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ON BOUNDED ANALYTIC FUNCTIONS 
IN FINITELY CONNECTED DOMAINS 

ZBIGNIEW SLODKOWSKI 

ABSTRACT. A new proof of the corona theorem for finitely connected domains 
is given. It is based on a result on the existence of a meromorphic selection 
from an analytic set-valued function. The latter fact is also applied to the 
study of finitely generated ideals of Hoo over multiply connected domains. 

Introduction. In this paper, which is a direct continuation of [18], we study 
applications of analytic multifunctions to some topics in function theory on finitely 
connected domains, related mainly to the corona problem. 

Concerning analytic multifunctions (which are certain set-valued functions, cf. 
Definition 1.2), §§1~3 of [18] form sufficient background for our purposes here. The 
reader is also referred there for the information about the origin of the approach 
employed in this paper. However, basic definitions and references are provided 
below. 

Our basic new result (Theorem 1.4) associates to every analytic multifunction 
defined in a finitely connected domain some meromorphic functions with poles at 
the critical points of Green's function of this domain. (Some improvements of this 
fact, in the special case of an annulus, are discussed in §3.) 

This main technical result is applied in §2 to help obtain a new, simple proof of 
the well-known corona theorem for finitely connected domains. A novel feature of 
this proof (as compared with e.g. Forelli [9], Stout [19], Gamelin [7]) is that it does 
not use the corresponding result for the unit disc. 

The same methods are used in §4, where we consider the question, when some 
power of g from HOO(G) belongs to the ideal Aft + Ah + ... + Aln. We obtain 
generalizations to multiply connected domains of a result due to T. Wolff (Theorems 
4.1 and 4.2), as well as its refinements in the case of the unit disc (Corollary 4.4 
and Example 5.3). 

All proofs given in this paper extend to finite Riemann surfaces. 

1. A meromorphic selection theorem. The main result of this section re-
lates some meromorphic vector-valued functions to analytic multifunctions defined 
in finitely connected domains. First, we recall some definitions. 

DEFINITION 1.1 (FOLK). A locally compact set Z C cn is a maximum set 
if for every compact set NeZ and for every analytic function I defined in a 
neighborhood of N the inequality maxN III ~ maxazN III holds. 

DEFINITION 1.2 [16, 18]. An upper semicontinuous set-valued correspondence 
z -> K(z): G -> 2cn

, where G c C is open and all K(z) are nonempty and 
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compact, is analytic if the graph of K has maximum property, where 

gr(K) = {(z,w) E G x en: w E K(z)}. 

We need also some basic facts from the function theory on finitely connected 
domains. Our reference is Fisher [4, Chapter 4]. We consider only finitely connected 
planar domains G whose boundary 8G consists of (k + 1) simple closed analytic 
curves. For a fixed point p, let 

(1.1 ) zr, ... , zk be the critical points of g( z; p), 

where g(z;p) is the Green's function of G with a pole at p, and let dwp denote the 
corresponding harmonic measure. Set 

(1.2) P(z) = (z - z~)(z - z~)··· (z - Zk). 

We denote by A( G) the algebra of all functions analytic in G and continuous in 
G, and by HOO(G) the algebra of all bounded analytic functions on G. Because of 
the smoothness of 8G, the nontangential boundary values j(~) exist a.e. dwp • We 
will use the following theorem (see e.g. proof in [4, Chapter IV, Theorem 4.8 and 
Proposition 4.2]. 

THEOREM 1.3 [13, 20]. Let f E LOO(8G, dwp ). Then 

0= r f(~)h(~) dwp(~), hE A(G), h(p) = 0, Jac 
if and only if there is an F E HOO(G), such that f = F / P a.e. dwp on 8G. 

We can formulate now the main theorem of this section. 

THEOREM 1.4. Let G be a finitely connected domain with smooth real-analytic 
boundary and let L: G ...... 2cn be an upper semicontinuous multifunction such that 
its restriction to G is analytic and all its sections L(z), z E G, are convex. Fix p E 
G. Then for every w* E L(p), there exists a vector-valued function F E H OO ( G, en), 
such that W(p) = w* and W(~) E L(~) a.e. dwp, where W(z) = F(z)/ P(z), 
z"# zi, ... , Zk, z E G. 

PROOF. Using the multifunction L(·), we define a new norm III . ilion L1 
L1(8G,en +1), equivalent to the usual norm 

(1.3) 

and construct a linear functional on L1 of norm one with respect to the norm 111·111. 
W (.) will be determined in terms of an L 00 (8G, e n + 1) function representing this 
functional. 

To define the new norm, fix r E (0,1) and set for every z E G: 
B(z) = co(Bn+1(0,r) U {(eiO,eiOw): 0::::: () < 21f, wE L(z)}), 

(where Bn+1 (0, r) denotes the ball of radius r). Clearly B(z), z E G, are norming 
bodies in en + 1. Moreover, 

(1.4) B(z) n ({Re/l ~ I} x en) = {l} x L(z). 
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Since B(z), z E G, are uniformly equivalent to the unit ball of e n + l , the formula 

(1.5) Illflll = r max{l(w, 1(<;))1: w E B(<;)} dwp (<;), Jae 
where (w, v) = (wovo + WlVl + ... + wnvn) defines a norm equivalent to the norm 
(1.3). 

Let A(G, e n +l ) denote the (nondosed) subspace of £1 (BG, e n+!) consisting of 
all f = (fo, h,··., fn), such that fi E A(G), i = 0, ... , n. Define a linear form <Po 
on A(G, e n +l ) by the formula 

(1.6) <Po(f) = (w', f(p)) , where w' = (1, w*). 

