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A GENERALIZED FATOU THEOREM 

B. A. MAIR AND DAVID SINGMAN 

ABSTRACT. In this paper, a general Fatou theorem is obtained for functions 
which are integrals of kernels against measures on R n. These include solu-
tions of Laplace's equation on an upper half-space, parabolic equations on an 
infinite slab and the heat equation on a right half-space. Lebesgue almost ev-
erywhere boundary limits are obtained within regions which contain sequences 
approaching the boundary with any prescribed degree of tangency. 

O. Introduction. It is well known that every positive solution of Laplace's 
equation on Rn x R+ has finite nontangentiallimits Lebesgue almost everywhere 
on Rn. Recently, this result has been improved by A. Nagel and E. Stein (cf. [10]) 
to include limits within regions which allow sequential approach with any degree of 
tangency to the boundary, R n. These regions are constructed by taking a countable 
union of cones with vertices on a surface which is tangential to R n. 

In this paper we consider Rn equipped with a translation-invariant pseudo-
distance, p, and define the analogue of a cone when distance is measured by p 
instead of the Euclidean norm (these are the "standard" sets). The "a-admissible" 
sets are the analogues of the sets which satisfy "a cone condition with aperture a" 
(cf. [10]). By using the maximal function techniques in [10] we obtain a differenti-
ation theorem relative to the p-balls. 

In §2, we obtain a general Fatou theorem for functions of the form 

J K(x, t; y) dJ.L(Y) 

on R~+l, where the conditions on K are stated in terms of p. 
This theorem is applied in §3 to obtain the result of Nagel and Stein for Laplace's 

equation on R~+1 and analogous results for parabolic equations on Rn x (0, T) 
(resp. the heat equation on Rn-l x R+ x (-00, T)), where the cone is replaced by 
a parabolic region (resp. two-sided parabolic region). 

We conclude by showing that under certain additional conditions on K, the 
a-admissible regions are best in some sense. 
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1. A differentiation theorem. Throughout this paper, the Lebesgue measure 
of E c Rn will be denoted by lEI and, ~ 1 is a fixed constant. C denotes a general 
constant which may depend on n, , and other constants and is not necessarily the 
same at different occurrences. 

p: R n x R n -+ [0, 00) is assumed to satisfy the following properties: 

( 1.1 ) For all x, y, z ERn, 
(i) p(x, y) = p(y, x), 
(ii) p(x,y) = 0 {:} x = y, 
(iii) p(x + z, Y + z) = p(x, y), 
(iv) p(x, y) :::; ,[p(x, z) + p(z, y)]. 

That is, p is a translation-invariant pseudo-distance (cf. [3]). 

(1.2) For each x E Rn and r > 0 define B(x,r) = {y:p(x,y) < r}, the 
p-ball with center x and radius r. 
(i) {B(x, r): r > O} forms a base for the open neighborhoods of x 
(in the Euclidean topology). 
(ii) For each 0: > 0 there exists Tn(O:) such that 

IB(O, 0:, r)1 :::; CTn(o:)IB(O, r)1 

for all r > O. 

Observe that, by translation-invariance of p, we can replace 0 by any x E Rn in 
the above inequality. 

The examples of p that will be used in §3 are 
(a) p(x,y) = Ix - yl (Euclidean metric), 
(b) p(x,y) = Ix _ y12, 
(c) p(x,y) = (Ix' - y'I 2 + IXn - Ynl)1/2 where x = (x',xn) and y = (y',Yn) E 

Rn-l x R. 
In (a) p is a metric, IB(O, r)1 = Crn and Tn(O:) = o:n. In (b), , = 2, IB(O, r)1 = 

Crn/2 and Tn(O:) = o:n/2. In (c), p is a metric (see §3), IB(O,r)1 = Crn+! and 
Tn(O:) = o:n+l. 

For each 0: > 0 and y ERn, define the o:-standard region with vertex y by 

(1.3) A(y; 0:) = {(x, t) ERn x R+: p(x, y) < o:t}. 

Then, for each t > 0, 

I{x: (x, t) E A(y; 0:)}1 = IB(y, o:t)1 :::; CTn(o:)IB(O, t)l· 

DEFINITION 1.3. Let 0 C R~+l be open and 0: > O. 
(1) For each t > 0, define O(t) = {x ERn: (x, t) EO}, Q(t) = UXEl1(t) B(x, t). 
(2) 0 is said to be o:-admissible if 
(a) 0 E O(t), for all t > 0, 
(b) 0 < 8 < t =} 0(8) C O(t), 
(c) there exists open 0' :J 0 such that 

(i) 10'(t)1 :::;qB(O, t)l, for all t > 0, and 
(ii) (y, 8) E 0, (x, t - 8) E A(y; 0:) =} (x, t) EO'. 

