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A GENERALIZED FATOU THEOREM

B. A. MAIR AND DAVID SINGMAN

ABSTRACT. In this paper, a general Fatou theorem is obtained for functions
which are integrals of kernels against measures on R™. These include solu-
tions of Laplace’s equation on an upper half-space, parabolic equations on an
infinite slab and the heat equation on a right half-space. Lebesgue almost ev-
erywhere boundary limits are obtained within regions which contain sequences
approaching the boundary with any prescribed degree of tangency.

0. Introduction. It is well known that every positive solution of Laplace’s
equation on R™ x R has finite nontangential limits Lebesgue almost everywhere
on R™. Recently, this result has been improved by A. Nagel and E. Stein (cf. [10])
to include limits within regions which allow sequential approach with any degree of
tangency to the boundary, R™. These regions are constructed by taking a countable
union of cones with vertices on a surface which is tangential to R™.

In this paper we consider R™ equipped with a translation-invariant pseudo-
distance, p, and define the analogue of a cone when distance is measured by p
instead of the Euclidean norm (these are the “standard” sets). The “a-admissible”
sets are the analogues of the sets which satisfy “a cone condition with aperture o”
(cf. [10]). By using the maximal function techniques in [10] we obtain a differenti-
ation theorem relative to the p-balls.

In §2, we obtain a general Fatou theorem for functions of the form

/ K(z,t:y) du(y)

on Rfrl, where the conditions on K are stated in terms of p.

This theorem is applied in §3 to obtain the result of Nagel and Stein for Laplace’s
equation on R’frl and analogous results for parabolic equations on R™ x (0,T)
(resp. the heat equation on R"~! x R x (—o00,T)), where the cone is replaced by
a parabolic region (resp. two-sided parabolic region).

We conclude by showing that under certain additional conditions on K, the
a-admissible regions are best in some sense.

We take this opportunity to thank Stanton Philipp for the stimulating discussions
we had and J. Chabrowski for suggesting that the result of Nagel and Stein may
be extended to parabolic equations on R™ x (0,T).
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706 B. A. MAIR AND DAVID SINGMAN

1. A differentiation theorem. Throughout this paper, the Lebesgue measure
of E C R™ will be denoted by |E| and v > 1 is a fixed constant. C denotes a general
constant which may depend on n, v and other constants and is not necessarily the
same at different occurrences.

p:R™ x R™ — [0, 00) is assumed to satisfy the following properties:

(1.1)  For all z,y,z € R™,
(i) o(z,y) = p(y, z),
(ii) p(z,y) =0 & z =y,
(iii) p(z + 2,y + 2) = p(z,y),
(iv) p(z,y) < Alp(z, 2) + p(z,9)].

That is, p is a translation-invariant pseudo-distance (cf. [3]).

(1.2)  For each z € R™ and r > 0 define B(z,r) = {y:p(z,y) < r}, the
p-ball with center x and radius 7.
(i) {B(z,r):r > 0} forms a base for the open neighborhoods of z
(in the Euclidean topology).
(ii) For each o > 0 there exists 7, () such that

|B(0, a,7)| < Crn ()| B(0, 7)]|
for all r > 0.

Observe that, by translation-invariance of p, we can replace 0 by any z € R™ in
the above inequality.

The examples of p that will be used in §3 are

(a) p(z,y) = |z — y| (Euclidean metric),

(b) p(z,y) = |z — yl?,

(¢) p(z,y) = (I = y'[> + [z — yul)
R" ! xR.

In (a) p is a metric, |[B(0,7)| = Cr™ and 7,(a) = ™. In (b), v =2, |B(0,7)| =
Cr“? and 1,(a) = a™?2. In (c), p is a metric (see §3), |B(0,r)| = Cr**! and
(a) = o™ L.

For each a > 0 and y € R", define the a-standard region with vertex y by

(1.3) A(y;a) = {(z,t) e R® x Ry :p(z,y) < at}.
Then, for each t > 0,
{z: (z,t) € A(y; o)} = |B(y, at)| < Crn(a)[B(0, ¢)].

DEFINITION 1.3. Let 2 C R} be open and a > 0.

