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ANALYTIC FUNCTIONS WITH PRESCRIBED CLUSTER SETS 

L. W. BRINN 

ABSTRACT. Suppose that 0 < R ::::: +00. A monotonic boundary path 
(mb-path) in Izl < R is a simple continuous curve z = z(s), 0 ::::: s < 1, 
in Izl < R such that Iz(s)1 ...... R strictly monotonically as s ...... 1. Suppose 
that f is a complex valued function, defined in Izl < R, and that t is any 
mb-path in Izl < R. The cluster set of f on t is the set of those points w 
on the Riemann sphere for which there exists a sequence {zn} of points of t 
with limn~oo IZnl = R and limn~oo f(zn) = w. The cluster set is denoted by 
Ct (J). If the cluster set is a single point set, that point is called the asymptotic 
value of f on t. If the function f is continuous, then Ct (J) is a continuum on 
the Riemann sphere. 

It is a conjecture of F. Bagemihl and W. Seidel that if T is a family of 
mb-paths in Izl < R satisfying certain conditions, and if K is an analytic set 
of continua on the Riemann sphere, then there exists a function f, analytic in 
Izl < R, such that {Ct (J) I t E T} = K. A restricted form of the conjecture is 
mentioned in [3, p. 100J. 

Our principal results show the correctness of the conjecture in the case that 
K is the collection of all continua on the Riemann sphere and T is a tress of 
a certain type. The results are generalized in several directions. In particular, 
our technique for constructing the analytic function f extends immediately 
to the case in which K is any closed set of continua on the sphere. Specific 
examples of closed sets lead to several corollaries. 

1. Historical background. The construction of analytic functions with pre-
scribed cluster sets along mb-paths has a long history. For instance, in 1933 S. 
Kierst and E. Szpilrajn constructed a function j, analytic in Izl < 1, which has the 
extended plane as its cluster set along every radius [8, p. 277]. 

In the 1950's F. Bagemihl and W. Seidel generalized earlier results of A. Roth 
[12] to develop a construction technique based on polynomial approximation. They 
utilized the technique in a series of closely related papers. The results in [5] involved 
countable families of mb-paths and were based on the approximation theorems of 
J. L. Walsh. In [4] Bagemihl and Seidel defined a tress and used the approxi-
mation theorem of S. N. Mergelyan to extend their construction technique to this 
type of (possibly uncountable) path family. Further results were obtained in [3]. 
Their application of the approximation theorems is both ingenious and somewhat 
complicated. Later it became possible to simplify proofs by a direct application of 
Arakeljan's theorem on tangential approximation (see [1] and [7]). 

In particular, Bagemihl and Seidel have shown that if K is the collection of all 
locally connected continua on the Riemann sphere, and if T is a tress of a certain 
type, there is a function j, analytic in Izl < R, for which {Ct(f) It E T} = K [3, 
p.102]. 
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2. Outline. Our principal result is the construction of a function f, analytic 
in Izl < R, with the following property: if K is any continuum on the Riemann 
sphere, then there are 2No mb-paths in Izl < R on which the cluster set of f is 
exactly K. The paths belong to a tress of a certain type, and convergence to the 
cluster set is uniform on paths of the tress in a sense to be defined. 

We begin by developing the topological notions to be used throughout the pa-
per. We then construct a continuous function with the desired boundary behavior. 
Finally, we use the approximation theorem of Arakeljan to construct the analytic 
function f. Considerable control over the form of the mb-paths is possible, In 
particular, they may be required to lie in some central angle, to all end at some 
point on Izl = R, to all be spirals, or even radii. The result is generalized in sev-
eral directions. Finally, we note that similar (but weaker) results may be obtained 
using only older approximation theorems of J. L. Walsh. Substantial control over 
the form of the mb-paths is retained. The paths may not, however, be required to 
be radii. The polynomial approximation technique is more complicated. 

3. Topological background. 
3.1. DEFINITION. By an R-sequence {qd we mean a sequence {qd, i = 0, 1, ... , 

such that 0 < qo < ql < ... and limi_oo qi = R. If {qi} is an R-sequence, we denote 
the circle Izl = qi by Ci . We denote the closed annulus qi-l ~ Izl ~ qi by Ai and 
a half open annulus Ai U Ai+l U ... by Bi . 

3.2. DEFINITION. By a subcontinuum of a space S we mean a nonempty 
compact connected subset of S. 

We adopt the point of view described in [3] and consider the subcontinua of the 
Riemann sphere as points of a suitable space. Let p denote the chordal metric on 
the Riemann sphere X. Let 2x denote the space of nonempty closed subsets of X, 
and let d denote the Hausdorff metric on 2x (see [9, pp. 214-215]). That is, if P 
and Q are elements of 2x , 

d(P, Q) = max (sup (inf p(p, q)) ,sup (inf p(p, q))) . 
pEP qEQ qEQ pEP 

With the Hausdorff metric, 2x is a compact metric space [10, pp. 45-47]. Let .c 
denote the subspace of all subcontinua of X. Then .c is closed in 2x [10, p. 139] 
and is thus a compact metric space with metric d. 

If p and q are points of X, then clearly p(p, q) = d( {p}, { q} ). Thus, the mapping 
p --t {p} embeds X in 2x. To simplify notation, let us denote d( {p}, {q} ) by d(p, q). 
Then the metric d gives the ordinary Euclidean topology on X. 