In case p is a metric, we define 0' = 0 (cf. Proposition 1.12). In this case, (a) can 
be replaced by the condition (0,0) EO. 
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Note that every o:-standard region is o:-admissible. 
Proceeding as in Lemma 1 of [10], one shows 

LEMMA 1.4. Assume 0 is o:-admissible. 
(i) For each t > 0, Q(t) C 0'((0: + 1)/0:' t). 
(ii) For each t > 0, IB(O, t)1 :S IQ(t)1 :S CTn((O: + 1)/o:)IB(O, t)l· 
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(iii) There exists an integer M = M(o:) such that for any t > 0 there exist 
xl. X2,···, XM E O(t) such that Q(t) c U~l B(Xi, ,(2, + l)t). 

DEFINITION 1.5. Let 0 C R+.+l have (0,0) as a limit point. For each regular 
Borel measure f.l on R nand y ERn, define 

f.l(B(y + x, t)) 
Mof.l(Y) = sup IB(O t)1 ' 

(x,t)EO , 

M * () l' f.l(B(y+x,t)) 
of.l Y = lmsup IB(O)I ' 

03(x,t)-+0 , t 
f.l(y+Q(t)) 

Nf.l(Y) = ~~g IQ(t)1 . 

From Lemma 1.4 we see immediately 

LEMMA 1.6. If 0 is o:-admissible and f.l is a regular Borel measure on Rn, then 

Mof.l(y) :S Mof.l(y) :S CTn (0:: 1) Nf.l(Y), for all y ERn. 

LEMMA 1.7. Let 0 be o:-admissible. Then there is a constant C > 0 such that 
for any finite Borel measure f.l on Rn, 

l{x:Nf.l(x) > A}I:S CIf.lldA for all A> O. 

PROOF. Let A > 0 and E>. = {X: Nf.l(x) > A}. Then for each x E E>. there 
exists t(x) > 0 such that f.l(x + Q(t(x))) > AIQ(t(x))I. Now, 0 E O(t(x)) C Q(t(x)) 
hence x E x + Q(t(x)) and E>. C UXEE.>. (x + Q(t(x))). Let FeE>. be compact. 
Then there is a finite sub cover {xJ + Q(tj):j = 1,2, ... , N} where tj = t(Xj). 

As in [10, pp. 90-91], we select a subcollection, {xJ. +Q(tjJ:s = 1,2, ... ,p} 
with the following properties: 

(a) the sets are pairwise disjoint, 
(b) if j E {1,2, ... ,N} \ {jl,j2, ... ,jp}, there exists s E {1,2, ... ,p} such that 

(Xj + Q(tj)) n (Xj. + Q(tj.)) =I- 0 and tj :S tj.' Now from Lemma 1.4(iii), there is 
an integer M > 0 such that for each t > 0, there exists VI(t),V2(t), ... ,VM(t) in 
O(t) such that Q(t) C U~l B(Vi(t),,(2, + l)t). Let 

Q( t) ~ j,Q, [Vj (t) ~ v,(t) + Q B( Vie t), 1'(21 + 1 )'t)]. 
Then IQ(t)1 :S CIB(O, t)1 and Q(t) C Q(t). 

Now, suppose (Xj + Q(tj)) n (Xj. + Q(tjJ) =I- 0, tj :S tj.. We claim that 
Xj + Q(tj) C Xj. + Q(tjJ. By assumption, there exist a E Q(tj) and b E Q(tJJ 
such that xJ + a = Xj. + b. Since Q(tJ) C Q(tJ.), for any y E Q(tJ) we can choose 
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Vi = Vi (ty.) , Vk = Vk(tJJ, Vm = vm(tJJ in 11(tJJ such that p(y, Vi), p(a, Vk) and 
p(b,vm) < 1(21+ 1)tJ •. Then, 

and 

Xy + y - Xy, = Y + b - a = Vm - Vk + Vi + (y - Vi) + (b - vm) + (Vk - a) 

p([(y - Vi) + (b - vm) + (Vk - a)], 0) S 1h[p(y, Vi) + p(b, Vm)] + p(a, Vk)} 
< 12(21 + 1)2tj, 

which proves the claim. 
It follows that F c U~=l (Xj. + Q(tyJ). Thus 

p p p 

IFI s L IQ(tyJI s C L IB(O, tj')l S C L IQ(ty.)1 
8=1 8=1 8=1 

The following result is immediate. 

THEOREM 1.8. Let 11 be a-admissible. Then, there is a constant C > 0 such 
that for any finite measure f..l on R n , 

I{x: Mof..l(x) > >'}I S Clf..llt/>., I{x: Mof..l(x) > >'}I S Clf..llt/>. 
for all >. > O. 

We now obtain the following differentiation theorem by a slight variation of the 
standard method (cf. [11]). 