(1) For each t > 0, define Q(t) = {x € R™: (z,t) € O}, Q(t) = U e Bz, 1)
(2) (1 is said to be a-admissible if

(

(

(

/2 where = (2/,7,) and y = (¥, yn) €

)
a) 0 € Q(¢), for all t > 0,
b) 0 < s <t=Qs) CQt),
c) there exists open (¥ D (2 such that
(i) |V (t)| < C|B(0,t)], for all ¢t > 0, and
(i) (y,s) € Q, (z,t — s) € A(y; @) = (z,t) € V.
In case p is a metric, we define (' = () (cf. Proposition 1.12). In this case, (a) can
be replaced by the condition (0,0) € (0.
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Note that every a-standard region is a-admissible.
Proceeding as in Lemma 1 of [10], one shows

LEMMA 1.4. Assume () s a-admasstble.

(i) For eacht >0, Q(t) C V' ((a+ 1)/ - t).

(ii) For eacht >0, |B(0,t)| < |Q(t)| < Cr((e+ 1)/)|B(0,1)|.

(i) There exists an integer M = M(a) such that for any t > O there exist
T1,Z2,...,Zpm € Q(t) such that Q(t) C Uf\il B(z;,v(2y + 1)t).

DEFINITION 1.5. Let ! C R’ have (0,0) as a limit point. For each regular
Borel measure 4 on R™ and y € R"™, define

 uB =)
Mauly) = s =pa

. ‘ w(B(y + z,t))
Miply) = limsup —————,
Guly) =t 50,0

Nu(y) = sup Ky +Q(t)

>0 Q1)

From Lemma 1.4 we see immediately
LEMMA 1.6. IfQ)is a-admissible and u is a regular Borel measure on R™, then

. +1 .
Mgu(y) < Map(y) < O <°‘—a—> Nu(y), for ally e R™.

LEMMA 1.7. Let Q) be a-admissible. Then there is a constant C > 0 such that
for any finite Borel measure u on R™,

[{z: Nu(z) > A} < Cluli/A for all X > 0.

PROOF. Let A > 0 and Ey = {z: Nu(z) > A}. Then for each z € E) there
exists t(z) > 0 such that u(z + Q(t(z))) > A|Q(¢(z))]. Now, 0 € Q(t(z)) C Q(t(z))
hence z € z + Q(t(z)) and Ex C U,cp, (z + Q(t(x))). Let FF C E) be compact.
Then there is a finite subcover {z; + Q(t;):j = 1,2,..., N} where t; = t(z;).

As in [10, pp. 90-91], we select a subcollection, {z;, + Q(t;,):s = 1,2,...,p}
with the following properties:

(a) the sets are pairwise disjoint,

(b)if € {1,2,...,N}\ {J1,J2,---,Jp}, there exists s € {1,2,...,p} such that
(z; + Q(t;)) N (zj, + Q(t),)) # D and t; < tj,. Now from Lemma 1.4(iii), there is
an integer M > 0 such that for each t > 0, there exists v{(t),v2(t),...,vp(t) in
Q(t) such that Q(t) € UM, B(vi(t), ¥(2v + 1)t). Let

5 M M
Q)= |J [v(t) —w(t) + | Bui),v* 2y + 1)?1)| .
j,k=1 i=1

Then |Q(t)| < C|B(0,t)] and Q(t) C Q(t).

Now, suppose (z; + Q(t;)) N (z;, + Q(t;,)) # 9, t; < tj,. We claim that
z; + Q(t;) C zj, + Q(t]-s). By assumption, there exist a € Q(t;) and b € Q(t;,)
such that z; + a = z;, + b. Since Q(t;) C Q(t;,), for any y € Q(t;) we can choose
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vi = vi(ty,), vk = Vk(ty,), vm = vm(t;,) in Q(t;,) such that p(y,v;), p(a,vx) and
p(b,vm) < ~(2y+ 1)t;,. Then,
Ti+y—z, =y+tb—a=vn —vp+v+(y—vi)+ (b—vm)+ (vk —a)
and
p(lly = vi) + (b= vm) + (v — )], 0) < 4{~[p(y, vi) + p(b,vm)] + pla, vi)}
<22y +1)%

which proves the claim. N
It follows that F C (J%_,(z;, + Q(t;,)). Thus

IF| < Z Q)] < c}j 1B(0,t;,)] < C > 1Q(t,,)]
s=1

p
Z (z;, + Q(t5,)) <

The following result is immediate.

|l

>'|Q

THEOREM 1.8. Let ) be a-admissible. Then, there is a constant C > 0 such
that for any finite measure y on R™,

{z: Mop(z) > A} < Clul /A, Kz Mau(z) > A} < Cluli/A
for all A > 0.

