
TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 300, Number 2, April 1987 

EICHLER-SHIMURA HOMOLOGY, INTERSECTION NUMBERS 
AND RATIONAL STRUCTURES ON SPACES 
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ABSTRACT. In this paper we reinterpret the main results of [8] using the 
intersection theory of cycles with coefficients. To this end we give a functorial 
interpretation of Eichler-Schimura periods. 

Introduction. In this paper we reformulate the main results of S. Katok [8] 
in terms of homology theory with local coefficients. In order to do so we first give 
an interpretation of the period of a cusp form f of weight 2m + 2 (m 2: 1) over a 
closed geodesic h] as the Kronecker index of the cohomology class Sh f with local 
coefficients associated to f by Shimura [13] and a I-cycle with dual local coefficients 
associated to h]. We will call this period the Eichler-Shimura period. There are 
other interpretations of Eichler-Shimura periods but these seem to work only for 
arithmetic fundamental groups whereas the defining integral of the period makes 
sense quite generally. 

There is a simple idea from group homology theory which is the basis of our 
reformulation-that of a "decomposable" cycle. We now give the definition. 

Suppose a is a representation of a group r into CL(V) where V is a finite 
dimensional vector space. Then we may consider the Eilenberg-Mac Lane homology 
group H 1 (r, a). We observe that if 1 is an element ()f r and v is an element of V 
satisfying ah)v = v (a 1-invariant) then the I-chain 1 ® v satisfies 

Dh ® v) = ah)v - v = O. 

Consequently, 1 ® v is a I-cycle and gives rise to an element of H 1(r, a) which we 
also denote 1 ® v. 

DEFINITIONS. We will call such cycles decomposable cycles and we will say a 
homology class is decomposable if it has a decomposable representative. 

REMARK. A general I-cycle is of the form 2:::7=1 1i ® Vi where 
n n 

La(li)vi - LVi = O. 
i=1 i=1 

For more details on homology and cohomology of groups see Brown [3]. 
We can now give our formulation of Eichler-Shimura periods. Let V be the 

space of the standard 2-dimensional complex representation of SL2 (R) and V* be 
its dual. The corresponding real space we will denote by VR. We let smv denote 
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the mth symmetric power of V. We let f be an element of 82m+2 (r), the space of 
holomorphic cusp forms of weight 2m + 2 for a Fuchsian group f of finite covolume 
in 8L2(R). In most of what follows m will play no role and we will abbreviate 
8 2m V by E and the underlying real space by ER. Then we have the embedding of 
Shimura [13]: 

Sh: 82m+2 (r) -+ Hl(f, E). 
Let (( , )) denote the Kronecker pairing of Hl(f,E) with Hl(f,E*) and let us 
denote the standard basis for the space V * by {u, v}. As a model for E* we 
consider the space of all homogeneous polynomials of degree 2m in u and v with 
complex coefficients. The group GL2 (R) acts on E* by the following formula 

p(g)P2m (u, v) = P2m(au + bv, cu + dv), 

where g-l = [~~l and P2m (u,v) E E*. Suppose now, = [~~l is a hyperbolic 
element of f. Then the I-chain 

,® (cu2 + (d - a)uv - bv2)m 
is a decomposable cycle and we have the following result, Theorem 2.1 of this paper. 

THEOREM. 

((Sh f" ® (cu2 + (d - a)uv - bv2)m)) = r 1zo f(z)(cz2 + (d - a)z - b)m dz. Jzo 
Here Zo is any point in the upper half-plane H and the right-hand side is the integral 
along any path joining Zo and ,Zo in H-this is the Eichler-Shimura period. The 
proof of this formula depends on a de Rham interpretation of Hl(f, E) and a 
simplicial interpretation of H 1 (f , E*). 

Now if 8 m +1,-y denotes the relative (or hyperbolic) Poincare series given in (1.3) 
of [8] we have that the Petersson inner product ((f,8m+1,-y)hm+2 is the above 
Eichler-Shimura period. We find as a consequence of the previous formula the 
following theorem-see Theorem 4.2 of the text. 