THEOREM 1.9. Let 11 be a-admissible and f..l a signed, regular Borel measure 
on Rn. Then 

lim f..l(B(y + x, t)) = f(y) 
03(x,t)-.O IB(O, t)1 

for Lebesgue a.e. y ERn, where f is the usual Radon-Nikodyn derivative of f..l. 

PROOF. We need only consider the case of a finite (positive) measure f..l. 
For any locally integrable F and Xo ERn, define 

AF(xo) = lim sup {IB(~ )1 r F(y) dY} - F(xo). 
03(x,t)-.O ,t J B(xo+x,t) 

Since the p-balls form a base for the Euclidean topology, if F is continuous, AF(x) = 
o for all x ERn. Hence by Theorem 1.8 and the denseness of continuous functions 
in L1, the result holds for absolutely continuous f..l. 

Now, if f..l is singular, we have a Borel set E such that f..l(E) = 0 and IEel = O. 
Fix E > 0 and choose open V :J E such that f..l(V) < E. Then again by property 
(1.2), Mof..llv = 0 on V, hence, 

lim f..l(B(y+x,t)) =0 
03(x,t)-->0 IB(O, t)1 a.e. y 

by applying Theorem 1.8. 
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As usual (cf. [11, p. 11]), we can strengthen Theorem 1.9 to obtain the derivative 
in the variational sense (cf. [4, p. 291]). 

DEFINITION 1.10. (i) The variation measure of a signed measure J,l will be 
denoted by 11J,l11. 

(ii) Let J,l be a signed measure with Radon-Nikodym derivative f. A point 
Xo ERn is in the 11-Lebesgue set of J,l if 

lim 11J,l - f(xo)mIIB(xo + x, t) - 0 
03{x,t)---+O IB(O, t)1 - , 

where m is Lebesgue measure on Rn. 

THEOREM 1.11. Let 11 be a-admissible and J,l a signed Borel measure on Rn. 
Then Lebesgue a.e. Xo is in the 11-Lebesgue set of J,l. 

We now give examples of a-admissible sets which are not contained in any {3-
standard set (cf. [10, Lemma 9]). 

PROPOSITION 1.12. Let (Xk,tk) be a sequence in R++l such that tk+l :::; tk, 
limk---+oo tk = 0 and p(O, xk+d :::; Atk for some constant A > 0 and all k. For any 
a > 0, let 

11 = {(x, t): p(x, Xk) < a(t - tk) for some k}, 
11' = {(x, t): p(x, Xk) < al(t - tk) for some k}. 

Then 11 is a-admissible. 

PROOF. Fix t > 0 and let N be the first index for which tN < t. If (x, t) E 11' 
tlien there is a k such that p(x, Xk) < al(t - tk). Hence k ~ N. So 

00 

11'(t) c B(xN,alt) U U B(Xk+l,alt). 
k=N 

Now, k ~ N => p(O, xk+d :::; Atk :::; AtN < At hence p(x, xk+d < alt => p(x,O) < 
I(al + A)t. Thus 

11'(t) c B(XN, alt) U B(O, I(al + A)t) 

and so 
111'(t)1 :::; CIB(O, t)l· 

The other properties of 11 in Definition 1.3 are obvious. 
Note that if p is a metric, 11' = 11. 
Now choose (Xk, tk) satisfying the conditions of the proposition and such that 

p(O, Xk)/tk -+ 00. For example, choose 0 < tl < 1 and put tk+1 = ~t~. Choose 
Xk such that p(O, Xk) = y'tk. Then the region 11 generated by this sequence is not 
contained in any (3-standard set A(O, (3). Indeed, suppose it were. Then (Xk, 2tk) E 
11 for all k, hence p(Xk'O) would be less than 2{3tk and so p(Xk,O)/tk would be 
bounded, contradicting our construction. 

By adapting the process in [10, p. 98J we show how to c.f»nstruct a-admissible 
regions allowing sequential apporoach with any prescribed degree of tangency. 

Let W: [0,(0) -+ [O,ooJ be such that W(O) = 0, lim,x----+o+ w(.\)/.\ = o. We denote 
the kth iterate of W by Wk. Let'fJ > 0 be such that (i) w(.\) < A/2 for all 0 < .\ < 'fJ, 
and (ii) the function x -+ p(O, x) takes all values in (0, 'fJ). For each x E Rn define 
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~(x) = 'l/(p(O, X)). Choose Xl such that 0 < p(O, Xt} < 'f/, it = ~(Xl). Choose 
any X2 such that p(O, X2) = 'l/(tt} and put t2 = ~(X2)' Continuing inductively 
we obtain a sequence (Xk, tk) such that Xk+l satisfies p(O, Xk+t} = 'l/2k(p(0, xt}) = 
'l/(tk) < tk/2 and tk+l = 'l/2k+l(p(0,Xt}) = 'l/(p(O,xk+d) < p(O,xk+d < tk/2 
hence the sequence {tk} decreases to O. Thus the sequence satisfies the conditions 
of Proposition 1.12. 

