criSq5 i, and U8criSq4Sq2 i map nontrivially under a, i.e. the value of 
U8cryon a is the value of y on aa. Thus, the image of h or cokernel of g is at most 
Z2 and is detected by U{Sq4kSq2Sql i}. Letting N r +4k+3 be a Spin manifold with 
wE H 4k+3(N; Z2) to realize a class in ~~~i~k+3(K(Z2' r» ~ H4k+3(BSpin; Z2)' 
the value of U{Sq4kSq2Sql i} on (N, w) is 

Sq4kSq2Sq1w[N] = V4kSq2Sq1w[N] = {V2V4kSqlw + Sq2V4kSq1w HN] 
= {V ISq2v4kW + Sq1Sq2v4k' w HN] = {Sq3V4k ' w HN]. 

Thus, the only class in H 4k+\BSpin; Z2) which can vanish on the image of g is 
Sq3V4k . Thus Sq10 = Sq3V4k = SqlSq2V4k and 0 = Sq2V4k' 

Finally, for the case k = 2, one could presumably redo all of the calculations of 
the previous section for the case k = 1. However, being given Ml8 and a class 
z E H 8(M; Z) with Wu class v(M) = 1 + v~ + v~ one can let U E H 4(Hp2; Z) 
and consider u ® z E H 12(Hp2 X M; Z) so that 

pZSq2pz[M] = p(u ® z) Sq2p(U ® Z)[HP2 X M] 

= p(u ® z) Sq 2 vdHP2 X M] 

= p (u ® z) Sq 2 ( P u ® v~)[ H P 2 X M] 

= pZSq2 vaM]. 

Thus, the result for k = 3 implies it for k = 2. 0 
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COROLLARY 5.2 [W]. Sq3V4k = 1 Sq4k Sq2Sql is zero in every closed Spin manifold of 
dimension 8k + 2. 

PROOF. Having seen that () = Sq2V4k gives this. 0 
Note. With the exception of the case k = 2, one has shown that this is the only 

nonzero class of dimension 4k + 3 which is zero in every manifold of dimension 
8k + 2 (or 8k - 1). 

COROLLARY 5.3. For a closed spin manifold M 8k+2 of dimension 8k + 2, 
W4W8k - 2[M] = V4k Sq2v4k[M] is the rank modulo 2 of the form [ , ] on integral 
cohomology. 

PROOF. Consider the form 

[ , ]: H4k(M; Z) ® H4k(M; Z) ~ Z2: [x, y] = pxSq2 pY[M]. 

By standard facts about forms (as in [LMP, §2]), there is a class v E H4k(M; Z), 
well-defined modulo the annihilator of the form, for which [x, y] = [x, x] for all x 
and [v, v] is the rank modulo 2 of the form [ , ]. In H*(BSpin; Z2), it is well known 
[ABP] that Sq1V4k = 0, and the kernel of Sql is the image of the reduction of 
H*(BSpin; Z). Thus there is a class wE H*(BSpin; Z) with pw = V4k . By the 
proposition r*( w) E H4k( M; Z) is a suitable choice for v and so the rank mod 2 of 
[,] is [r*(w), r(w)] = pr*(w)Sq2 pr*(w)[M] = V4kSq2v4dM]. Finally, 

V4kSq2v4k[M] = Sq4kSq2v4k[M] 

= {Sq4Sq4k-2V4k + ( 4k 4- 3) Sq4k+2V4k} [M] 

= v4Sq4k-2V4k [M] 

and since vi(M) = 0 for i ¥= 0 (4), v4 = W4 and Sq4k-2v4k = W8k-2 for w = Sq v. 
o 

OBSERVATION. There is no class y E H4k+2(BSpin; Z2) with k > 0 so that for all 
closed Spin manifolds M 8k +2 and x E H4k(M; Z2) one has 

xSq2 x[M] = xr*(y)[M]. 

PROOF. From the calculations in the previous section (valid for k ~ 1) one has a 
class a E 'lTr +4k+3(MSpin 1\ Yr ) for which U<5aiSq2 i has a nonzero value. In the 
sequence 

3a is given by an M 8k+2 and class x with xSq2 x[M] -=1= 0 and so that xr*(y)[M] 
= 0 for all y. 0 

Note. This shows that the restriction to integral classes was absolutely crucial. 
OBSERVATION. There is no class y E H 4k +4(BSpin; Z2) so that for all closed Spin 

manifolds M 8k +6 and z E H 4k +2(M, Z) one has 

pZSq2pz[M] = pzr*(y)[M]. 
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PROOF. Let M 8k +6 = HP2k X CP3 and z = uka where u E H 4(Hp2k; Z), a E 

H2(CP3; Z). Then pZSq2 pz[M] = p(u ka)p(u ka 2)[M] =1= O. Also w(M) = 
(1 + pU)2k+I(1 + pa)4 = (1 + pU)2k+1 and for any y E H 4k +4(BSpin; Z2), r*(y) 
= APUk+1 for some A E Z2. Thus pzr*(y)[M] = APU 2k+lpa [M] = o. 0 

OBSERVATION. There is no class y E H4k+I(BSpin; Z2) with k > 0 so that for all 
closed Spin manifolds M8k and z E H 4k - I(M; Z) one has 

pZSq2 pz[M] = pzr*(y)[M]. 