THEOREM. The relative (hyperbolic) Poincare series 8 m +1,-y span 82m+2 (r) as 
a real vector space if and only if the decomposable classes span H 1 (f, ERJ 

As a consequence the result of S. Katok from [8] may be restated as saying 
that the decomposable classes span H 1 (f, Eft) We observe that this homological 
reformulation does not require the existence of a quotient f \ H. It makes sense for 
arbitrary subgroups f of 8L2(R). Our reformulation is to some degree justified by 
the fact that Goldman and Millson [5] have proved this algebraic version for any 
finitely generated, Zariski-dense subgroup of 8 L2 (R). This reformulation also plays 
a critical role in their construction of an explicit finite spanning set of hyperbolic 
Poincare series for any Fuchsian group of finite covolume. However, we did not 
have this result as our primary goal in making this reformulation but rather we 
had higher dimensional generalizations in mind. Here one must replace the cycles 
,® v with the cycles considered in Johnson and Millson [7]. 

In §§5 and 6 we restrict to certain arithmetic groups f and verify that the rational 
structures on 82m+2(r) constructed by S. Katok [8] coincide with the usual ones 
coming from Eichler-Shimura theory. The rational structures coming from Eichler-
Shimura theory are described in detail in §5 and compared to those of S. Katok in 
§6. 
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In the final section of our paper we give a reformulation of the period formula, 
Theorem 3, of S. Katok [8] in terms of an intersection product of decomposable 
cycles "11 Q9 VI . "12 Q9 V2. Such an intersection product is a sum over the points 
of "11 n "12 of an intersection multiplicity multiplied by a coefficient (VI, V2). This 
coefficient contribution is the inner product of two elements of E* using the natural 
symmetric form. 

We thank Bill Goldman for some interesting discussions concerning the Shimura 
isomorphism. Our discussion of the Shimura isomorphism was influenced by Chap-
ter 2 of his paper [4]. We also thank John Stembridge for useful conversations. 

1. The Shimura isomorphism. In this section we review the construction 
of the Shimura isomorphism [13] in the case of even weight forms. Let N be a 
manifold and G a Lie group which operates on N from the left. Let X(N) denote 
the smooth vector fields on Nand 9 denote the Lie algebra of G. Then there is a 
linear map <T> from 9 to X(N) defined as follows. Let V E g. Then <T>(v) = V where 
if x E Nand f is a smooth function defined near x we have: 

d 
Vf(x) = d/(exp(-tv)x)lt=o. 

We extend <T> to a map from the complexification gc of 9 to complex vector fields 
on N. If N is a complex manifold with almost complex structure J and G preserves 
J then we may replace <T> by <T>' with 

<T>' = -(<T> - iJ 0 <T». 

Then <T>' takes values in the holomorphic vector fields on N. We observe that <T> 
and <T>' are G-homomorphisms. 

The hypotheses of the above paragraph are satisfied in case N is the upper half-
plane, to be denoted H, and G = PSL2(R). For future reference we observe that if 
we identify H with PSL2(R)/S02 then the usual complex structure on H coincides 
with the G-invariant complex structure whose value at the identity coset is induced 
by the quotient of the action of Jo on 9 by x --+ [Jo,x] where J o = ![_~ ~]. We 
find the formula 

<T>' ([ : _ ! l) = (-cz2 + 2az + b) :z . 

In particular <T>' takes values in Q, the space of quadratic vector fields on H. 
It is convenient to observe that gc is equivalent as a G-module to S2V*. This 

equivalence is obtained by using the symplectic form ( , ) on V given by (e, 1) = 1 
where {e, f} is the standard basis for the space V. If A E g, we define SA E S2V* 
by SA(Vl,V2) = (AVl,V2). Letting {u,v} be a basis for V* dual to {e,f} we obtain 
the following formula for <T>' transported to S2V* which we denote W: 

8 
w(au2 + buv + cv2) = (az2 + bz + c) 8z. 

For every natural number m, W induces a G-homomorphism 
smw: sms2v* --+ smQ. 

We may also regard smw as a G-invariant element of smS2v Q9 smQ and also as 
~ 

a G-invariant global section of the sheaf SmS2V Q9 sme where e is the sheaf of 
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r------' 

germs of holomorphic vector fields on Hand Sm S2V is the sheaf of locally constant 
functions on H with values in sms2v. 