2. A Fatou theorem. In this section we use Theorem 1.11 to obtain a Fatou-
type theorem for functions of the form J K(x, t, y) dJ..L(Y) where J..L is a regular, Borel 
signed measure on Rn and the kernel K satisfies certain general conditions. All 
measures will be regular, Borel. 

For each (x, t) E R+.+1 and y E Rn let K(x, t; y) ~ 0 and satisfy: 
(2.1) The function uo(x, t) = J K(x, t; y) dy approaches 1 continuously as (x, t) 

--+ (xo,O) for each Xo E Rn. 
(2.2) For all (x, t) E R+.+l, 

1 (p(x,y)) K(x, t; y) ~ IB(O, t)1 . cP -t - , 

where cP is a bounded, decreasing, real valued function on [0,00) for which 

00 

(2.3) L Tn (2k+l )cp(2k) < 00. 
k=l 

(2.4) For each Xo E Rn, open W :3 Xo and 0 < T ~ 00, there exist open sets 
U::J V:3 Xo. U C Wand (Yo, so) E R n x (O,T) such that for all x E V, Y E Rn\u 
and t sufficiently close to 0, 

K(x,t;y) ~ 8(t)K(yo,so;y) 

where 8(t) --+ 0 as t --+ 0+. 
For any signed measure J..L on R n, let 

KJ..L(x, t) = / K(x, t; y) dJ..L(Y). 

The following result is obtained by a standard dyadic decomposition argument (cf. 
[10, Lemma 4; 5, Lemma 7]). 

LEMMA 2.5. Let 0 be any subset ofR+.+1 such that (0,0) En and O(s) C O(t) 
ift > s. For any measure J..L on Rn, 

(a) sUP(x,t)EO KJ..L(xo + x, t) ~ CMoJ..L(xo), 
(b) limsuP03(x,t)-+0 KJ..L(xo + x, t) ~ CM*J..L(xo), if MoJ..L(xo) < 00. 

PROOF. Let Bk = B(xo + x, 2kt) for k = 0, 1,2, .... Then 

KJ..L(xo + x, t) = ([ + f: [ ) K(xo + x, t; y) dJ..L(y). J Bo k=O J Bk+l \Bk 
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For all (x, t) E 0 and k = 0,1,2, ... , 

r J-t(Bo) l B o K(xo + x,t;y)dJ-t(y):S; <p(O)lBof:S; CMoJ-t(xo), 

r K(xo+x,t;y)dJ-t(Y):S; IB(~ t)1 r <p(P(xo:x,y)) dJ-t(y) 1 Bk+l \Bk ' 1 B k+1 \Bk 

< <p(2k) J-t(Bk+d 
- IB(O, t)1 
< C (2k)J-t(B(xo + x, 2k+1t)). (2k+l) 
- <p IB(0,2k+1t)1 Tn 
:s; C<p(2k)Tn(2k+l )MoJ-t(xo) 
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and (a) follows. Part (b) follows by noting that, for all (x, t) E 0, KJ-t(xo + x, t) 
is majorized by a series whose kth term is dominated by <p(2k)Tn(2k+l )MoJ-t(xo), 
which is summable if MoJ-t(xo) < 00. 

THEOREM 2.6. If 0 is an a-admissible subset of R~+l, (0,0) E "0 and J-t a 
finite signed measure on Rn, then 

lim KJ-t(xo + x, t) = ddJ-t (xo). 
03(x,t)-+0 m 

PROOF. 
IKJ-t(xo + x, t) - f(xo)1 :s; IKJ-t(xo + x, t) - f(xo)uo(x, t)1 + luo(x, t) - Illf(xo)1 

:s; ! K(xo + x, t; y) da(y) + luo(x, t) - Illf(xo)1 

where a = IIJ-t - f(xo)mll· 
Let Xo belong to the O-Lebesgue set of J-t. Then by Theorem 1.11 

lim a(B(xo + x, t)) = 0 
03(x,t)-+0 IB(O, t)1 . 

Hence Moa(xo) < 00 and so by the lemma and (2.1), 

lim sup IKJ-t(xo + x, t) - f(xo)1 :s; CMoa(xo) = O. 
03(x,t)-+0 

Observe that property (2.4) of K has not been used as yet. This property enables 
us to remove the finiteness condition on J-t in the previous result. 

LEMMA 2.7. Let W c Rn be an open set and J-t a measure on Rn such 
that KJ-t(x, t) is finite on Rn x (0, T) for some 0 < T :s; 00. If J-t(W) = 0 then 
lim(x,t)-+xo KJ-t(x, t) = 0 for every Xo E W. 