We will show that <Po has norm one relative to III . III. 
Consider v(z) := max{l(w, f(z))1 : w E B(z)} = max(vl(z), V2(Z)), where 

Vl(Z) = max{l(w, f(z))1 : w E {1} x L(z)}, 
V2(Z) = max{l(w, f(z))1 : Iwl S r} = rlf(z)l, 

and f E A(G,en+l ). The function Vl(-) is subharmonic by [18, Proposition 3.4] 
(use the plurisubharmonic function u( Z, Wl, ... , wn) = 1(( 1, w!, ... , wn), f (z)) I and 
the analyticity of L(·)). Clearly V2(-) is subharmonic, and so is v(·). By the 
mean-value inequality with respect to harmonic measure dwp , we obtain for every 
f E A(G, en +!) 

l<po(f)1 = I(w', f(p))1 = v(p) S r v(<;) dwp (<;) = Illflll. Jae 
By the Hahn-Banach theorem, <Po has a e-linear extension <P to (Ll(G,en+l ), 
111·111), such that 111<p111 S 1. Therefore there exists a unique vector-valued function 
W' = (Wo, ... , Wn), where Wi E LOCJ(BG) and 

(1. 7) <p(f) = r (W'(<;), f(<;)) dwp (<;), Jae 
for all f E £1 (BG, en + 1 ). 

The property 111<p111 S 1 implies that W'(<;) E B(<;) a.e. dwp • To check this, 
choose a countable dense set {Vs} C e n + l , and consider all points <;* E BG, which 
are points of essential continuity (relative to dwp ) for each of the following functions: 

<; ---> Wi(<;), i = 0,1, ... , n; 

<; ---> max{l(w,vs)1 : w E B(<;)}. 
Seeing that the set of all such points <;* has measure one, it suffices to show that 
W'(<;*) E B(<;*). Suppose it does not; then there is a vector Vs E B(<;*)O (= the 
polar of B(<;*)), such that I(W'(<;*),vs)1 > 1. Consider arcs A(t) C BG, with center 
at <;* (relative to the arc-length measure) and such that limt wp(A(t)) = 0. Let 

ft(<;) = (wp (A(t)))-llA(t)Vs' 

Then, by the essential continuity at <;*, 

limillftill S 1, lim <P(ft) = I(F(<;*),vs)1 > 1, 
t t 

which contradicts 111<p111 S 1. 
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Applying (1.6) and (1.7) to f(~) == (1,0, ... ,0), we obtain 

1 = [ Wo(~) dwp , Jac 
and because IWo(~)1 ::; 1 a.e. (since W'(~) E B(~) a.e.), we get Wo(~) = 1 a.e. By 
this and (1.4), we conclude 

(Wd~), ... , Wn(d) E L(~) a.e. dwp-
We will show now that W(~) := (WI(~)' ... ' Wn(~)) has the required merom or-

phic extension to G. By (1.6), <I>(f) = 0, if f E A(G, C n +l ) and f(p) = 0, and by 
(1.7), for i = 1, ... , n, 

° = [ f(dWi(~) dwp(~), for all f E A(G) with f(p) = 0. Jac 
By Theorem 1.3, Wi(~) = Fi(~)/ P(~), i = 1, ... , n, with Fi E HOO(G), and W(z) = 
(1/ P(Z))(FI(Z), ... , Fn(z)) is the required meromorphic extension. 

It remains to show, that W(p) = w*. Substituting functions of the form f(~) = 
(0, ... ,0,1,0, ... ,0) to (1.6) and (1.7), we get 

(1.8) i = 1, ... ,po 

Integration against harmonic measure dwp is equivalent to integration (along the 
boundary) of the differential (-1 /27ri) dg( Zj p). Since the latter differential has 
simple pole with residue one at p and zeros at the critical points zi, ... , z;" therefore 
by the residue formula, the integral (1.8) is equal to Wi (p) and so W (p) = w*, as 
required. (See [4, pp. 92-93] for more details.) Q.E.D. 

An alternative proof It may be of interest to the reader, that Theorem 1.4 can be 
also proven by extending the methods of Alexander and Wermer [1, §1]. (This was 
actually the first proof we found.) Below, we indicate the necessary modifications, 
leaving to the reader their actual implementation into the proof of Theorem 1 in 
[1]. 

Let A be the uniform closure, on the graph of L, of all rational functions 
in z, WI, ... , Wn without singularities on gr(L). The evaluation functional f ----> 

f(p, w*) : A ----> C has a Jensen representing measure dm supported on 

Y = {(~,w): ~ E aG, W E L(~)}, 

that is 

(1.9) log If(p, w*)1 ::; flOg If I dm, f E A. 

As in Alexander and Wermer [1], measure dm can be disintegrated with respect 
to the projection (~, w) ----> ~, so that for a.a. ~ in aG (with respect to dm* = the 
projection of dm), we obtain a probability measure da, on L(~), such that 

(1.10) [ f dm = [ dm* [ fda" f E C(Y). Jy Jac J L(,) 

Applying (1.9), (1.10) to functions f(z, w), independent on w, we obtain, that dm* 
is the Jensen representing measure for A( G), and so is equal to dwp • Define finally 

W(~) = f wda,. 
JL(d 
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The required properties of W(s-) are checked mostly as in [1], and the modifica-
tions necessitated by the presence of critical points zi, ... ,zk are handled with the 
use of Theorem 1.3, similarly as in the proof given above. 