We now consider the projection p: sms2v* -+ E*. One way of viewing p is 
as follows. We embed sms2v* in ®;n S2V*. This latter space can be realized 
as products of quadratic forms in m distinct sets of variables (Ul, vt), (U2, V2), ... , 
(um , vm ). Precisely we can realize ®;n S2V* as functions on E9;n V as indicated. 
The projection p may then be realized by restriction to the diagonal. We will need 
another realization of pin §5. The space sms2v* is the space of all homogeneous 
polynomials of degree m in three variables each of which is a quadratic polynomial 
in two variables. The projection p may also be realized by substitution: it projects 
each homogeneous polynomial of degree m in three variables onto a homogeneous 
polynomial of degree 2m in two variables. 

We have a similar projection q: sm Q -+ P where P is the space of m-vector fields 
on H of the form p(z)80m /8z where p(z) is a polynomial of degree less than or equal 
to 2m. The projection q may be constructed as follows. We embed sm Q in the space 
of sections of the m-fold external tensor product T'(Pl) ~ ... ~ T'(Pl). Here the 
prime denotes the holomorphic tangent bundle. We recall that the external tensor 
product E ~ F of two bundles E and F over X and Y respectively assigns to (x, y) 
the tensor product of the fibers Ex and Ey . The diagonal map ~: pl -+ (pl)m 
induces a bundle map: 

~*: T'(pl) ~ ... ~T'(pl) -+ T'0m (pl). 
Then ~ * restricted to sm Q gives rise to the projection q. We observe that the 
image of sm Q under ~ * is P. It is clear that q 0 smw factors through p and gives 
rise to a G-homomorphism S from E* to P. 

LEMMA 1.1. 

( 2m . ") (2m ") 8 0m 
S LajuJv2m- J = LajzJ az' 

J=O J=O 

PROOF. It is sufficient to prove that S(uj v 2m- j ) = z j 8 0m /8z. We lift u j v 2m-j 
back to r = UIVI 181··· 181 UjVj 181 V]+l 181··· 181 v;' in ®;n S2V*. The image of 
r under smw is v = z18/8zl ~ ... ~ zj8/8zj ~ 8/8zj+l ~ ... ~ 8/8zm . But 
~ * (v) = zj 8 0m /8 z and the lemma is proved. 0 

LEMMA 1.2. Under the isomorphism between Hom (E* , P) and E 181 P the image 
of S (again denoted S) is given by 

S = ~ (2m) jf2m- j j80m 
L- . e Q9Z 8 . 
j=O J z 

PROOF. We have only to check that the basis {ej)e j pm-J , 1 :s:: j :s:: 2m} is 
dual to the basis {ujv2m-j} and the lemma is proved. 0 

We now regard S as a G-invariant section of the sheaf if; 181 em. If K is the sheaf 
of germs of holomorphic I-forms on H then contraction with S gives a G-map of 
sheaves, to be denoted Sh: 

We have the following lemma. 
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LEMMA 1.3. IJ J(z)dzm+1 is the germ oj a holomorphic section oj Km+1 at a 
point Zo in H, then 

Sh(f(z)dzm+1) = f (2~) ej j2m-j ® zj J(z)dz. 
j=O J 

Notation. If s is an element of E we will let s denote the constant function on 
H taking s as a value. 

We may rewrite the right-hand side of the above formula as 

Sh(f(z)dzm+1) = (ze + j)2m ® J(z)dz. 

This new expression has a rather different meaning from the previous one since 
(ze + j)2m is not a constant function on H with values in E. It is a section of a 
homogeneous line bundle £_ over H. Though this point of view will play no role 
in what follows we make a digression to give some details since it is in this form 
that Sh(f(z)dzm+1) is usually given. 

The flat bundle E is a direct sum of homogeneous line bundles. Indeed the 
action of the maximal compact subgroup 802 of 8L2 (R) on E may be diagonalized 
and this diagonalization breaks E into a sum of homogeneous line bundles. Recall 
Jo = ! [ _ ~ 6]. The action of Jo on s,p (the orthogonal complement of the Lie algebra 
of 802 in g) as a derivation induces the almost complex structure on the tangent 
space to H at the identity coset of 8L2 (R)/802 • Also the above decomposition 
of E is the decomposition of E into eigenspaces under the derivation action of Jo. 
T4e eigenvalues are pure imaginary and we order them in the obvious way. We let 
L_ be the lowest (that is the -2mi) eigenspace for the action of Jo and £_ be the 
corresponding homogeneous line bundle. The connection with the above formula is 
the following. 