PROOF. Let Xo E Wand choose open sets U, V and the point (yO, so) E 
Rn X (0, T) as in 2.4. Then for all x E V and t sufficiently close to 0 

KJ-t(x, t) = r K(x, t; y) dJ-t(Y) = r K(x, t; y) dJ-t(y) 
lRn\w lRn\U 

:s; 8(t) r K(yo, so; y) dJ-t(y) :s; 8(t)KJ-t(yo, so). l Rn 

Our main result is an immediate consequence of this lemma and Theorem 2.6. 
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THEOREM 2.8. Let 0 be an o:-admissible subset of R+.+1, (0,0) E nand IL a 
signed measure such that KIL(X, t) is finite on Rn x (0, T) for some ° < T ~ 00. 

Then 
lim KIL(XO + x, t) = ddlL (xo). 03(x,t)->O m 

3. Applications. In this section we use Theorem 2.8 to deduce a known Fatou 
theorem for positive solutions of the Laplace equation on R+.+1 (cf. [10]) as well as 
analogues for parabolic equations. 

The Laplace equation on an upper half-space. It is well-known that every positive 
solution, u, of Laplace's equation, ~xu + a2u/at2 = 0, on R+.+1, where x ERn, 
t > 0, has the representation 

u(x, t) = ct + r P(x, t; y) dlL(Y). JRn 
Here IL is a positive mesure on Rn and the Poisson kernel is 

c _ r((n + 1)/2) 
n - II(n+1)/2 

Let p(x, y) = Ix - YI. Then the o:-standard region with vertex y is the usual cone 
{(x, t): Ix - yl < o:t} of aperture 0: and vertex y. The o:-admissible subsets of R+.+1 
are those which satisfy the hypotheses of Theorem 1 in [10]. 

Clearly P satisfies (2.1)-(2.3) with cp defined by cp(A) = (1+A2)-((n+1)/2). Now 
if Ixl :2: o:lyl :2: (3, 

Pt(x) =! (s2 + lyl2) (n+1)/2 <! [s2 + lyl2] (n+1)/2 <! [~+ ~](n+1)/2 
Ps(Y) S t2 + Ixl 2 - s 0:21yl2 - S (32 0:2 

Hence in this case, Pt(x) ~ C(s)tPs(Y). 
Fix Xo ERn, let V = {x: Ix - xol < r}, U = {x: Ix - xol < 2r}, r > ° sufficiently 

small. Then x E V, Y ~ U ~ Ix - xol < !Iy - xol· Thus Ix - yl > !Ixo - yl :2: r. 
Hence for any s > 0, x E V, Y ~ U, 

P(x, t; y) = Pt(x - y) ~ CtPs(xo - y) = CtP(xo, s; y) for all t > D. 

Hence P satisfies (2.4) and we obtain the following result of Nagel and Stein [10]. 

THEOREM 3.1. Let 0 C R+.+1 be open (0,0) En and satisfying 
(i) there exists A < 00 so that IO(t)1 ~ Atn for all t > 0, 
(ii) there exists 0: > ° so that (y, s) E 0, Ix - yl < o:(t - s) ~ (x, t) EO. 

Then for every signed measure IL on R n such that Pt * IL( x) is finite on R+.+1 , 

lim Pt * IL(Xo + x) = ddlL (xo). 03(x,t)->O m 

Parabolic equations on an infinite slab. Let X = Rn X (0, T) where ° < T ~ 00 

is fixed. Let 

~ au au + ~ Bj(x, t) ax' + C(x, t)u - at 
.i=l J 
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be a second order linear parabolic operator in divergence form on X. Then under 
very general conditions on the coefficients (cf. [1]), every positive (weak) solution 
of Lu = 0 on X has the representation 

u(x,t) = r r(x,t;y)dp,(y), JRn 
where p, is a measure on R n and the fundamental solution, r, satisfies the condition 
that there are constants P, Pb P2 such that P-1W1 :S r :S pW2 on X x X, where 
Wi is the fundamental solution for the operator Pi6. x - a/at (d. [1]). That is, 

Wi(X, t; y) = (4PiIIt)-n/2 exp [ -1~~tYI2] , t > O. 

Let p(x,y) = Ix - Y12. The a-standard region A(y;a) with vertex y is the 
parabolic region {(x, t): Ix - Yl2 < at} of aperture a, vertex y. An a-admissible 
region 0 is one which satisfies 

(3.2) (y, s) EO, t > s'* (y, t) E 0: (0, t) E 0 for all t > 0 

and there exists an open 0' ::J 0 such that 

(3.3) IO'(t)1 :S Ctn / 2 for all t > 0 and for all (y, s) EO, 
(3.4) Ix - Yl2 < a(t - s) '* (x,t) EO'. 