We now obtain the following differentiation theorem by a slight variation of the
standard method (cf. [11]).

THEOREM 1.9. Let ) be a-admassible and u a signed, regular Borel measure
on R™. Then (B( )
. u y+z,t
| PP TS0
as@i—0  |B(0,1)] )
for Lebesgue a.e. y € R™, where f is the usual Radon-Nikodyn derivative of u.

PROOF. We need only consider the case of a finite (positive) measure p.
For any locally integrable F' and z¢ € R™, define

as(z,t)—0 | B0, )] JB(zg+u.t)

Since the p-balls form a base for the Euclidean topology, if F is continuous, AF(z) =
0 for all z € R™. Hence by Theorem 1.8 and the denseness of continuous functions
in L', the result holds for absolutely continuous .

Now, if p is singular, we have a Borel set E such that u(E) = 0 and |E¢| = 0.
Fix ¢ > 0 and choose open V O E such that u(V) < . Then again by property
(1.2), M&uly =0 on V, hence,

AF(zp) = limsup {# F(y)dy} — F(z9).

. w(B(y + z,t))
| SR LA e e.
as(at—o  |B(0,1)] 0 aey

by applying Theorem 1.8.
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As usual (cf. [11, p. 11]), we can strengthen Theorem 1.9 to obtain the derivative
in the variational sense (cf. [4, p. 291]).

DEFINITION 1.10. (i) The variation measure of a signed measure u will be
denoted by ||/

(ii) Let wu be a signed measure with Radon-Nikodym derivative f. A point
zo € R™ is in the )-Lebesgue set of p if

e = f(zo)m||B(zo + /1)
Q3(z,t) -0 |B(0,t)]

where m is Lebesgue measure on R™.

=0,

THEOREM 1.11. Let 1 be a-admisstble and v a signed Borel measure on R™.
Then Lebesgue a.e. xg is in the (1-Lebesgue set of u.

We now give examples of a-admissible sets which are not contained in any -
standard set (cf. [10, Lemma 9]).

PROPOSITION 1.12. Let (zk,tx) be a sequence in R’j_“ such that txr1 < tg,
limy 00 tk = 0 and p(0, zx+1) < Aty for some constant A > 0 and all k. For any
a>0, let

Q= {(z,t): p(x, k) < at — tg) for some k},
QO = {(=z,t): p(z,z) < ay(t — tg) for some k}.
Then ) 1s a-admassible.

PROOF. Fix t > 0 and let N be the first index for which ¢ty < t. If (z,t) € (¥
then there is a k such that p(x, zx) < ay(t — tx). Hence k > N. So

s

Q’(t) - B(ZEN, afyt) U B($k+1 ) CY’Yt)

k
Now, k > N = p(0,z,41) < Aty < Aty < At hence p(z, zk11) < avt = p(z,0) <
~(ay + A)t. Thus

N

Il

V(t) C B(zn,ayt) UB(0,y(ay + A)t)

and so
|'(t)| < C|B(0,1)].

The other properties of {1 in Definition 1.3 are obvious.

Note that if p is a metric, {2’ = (1.

Now choose (zk,tx) satisfying the conditions of the proposition and such that
p(0,z)/tx — oco. For example, choose 0 < t; < 1 and put tky; = 3¢2. Choose
zx such that p(0,zx) = /tx. Then the region (2 generated by this sequence is not
contained in any 3-standard set A(0,3). Indeed, suppose it were. Then (zi, 2tx) €
Q) for all k, hence p(zk,0) would be less than 283t; and so p(zk,0)/tx would be
bounded, contradicting our construction.

By adapting the process in [10, p. 98] we show how to censtruct a-admissible
regions allowing sequential apporoach with any prescribed degree of tangency.