PROOF. Let M8k = Hp2k-2 X G2(R6), where G2(R6) is the Grassmannian of 
2-planes in R6. Then H*(G2(R 6); Z2) is the Z2 polynomial ring on the universal 
Stiefel-Whitney classes WI' w2 modulo the relations (1/(1 + WI + W2»i = 0 if i > 4. 
One has w(G2(R6» = (1 + WI + w2)6/(1 + w~), so that G2(R6) is a Spin manifold, 
and for any y E H4k+I(BSpin; Z2)' r*(y) = 0 in M since all odd dimensional 
Stiefel-Whitney classes are zero. Let a = f3w2 E H 3(G2(R 6); Z) be the integral 
Bockstein of W2, so pa = pf3w2 = Sql w2 = WIW2' and let z be uk-lao Then 

In dimensions 8k + 4 with k> 0, one may similarly consider Hp2k-2 X Ml2 
where Ml2 is a Spin manifold having a class a E H\M; Z) with paSq2 palM] =1= 0, 
and may let z = uk-Ia to give pZSq2 pZ[HP2k-2 X M] =1= o. The Wu class of M has 
the form 1 + V4 (Vi = 0 if i ;f= 0 mod 4 or i > 6) so w(M) = 1 + W4 + w6 + w7 + W8 
and by Wilson [W], W7 = o. Thus w(HP2k-2 X M) consists entirely of even 
dimensional classes, and for any y E H 4k +3(BSpin; Z2), r*(y) = O. 

By calculation, one can show that (M12, a) exists. To exhibit such calculations 
would be a travesty; one would prefer a specific example. 

Note. In dimensions 8k and 8k + 4, with k = 0, y = 0 would give the universal 
class. Similarly, y = 0 suffices for mod 2 cohomology in dimensions 8k + 2 with 
k = o. 

6. A technical extension. Having seen that the main result does not hold for 
arbitrary mod 2 cohomology classes, one is led to ask whether weaker conditions 
than being reduced integral are sufficient. One does, in fact, have 

PROPOSITION 6.1. For a closed Spin manifold M 8k +2 of dimension 8k + 2 and class 
x E H4k(M; Z2)' one has 

if Sql X = 0, i.e. if x is the reduction of a Z4 class. 

COROLLARY 6.2. For a closed Spin manifold M Sk + 2 of dimension 8k + 2, 
W4WSk - 2[M] is the rank modulo 2 of the form [,] on (kerSql)4k or H4k(M: Z2S) for 
any s > 1. 
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Note. The results of [LMP] relate the form (x, y) = xSql y[M] to the torsion in 
homology in a very precise way. These results indicate that there is some relation on 
the torsion for Spin manifolds of dimension 8k + 2 because the rank of the form is 
independent of s, but the relation is vague. 

PROOF. One has a cofibration 

giving an exact sequence 

One may then analyze H*(w;.; Z2) and find 

dim{r + 4k + 1) 
dim{r + 4k + 2) 
dim{r + 4k + 3) 

[Sq4k+l i r ], 

[Sq4k+2 i] ~(Jr-4ki /3i 
r , 4k 4k' 

[Sq4k+3 i] [Sq4k+2/3i ] ~(Jr-4ki Sq2 i r , r , 4k 4k' 

where /3 denotes the Bockstein. Since Sq2[Sq4k+l ir] goes to Sq4k+ 2Sql ir = 0 in 
K(Z4' r), one has Sq2[Sq4k+l ir] = 1L~(Jr-4ki4kSq2 i4k for some IL E Z2' 

h 
If one considers the maps K(Z, n) ~ K(Z4' n), one has an induced map Xr ~ w;. 

so that b*: H*(w;.; 2 2) --+ H*(Xr; 2 2) sends [Sq4k+1 ir] to [Sq4k+1 ir]' Thus 
Sq2[Sq4k+1 ir] "* 0 in w;., because its image in Xr is nonzero, and IL "* O. 

Thus 

is zero on the image of a, and is given by a homomorphism im a --+ Z2' Since all 
p 

torsion in H*(BSpin; 2) is of order 2, H4k +2(BSpin; Z4) --+ H4k +2(BSpin; Z2) is 
monic, and there is a class () E H4k+2(BSpin; Z2) so that 

xSq2 x[M] = r*{ ()) . x[M] 

for all closed SpinM 8k +2 and x E (kerSql)4k = pH4k(M; Z4)' 
One must again identify (), but this is just a repetition of the arguments. () is well 

defined only modulo the image of Sq\ hence is determined by Sql (), and Sql () is 
zero in all Spin M8k+2. By uniqueness, () = Sq2 V4k mod image Sql for k ~ 3, and 
this implies that () can be taken to be Sq2 V4k for smaller k. 0 

Note. The argument for Z4 is really identical with that for Z classes, and this 
presentation has simply used the Z argument to give the Steenrod operations in w;.. 
The equivalence of the ranks of the forms for Z and Z2S cohomology follows from 
the fact that the class V4k is reduced integral. 

Note. One can analyze the form [ , ] simply by knowing H*(M; Z2) as algebra 
over the Steenrod algebra, since that gives (kerSql)4k. Working with pH4k(M; Z) 
would require extra information. 
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COMMENT. This extension to Z4 classes was inspired by a suggestion of Steven M. 
Kahn. Using this extension the methods of [K] may be applied to prove 

PROPOSITION 6.3. If M 8k + 2 is a closed Spin manifold of dimension 8k + 2 with an 
involution T of odd type preserving the Spin structure, then 

W4W 8k - 2 [M] == X(F8*) == X(F 8*+4) (mod 2) 

where X is the Euler characteristic and FS*+j is the part of the fixed set of T having 
dimension j mod 8. 
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