Property (2.1) is in Theorem 10 of [1]. Choosing 'P().) = Cexp(-).2/4p2), we see 

r(x t·y) < _1_1f") [p(X,y)] . 
" - tn / 2 "'" t 

Clearly 'P satisfies (2.3) as Tn().) = ).n/2. 
Now fix Xo ERn and let V = {x: Ix - xol < r}, U = {x: Ix - xol < 2r} for r 

sufficiently small. Then, as before, x E V, y 1- U '* Ix - yl ~ ~Ixo - yl ~ r. Hence 
for any s > 0, x E V, y 1- U, 

r(x,t;y) C(s)n/2 (lxo - yI2 IX- YI2 ) 
:=-;-'------'-'-:- < - exp - -'------'-'-
r(xo, S; y) - t 4PlS 4P2t 

= C (~)n/2 exp {(_t __ 1 ) Ixo - Y12} 
t PlS 4P2 4t 

< C (~)n/2 exp (_Ixo - Y12) 
- t 32p2t 

and if t is smaller than PIP/8p2, 

:S C (if/2 exp (- 8~:t) . 
Hence r satisfies (2.4). We thus obtain the following result. 

THEOREM 3.5. Let 0 C R~+l satisfy (3.2)-(3.4). Then for every signed mea-
sure p, on Rn for which u(x, t) = f r(x, t; y) dp,(y) is finite on Rn x (0, T), 

lim u(xo + x, t) = ddp, (xo). 
fl3(x,t)->O m 
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Solutions of the heat equation as they approach a vertical boundary. Let X = 
Rn-1 x R+ x (-00, T), -00 < T :S 00. Every positive solution, u(x, t), of the heat 
equation ~xu = au/at on X, where x = (x',xn) E Rn-1 x R+, -00 < t < T, can 
be written as 

(3.6) u(x, t) = r Hb(x, t) dJ.l(b) 
JRn-l x{O}x( -oo,T) 

+ Ln-l xn exp(tlb'12 + (x', b')) dVI(b') 

+ r exp(tlW + (x',b'))sinh(xnbn)dv2(b',bn), 
JRn-1XR+ 

where ( , ) denotes the usual inner product and for b = (b', 0, s), 

{
(4II)-n/2 Xn ( Ix'-b'12+x~) 

Hb(x,t)= 0 (t_s)(n+2)/2 exp - 4(t-s) if t > s, 

if t :S s. 

(cf. [7, §4; 9, Corolary 3.3]). The vertical boundary is then Rn-I x {O} x (-00, T). 
We show first that the last two integrals go to 0 continuously as (x', xn , t) -; 

(y', 0, s). Let VI (x, t) be the first of these and V2(X, t) the last. For all (x, t) such 
lx' - y'l < 8, Xn < 8, t < to < to + 8 = tl < T, 

exp(tlb'12 + (x', b')) :S exp(tlb'12 + (y', b') + lx' - y'llb'l) 

:S exp(tlb'1 2 + (y', b') + 81b'l) 
:S Cexp(t1Ib'12 + (y',b')). 

Thus VI(X, t) :S CXnV1((y', 1), h) -; O. As 

V2(X,t):S C r exp(tllW + (y', b'))sinh(xnbn) dV2(b), 
JRn-l xR+ 

and the integrand is dominated by the v2-integrable exp(hlW + (y', b')) sinh8bn 
(its integral is v2((y',8),td), V2(X,t) -; 0 by Lebesgue's Dominated Convergence 
Theorem. 

Now consider solutions of the form J Hb(x, t) dJ.l(b). To make this amenable to 
the notations established in this paper, we make a slight change in notation. For 
each (x,t) ERn x R+, y = (y',Yn) E Rn-I x R, define 

{ ( Ix' - '12 + t 2 ) . (4II)-n/2t(x - y )-(n+2)/2 exp - y If x > y K(x,t,y) = n n 4(xn -Yn) n n, 
o if Xn :S Yn' 

The problem now becomes one of examining KJ.l(x, t), x E Rn-1 x (-00, T), t > 0, 
as (x, t) -; (xo,O). KJ.l(x, t) satisfies the heat equation 
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For each x, y E Rn define p(x, y) = (Ix' - y'1 2 + IXn - Ynl)1/2. To see that p is a 
metric, observe that 

Ix' - y'1 2 + IXn - Ynl :::; Ix'1 2 + Ixnl + ly'1 2 + IYnl- 2(x',y') 
:::; Ix'1 2 + Ixnl + ly'1 2 + IYnl + 2(lx'1 2 + Ixn I)1/2(ly'12 + IYnl)1/2 
= [(lx'12 + Ixn 1)1/2 + (ly'1 2 + IYnI)1/2]2. 

Hence p(x,y) :::; p(x,O) + p(y,O), which, by translation invariance, implies the tri-
angle inequality. 