Let ¥:[0,00) — [0, 00] be such that ¥(0) = 0, lim,_,o+ ¥(A)/A = 0. We denote
the kth iterate of ¥ by U*. Let > 0 be such that (i) ¥(\) < A/2forall0 < X <,
and (ii) the function z — p(0, z) takes all values in (0,n). For each z € R™ define
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¥(z) = ¥(p(0,z)). Choose z; such that 0 < p(0,z1) <, t1 = ¥(z;). Choose
any z2 such that p(0,z2) = ¥(¢;) and put t; = ¥(z2). Continuing inductively
we obtain a sequence (zx,t) such that zx satisfies p(0, zx11) = ¥ (p(0,71)) =
U(te) < ti/2 and tiyr = CH*H1(p(0,21)) = ¥(p(0, zk41)) < P(0,Tpe41) < ti/2
hence the sequence {t;} decreases to 0. Thus the sequence satisfies the conditions
of Proposition 1.12.

2. A Fatou theorem. In this section we use Theorem 1.11 to obtain a Fatou-
type theorem for functions of the form [ K(z,t,y) du(y) where 4 is a regular, Borel
signed measure on R™ and the kernel K satisfies certain general conditions. All
measures will be regular, Borel.

For each (z,t) € R}1! and y € R™ let K(z,t;y) > 0 and satisfy:

(2.1) The function ug(z,t) = [ K(z,t;y) dy approaches 1 continuously as (z,t)
— (20, 0) for each o € R™.

(2.2) For all (z,t) € R,

K(z,t;y) <

so e (252):

where ¢ is a bounded, decreasing, real valued function on [0, 00) for which
(2.3) Z (281 p(2F) < o0.

(2.4) For each zo € R™, open W 3 zg and 0 < T < oo, there exist open sets
UDV 3z¢. UCW and (yo,s0) € R" % (0,T) such that forallz € V,y € R*"\U
and t sufficiently close to 0,

K(z,t;y) < 6(t)K(yo, 505 Y)

where 6(t) — 0 ast — 0F.
For any signed measure y on R™, let

Ku(z,t) = /K(x,t;y) du(y).

The following result is obtained by a standard dyadic decomposition argument (cf.
(10, Lemma 4; 5, Lemma 7)).

LEMMA 2.5. Let ) be any subset of R7™! such that (0,0) € Q and Q(s) C Q(t)
if t > s. For any measure u on R™,

(a) sup(g 1yen Ku(zo + z,t) < CMap(zo),
(b) limsupqs (5 4y 0 Kp(zo + 2,t) < CM*p(z0), of Map(zo) < 0o

PROOF. Let By, = B(zo + z,2%t) for k=0,1,2,.... Then

Ku(zo + z,t) / / K(zo + z,t;y) du(y).
Bo —0V Br+1\Bk
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For all (z,t) € Qand k=0,1,2,...,

K(zo + 2. ty) du(y) < 0(0) 20
Bo | Bo|

1 p(z0 +7,y)
K(zo + z,ty) du(y) < 577 w(——— duly
'Lk+l\Bk ( ° y) ( ) IB(O’t)I B +1\Bk t ( )
Biet1)
< 2k I‘l’( k+1
) B0.0]
#(B(zo + z, 2 11))
|B(0, 2+ +1¢)|
< Cp(25)m (257 Map(x0)
and (a) follows. Part (b) follows by noting that, for all (z,t) € Q, Ku(zo + z,t)

is majorized by a series whose kth term is dominated by ¢(2*)7,(25+1) Mqu(=zo),
which is summable if Mqu(zo) < oo.

THEOREM 2.6. If ) is an a-admissible subset of R%™', (0,0) € Q and p a
finite signed measure on R"™, then

< CMap(zo),

< Cop(2) 26+t

'Tn(

. du
| K t) = —(=zo).
sl o a0+ 220) = G (oo

PROOF.
[Kp(zo + z,t) = f(z0)| < |[Kp(zo + 7,t) — f(z0)uo(z, t)| + |uo(z,t) — 1] |f(zo)l
< [ K(wo + 2,6:9) do(y) + uo(z.0) ~ 1]1f(x0)
where o = ||u — f(zo)m|.
Let zg belong to the ()-Lebesgue set of u. Then by Theorem 1.11
. o(B(zo + z,t))
1 AP0 T )
as@—0  |B(0,1)|
Hence Mgo(zo) < oo and so by the lemma and (2.1),

limsup [Ku(zo +2,t) — f(s0)| < CMgo(zo) = 0.
QB(I,t)-—*O

=0.

Observe that property (2.4) of K has not been used as yet. This property enables
us to remove the finiteness condition on u in the previous result.