Suppose that T is a mb-path in Izl < R, that {qd is an R-sequence, and that f 
is a continuous function, defined in Izl < R. Then Ct(f) = n~l f(t n Bi). Since 
the function f is continuous, each of the sets f(t n B i ) is a continuum in the space 
.c [6, pp. 108-109]. Also, Ct(f) is a continuum in .c, and, in the topology of .c, 
limi_oo f(t n Bi ) = Ct(f) [9, p. 339]; [10, p. 49]. 

We seek to construct an analytic function f with the boundary behavior de-
scribed in the previous section. The construction will proceed in several steps. 
First we will select certain locally connected continua Lij in the space .c, and on 
each continuum Lij we will select certain points Pijk. We will then use these con-
tinua and associated points to define a continuous finite valued function g whose 
boundary behavior will determine that of the function f. The key to the definition 
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of the function g is the Hahn-Mazurkiewicz-Sierpinski theorem. The requirement 
that g be finite valued introduces certain complications. Finally, we will use poly-
nomial approximation theorems to construct the analytic function f. 

3.3. DEFINITION. By a finite continuum on the Riemann sphere we mean a 
continuum which does not contain the point 00. 

3.4. LEMMA. The finite locally connected continua are dense in the space £. 
PROOF. It is known that the locally connected continua are dense in £ (see [9, 

p. 339; 10, pp. 49, 260]). We need only show that, given any locally connected 
continuum L and any c > 0, there is some finite locally connected continuum F 
with d(F, L) < c. If L is finite, let F = L. If L = {oo}, there is clearly a finite 
point p with d(p, (0) < c. Let F = {p}. If L contains {oo} as a proper subset, let 
p be a finite point of L, and let d(p,oo) = fl. Let rJ = min(fI,c/2), and let R= {z I 
d(z, (0) ~ rJ}. By the Hahn-Mazurkiewicz-Sierpinski Theorem [10, p. 256] there 
exists a continuous function g mapping the unit interval I onto L. We may assume 
that g(O) = g(l) = p. Let G = g-l(R n L). Then G is a closed nonempty subset of 
I, and g restricted to G is continuous. Each component of I - G is an open interval 
(a, b) whose endpoints lie in G. Moreover, d(g(a), (0) = d(g(b), (0) = rJ. Thus g has 
a continuous extension h: I --+ R such that d( h( x), (0) = rJ if x E I - G. The image 
h(I) is a finite locally connected continuum [10, p. 256] and it is straightforward 
to verify that if we let F = h(I), then d(F, L) < c. 

Thus, in each case, there is a finite locally connected continuum F with d(F, L) < 
c. This completes the proof. 

3. 5 . LEMMA. For each positive integer i, there exist finitely many locally 
connected continua Lij (1 ~ ) ~ mi) and on each continuum Lij there exist finitely 
many points Pijk (1 ~ k ~ rij) with the following properties: 

1. Given any continuum K E £, there are at least two continua L ij1 and L ij2 
(j1-1-)2) withd(K,Lij.) < 1/2i +1 andd(K,Lii2) < 1/2i+1. 

2. Given any point p of liJ" there exists some point Pijk with d(p, PiJ"k) < 1/2i+1. 

PROOF. The existence of the continua Lij follows directly from the previous 
lemma and the fact that the space £ is compact. The requirement in property 1 
that )1 -I- )2 does not imply that Lijl and Lii2 must be distinct as point sets. The 
existence of the points Pijk follows directly from the fact that each continuum Lij 
is a compact subset of the Riemann sphere. 

3.6. DEFINITION. For each positive integer i, we will call the continua Lij 
(1 ~ ) ~ mi) which have the properties of the previous lemma the continua of level 
i. For each continuum Lij , we will refer to the points Pijk (1 ~ k ~ Tij) as the 
bridge points on L ij . 

As i --+ 00, the continua of level i become "more nearly dense" in the space £, 
and simultaneously the bridge points Pijk become "more nearly dense" on each Lij . 

3.7. LEMMA. If p and q are finite points on the Riemann sphere X, then there 
is a path t from p to q with the following properties: 

1. All points on t are finite. 
2. If d(p, q) < c then d(z, q) < c for all points z on t. 

PROOF. Let t be the shortest great circle arc from p to q, interrupted (if neces-
sary) by a sufficiently small circular arc around the point 00. 
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3.8. DEFINITION. By a direct path from P to q we mean a path having the 
properties of Lemma 3.7. 

In the following, to simplify notation we will consider sequences of the form 
{(Li' Pin where Li is a continuum of level i and Pi is a bridge point on Li for each 
i. Two pairs (Li' Pi) and (Ci , qi) are to be considered equal if and only if Li and 
Ci are the same indexed continuum Lij (1 :s: j :s: mi) of level i, and Pi and qi are 
the same indexed bridge point Pijk (1 :s: k :s: rij) on the continuum Lij' 

In order to insure uniform convergence to the cluster set, we are interested in 
sequences of the form {(Li,Pin which converge at a predetermined rate. This is 
the motivation behind the following definition. 