LEMMA 1.4. The fiber oj £_ over z is generated by (ze + f)2m. 

PROOF. We observe that we may realize H as the space of negative definite 
complex structures on VR (we say J is negative definite if the form SJ(V1,V2) = 
(V1, JV2) is negative definite for V1, V2 E VR). Under this correspondence J = [~~] 
corresponds to the point z = -d/c - i/c (note c < 0). But then the -i eigenspace 
of J on V is generated by ze + J and the - 2mi eigenspace of J on E is generated 
by (ze + f)2m. 0 

We now return to our goal of expressing Eichler-Shimura integrals as a Kronecker 
index. 

Let, = L:~:o ajujv2m-j be an element of E* and let ~ be the corresponding 
constant section of E*. Then we have the following lemma. 

LEMMA 1.5. 

(Sh(f( z )dzm +1), €(z)) ~ /(z) (~ap, ) dz. 

In particular if E = (au2 + buv + cv2)m we have 

(Sh(f(z)dzm+1), ~(z)) = J(z)(az2 + bz + c)mdz. 
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Notation. Henceforth we will use ( , ) as a generic symbol for the pairing between 
a space and its dual. In the case above ( , ) denotes the pairing between E and E* 
(considered as fibers over z of the associated product bundles). 

Now suppose r is a torsion free discrete group acting properly discontinuously 
on H with quotient M = r \ H (we do not assume M has finite volume). Since 
Sh is a r-map it induces maps of the sheaf cohomology groups on M associated 
to Km+l and K Q9 E where K and E now denote the induced bundles on M. In 
particular we get a map 

Sh: HO(M, Km+1) -+ HO(M, K Q9 E). 

An element of HO(M, K Q9 E) is a fortiori a closed 1-form with values in E. We 
recall that a 1-form W with values in a bundle E over M assigns to every tangent 
vector v E Tx(M) an element w(v) in Ex, the fiber of E over x. Let us recall 
the map from closed 1-forms with values in E to simplicial cochains on M with 
coefficients in E. Let (Vl, V2) Q9 s be a simplicial 1-chain with coefficients in E* so 
(VI, V2) is an oriented 1-simplex of M and s is a parallel section of E* restricted to 
(VI,V2). Then the (WI(VI,V2)'S) is a scalar 1-form on (Vl,V2). We define 

((W,(Vl,V2)Q9S)) = r (w,s). 
J(Vl,V2) 

In this way we obtain a map from the de Rham_ cohomology of E valued forms to 
the simplicial cohomology with coefficients in E. By the de Rham theorem this 
map is an isomorphism. We refer to Johnson and Millson [7, §4]' for details. 

From the preceding discussion we obtain a map HO(M, K Q9 E) -+ HI (M, E). 
Composing with Sh we obtain a map again denoted by Sh: 

Sh: HO(M, Km+l) -+ Hl(M,E). 

From the local formula in Lemma 1.3 we obtain the following formula for the map 
Sh. 

LEMMA 1.6. Let J(z)dzm+1 be an element oj HO(M, Km+1) (identified with a 
r -invariant on H). Then Sh J is represented in de Rham cohomology by the 1-Jorm 
w f (with values in E) given by 

wf = f (2~) ei pm-j Q9 zj J(z)dz . 
. ° J J= 

REMARKS. 1. In case M is compact so there is a good theory of harmonic forms 
(see §3), then wf is harmonic. Indeed we have seen that we may rewrite 

wf = (ze + j)2m Q9 J(z)dz. 

From this expression and Murakami [11, Lemma 5.4], we see that WI is harmonic. 
Conversely, the above lemma of Murakami implies that any harmonic (1,0) form 
with values in E must take values in the subbundle £_ and consequently is essen-
tially of the above form. 