The a-standard region A(y; a) is {(x, t): (Ix' - y'1 2 + IXn - Yn1)1/2 < at}. This 
corresponds exactly to the "parabolic cones" defined in [12]. Two other definitions 
of two-sided-parabolic regions have been studied in the literature. In our notation 
they would take the form 

r(y; a) = {(x, t): Ix' - y'l + IXn - Yn1 1/2 < at} 

defined in [6] and 

TP(y; a: (3) = {(x, t): IXn - Ynl < a(lx' - y'1 2 + t2 ), t > (3lx' - y'l} 

defined in [8]. It is obvious that these regions are all equivalent to the a-standard 
regions, since, for each a, (3 > ° 

r(y, a) C A(y, a) C r(y, av'2) 

and 
A(y, a) C Tp(y;a2 : a-1);Tp(y;a: (3) C A(y,C). 

An a-admissible region ° is one which satisfies 

(3.7) (0,0) E 11, 
(3.8) 10(t)1 :::; Ctn +1 for all t > 0, 
(3.9) (y, s) EO, (Ix' - y'1 2 + IXn - Yn1)1/2 < a(t - s) => (x, t) E 0. 

We now verify the conditions on K in §2. Simple calculations give J K(x, t; y) dy 
= 1 and 

C { 1 } (n+2)/2 
K(x, t; y) :::; tn+1 (p(x, y)/t)2 + 1 

for all (x, t). Choosing <p(>.) = (>.2 + 1) -(n+2)/2, we see that (2.1)-(2.3) are satisfied. 
The following lemma verifies (2.4). 

LEMMA 3.10. Fix r,s > 0, a > 2r, Yo = (O,a) ERn. Then K(x,t;y) < 
CtK(yo, S; y) if Ix'i :::; r, Ixnl :::; r and either Iy'l ~ 4r or IYnl ~ 2r. 

PROOF. We only need to consider Xn > Yn. Then a > r ~ xn. Hence, 

K(x, t;.y) = (!) ( a - Yn ) (n+2)/2 exp { ly'1 2 + s2 _ Ix' - y'1 2 + t2 } . 
K(yo, s, y) s Xn - Yn 4(a - Yn) 4(xn - Yn) 
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Now, 
ly'I2 lx' - Y'I2 (xn - Yn)ly'1 2 - (a - Yn)[lx'12 - 2(x', y') + IY'12] -- - -'-------'---

a - Yn Xn - Yn (a - Yn)(xn - Yn) 

Therefore 

= (xn - a)IY'12 + 2(a - Yn)(x', y') - (a - Yn)lx'12 . (a - xn) 
(a - Yn)(xn - Yn) a - Xn 

I(a - xn)Y' - (a - Yn)x'12 
(a - xn)(a - Yn)(xn - Yn) 

+ ((a - Yn)2 - (a - Yn)(a - xn))lx'12 
(a - xn)(a - Yn)(xn - Yn) 

= _I(a - xn)Y' - (a - Yn)x'12 +~. 
(a - xn)(a - Yn)(xn - Yn) a - Xn 

K(x, t; y) t (a - Yn ) (n+2)/2 
K(yo,s;y) = ~. Xn - Yn 

{ I(a - xn)Y' - (a - Yn)x'12 . exp - -,'-;'-------7'-;--~--:-:------'----'-""7 

4(a - xn)(a - Yn)(xn - Yn) 
Ix'I2 s2 t2 } + + - ----:---...,.-

4(a - xn) 4(a - Yn) 4(xn - Yn) 

( a _ ) (n+2)/2 < Ct Yn 
- Xn - Yn 

{ I(a - xn)Y' - (a - Yn)X'12 S2} 
. exp - 4(a - xn)(a - Yn)(xn - Yn) + 4(a - Yn) . 

If IYnl ~ 2r, since Yn < Xn ::; r, Yn ::; -2r. Hence (a-Yn)/(xn -Yn) and l/(a-Yn) 
are bounded above and so K(x, t; y) ::; CtK(yo, s; y). 

Now, if IY'I ~ 4r and IYnl < 2r, 

( (a - Yn)2(a - xn) ) (n+2)/2 ( S2 ) 
K(x, t; y) ::; Ct I(a _ xn)Y' _ (a _ Yn)x'12 exp 4(a _ Yn) K(yo, s; y) 

::; Ct -Y- - _x_ K(yo,s;y) I ' '1-(n+2) 
a - Yn (I. - Xn 

since a - Yn > a - 2r and a - Xn > r. Finally 

I y' x' I 4r r 
a - Yn - a - Xn ~ a + 2r - a - r 

so in this case K(x, t; y) ::; CtK(yo, s; y) and the lemma is proved. 