3.9. DEFINITION. A sequence {( Li, Pi n, i = 1, 2, ... , is called a sequence of 
the form * if and only if it satisfies the following conditions for each i: 

1. Li is one of the continua Lij (1 :s: j :s: mi) of level i. 
2. The point Pi is a bridge point Pijk (1 :s: k :s: rij) on Lij. 
3. d(Li' Li+d < 1/2i. 
4. d(pi,Pi+d < 1/2i - 1. 

3.10. LEMMA. Suppose that {(Li,Pin is a sequence of the form *. Then 
1. limi-+oo Li exists and is a continuum K in the space .c. 
2. limi-+oo Pi exists and is a point P on K. 
3. For each i, d(Li' K) :s: 1/2i - 1 . 

4. For each i, d(pi'p) :s: 1/2i-2. 

PROOF. It follows directly from condition 3 of Definition 3.9 that the sequence 
{Li} is a Cauchy sequence in the space.c. Since.c is a compact metric space, 
limi-+oo Li exists and is a continuum K E.c. Similarly, the sequence {pd is a 
Cauchy sequence on the Riemann sphere X and converges to some point P of X. 
Since Pi E Li for each i, we must have P E K [9, p. 335; 10, p. 49]. Properties 3 and 
4 are straightforward consequences of the corresponding conditions in Definition 3.9. 

3.11. LEMMA. Suppose that K is a continuum of .c and that P is a point of 
K. Then there exist 2No sequences {(Li,pin of the form * with limi-+oo Li = K 
and limi-+oo Pi = p. 

PROOF. For each i, it follows from Lemma 3.5 that there are at least two 
continua Li of level i with d(Li' K) < 1/2i+1. If d(Li' K) < 1/2i+1 , it follows 
directly from the definition of the Hausdorff metric and the compactness of Li that 
there exists a point q of Li with d(p, q) < 1/2i+l. But then there exists a bridge 
point Pi on Li with d(pi'p) < 1/2i , again by Lemma 3.5. Thus, there are 2No 
sequences of the form {(Li,pin with d(Li,K) < 1/2i+1 and d(pi'p) < 1/2i for 
each i. These sequences satisfy the requirements of the lemma. 

In order to state the basic result we need one additional definition. 
3.12. DEFINITION. Let R, 0 < R :s: +00, be given, and let {qi} be an R-

sequence. Let T be a family of mb-paths in Izl < R, and let f be a continuous 
function defined on all paths of the family. We say that convergence to the cluster 
set is uniform for paths of the family T if and only if, given any c > 0, there is 
some integer n = n(c} with the following property: If i ~ n and if t is any mb-path 
of the family T, then d(f(t n B i ), Ct(f)) < c. 

The notion of uniform convergence to the cluster set can be found in [2]. Tresses 
are defined in [4]. 
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4. The basic result: 

4.1. THEOREM. Let R, 0 < R :::: +00, be given, and let {qJ be an R-sequence. 
Suppose that E is a perfect, nowhere dense set on the circle ITI = 1 and that T is 
a tress in Izl < R with respect to E such that it is possible to take En = E for all 
n in the definition of a tress. Then there exists a function f, analytic in Izl < R, 
with the following properties: 

1. If K is any continuum on the Riemann sphere, there exist 2No mb-paths of T 
on which the cluster set of f is exactly K. 

2. Convergence to the cluster set is uniform for paths of T. 
We will construct the analytic function f in several steps. First, we will construct 

a continuous function G(x, T) on [qo, R) x E so that, for each continuum K E £, 
there are 2No points TEE for which the cluster set of G(X,T) as x ~ R is K. We 
will then use the function G to construct a continuous function g(z) on the paths 
of T. Finally, we will apply Arakeljan's theorem to construct the required analytic 
function f in Izl < R. 

If a and b are points on the circle ITI = 1, (a, b) ([a, b]) will denote the nondegen-
erate open (closed) arc extending from a counterclockwise to b. 

Since the set E of Theorem 4.1 is closed and nowhere dense on ITI = 1, there 
exist points a, bEE, a -=I- b, with E ~ [a, bj. Since a, bEE, [a, bj - E is 
an open subset of ITI = 1. Let {(an, bn )}, n = 1,2, ... , be the components of 
[a, bj- E. Then, the (an, bn ) are pairwise disjoint open arcs whose endpoints lie in 
E. Moreover, the collection {(an, bn )} is infinite (otherwise, E would contain either 
a nondegenerate arc or an isolated point). We next write E as the intersection of 
a descending sequence of closed sets Ei , where each Ei is the union of "sufficiently 
many" disjoint nondegenerate closed arcs on ITI = 1. 

4.2. LEMMA. There exist integers 0 :::: to < t1 < ... , such that, if we set 
Ei = [a, bj- U~=l (an, bn ) for i = 0, 1, ... , then for each i, 

1. Ei can be written as Ei = Uj~l Iii, where the Iii are pairwise disjoint 
nondegenerate closed arcs. 

2. If i :::: 1 and if 1 :::: m :::: Ci-1, then Ei n Ii- 1m is the union of at least 
Ni = ri1 + ri2 + ... + rimi of the arcs Iii (where the positive integers rii are those 
found in Lemma 3.5). 