REMARKS. The classical F. and M. Riesz theorem has been generalized to the 
context of finite Riemann surfaces by J. Wermer [20, Theorem 1]. A related result 
for finitely connected planar domains was obtained by W. Rudin [13, Corollary 
3.6]. Theorem 1.3 is a special case of these results. 

Theorem 1.4 generalizes a result on structure of polynomial hulls with convex 
sections obtained independently by Alexander and Wermer [1] and the author [17]. 
The latter result was applied to analytic multifunctions by Berndtsson and Ransford 
[2, Theorem 1.3]. Similarly, we formulate Theorem 1.4 for analytic multifunctions, 
rather than for rational hulls. 

We would like to point out, that the proof of Theorem 1.4 is new also in the 
special case of the unit disc (compare with [17]). 

2. A new proof of the corona theorem for finitely connected do-
mains. In this section we prove the following lemma, from which the corona the-
orem for finitely connected domains follows immediately. 

LEMMA 2.1. Let G be a finitely connected planar domain as in Theorem 1.4 
and let zi, . .. ,zk be the critical points of Green's function with respect to pEG. Let 
8> 0 and Jr, ... ,1n E HOO(G) be given, such that 82 < IJr(z)j2+···+ Ifn(z)12 < 1, 
z E G. Assume, that there are functions kl, ... , kn E HOO(G), such that 

(2.1) j = 1, ... ,k, 

and 

(2.2) sup L Iki(Z)12 :::; M2. 
z 

Then, there exist gl, ... , gn E Hoo (G), such that Ei /igi == 1 in G and 

(2.3) 

where Co is a constant depending only on 8. 

Let us recall that a multifunction K: G -+ 2cn , where G c ek is open, is 
analytic [16, §2; 18, Introduction], if K is compact-valued, upper semicontinuous, 
and for every complex hyperplane L c ek +n with dim L = n + 1, the intersection 
L n gr(K) has the maximum property in the sense of Definition 1.1. We need the 
following facts about analytic multifunctions. 

PROPOSITION 2.2. If G1 c e, G c e k , K: G -+ 2Ck is an analytic multi-
function and f: G 1 -+ G is an analytic vector-valued function, then the composition 
L(z) = K(f(z)) is an analytic multifunction in G 1 [15, Proposition 5.1(ii); 18, 
Lemma 2.4, Remark 3.7]. 

THEOREM 2.3 [15, Theorem 4.3, case n = 2; 18, §1]. Let 0 < 8 < r 
and Po,r = {z E en: 8 < Izl < r}. Then there exists an upper semicontinuous 
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multifunction K: p{),r -> 2cn , analytic in p{),r such that K(z) c {w E en: (w, z) = 
1}, z E p{),r, where (z, w) = ZlW1 + ... + ZnWn. Moreover 

(2.4) max{lwl: wE K(z), z E p{),r} :::; C{),n 

where C{),r is independent on n. 

We will frequently make use of the following observation. 
REMARK 2.4. If G is any domain regular in the sense of potential theory 

(finitely or infinitely connected), it can be exhausted by domains of the form G" = 
{z E G: g( z, p) > €} with smooth analytic boundaries. In this case, a problem 
in question consists in giving uniform estimates (like in the next proof), the above 
observations allow us to reduce it to the case, when domain G is finitely connected 
and has smooth boundary, and functions forming data of the problem are smooth 
on C. 

PROOF OF LEMMA 2.1. We can represent 

1 = L ki(z)Ji(z) + P(z)q(z), ZEG, 

where P is given by (1.2) and q E HOO(G). Clearly, 

(2.5) IIPqlloo :::; 1 + M. 

By Remark 2.4, we can assume that functions ft, ... , fn are smooth on G and BG 
is smooth and real analytic. 

Let K: p{),! -> 2cn be as in Theorem 2.3. By Proposition 2.2, the composition 
L(z) = K(f(z)) is a uniformly bounded analytic multifunction, upper semicontin-
uous in C. By Theorem 1.4, there exists F = (F1, ... , Fn) E HOO(G, en), such 
that W(S-) E L(S-) a.e. dwp , where W(z) = (1/ P(z))F(z), z E G, z -=I- zi, ... , zk' In 
particular, (W(d, f(s-)) = 1 a.e. dwp • Let 

gi(Z) = ki(Z) + Fi(Z)q(Z), i = 1, ... , k. 

Then gi E HOO(G), and Li Jigi == 1 in G, for 

P(S-)q(S-) . 1 = P(s-)q(s-) (W(S-), f(s-)) = (q(s-)F(s-) , f(s-))· 

Furthermore, 

sup L lFi(Z)q(ZW :::; sup L IWi(S-)P(S-)q(S-W 
zEC i ,EoC i 

:::; (s~p ~ IWi(dIl2) IIPqll~ :::; C1,l(1 + M)2, 

by (2.5) and (2.4). This and (2.2) gives (2.3). Q.E.D. 
REMARK. The last proof works with minimal changes for finite Riemann sur-

faces (instead of using polynomial P, just observe, that (1- (k, f)W) is regular in 
G). Theorem 1.4 would have to be reformulated in the context of finite Riemann 
surfaces. Its present proof does not require any modifications, except for the use of 
a general version of Theorem 1.3, due to Wermer [20] and Royden [12]. We omit 
further details. 
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COROLLARY 2.5. If G is an arbitrary domain, regular in the sense of potential 
theory and such that the sequence of critical points of G is an interpolation sequence 
for HOO (G), then the corona problem has solution in G. 

PROOF. Apply Lemma 2.1 and Remark 2.4, use the interpolation property to 
find ki in (2.1); the interpolation constant can serve as M in (2.2). 