LEMMA 2.7. Let W C R™ be an open set and u a measure on R™ such
that Ku(z,t) ts finite on R™ x (0,T) for some 0 < T < oo. If u(W) = 0 then
limz ¢) o Kp(z,t) = 0 for every zo € W.

PROOF. Let zg € W and choose open sets U, V and the point (yo,s0) €
R™ x (0,T) as in 2.4. Then for all z € V and ¢t sufficiently close to 0

Ku(z,t) =/Rn\w K(z,t;y) du(y) =/Rﬂ\U K(z,t;y) du(y)

<80 [ Kluo,s0:0) du(s) < 6 K(uo. ).

Our main result is an immediate consequence of this lemma and Theorem 2.6.
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THEOREM 2.8. Let ) be an a-admissible subset of R, (0,0) € Q and p a
signed measure such that Ku(z,t) s finite on R™ x (0,T) for some 0 < T < oo.
Then

. du
09(1;51)_}0 Ku(zo + z,t) = a—”—L(xo).

3. Applications. In this section we use Theorem 2.8 to deduce a known Fatou
theorem for positive solutions of the Laplace equation on Ri“ (cf. [10]) as well as
analogues for parabolic equations.

The Laplace equation on an upper half-space. It is well-known that every positive
solution, u, of Laplace’s equation, Au + 02u/0t? = 0, on R}"!, where z € R™,
t > 0, has the representation

u(z,t) =ct +/ P(z,t;y) du(y).

n
ere (4 1s a positive mesure on an e Poisson kernel is
H posit R™ and the P k 1

I'((n+1)/2)

P(z,t;y) = Pi(z —y) = Cut(le —y* +13)" V2 Gy = =y

Let p(z,y) = |z — y|. Then the a-standard region with vertex y is the usual cone
{(z,t):|z —y| < at} of aperture a and vertex y. The a-admissible subsets of R **
are those which satisfy the hypotheses of Theorem 1 in [10].

Clearly P satisfies (2.1)-(2.3) with ¢ defined by () = (1+ %)~ ((*+1)/2) Now
if |z > aly| = B,

Pz) t (s2+y? (n+1)/2 4 g2 + ly[? (n+1)/2 41 g2 1] th/2
=- (L < |2 TWn < |+ = ,
Ps(y) s \t?+ |zf? T s | a?yl? s [A o2

Hence in this case, P(z) < C(s)tPs(y).

Fixzo e R*, let V = {z: |z — z0| < r}, U = {&: |z — z¢| < 2r}, r > 0 sufficiently
small. Thenz €V, y¢ U = |z — zo| < 3|y — zo|. Thus |z —y| > Jlzo —y| > r.
Hence for any s >0,z €V, y ¢ U,

P(z,t;y) = Pz — y) < CtPs(zo — y) = CtP(zg,s;y) forallt>0.

Hence P satisfies (2.4) and we obtain the following result of Nagel and Stein [10].

THEOREM 3.1. Let () C R’_f_‘“ be open (0,0) € () and satisfying

(1) there exists A < oo so that |Q(t)| < At™ for allt > 0,

(i) there exzists o > 0 so that (y,s) € Q, |z —y| < a(t — s) = (z,t) € .
Then for every signed measure u on R™ such that Py x u(zx) s finite on R’+‘+1,

. du
Qa(lgl)_’o Py plzo + ) = 7 (20)-

Parabolic equations on an infinite slab. Let X = R™ x (0,T) where 0 < T < o0

is fixed. Let

N ou
Lu = i]ZZ:I 3z, <Aij(x, t)% + Aj(z, t)u)
= du Ju
+ ; Bj(z, t)gj +C(z,thu—
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be a second order linear parabolic operator in divergence form on X. Then under
very general conditions on the coefficients (cf. [1]), every positive (weak) solution
of Lu =0 on X has the representation

u(et) = [ Tlatiy)duly)

where 4 is a measure on R™ and the fundamental solution, I', satisfies the condition
that there are constants p, p;, pe such that p~'W; < T < pW; on X x X, where
W; is the fundamental solution for the operator p;A, — 3/3¢ (cf. [1]). That is,

—|z —y|?

Wi(z,t;y) = (4p:ITt) "™/ exp [ ipi

} , t>0.