PROOF. Clearly Eo = [a, bj satisfies the conditions of the lemma. Assume that 
to, h, ... , t s- 1 have been chosen so that to :::: t1 < ... < t s-1 and so that Eo, 
El, ... , E s - 1 satisfy conditions 1 and 2. 

Note first that each arc I s- 1m (1 :::: m :::: cs-d contains infinitely many of the 
arcs (an, bn ). Otherwise, En I s- 1 m would contain either a nondegenerate arc or 
an isolated point. If En 1s- 1 m contains a nondegenerate arc, then so does E, 
contradicting the fact that E is nowhere dense. If E n I s - 1 m contains an isolated 
point, then so does E, since I s - 1 m is separated from the other arcs I s - 1 i by open 
arcs of [a, bj - E. However, in the statement of Theorem 4.1 E is assumed to be 
perfect. 

Since each of the arcs I s- 1m contains infinitely many of the arcs (an,bn ), if 
we choose ts large enough we will have t s -1 < ts and, if 1 :::: m :::: Cs -1, then 
U~=l(an,bn) will contain at least Ns - 1 of the arcs (an,bn ) which lie in I s- 1m . 
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Let Es = [a, b] - U~=l (an, bn ). Then Es can be written as Es = Uj~l Isj, where 
the Isj are pairwise disjoint closed subarcs of [a, b]. Note that the arcs Isj found 
at this step are nondegenerate since E contains no isolated points. Since at least 
Ns - 1 of the arcs (an,bn) were resolved from each arc Is- 1m, at least Ns of the 
arcs Isj lie in Is- 1 m' The lemma now follows by induction. 

It follows from the definition of the sets Ei in Lemma 4.2 that Eo :J E1 :J ... and 
that n:o Ei = E. Let F = {Iij I i = 1,2, ... ; j = 1,2, ... , Ci}, where the arcs Iij 
are those appearing in the statement of Lemma 4.2. Let S = U:1([qi-1,qi] x Ei), 
where {qd is the R-sequence appearing in the statement of Theorem 4.1. Choose 
a sequence of real numbers {ri}, i = 1,2, ... , such that, for each i, qi-1 < ri < qi. 
Recall Definition 3.9. 

4.3. LEMMA. There exists a correspondence ¢ which associates to every arc 
Iij (i = 1,2, ... ; j = 1,2, ... ,ci) of F a pair (Li,Pi), where Li is a continuum 
of level i and Pi is a bridge point on Li , and there exists a continuous function 
G(x, 7): S -+ 0, where 0 is the finite plane. The correspondence ¢ and the function 
G have the following properties: 

1. If {( Li, Pi)} is any sequence of the form *, there exists a corresponding sequence 
{Iij;} of arcs of F such that I 1j1 :J hj2 :J .. , and such that ¢(Iij,) = (Li' Pi) for 
every positive integer i. 

2. Suppose that {(Li,Pi)} is a sequence of the form * and that {Iij;} is the 
corresponding nested sequence of arcs of F. 

a. For each point 7 E hjp 
(1) G([qO,q1] x {7}) = L 1. 
(2) G(qo,7) =G(q1,7) =P1. 
b. For i = 2,3, ... we have, for each point 7 E Iiji' 
(1) G([qi-1,ri] x {7}) is a direct path from Pi-1 to Pi. 
(2) G([ri,qi] x {7}) = Li . 
(3) G(Qi-1,7) = Pi-I· 
( 4) G ( r i, 7) = G ( qi, 7) = Pi . 
3. If {Iij;}, i = 1,2, ... , is any nested sequence of arcs of F, then {¢Iij;} is 

some sequence {(Li,Pi)} of the form * with respect to which properties a and b of 
part 2 hold. 

PROOF. The proof is somewhat lengthy, and we will divide it into several parts. 
Part 1. There exists a correspondence ¢ which associates to each arc I 1j a pair 

of the form (L1, pd, where L1 is a continuum of levelland PI is a bridge point on 
L1, and there exists a function G(x, 7), continuous and finite-valued on [qO, q1] X E 1, 
with the following properties: 

1. Each pair of the form (L1' PI) is the image under ¢ of some arc I1j , 1 ::::: j ::::: C1. 
2. If ¢(I1j) = (L1,pd, then for each point 7 E hj, 
a. G([qO,q1] x {7}) = L1. 
b. G(qO, 7) = G(q1' 7) = Pl. 
PROOF. Since there are m1 continua L1j of levell, and since there are rlj bridge 

points P1jk on each continuum L1j , there are N1 = ru + r12 + ... + r1m1 possible 
pairs of the form (L1,pd. It follows from condition 2 of Lemma 4.2 that E1 is 
the union of at least N1 nondegenerate pairwise disjoint closed arcs I 1j. Define 
the correspondence ¢ so that each pair (L 1, pd is the image of at least one of the 
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arcs I1j. Suppose that ¢(I1]) = (Ll,pt}. Since L1 is a finite locally connected 
continuum, there exists a continuous finite-valued function h mapping the interval 
[qO,ql] onto L1 with h(qo) = h(qt} = Pl. Define the continuous function G by 
letting G(x, r) = h(x) for each r E hj. 

Since the intervals I 1j are pairwise disjoint closed intervals, the function G is 
continuous on all of [qo, ql] x E1. 