REMARKS. The corona theorem for finitely connected domains on Riemann sur-
faces is a classical result, which was proved and reproved many times; see, e.g. Forelli 
[5], Gamelin [7], Stout [19]. 

Lemma 2'.1 and Corollary 2.5 are due to Jones and Marshall [9] (as well as 
Remark 2.4). However, the proof given above is different from theirs. 

The first application of analytic multifunctions to the corona problem was found 
by Berndtsson and Ransford, who obtained a new proof of T. Wolff's a-theorem. 
This approach was followed by Slodkowski [18], and further continued by Berndts-
son and Ransford [2]. 

The proof given here generalizes the earlier one, presented in [18], which was 
. a direct proof (without use of the a-equation) of the corona theorem for the disc. 
(Another direct proof was given by Berndtsson and Ransford [2].) 

3. Selection theorem for the annulus. If G is an annulus, Theorem 1.4 can 
be strenthened as follows. 

THEOREM 3. 1. Let G be an annulus and let L : G -4 2cn be a multifunction 
satisfying conditions of Theorem 1.4. Then, there is W E HOO(G, en) such that 
W(~) E L(~), ~ E aG, a.e. dwp . 

PROOF (SKETCH). Let cP : D -4 G be a uniformizer with D equal to the unit 
disc. Let Ll(Z) = L(CP(z)), zED. To extend Ll to aD, recall, that cP can be 
actually defined in D \ {p, q}, where p, q are two points, so that CP: D \ {p, q} -4 G 
is continuous. Let 

Ll(~) = L(CP(~)), ~ E aD \ {p,q}, 

Ll(~) = co ( U L(~)) , ~ = p,q. 
€EaG 

Then, L 1 : D -4 2cn is an upper semicontinuous multifunction with convex sections, 
which is analytic in D by Proposition 2.2. 

Consider the polynomially convex hull Y of the set X = {(~, w); ~ E aD, w E 
Ll(~)}' and let Y(z) = {w E en: (z,w) E Y}. By a simple argument, like in [17, 
Lemma 5(i)], Y n (aD x en) = X, that is Y(~) = Ll(~)' ~ E aD. By the special 
case k = 0 of Theorem 1.4 (or by [1, 17]), there exists 9 E HOO(D, en), such that 
g(~) E Ll(~) a.e. dwpo By the maximum property, the graph of 9 must be contained 
in the hull Y, that is g(z) E Y(z), zED. Let b n } be the (cyclic) group of deck 
transformations. The sequence of averages . 

N 

gN(Z) = (2N + 1)-1 L g(-y1(z)) 
i=-N 

has a subsequence convergent to a function goo E HOO(G, en), which is invariant 
with respect to b n }, where W E HOO(G), cf. [9, §1]. 
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On the other hand, the Y(z) have to be convex (see [1, Corollary] or Corollary 3.4 
below); therefore gN(Z) E Y(z), N = 1,2, ... , zED, and so goo(z) E Y(z). Since 
y(.) is upper semi continuous on D, g(e iO ) E Y(e iO ) = L(<I>(e iO )) a.e. dO. Almost 
everywhere <I>'(eiO ) =f:. 0; therefore g(e iO ) = W 0 <I>(eiO ) a.e. dO, and so W(~) E L(~) 
a.e. Q.E.D. 

Although we can obtain a regular selection W(~) in the above theorem, it is not 
possible to prescribe the value W(z*), as an arbitrary element w* E L(z*). (This 
is in contrast with the case of the unit disc, see [1 and 17].) Before we give an 
example to this effect, we discuss some auxiliary facts. 

PROPOSITION 3.2. Let e be as in Theorem 1.4 and let X c Be x en be 
a compact subset with nonempty and polynomially convex sections X (~) = {w E 
en: (~, w) E X}, ~ E Be. Fix points al,"" ak, one in each bounded component of 
e \ e. Assume, that the hull Y of X, with respect to the algebra 

A = P[z, WI, ... , W n , (z - ad-I, ... , (z - ak)-l], 

is not contained in Be x en. Then Y is equal to the graph of maximal multifunction 
L: e -t 2cn , which is upper semicontinuous in e, analytic in e, and satisfies 

(3.1) L(~) c X(~), ~ E Be. 
PROOF (SKETCH). The multifunction z -t Y(z): e -t 2cn is analytic by 

Rossi's local maximum modulus principle (Y being the Gelfand space of A), and is 
clearly upper semicontinuous. On the other hand, the graph of each multifunction 
L under consideration has the local maximum property and satisfies (3.1), and so, 
it must be contained in the hull Y. Q.E.D. 

PROPOSITION 3.3. Let K: e -t 2cn be an analytic multifunction and let L(z), 
z E e, be the convex hull of K(z). Then L: e -t 2cn is an analytic multifunction. 
(See [15a, §7.C(b)].) 

The next corollary follows immediately by combining Propositions 3.2 and 3.3. 

COROLLARY 3.4. Under assumptions of Proposition 3.2, if all the boundary 
sections X(~), r; E Be, are convex, then all the sections Y(z), z E e, of the 
rational hull Y (in the sense of Proposition 3.2) of X are convex as well. 

EXAMPLE 3.5. Let e = {z E e: r < Izl < 1}, 0 < r < 1, and let X = {(z,w) E 
e 2 : Izl = r or 1, Iwi = IzIQ}, where Q is a fixed non integer real number. Let Y 
be the rational hull of X (in the sense of Proposition 3.2). Then Y\X cannot be 
covered by graphs of single-valued analytic functions. 