2. In the finite volume case if J is cuspidal then WI is a square integrable 
harmonic form. 
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We now discuss the relationship between Sh, group cohomology and "period 
polynomials". Since M is a manifold of type K(f, 1) we may regard HI (M, E) as 
a model for the group cohomology HI(f, E). Also HO(M, Km+l) is isomorphic to 
M2m+2(r), the space of (holomorphic) modular forms of weight 2m + 2. Thus we 
may write Sh as a map 

Sh: M2m+2(r) -> HI(f,E). 
In order to obtain the period polynomials we recall that a representing Eilenberg-

Mac Lane cocycle for an element a in HI(f, E) is a crossed homomorphism from 
f to E. Thus to obtain the crossed homomorphism associated to J E S2m+2 
by the Shimura isomorphism it is necessary to give an explicit isomorphism from 
HI(M,E) to HI(f,E). We think about the first group as simplicial cohomology. 
We recall the map-see Johnson and Millson [7, §4]. Let a E H1(M, E), let mo be 
the base point for M and let c = 2:7=1 Sj be an edge-path of oriented I-simplices 
beginning and ending at mo. Let a be a simplicial cocycle representing a. Then 
a(sj) is an element in the fiber of E over the first vertex of Sj. We let T denote 
parallel translation back along c to mo. Then 

at,) ~ T (~a('i)) . 
REMARK. The fiber of E over the base point mo is E. 
In order to make this calculation using a de Rham representative for a it is 

convenient to choose the lift c = 2:7=1 sJ of C to H starting at zo0 We observe that 
the value of Sh J on the oriented I-simplex Si = (V1, V2) is given by 

((ShJ,(Vl,V2))) = ((W!,(Vl,V2))) = f (2~) ej (vt}j2m- j (vt} [ zjJ(z)dz. 
j=O J JCV 1,V2) 

Adding up over the simplices of c and applying the parallel translation we find the 
following formula for r(f, .), the crossed homomorphism on 7rl(M, mo) associated 
to Shf. 

THEOREM 1. 1. 

r(f, I) = L zJ J(z) dz . eJ J2m-J. 2m (1"1 Z0. ) (2m). . 
j=O Zo J 

REMARK. r(f,·) is traditionally called the period polynomial of f. 
Now assume M has finite volume and restrict Sh to the cusp forms S2m+2(r). 

We obtain 
Sh: S2m+2(f) -> H1(f, E). 

As a consequence of Theorem 1 of Shimura [13] we obtain the following theorem. 

THEOREM 1.2. Sh is an injection. 

We will need to know the image of Sh only in the compact quotient case. We 
assume then for the rest of this section that M is compact. By the Dolbeault 
theorem (see Griffiths and Harris [6]) we have 

HO(M, K Q9 E) = H1,0(M, E). 
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We recall that Hi,O(M, E) consists of those de Rham cohomology classes that may 
be represented by closed forms of type (1,0). We recall also that a I-form on M 
with values in a complex vector bundle E is said to have type (1,0) if for every 
tangent vector v we have w(Jv) = iw(v). Here J is the almost complex structure 
on T(M). 

In this case by Matsushima and Murakami [10] we have a Hodge decomposition: 

Hi (M, E) ~ Hi,o(M, E) EB HO,l (M, E). 

Moreover, we may refine the above theorem (always assuming M is compact). 

THEOREM 1. 2 (bis). Sh is an isomorphism onto Hi,O(M, E). 
2. Eichler-Shimura period integrals. In this section we prove the formula 

stated in the introduction relating the Kronecker pairing of Sh f and decomposable 
cycles to Eichler-Shimura periods of f over closed geodesics. As a consequence we 
deduce a sufficient condition for a collection of hyperbolic Poincare series to span 
the cusp forms. 

LEMMA 2.1. If, E rand, =I ±1 then, has a I-dimensional space of invari-
ants in E*. 

PROOF. The question of the dimension of the space of invariants for, depends 
only on the conjugacy class of, in SL2(R). Hence, may be put in one of two 
standard forms depending upon whether it is unipotent or semisimple. For these 
standard forms the lemma is obvious. 0 

In what follows we will need to choose a nonzero element ~, in E* which is 
invariant under, in r. If, = [~~] then we define s, in S2V* and ~, in E* 
following S. Katok [8] by 

s, = cu2 + (d - a)uv - bv2, 
~, = (cu2 + (d - a)uv - bv2)m. 