Part 2. For i = 1,2, ... , m, suppose that the correspondence ¢ has been defined 
on each of the arcs Iij, 1 :S j :S Ci. Suppose, moreover, that the continuous function 
G has been defined on U::dqi-l,qi] x Ei and that, if ¢(Imj) = (Lm,Pm)' then 
G(qm' r) = Pm for each r E Imj . Then, we can extend ¢ to the subarcs Im+l s, 
1 :S S :S Cm+ I, of Em+! and we can extend G continuously to [qm, qm+!] X Em+! 
so that the following hold: 

1. For each subarc 1m+! s of Em+l' ¢(Im+1s) is a pair of the form (Lm+1,Pm+t). 
2. Suppose that Imj is a subarc of Em and that ¢(Imj) = (Lm,Pm)' Assume 

that (Lm+l,Pm+t) is any pair for which 
a. Lm+! is a continuum of level m + 1. 
b. Pm+1 is a bridge point on Lm +1 . 

c. d(Lm, Lm+t} < 112m. 
d. d(Pm,Pm+1) < 1/2m- 1. 

Then, there exists a subarc Im+1 s of Em+1 with 1m+! s C Imj and ¢(Im+1 s) = 
(Lm+1,Pm+I)' 

3. Suppose that Imj and 1m+! s are subarcs of Em and Em+1 respectively with 
Im+1 s C Imj , ¢(Imj) = (Lm,Pm) and ¢(Im+1 s) = (Lm+l,Pm+I). Then for all 
elements r E I m +1 s, 

·a. G([qm,rm] x {r}) is a direct path from Pm to Pm+!' 
b. G([rm,qm+l] x {r}) = Lm+l . 
c. G(qm,r) = Pm. 
d. G(rm' r) = G(qm+l, r) = Pm+!' 
4. If the arcs Imj and Im+1 s satisfy the hypotheses of part 3, then 

d(Lm, Lm+l ) < 112m 

and 
d(Pm,Pm+t} < 112m- I. 

PROOF. Let the subarc Imj of Em be given and suppose that ¢(Imj) = (Lm' Pm). 
Form all pairs (Lm+!, Pm+!) having properties a-d of part 2. There are at most 
Nm+1 such pairs. By Lemma 4.2, Em+! n Imj is the union of at least Nm+1 of 
the subarcs Im+1 s of Em+l . Thus, for each arc 1m+! s C Imj , we can insure that 
¢(Im+1 s) is a pair of the form (Lm+!,Pm+t) and that each such pair is the image 
of at least one subarc Im+1 s C Imj . If ¢(Im+ls ) = (Lm+l,Pm+t), define G on 
[qm, qm+!] X 1m+! s so that G is continuous and satisfies conditions a-d of part 3. 
This can be done as in the proof of part 1 of the lemma. 

Repeat the above construction for each subarc Imj of Em. Since distinct subarcs 
Im +1 s of Em +1 are disjoint closed sets, G has been extended continuously to all of 
[qm,qm+!] x Em+l . It is straightforward to verify that conditions 1-4 are satisfied. 
Lemma 4.3 now follows by induction. 

Since Ei ::) E for each i, we may restrict the function G to [qO, R) x E. 
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4.4 . LEMMA. Suppose that {( Li , pd} and {( Li, pi)} are distir> ct sequences 
of the form * and that {Iiji } and {Iiji } are nested sequences of arcs of F with 
¢( Iij;) = (Li , Pi) and ¢(Iij,) = (Li, pi) for each i. Then 

1. n~l Iij, is some point r E E, n~l Iiji is some point r' E E and 
2. r i:- r'. 

PROOF. For each i, Iiji C Ei. Since n~l Ei = E, n~l Iiji is a subset of E. 
Since the Iiji form a nested sequence of closed arcs, the intersection is nonempty. 
Since E is nowhere dense, the intersection is some point r E E. Similarly, n~l I: j , 

is some point r' E E. 
Since {( Li , Pi)} and {( Li, pi)} are distinct sequences of the form *, for some k, 

(Lk,Pk) i:- (Lk,pI.J But then it follows from the construction of Ek that hjk and 
I£jk are disjoint so that r i:- r'. 

Let us denote by C,,(G) the cluster set of G(x, r) as x ----> R. 

4.5. LEMMA. Let the continuum K E £ be given. Then there exist 2~o points 
r E E for which C,,(G) = K. 

PROOF. Choose some point P E K. It follows from Lemma 3.11 that there are 
2~o sequences {(Li,Pi)} of the form * with limi-.. ooLi = K and limi---+oopi = p. 
Let {(Li,Pi)} be one such sequence. It follows from condition 1 of Lemma 4.3 that 
there is a nested sequence {Iij;} of arcs of F with ¢(Iij.) = (Li' Pi) for each i. From 
Lemma 4.4, n~l Iiji is some point r E E. 

We must establish that Cr(G) = K. 
Suppose first that w is a point of K. Since limi---+oo Li = K, there exist points 

Wi E Li for each i with limi---+oo d( Wi, W) = 0 [9, p. 335; 10, p. 49]. But then, by 
condition 2 of Lemma 4.3, there exist points Xi E [qi-l, qi] with G(Xi, r) = Wi so 
that W E Cr(G). Suppose now that W E Cr(G). There exists a sequence {xn} 
of points of [qQ, R) such that limn---+oo Xn = Rand limn---+oo G(xn, r) = w. By 
considering subsequences we may assume that either 

1. for each n, Xn is a point of [rin, qinl where limn---+oo in = 00 or 
2. for each n, Xn is a point of [qin-l, rinl where limn---+oo in = 00. 