PROOF. Apply first Proposition 3.2 to show that 

Y{(z,w) E e 2 : r ~ Izl ~ 1, Iwl ~ IzIQ}· 
Clearly, Y\X has the local maximum property, so z -t Y(z}: e -t 2c is analytic. 
Consider any multifunction L with properties as in Proposition 3.2, in particular 
(3.1). The function 

'l/J(z} = max {log Iwl: wE L(z)} 
is subharmonic in e by [18, Proposition 3.4 or 15, Theorem 3.2]. Since 'l/J(~) ~ 
Q log kl for ~ E Be, 1j!(z) ~ Q log Izl in e, so L(z) c Y(z), z E e. By Proposition 
3.2, Y is the (rational) hull of X. 
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Now fix z* E G and w* with Iw*1 = Iz*IO:, and suppose there exists f E Hoo(G) 
such that f(z) E Y(z), z E G, and f(z*) = w*. Then, loglf(z)l- oologlzl ~ 0, 
z E G, with equality at z = z*, which implies loglf(z)1 == oologlzl in G. If a is not 
an integer, such f does not exist. Q.E.D. 

REMARK 3.6. Using methods of this section, one can prove that if Y is the 
rational hull of X as in Proposition 3.2 and sections X(~), ~ E G, are convex, then 
Y\X can be covered by graphs of many-valued analytic functions f: G --+ e (i.e. by 
immersed Riemann surfaces). For the proof one has to consider the composition 
L 1 (z) = Y 0 cI> (z), where cI>: D --+ G is a uniformizer as in the proof of Theorem 
3.1, and to observe that L 1 (-) is the maximal analytic multifunction with boundary 
values X 0 cI>(d (additional definition is needed at points of 3D\cI>-1(3G)). Then 
apply [lor 17] to get a selection h of L 1 ; h 0 cI>-1 will be a desired many-valued 
selection. We omit further details. 

REMARKS. The averaging argument in the proof of Theorem 3.1 (which we took 
from Jones and Marshall [9]) is due to Scheinberg [14] and Stout [19]. 

Maximal analytic multifunctions satisfying condition (3.1) were studied by Rans-
ford [11, pp. 497-499]. 

Proposition 3.2 was observed independently by J. Wermer and the author. 

4. The generalized corona problem for ideals. Consider h, ... , fn, g E 
Hoo(G), Gee, such that 

(4.1) Ig(zW ~ Ih(zW + Ih(zW + ... + Ifn(zW ~ 1, z E G. 

The problem whether, under these assumptions, g must belong to the ideal Ah + 
... + Afn (further denoted by J(h, ... , fn)), was posed and answered negatively 
(in the case of the unit disc) by Rao [10] (see also Garnett [6, VIII, Ex. 3, p. 369]). 
A positive result was contributed by T. Wolff, who has shown (in the case of the 
unit disc), that g3 E J(h, ... , fn). In this section, we prove the next two facts, 
which generalize (and slightly improve) Wolff's theorem. 

THEOREM 4. 1. Let G be a domain regular in the sense of potential theory (of 
arbitrary connectivity) such that the sequence of critical points is interpolating for 
H= ( G). Then 

(a) g4 belongs to J(h, ... , fn), whenever (4.1) holds for h, ... , fn, g E Hoo(G). 
(b) Moreover, g3+t: E J(h, ... , fn) provided gt: is defined, E > O. 

THEOREM 4.2. If G is a finitely connected domain as in Theorem 1.4, then 
(a) g3 E J(h, ... , fn), whenever h, ... , fn' g belong to Hoo(G) and satisfy (4.1). 
(b) Moreover, g2+t: E J(h, ... , fn), provided gt: is defined and f = (h,···, fn) 

does not vanish at any of the critical points z~, ... , zk . 

The use of the fractional power gt: is, of course, best motivated if g is a nowhere 
vanishing function in the unit disc. In the next section, we will give an example of 
such g and of h,h E Hoo(D), satisfying (4.1), such that g2-t: does not belong to 
J(h, h) for any positive E. The same problem for g2 seems to be open. 

We need the following improvement of Theorem 2.3. 

LEMMA 4.3. For every positive a and for every real a, there exists a constant 
Co: = C( a, a) and a continuous multifunction K: {z E en: Izl 2' ea } --> 2cn , which 
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is analyt?:c in {[z[ > ea }, and such that 

(4.2) 

(4.3) 
gr(K) c {(z,w) E en x en: {z,w} = I}, 
max [K(z)[ := max{[w[: wE K(z)} ::; Co[z[1+o, 

PROOF. It is enough to prove the lemma for a = O. (The notion of an analytic 
multifunction is clearly independent with respect to change of variables.) By [18, 
Lemma 1.1], the multifunction 

(4.4) K(z) = {w E en: {z,w} = 1, [w _[z[-2Z[::; eP(loglzll}, 

where p: (0,00) is a smooth function, is analytic in {[z[ > I}, if p is convex in 
(0, 00 ), and the inequality 

(4.5) pll(x)(e2p(x)+2x(p'(X) - 1) - 2) > 2(p'(x) + 1)2 

holds. (With obtuse inequality, (4.5) is also a necessary and sufficient condition, 
assuming convexity of p.) After substituting p(t) = ~/(4t) - t, the inequality 
reduces to 

(4.6) 

This observation, the equation 

(4.7) max [K(z)[ = [z[-1(ef(41oglzll + 1)1/2, 

and some simple computation show quickly that it suffices to check the following 
Assertion in order to obtain (4.3). 