Let p(z,y) = |z — y|2>. The a-standard region A(y;a) with vertex y is the
parabolic region {(z,t): |z — y|? < at} of aperture a, vertex y. An a-admissible
region (] is one which satisfies

(3.2) (y,8) € 9, t>s=(y,t) €Q:(0,t) e forallt>0
and there exists an open ()’ D () such that

(3.3) |Q'(t)| < Ct™/? for all t > 0 and for all (y,s) € Q,
(3.4) |z —y|> < alt —s) = (z,t) € V.

Property (2.1) is in Theorem 10 of [1]. Choosing p()) = Cexp(—A?/4p;), we see

, 1 fp(z,y)
[(z,t;y) < mz¥ {__t— :

Clearly ¢ satisfies (2.3) as 7,,()) = A™/2.

Now fix 2o € R™ and let V = {z: |z — x| < r}, U = {x: |z — 29| < 2r} for r
sufficiently small. Then, as before, z €V, y ¢ U = |z — y| > J|zo — y| > r. Hence
forany s >0,z€V,ye¢ U,

[(z,t;y) 5\"/2 lzo —y? |z —y)?
Y o hd _
I'(zo, s59) — ¢ <t> oxXp 4pys 4pat
- s\ n/2 t 1\ |zo—yl?
=C(3) Tew { (5—5 z;g) T

5\"/2 |lzo — y|?
< hd _120 I
=0 <t) P < 32pat

and if ¢ is smaller than p1p/8p2,

s\n/2 r?
< " i — .
_C(t) exp( 8p2t>
Hence T' satisfies (2.4). We thus obtain the following result.
THEOREM 3.5. Let O C R satisfy (3.2)-(3.4). Then for every signed mea-
sure p on R™ for which u(z,t) = [ T(z,t;y) du(y) is finite on R™ x (0,T),

du
li t) = ——(zo).
ol a0 28 = g
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Solutions of the heat equation as they approach a vertical boundary. Let X =
R* 1 xR, x (—00,T), —0o < T < co. Every positive solution, u(z, ), of the heat
equation A u = du/dt on X, where z = (z/,7,) ER*" ! xR;, —c0o <t < T, can
be written as

(36)  u(z,t)= / Hy(z,t) du(b)
R"-1x{0}x(—o00,T)

+ / Zm exp(tlH|2 + (&, b)) dvt (V)
Rn—l
+ / exp(t|b|* 4 (', b')) sinh(z, by, ) dve (b, by),
Rn-1 XR+
where ( , ) denotes the usual inner product and for b = (¥, 0, s),

I 2 2
(4H)—n/2'(t_—s:)z(r‘:m exp <—%> ift > S,

0 ift <s.

Hb(:t,t) = {

(cf. [7, §4; 9, Corolary 3.3]). The vertical boundary is then R"~! x {0} x (—o00,T).

We show first that the last two integrals go to 0 continuously as (2/,z,,t) —
(y',0,s). Let vi(z,t) be the first of these and vy (z,t) the last. For all (z,t) such
o' —y| <6, zn <6, t<tog<to+6=1t1 <T,

exp(t|p'|* + (¢, b)) < exp(tp’|* + (v, ') + |2’ — y'| |b])
< exp(t|t'|* + (¥, b) + 6|b'])
< Cexp(ta|b']2 + (v, "))

Thus vy (z,t) < Czuvi((y,1),¢1) — 0. As

va(z,t) <C exp(t1]b|® + (¥, b'))sinh(z, b, ) dv2(b),
R IxR}

and the integrand is dominated by the vy-integrable exp(t;|b|? + (y/,b’))sinh 6b,,
(its integral is v2((y’,6),¢t1)), v2(z,t) — 0 by Lebesgue’s Dominated Convergence
Theorem.

Now consider solutions of the form | Hy(z,t)du(b). To make this amenable to
the notations established in this paper, we make a slight change in notation. For
each (z,t) ER" xRy, y = (v, yn) € R""1 x R, define

|:E’ _ yrl2 1 ¢2

if z,, > yn,
4(Zn — yn) > vn

K(avty) = 4 (107 21(a = o) 052 2 e~

if £, < yn.
The problem now becomes one of examining Kpu(z,t), € R"! x (—00,T), t > 0,
as (z,t) — (z0,0). Kpu(z,t) satisfies the heat equation