In case 1, by condition 2 of Lemma 4.3, G(xn' r) is a point of the continuum Lin 
for each n. Since the sequence {( Li , Pi)} was chosen so that limi---+oo Li = K, 
limn---+oo Lin = K and W = limn---+oo G(xn' r) is some point of K [9, p. 339; 10, p. 
49]. 

In case 2, again by condition 2 of Lemma 4.3, G(xn, r) lies on a direct path 
from Pin-l to Pin for each n. But the sequence {(Li,Pi)} was chosen so that 
limi---+oo Pi = p, where P is the point we selected on K. But then, limn---+oo Pin = p. 
By Definition 3.8, W = limn---+oo G(Xn, r) = P E K. 

Thus, in either case, wE K. Since W was an arbitrary point of Cr(G), Cr(G) ~ 
K. Thus, finally, Cr(G) = K. 

It now follows from Lemma 4.4 and the previous discussion that there exist 2~o 
points r E E for which Cr(G) = K. 

Essentially, the previous sequence of lemmas insures that every continuum K E .£ 
appears as the cluster set of G at sufficiently many r levels. We now consider 
uniformity of covergence. 
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Since the function G is continuous, C'T (G) is a continuum in the space .c for each 
r E E. Moreover, as i increases, the sets G([qi' R) x {r}) form a nested sequence 
of continua with C'T(G) = n:1 G([qi,R) x {r}). 

4.6. LEMMA. If r E E and if x E [qn, R), then there exists a point b E C'T(G) 
for which d(G(x,r),b) < 1/2n-2. 

PROOF. It follows from the construction of the sets Ei that there exists a nested 
sequence {Iij,} of arcs of F with {r} = n: 1 Iij;. By condition 3 of Lemma 4.3, 
there exists a sequence {(Li,Pi)} of the form * with rp(IijJ = (Li,Pi) for each i. 
By Lemma 3.10 limi---+oo Li exists and is some continuum K E .c, and limi---+oo Pi 
exists and is some point P E K. It then follows from condition 3 of Lemma 4.3 and 
the proof of Lemma 4.5 that C'T(G) = K. 

Now, suppose that x is some real number with qn ~ X < R. We wish to find a 
point bE C'T(G) with d(G(x,r),b) < 1/2n-2. There are two cases. 

Case 1. Suppose that for some integer j > n, qj-l ~ X ~ rj. Then, by 
condition 30f Lemma 4.3, G(x, r) is a point on a direct path from Pj-1 to Pj' 
Since by Definition 3.9 d(Pj-1,Pj) < 1/2j - 2, it follows from Definition 3.8 that 
d(G(x, r),pj) < 1/2j- 2. By Lemma 3.10 d(pj,p) < 1/2j - 2. Thus, 

d(G(x,r),p) < 1/2j- 3 . 

Take b = p. 
Case 2. Suppose that for some integer j > n, rj ~ x ~ qJo. Then by condition 3 

of Lemma 4.3 G(x,r) is a point on the continuum L j . By Lemma 3.10 

d(LJ,K) < 1/2J- 1. 

But then, since K is compact, it follows from the definition of the distance d that 
there exists a point bE K with d(G(x,r),b) < 1/2j - 1. 

Thus, in either case, there is some point bE K with d(G(x,r),b) < 1/2n-2. 

4.7. LEMMA. Let e > 0 be given. Then there exists an integer n = n(e) such 
that, ifi ~ nand r E E, we have d(G[qi,R) x {r}),C'T(G)) < e. 

PROOF. Choose an n so that 1/2n- 2 < e. If i ~ n, we noted that C'T(G) <:;; 
G([qi' R) x {r}) <:;; G([qn' R) x {r}). The proof is now a straightforward application 
of Lemma 4.6. 

Finally, we are ready to construct the analytic function f promised in Theorem 
4.1. 

PROOF OF THEOREM 4.1. Let T = U'TEE t'T n (qO ~ JzJ < R). Define the 
function g on T by the requirement that g(z) = G(JzJ, r), where r is the unique 
TEE such that z E t'T' Since G is continuous on [qo, R) x E and since every 
tress is a restricted tress, g is continuous on T (see [4, p. 197 and 13, p. 82]). 
The existence of the function f, analytic in JzJ < R, now follows directly from 
Arakeljan's theorem on tangential approximation (see [1, p. 286 and 7, p. 461]). 
Since the rate of convergence of f(z) to g(z) for z E T can be governed by JzJ 
(independent of r) the verification that f has properties 1 and 2 of Theorem 4.1 is 
a straightforward application of Lemmas 4.5 and 4.7. 

The technique of "approximating" a continuum by a locally connected continuum 
was employed by F. Bagemihl and W. Seidel in [4], and the technique of using a 
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function of the form G(lzl, T) to construct a continuous function g(z) on Twas 
employed in [3]. 