Assertion. For every positive a, there exist positive constants r, b, c such that 
the convex function 

(4.8) I(x) = 2R + (1 + a/2)x + be-ex 

satisfies (4.6) in (0,00). 
Substituting (4.8) in (4.6), we obtain 

LHS = !" ( ef (I' - 1) - 1) 
= bc2(e2R exp(be-eX ) exp((1 + a/2 - c)x)(a/2 - bee-eX) _ e-eX); 

RHS = ~(1 + a/2 - bee-ex )2. 

We specify now e = 1 + a/2, b = a/(4 + 2a). Note, that a/2 - bee-ex::; a/4, 
exp(be- eX ) ~ 1, and e-ex ::; 1. Then 

LHS ~ (a/4)(1 + a/2)(e2R (a/4) - 1); RHS ::; ~ (1 + a/2)2. 

This implies that the Assertion holds if R ~ ~ log(l/a) + ~ log(1 + l/a) + log 2. 
Using this, we can obtain the following estimate for Co in (4.3): 

(4.9) Co ::; ((4/a)(1 + l/a) + 1)1/2. Q.E.D. 

COROLLARY 4.4. Let G be a finitely connected domain as in Theorem 1.4. Let 
1= (11, ... , In) E HOO(G, en), 9 E HOO(G). Assume, that [g(z)[ ::; [/(z)[, z E G, 
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and, that for given c > 0, ge is defined. Then there exists a meromorphic vector-
valued function W = (Wi"'" Wn) with simple poles at critical points zi, . .. ,z;' 
and non tangential boundary values W(~) a.e. dwp such that 

n 

( 4.10) g2+e(z) = L:Wi(Z)!i(Z), z E G\ {z; , ... , z;'}, 
i=l 

(4.11) IW(~)I ::; Ge , a.e. dwp , 

where Ge depends only on c. 

PROOF. We can assume, without loss of generality, that Ig(z)1 < If(z)1 whenever 
f(z) 1= O. (Replace 9 by (1 - 8)g, 8 > 0, if necessary.) Consider the set-valued 
function K: {u E en: lui ~ I} -t 2C" , satisfying the conditions of Lemma 4.3, with 
0: < C. By Remark 2.4, we may assume, that f, 9 are continuous on G as well. Then, 
the composition R(z) = K(g(z)-l f(z)) is well defined and upper semicontinuous 
in G\g-l(O), and analytic in G\g-l(O) by Proposition 2.2. Moreover, by (4.3), 

(4.12) maxIR(z)1 ::; Go lg(z)I- 1-o. 

Now let 
L(z) = { g(z)1+e R(z), if z E G, g(z) 1= 0, 

{O}, if g(z) = o. 
Clearly, L is upper semicontinuous in G\g-l(O)j by (4.12), it is also upper semi-
continuous at the points of g-l(O). By [15, Proposition 5.1], the multifunction L 
is analytic in G\g-l(O). We will show now that L is also analytic in G. By [18, 
Definition 0.2 and Proposition 3.4], we have to check that if h(z,w) is an analytic 
function in a neighborhood of (z*,O), g(z*) = 0, then Ihl I gr(L) cannot have a 
strict local maximum at (z*, 0). Indeed, by [18, Proposition 3.4], the function 
v(z) = max{lg(z,w)1 : w E L(z)}, which is continuous near z*, is subharmonic in a 
pointed neighborhood of z* and so subharmonic in the full neighborhood .(by the 
well-known results about removable singularities for subharmonic functions). Note 
also, that 

(4.13) 

Applying Theorem 1.4 to L, we obtain the desired meromorphic function WC) 
such that W(~) E L(~) a.e. dwp . It follows from the definition of L(·) and properties 
of K(·) that (g(~)-l-eW(~),g(~)-lj(~)) = 1, that is g(~)2+e = (W(~),j(~)) a.e. 
dwp , which implies (4.10). We obtain (4.11) by (4.13). Q.E.D. 

PROOF OF THEOREM 4.1. We will find gl, ... ,gn E HOC such that 

(4.14) 

Since we will obtain uniform estimates on gl,"" gn, we can assume, by Remark 
2.4, that G is finitely connected and has smooth boundary. Let M denote the 
interpolation constant for the sequence of critical points zi, . .. ,z;'. We can find 
k = (kl, ... , kn) E HOO(G, en) such that Ik(z)1 ::; M and g(zj) = (k(zj),J(zj)). 
Then 

9 = L: kdi + Pq, where IIPqlloo ::; M + 1, 
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and P(·) is defined by (1.2), and q E HOO(G). Let W = (Wl, ... , Wn ) be as in 
Corollary 4.4. Then 

(4.15) g3+e = 'f)g2+eki )!i + g2+e Pq = I:(g2+eki)!i + I: WdiPq, 

for z E G\{zi, ... ,zk}. Hence, the functions gi = g2+eki + (WiP)q, which are 
holomorphic in G, satisfy (4.14). Furthermore, by (4.11), the following uniform 
estimate holds: 

'"p ( ~ 1 •• ( z) I' ) 'I' <: 'up es, Ikk) 1 + (,up ... IW(dllllPqlloo <: M + C, (M + 1). 

Q.E.D. 
PROOF OF THEOREM 4.2. (b) Since !(zj) = 0, j = 1, ... , k, we can find 

k!, ... , kn E HOO(G) such that 1 = L:i kdi + Pq, for some q E HOO(G). Then 

g2+e = I:(kig2+e)!i + g2+e(Pq). 
i 

Now, the right side of this equation can be represented by L:i !i(kig2+e + WiPq) 
in the same way as it was done in (4.15) in the last proof. 