NP Pu_ ou
azf ot2 Oz,

1=1
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For each 7,y € R™ define p(z,y) = (|2’ — ¥'|> + |Tn — yn|)!/?. To see that p is a
metric, observe that
|2 = [ + |20 = yal < (2" + |2al + 1912 + [yn] = 2(2",¢)
<212+ fzal + 112+ lynl + 201271 + 2al) V21" + lynl) /2
= [(|a'* + |z )2 + (19'1* + 1))
Hence p(z,y) < p(z,0) + p(y,0), which, by translation invariance, implies the tri-
angle inequality.
The a-standard region A(y; ) is {(z,t): (|2’ — ¥'|> + |Zn — yn|)*/? < at}. This
corresponds exactly to the “parabolic cones” defined in [12]. Two other definitions

of two-sided-parabolic regions have been studied in the literature. In our notation
they would take the form

1/2

F(y;a) = {(:E,t)i 113/ - y/' + |xn - yn[ < at}

defined in [6] and
TP(y;a: f) = {(z,1): [2n — yn| < ez’ = ¥/|* + %), t > Bla’ —y/'[}

defined in [8]. It is obvious that these regions are all equivalent to the a-standard
regions, since, for each o, 3 > 0

[(y,a) C A(y,a) C T'(y,av?2)

and
A(y,a) CTP(y;0? : a7 ');TP(y;a: B) C Ay, C).

An a-admissible region () is one which satisfies
(3.7)  (0,0) €,
(3.8) |Qt)| < Ct"T! forallt >0,
39) (w9€® (& -y +lzn—v)"? <alt —s) = (z,t) € Q.

We now verify the conditions on K in §2. Simple calculations give [ K(z, t;y) dy
=1 and

C 1 (n+2)/2
K ) <
(= 69) < G { (o(z, 9)/0)% + 1}

for all (z,t). Choosing p(A) = (A2+1)~(*+2)/2 we see that (2.1)-(2.3) are satisfied.
The following lemma verifies (2.4).

LEMMA 3.10. Fizr,s > 0, a > 2r, yo = (0,a) € R™. Then K(z,t;y) <
CtK (yo, s;y) of |2'| <7, |zn| <7 and edther |y'| > 4r or |yn| > 2r.

PROOF. We only need to consider z,, > y,. Then a > r > z,,. Hence,

K(z,ty) _ (3) ( 0~ yn >("+2’/26xp{ly’l2+52 B |x’—y’|2+t2}
K(yo, 3 y) 8 In — Yn 4(a - yn) 4(:1:71 - yn) '
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Now,
12l =y P (@ =yl (a2 - 260y + )
a4 —Yn Tn — Yn (a_yn)(xn _yn)
_ (@ —a)ly'? +2(a — yu) (@, y') — (a —yn)l2'* <a - wn)

(@ = yn)(Tn — yn) a— Ty
)z’

lla—zn)y —(a—y

(a Tn)(a = Yn)(Tn — Yn)

L a- yn)? = (a—yn)(a — zn))|z'|?
(a—zn)(a@—yn)(zn — Yn)

l(a —zn)y’ — (a—yn)z')?

(a—zn)(a—yn)(Tn —Yn) a—zn

Therefore
K(z,tiy) _t < a—yn )("”)/2
K(yo,s;y) s — Un
_ I 2
~exp{— |(a In)y (a yn)x l
4(0’ - :cn)(a - yn)(zn - yn)

='|? 8

2 t2
+4(a—zn) 4(a—yn) - 4(xn “yn)}
(n+2)/2
<a(m=)”
N ST N
p{ 4(a — zn)(a = Yn)(Tn — yn) 4(a_yn)}

If |yn| > 2r, since yp, < 2, <7, yn < —2r. Hence (a—yn)/(zn —yn) and 1/(a —yy)
are bounded above and so K(z,t;y) < CtK(yo, s;y).
Now, if |y/| > 4r and |y, | < 2r,

_ 20— 1 (n+2)/2 52
K(x,t;y)ﬁCt( (@ = n)"(a — z0) ,|2> exp <W—)> K (yo, s;9)

l(a—zn)y — (a—yn)z a—=Yn
’ z —(n+2)
<Ct T — K(yo,s7y)
since a — y, > a — 2r and a — x,, > r. Finally
y 7 4r T

a—Y, a—2Tyn| a+2r a-r

so in this case K(z,t;y) < CtK(yo, s;y) and the lemma is proved.

THEOREM 3.11. Let Q@ C R be open, (0,0) € (1 and satisfy (3.8) and (3.9).