5. Closed sets of continua. Suppose that J is any closed set of continua on 
the Riemann sphere. We may modify the construction used in the proof of Theorem 
4.1 by choosing the continua of level i to have not only the two properties of Lemma 
3.5, but also the following additional property: 

3. Given any continuum Lij of level i, there is some continuum K E J for which 
( ) / i+ 1 d K, LiJ < 1 2 . 

The choice is possible since any closed subset J of continua is compact. The 
locally connected continua of level i need not, of course, be elements of J. However, 
if {(Li,Pi)} is any sequence of the form *, limi->oo Li will exist as before and will 
be some continuum K of the closed set J. Thus, the method of construction used 
in the proof of Theorem 4.1 (modified as indicated above) may be used to prove 
the following theorem: 

5.1. THEOREM. Let R, 0 < R -:; +00, be given, and let {qd be an R-sequence. 
Let J be any closed set of continua on the Riemann sphere. Suppose that E is a 
perfect, nowhere dense set on the circle ITI = 1 and that T is a tress in Izl < R 
with respect to E such that it is possible to take En = E for all n in the definition 
of a tress. Then there exists a function f, analytic in Izl < R, with the following 
properties: 

1. For every continuum K E J, there exist 2ND mb-paths tr of T for which 
CtT(I) = K. 

2. For every mb-path tr of T, Cd!) is some continuum KEY. 
3. Convergence to the cluster set is uniform for all mb-paths tr of T. 

As an immediate consequence, we can construct a function f, analytic in Izl < R, 
with prescribed asymptotic values in the following sense: 

5.2. COROLLARY. Let R, 0 < R -:; +00, be given, and let {qd be an R-
sequence. Let F be any closed set of points on the Riemann sphere. Suppose that E 
is a perfect, nowhere dense set on the circle ITI = 1 and that T is a tress in Izl < R 
with respect to E such that it is possible to take En = E for all n in the definition 
of a tress. Then there exists a function f, analytic in Izl < R, with the following 
properties: 

1. For every point w E F, there are 2ND mb-paths tr of T along which f has the 
asymptotic value w. 

2. If tT is any mb-path of T, then f has an asymptotic value w on tT, and w E F. 
3. Convergence to the asymptotic value is uniform on all mb-paths of T. 
PROOF. The mapping w --+ {w} takes F to a closed set of continua in 2x. 
The above corollary is similar to Theorem 1 of [5]. 
If we let the closed set J of continua take certain special forms, a number of 

similar corollaries follow. We mention a few brief examples. 
Let A be any subset of the Riemann sphere X, and let J be the collection of 

all subcontinua K of X for which A ~ K. Then, J is closed in 2x [9, p. 162; 10, 
p. 49]). In this case, the points of A occur as cluster values on every mb-path of 
the tress T. Moreover, every possible cluster set K containing these values occurs 
as CtT (I) on 2ND mb-paths of T. Theorem 4.1 corresponds to the case in which 
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A = <P. If A is not itself a continuum, none of the cluster sets will, of course, be 
exactly A. If A is closed (so an element of 2X) but not connected, the cluster sets 
need not approach A in the metric d. For instance, if A = {p, q} with d(p, q) = c:, 
there is no continuum K with d(K, A) < c:/2. 

The set of subcontinua K of X with K ~ A is not closed. However, if F is a 
nonempty closed subset of X, the collection 1 of those continua K with K ~ F 
is closed in 2x. Thus, for instance, an analytic function f may be constructed so 
that all and only those continua K which are subsets of some closed disk D occur 
as cluster sets of f on mb-paths of T. Theorem 5.1 corresponds to the case in 
which D is the entire Riemann sphere X. Again, if the closed set F is not itself a 
continuum, the cluster sets may remain bounded away from F in the metric d. 

As another example, let D be any closed subset of the interval [0, 2], and let 1 
be the collection of those continua K on the Riemann sphere whose diameter is an 
element of D. Then 1 is closed in 2x [10, p. 35]. In particular, we may construct 
an analytic function f in Izl < R such that etT (I) has diameter, say, 1/2 on every 
mb-path tT of the tress T. Theorem 4.1 corresponds to the case in which D is the 
entire interval [0,2]. 

The construction technique may be extended to the case of Fa sets of continua. 
Suppose that f( = U~=11n' where each In is a closed subset of C. Suppose that 
T is a tress with respect to the set E = U~=l En, where each En is perfect and 
nowhere dense. Let {qd be an R-sequence. For each n, let Tn = UTEEn (tTn[qn, R)). 
For each n, what is required is to construct the function G(x, r) and the continuous 
function g(z) corresponding to the closed set In on the paths of Tn. For convenience, 
we may use the R-sequence {qin}, where qin = qi+n for each i. Convergence to the 
cluster set is no longer uniform. Thus, for Fa sets of continua we have the following 
theorem. 

5.3. THEOREM. Let R, 0 < R ::; +00, be given. Suppose that E = U~=l En, 
where each En is a perfect, nowhere dense set on the circle Irl = 1 and that T is a 
tress in Izl < R with respect to E. Let f( be any Fa set of continua on the Riemann 
sphere. Then there exists a function f, analytic in Izl < R, with the following 
properties: 

1. For every continuum KEf(, there exist 2No mb-paths tT of T with etT (I) = 
K. 

2. If tT is any mb-path of T, then etT (I) is some continuum KEf(. 

6. Weaker approximation theorems. It should be noted that the above 
results can be obtained using the earlier approximation theorem of S. N. Mergelyan 
[11]. 