(a) Choose a function P* in HOO(G), continuous on G and such that 

inf IP*(~)I ~ 1, 
,E8G 

and the corresponding zeros are of the same multiplicity. Then we can represent 
! = f*P*, with f*(zj) =I- 0, j = 1, ... ,k, and f* E HOO(G). Since Ig(z)1 ~ 1!(z)l, 
we obtain in the same way that g = P*g*, where g* E HOO(G) and Ig*(z)1 ~ 
1f*(z)1 :::; 1, z E G. 

By Corollary 4.4, there exists a meromorphic function W = (W1 , ... , Wn ) E 
HOO (G ,en), with poles at zi, ... , zZ, such that 

(4.16) 

Since f*(z) does not vanish at critical points, we can find q, kl"'" kn E HOO(G), 
so that 

1 = I: !t(z)ki(z) + P(z)q(z). 

Multiplying the last equation by g3, we obtain 

Substituting in the last formula (g*)3 given by (4.16), we obtain that functions 
gi = ki(P*)3 + (WiP)(p*)3q are bounded holomorphic solutions to the equation 
g3 = L:i !igi. Q.E.D. 

REMARKS. Our methods differ from those of T. Wolff (neither the a-equation, 
nor the Koszul complex are used), cf. Garnett [6, Theorem 2.3]. In particular, the 
proof of Corollary 4.4, when specified in the case of the unit disc, gives the new 
proof of Wolff's theorem. 
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The proofs of Theorems 4.1 and 4.2 extend to Riemann surfaces (finitely con-
nected in the latter case), cf. remark after the proof of Theorem 2.l. 

Note added July 16, 1986. Theorems 4.1 and 4.2 can also be obtained from 
the results of Jones and Marshall [9, §2]. In particular, Lemma 2.2 in [9] allows 
for transferring the problem to the unit disc. In addition, under the (apparently 
stronger) assumptions of Theorem 2.10 in [9] the exponents 4 and 3 + c can be 
lowered to 3 and 2 + c respectively. 

The author is grateful to Professor Peter Jones for these observations. 

5. Estimates and examples. In this section, we will estimate (in the case of 
. the unit disc) some of the constants and parameters, considered previously. This 
will give some indications of how distant results presented here are from the optimal 
ones. 

First consider the best corona constant Ko-that is, the smallest K such that, 
whenever b2 ~ 1ft (z)12 + ... + IIn(z)1 2 ~ 1, ft, ... , In E HOO(D), then the solutions 
gl, ... , gn E HOO(D), gd1 + '" + gnfn = 1 can be found so that Ig1(Z)12 + ... + 
Ign(z)12 ~ K2. 

By [18, §2] or the proof of Theorem 2.1 above, Ko ~ Co = CO,l, where CO,l is 
as in Theorem 2.3. By the construction of the multifunction K(·) in this theorem, 
as discussed in the proof of Lemma 4.3, and by (4.7), 

C < max e-xe!I(x) + 1)1/2 0_ , 
xE[4log o,oJ 

where ft (-) is a solution to( 4.6) in [4 log b, 0]. We can take e.g. ft (x) = f(x-410g b), 
where f is any solution to (4.6) in [0,00). Hence, Cl ~ 1 + exp(f(410g(1/b))), and 
by the proof of Lemma 4.3, Assertion, 

f (410g (~) ~ 210g 2 + log ( ~) + log ( 1 + ~) + (1 + ~) 4 log (~) + 4: 2a 

= 2 log 2 + 2 log ( ~) + (1 + ~) 4 log (~) + o( a). 

Since the sum 210g(1/a) + (1 + a/2)410g(1/b) has minimum at a = (log(l/b))-l, 
we obtain 

I ( 4 log (~ ) ) = 2 log 2 + 2 + 4 log (~ ) + 2 log log (~) + o( b), 

and so Cl ~ 1 + 4e2(1/b)4(log(1/b))2 exp(o(b)). 

COROLLARY 5 .1. Ko ~ Co, b > 0, where Ko denotes the corona constant and 
Co (= the best constant CO,l in (2.4)) satisfies 

I· Co < 2 
l~~~P (l/b)2log(l/b) - e. 

REMARK. The same rate of growth for Ko was obtained by different methods 
by Berndtsson and Ransford [2, §2] (in case of two generators). 

The precise rate of growth of Ko is unknown. Below, we modify the counterex-
ample, due to A. M. Gleason (cf. Garnett [6, VII, p. 293]), to provide the following 
estimate. 



734 ZBIGNIEW SLODKOWSKI 

PROPOSITION 5.2. Ko ~ (1/4V2)8- 2 , 8> O. 
PROOF. For every C E (1,00) and for every integer N, consider the corona data 

in the unit disc: 

Izl < 1, 

where rN = l/C. Clearly, Ift(z)1 2 + Ih(z)1 2 ~ 1; let 8N denote the maximal 8, 
such that 82 ~ Ift(z)i2 + Ih(z)i2, zED. It turns out, that 

(5.1) if gIft + g2h == 1 in D, then Ilgllloo :2: V2C2 • 

To see this, denote by rwo, rWI, ... , rWN-I the roots of the Blaschke product 
V2h (where IWil = 1). Observe that, if 1 == gIll +g2h, then 1 = gl(rwi)fl(rWi) = 
(l/V2)rN+lwigl(rwi), and so the function h(z) = (l/V2)rN+1 g(z), ZED, solves 
the interpolation problem h(rwi) = w;l, i = 0, 1, ... , N -1. It is shown in Garnett 
[6, p. 294J that for any such solution h, Ilhll oo :2: r l - N , i.e. lI(l/V2)rN+1 gll oo :2: 
r l - N , which shows (5.1). 