THEOREM 3.11. Let [2 C R+.+ 1 be open, (0,0) En and satisfy (3.8) and (3.9). 
Then for every signed measure J.l on Rn+l x (-00, T) such that KJ.l(x, t) < 00 on 
Rn-l x (-00, T) x R+, 

lim KJ.l(xo + x, t) = ddJ.l (xo). 
03(x,t)-.O m 

This is obtained by simply extending J.l to be zero off Rn-l x (-00, T). 
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In the usual notation for the heat equation ~xu = Bu/Bt on 

X = {(x',xn,t):x' ERn-I, xn > 0, t < T} 

we have obtained the following result. 

THEOREM 3.12. Let 0 c X have (0,0) as a limit point and satisfy: 
(i) 1{(x',O,t):(x',xn,t) EO}I::; Cx~+1 for allxn >0, 
(ii) (y, s) EO, (Ix' - Y'I2 + It - sl)l/2 < a(xn - Yn) => (x, t) E O. 

Then for signed measures J.l, VI, V2 and u(x, t) as in (3.6), 

lim u(xo + x, t) = ddJ.l (xo). 
03(x,t)---tO m 
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4. A converse. Let 0 C R+.+1 and let K be as in §2. Define, for each 
f E Ll(Rn) and Xo ERn, 

M{f f(xo) = sup Klfl(xo + x, t). 
(x,t)EO 

Theorem 1.8 and Lemma 2.5 imply M{f is weak-type (1,1) in case 0 is a-admissible. 
We wish now to show that the a-admissible condition is necessary in the sense that 
if M{f is weak-type (1,1), then there is an a-admissible set, 0"" containing O. For 
this purpose we impose the following additional restrictions on K: 

(4.1) There is a C > ° independent of t such that fB(o,t) K(O, t; y) dy > C 
(4.2) (Semigroup property) For all s, t > ° and x, z E Rn 

! K(y, s; x)K(z, t; y) dy = K(z, s + t; y). 

(4.3) For all t > 0, x ERn, y ERn, K(x, t; y) = K(x - y, t; 0). 
These conditions hold for the kernels associated with the Laplace and heat equations 
considered in §3. Indeed, that (4.1) holds for the first two is obvious. Put now 
E = {(y',Yn): ly'I 2 + Yn < t2, Yn > O}. Then 

1 .. - j t (IY'12+yn+t2) , K(O, t, y) dy - C (n+2)/2 exp - 4 dy dYn 
B(O,t) E Yn Yn 

;::: C r (n~2)/2 exp (-t ) dy'dYn iE Yn Yn 

_ lt2 t (-t2) ( 2 _ )(n-l)/2 - C (n+2)/2 exp 2 t Yn dYn 
o Yn Yn 

= C loo S-I/2e-S(s - 1)(n-l)/2 ds. 

For the semigroup property see [11, 1 and 7J. 
Let a > 0. Put 

0", = {(x, t) E R+.+l: p(x, xo) < a(t - to) for some (xo, to) EO}. 

As in Proposition 1.12, 0", satisfies (2)(c)(ii) of Definition 1.3 (take O~ = 0,,,,). 
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THEOREM 4.4. Suppose M/{ is weak-type (1,1), that is there exists C > 0 
independent of f E Ll(Rn) such that for every>. > 0, 

I{x E Rn:M/{ f(x) > >'}I s; Gllflld>'· 
Then O£> is a-admissible for every a > O. 

PROOF. Let 9 E U(Rn) for p > 1. For any (x, t) EO,£> and (xo, to) a corre-
sponding point of 0 

Kg(x + w, t) = ! K(x + w, t; y)g(y) dy 

= ! g(y) dy ! K(x + w, t - to; z)K(z, to; y) dz 

= ! K(x + w, t - to; z) dz ! g(y)K(z - Xo + xo, to; y) dy 

S;! M/{g(z)K(x-xo+w,t-to;z)dz 

S; MJ[co,,£» (M/{g)(w). 

Since (x, t) is an arbitrary point of O,£>, 

M/{..,ag(w) S; Mfco;,£» (M/{g)(w). 

By the Marcinkiewicz Interpolation Theorem and Theorem 1.8 applied to A(O; ')'a), 

IIMff,agllp S; Cllgllp· 

It follows that M/{..,a is weak type (p, p) for every p > 1. 
Let t > O. Put g(y) = IB(O, t)I-1/p if p(O, y) < t and 0 otherwise. Let (x, t) E 

O,£>, Then 

Hence 

M/{..,ag(-x) 2: ! K(O, t;y)g(y) dy 

= f K(O, t; Y)IB(O, t)I-1/p dy > CIB(O, t)I-1/p. 
lBco,t) 

I{x: (x, t) E O,£>}I S; I{x: Mff,a g( -x) 2: CIB(O, t)I-1/P}1 
S; CIB(O, t)l· 

Thus O£> is a-admissible and we are done. 
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