In fact, similar results can be derived using even earlier interpolation and ap-
proximation theorems of J. L. Walsh [14]. Substantial control over the form of the 
mb-paths is still possible. In particular, the paths may be required to all lie in 
some central angle, to all be spirals, or to all end at some point on Izi = R. They 
may not, however, be required to be radii. The topological machinery remains un-
changed. The tress of our previous discussion is replaced by a particularly simple 
type of path family tailored to Walsh's theorems. 

We content ourselves with introducing the path family, sketching the construc-
tion of the continuous function g, and stating the main result. 
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Recall that, if {qi} is a R-sequence, Ai denotes the closed annulus qi-1 :S JzJ < qi· 
Let Ci denote the circle JzJ = qi. 

6.1. DEFINITION. Suppose that 0 < R :S +00. Let {qi} be an R-sequence, 
and let {Ni}, i = 1,2, ... , be a sequence of positive integers. If T is a subset of 
A1 U A2 U"', then T is called a tree with respect to the sequences {qd and {Nd 
if T satisfies the following conditions: 

1. Tn A1 is a union of N1 disjoint closed line segments, each extending from Co 
to C1 • 

2. For i = 1,2, ... , Tn Ai+! is a union of Mi+1 = N1 . N2 · .... Ni+1 closed 
line segments, Sl, S2,"" SMi+ 1 , each extending from Ci to Ci+1. Moreover, the 
segments have the following properties: 

a. If 1 :S j :S Mi+!' there exists a line segment S, lying in T and extending from 
Ci- 1 to Ci, for which S n Ci = Sj n Ci . 

b. If 1 :S j :S Mi+! and 1 :S k :S Mi+1' and if J' =J- k, then the line segments Sj 
and Sk are either disjoint or intersect only at a point of Ci. 

c. If S is a segment lying in T and extending from Ci- 1 to Ci, then there are 
Ni+1 of the segments Sj, 1 :S J' :S Mi+1, for which S n Ci = Sj n Ci . 

If N1 > 1, then a tree is not a connected set. It is not essential that Tn Ai 
be composed of line segments. The line segments may be replaced by Jordan arcs 
extending montonically from Ci - 1 to Ci . 

The path family of interest consists of mb-paths t which lie as point sets in an 
appropriate tree T. The tree is to be constructed with respect to some R-sequence 
{qd and the sequence of integers {Nd, where Ni = ri1 + ri2 + ... + rimi' and the 
integers rij are those found in Lemma 3.5. Choose a sequence {rd, i = 1,2, ... , 
such that, for each i, qi-1 < ri < qi. For each i, let C: denote the circle JzJ = rio 
Also, let A~ denote the closed annulus qi-1 :S JzJ :S ri, and let A~' denote the 
annulus ri :S JzJ :S qi· 

If S is a line segment of T extending from Ci- 1 to Ci, then S n Ci-1 will be 
called the initial point of Sand S n C i will be called the terminal point. If {Sd, 
i = 1,2, ... , is a sequence of line segments of T, where each segment Si extends 
from Ci- 1 to Ci, then the sequence will be called a sequence of consecutive line 
segments in T if, for each i, the terminal point of Si is the initial point of Si+!. 

The basic construction lemma for the continuous function g is the following. The 
proof parallels the proof of Lemma 4.3. 

6.2. LEMMA. Let T be a tree as described above. Then there exists a continuous 
finite valued function g: T --t X with the following properties: 

1. If {(Li' Pi)} is any sequence of the form *, there exists a sequence {Sd of 
consecutive line segments lying in T such that 

a. (1) g(St} = L 1 . 

(2) g(Sl nCo) = g(Sl n Cd = Pl' 
b. For i = 1,2, ... , 

(1) g(Si n Ai) is a direct path from Pi-1 to Pi· 
(2) g(Si nA~/) = Li . 
(3) g(Si n Ci-t} = Pi-1· 
(4) g(Si n Cn = g(Si n Ci) = Pi· 
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2. Moreover, if {Sd, i = 1,2, ... , is any sequence of consecutive line segments 
lying in T, there is some sequence {( Li , Pi)} of the form * with respect to which the 
sequence {Sd has properties a and b above. 

We may now use the approximation technique of F. Bagemihl and W. Seidel to 
construct the analytic function f (see [5, pp. 1251-1254 and 4, pp. 187-190]). The 
polynomial interpolation and approximation theorems required are those of J. L. 
Walsh (see [14, pp. 47,310]). We are thus lead to the following theorem. 

6.3. THEOREM. Let R, 0 < R::::: +00, be given, and let {qd be an R-sequence. 
Then there exists a tree Tin Izl < R with respect to the R-sequence {qd, and there 
exists a function f, analytic in Izl < R, with the following properties: 

1. If K is any continuum on the Riemann sphere, there exist 2~o mb-paths t, 
lying in T, for which Ct(J) = K. 

2. Convergence to the cluster set is uniform for all mb-paths t lying in T. 

The construction technique for a tree, outlined above, leads directly to corollaries 
which parallel those of §5. 
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