We have to estimate now the constants 8 N. Clearly, 

8N:2: eN:= min(maxlft(z)I,lh(z)!). 
Izl:9 

Since 
. If ( )1 _ (l/V2)ltN - rNI 

mm 2 z - 11 N NI ' Izl=t - r t 
and IZN+II = tN+I on Izl = t, we substitute s = tN and get eN = minsE[O,I] fN(S), 
where 

fN(S) = (l/V2)max(s1+I/N, Is -1/CI/11- siC!), O~s~l. 

Since this nondecreasing sequence of functions is uniformly convergent, lim eN = 
inf f(s), where 

f(s) = (l/V2)max(s, Is -1/CI/11- s/cl), 0 ~ s ~ 1. 

Simple geometric considerations show that f has the only minimum at s such that 
o ~ s ~ l/C and s = (l/C - s)/(l - siC). This yields s = l/(C + JC2 - 1), so 
minf(s):2: (2V2C)-1. Therefore, 

(5.2) 

To conclude the proof, fix now 8 E (0,1) and choose C so that (2V2C)-1 = 8. It 
follows from (5.1) and (5.2) that Ko :2: (4V282)-1. Q.E.D. 

EXAMPLE 5.3. We will now use the previous example to construct functions 
g, ft, 12 E HOO(D) such that 

0< Ig(zW < Ift(zW + Ih(zW < 1, zED, 
g2-e f/:- J(ft, h), 0 < e. 

Consider disjoint unit discs DN = {z E C: Iz - 3NI < 1}, N = 1,2, .... Let 
8N E (0,1) be numbers to be specified later. As in the last proof, one can find 
ftN,hN E HOO(DN)' so that 

(5.3) 482 < IftN(ZW + IhN(z)12 < 1/4, 
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and whenever 9li1N + 92!2N == 1,91, 92 E Hoo(DN), then 1191/100 2: 3c8iV2, where c 
is a universal constant. Consequently, holomorphic solutions 91,92 of the equation 

(5.4) 8iv- g = I1N(Z)91(Z) + hN(z)92(z), z E DN, 

where £ E [1/N,2]' satisfy /1911100 2: 3c(1/8N)1/N. We now use B. Cole's ideas to 
make one connected domain out of the disjoint discs D N. 

First, by the Montel family argument, one can select radii TN < 1 such that 

max 191(Z)1 2: 2c(1/8N)1/N, 
Izl~rN 

even if (5.4) holds only for z E D'N := {Iz - 3NI < TN}, 91, 92 E Hoo(D'N). Next, 
using a standard Banach algebra argument, one can find 'fiN > 0 small enough so 
that 

whenever 9,11,12,91, 92 E Hoo(D'N), 119 - 8Nll00 ::; 8N'fIN, 
(5.5) Il/i - liNl1 ::; 'fiN, and 92- g = 1191 + 1292, £ E [1/N,2), 

thenl1911100 2: c(1/8N )l/N. 
Consider now the closed and connected set X C C, obtained by joining the 

closed discs D'N by closed segments [3N + TN, 3(N + 1) - TN+1J. Define continuous 
functions 'fI: X -+ (0,00), and 9*: X -+ C by letting 'fIID'N == 'fiN, 9*ID;' = 28N, 
and interpolating linearly on the connecting segments. To define Ii, 12: X -+ C, 
let /tID; = liNID;' and extend them continuously to the connecting segments, so 
that 

4Ig*(zW < I/t(zW + 1/2'(z)12 < 1/4. 
Applying so-called Carleman (or tangential) approximation on X, we can find an 
open neighborhood G of X and holomorphic functions 11, 12, 9 E Hoo (G), such that 

(5.6) Ig(z) - g*(z)1 < 'fI(z)lg*(z)l, I/i(z) - Itcz) I < 'fI(z), z E X, i = 1,2. 
(This can be proved by exhausting suitably the set X by simply connected compact 
sets X N and applying repeatedly Mergelyan's theorem. For more general results of 
this kind, as well as further references, see Boivin [3J.) Shrinking G, if necessary, 
we can assume that it is simply connected. If we require also that 0 < 'fiN < ~8N' 
then by (5.3), (5.6), 

0< Ig(z)1 2 < II1(zW + Ih(z)1 2 < 1, z E G. 
Suppose now, that gl, g2 E H(G) and g2-g = gli1 + g2!2 in G, where 0 < £ < 2. 

By (5.5), (5.6), if N > 1/£, then /lg11D'N1100 2: c(1/8N )l/N. If 8N are so chosen 
that lim8iJN = 0, then 91 ~ Hoo(G). Since G is biholomorphically equivalent to 
the unit disc, the proof is complete. Q.E.D. 

REMARKS. For an account of B. Cole's argument, which we followed in the last 
example, see Gamelin [8, pp. 49-53J. 

It is possible to find an exact solution of the equation f" (e f (I' - 1) - 1) = ~ (I') 2, 
but the estimate for Co in Proposition 5.2, obtained in this way, is qualitatively the 
same (limsupCo/((1/8)2log(1/8)) = 2ye). 

ACKNOWLEDGMENTS. The author was attracted to problems studied in §4 by 
R. Rochberg, who suggested that analytic multifunctions might be useful in this 
context. The author is grateful to R. Rochberg, as well as to T. W. Gamelin and 
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