Then for every signed measure u on R"*! x (=00, T) such that Ku(z,t) < oo on
R" ! x (~00,T) x Ry,

. du
] K t) = - (zq).
asdm w(zo + z,t) dm(zo)

This 1s obtained by simply extending u to be zero off R* ™! x (—o0,T).
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In the usual notation for the heat equation A,u = du/dt on
X ={(2,2n,t):2’ €R" ! 2,>0, t <T}
we have obtained the following result.

THEOREM 3.12. Let Q C X have (0,0) as a limit point and satisfy:
(i) {(z',0,¢): (2’ zn,t) € Q}| < C2n*? for all z,, > 0,
(ii) (y,8) € Q, (|2 =y P+ |t = sD'? < a(@n — yn) = (2,8) € Q.
Then for signed measures u, v1, vy and u(z,t) as in (3.6),
du

asdm_ ulzo +2,t) = 57 (%0).

4. A converse. Let (1 C R’_,‘,"’1 and let K be as in §2. Define, for each
f € LYR") and zp € R,

ME f(zo) = sup K|f|(zo + x,1).
(z,t)eQ

Theorem 1.8 and Lemma 2.5 imply M{f is weak-type (1,1) in case () is a-admissible.
We wish now to show that the a-admissible condition is necessary in the sense that
if ME is weak-type (1,1), then there is an a-admissible set, {1,, containing (2. For
this purpose we impose the following additional restrictions on K:

(4.1) There is a C > 0 independent of ¢ such that fB(o,t) K(0,t;y)dy > C

(4.2) (Semigroup property) For all s,¢t > 0 and z,z € R™
[ K@ s oKt dy = Kz + ).

(4.3) For allt >0,z € R*, y € R™, K(z,t;y) = K(z — y,t;0).
These conditions hold for the kernels associated with the Laplace and heat equations
considered in §3. Indeed, that (4.1) holds for the first two is obvious. Put now
E={(y,yn):[¥'|* + yn < t?, yn > 0}. Then

t ¥'1? + yn + 12
K(0,t;y)d :c/ ————exp(——————— dy'd
/;(O’t) ( y) y Eysln+2)/2 4yn y yn
2

t t
ZC/———ex (———)d'd
oyt PP Ty, ) WA

t? 2
t -t
=o/ —_ex <——> 12— y,)(nD/2g

= C/oo s™V2e73(s — 1)(n"D/2 g,
1

For the semigroup property see [11, 1 and 7].
Let o > 0. Put
Qo = {(z,t) € R'j_“:p(z, zo) < aft — tg) for some (xo, tp) € 1}.

As in Proposition 1.12, (0, satisfies (2)(c)(ii) of Definition 1.3 (take 0, = 4 ).
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THEOREM 4.4. Suppose ME is weak-type (1,1), that is there exists C > 0
independent of f € L' (R™) such that for every A > 0,

{z e R™: ME f(z) > A} < C||fll1/ X
Then (1, 1s a-admussible for every a > 0.
PROOF. Let g € LP(R™) for p > 1. For any (z,t) € 1,4 and (zo,tp) a corre-
sponding point of () '
Kg(z +w,t) = /K(w +w,t;y)g(y) dy
= [ o)ty [ Ko+t~ 102Kz t9) d
— [ K+t = toi)dx [ oK = 20+ 20, tosv) dy
< /AI{{g(z)K(z —zo +w,t — to; 2) dz

S M,g((o,'ya) (M(Ifg)(w)
Since (z,t) is an arbitrary point of (14,
MYII{,\,ag(w) < Mfﬁ{(O,'ya)(M(I){g)(w)
By the Marcinkiewicz Interpolation Theorem and Theorem 1.8 applied to A(0;ya),
IME gllp < Cllgllp-

It follows that M(}fm is weak type (p,p) for every p > 1.

Let t > 0. Put g(y) = |B(0,t)|"'/? if p(0,y) < t and 0 otherwise. Let (z,t) €
1yo. Then

ME g(—z) > / K(0,;9)9(y) dy
- / K(0,4,4)|B(0, 1)~/ dy > C|B(0,8)| /.
B(0,¢)

Hence
{z: (2,t) € Dya}| < o ME _g(—z) > C|B(0,1)|/7}|

< CIB(0,1)].

Thus (1, is a-admissible and we are done.
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