It is important to observe that ~, E Eft. 
We will later need to know how s, and ~, transform as functions of , under 

GL2(R). We need only observe the following formula for s,. Let p: End V -+ g be 
the projection on the trace zero matrices, so for A E End V we have 

p(A) = A - !(tr A)I. 

Let B: g -+ S2V* be the isomorphism given by the form ( , ) (see §1). We then 
have the following formula 

s, = -B(p(T)). 
We find the following transformation law for 9 E GL2(R). 

LEMMA 2.2. Sg,g-l = (detg)p(g)s,. 

In what follows it will be more convenient to replace the Eilenberg-Mac Lane 
I-cycle ,181 ~, with a simplicial I-cycle with coefficients. Given, E r we let Q 

be the image under 11" of any simplicial path joining Zo to ,zo. The invariant ~, 
will give rise, by parallel translation of ~, around Q, to a parallel section 0", of 
E* restricted to Q. As in Johnson and Millson [7, §4]' we can form a cycle with 
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local coefficients denoted Q 0 <1,. The class of Q 0 <1"( in Hl (M, E*) will not be 
changed by a free homotopy of Q. Hence we may replace Q by a closed geodesic if 
we so desire. We will denote the class of Q 0 <1"( in simplicial homology with local 
coefficients by h] 0 <1,. 

We can consider periods over the previous cycles. If w is a closed 1-formon M 
with values in E we may restrict w to Q and pair with <1"( to obtain a closed 1-form 
with scalar coefficients (w,<1"() on Q. We may then integrate (w,<1"() along Q to get 
a period. In this way we may interpet the Kronecker pairing 

Hl(r, E) 0 H1(r, E*) ---+ C 

as obtained by taking periods of forms over simplicial cycles. 
We now wish to consider the Kronecker pairing ((Sh I, h]0<1,,()) for IE S2m+2(r). 

We recall that we are regarding Sh I as a (1,0) form on M with values in E so the 
previous discussion applies. We have seen that the invariant corresponding to "Y is 
~"( = (cu2 + (d - a)uv - bv2)m where "Y = [~~]. Using Lemma 1.5 we find 

(Sh/(z),<1,,() = l(z)(cz2 + (d - a)z - b)mdz. 
Integrating and observing that the integral is independent of the choice of the initial 
point zo and the path from Zo to "YZo, we obtain one of the main results of this 
paper. 

THEOREM 2. 1. For any point Zo E H we have 

l "(zo 

((Sh/(z), h]0 <1"()) = l(z)(cz2 + (d - a)z - b)m dz 
Zo 

where the integral is over any path joining Zo to "Yzo. 
COROLLARY 1. II"Y is an elliptic element and I is any element of HO(M, Km+1) 

then 
((Shf(z), h]0<1"()) = O. 

PROOF. Choose Zo to be the fixed point of "Y. D 

COROLLARY 2. If"Y is a parabolic element and I E S2m+2 then 
((Shf(z), h]0<1"()) = O. 

PROOF. Let Zo tend toward the fixed point of "Y. D 

COROLLARY 3. We have the following formula relating period polynomials and 
Eichler-Shimura periods: 

(r(j, "Y), ~"() = r "Yzof(z)(cz2 + (d - a)z - b)m dz. Jzo 
PROOF. We have seen that r(j,·) is an Eilenberg-Mac Lane 1-cocycle with 

values in E representing Sh f. Since the de Rham isomorphism is compatible with 
Kronecker pairings we have 

((Shf, h]0<1,,()) = ((r(j, .),"Y 0 ~"()). 

By definition of the Kronecker pairing of Eilenberg-Mac Lane cocyles and cycles 
we have 
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REMARK. From Corollary 3 we see that Eichler-Shimura period over the cycle 
/ ® ~"t does not determine the period polynomial of f evaluated at /. 

As another consequence of Theorem 2.1 we obtain the following theorem. 

THEOREM 2.2. Let W be a (not necessarily proper) subset oj f. Suppose the 
set oj decomposable cycles ~ = {w ® ~w : w E W} spans H 1 (f, E*) as a complex 
vector space. Then the set oj hyperbolic Poincare series B = {Bw: wE W} spans 
S2m+2(f). 

PROOF. Let J E S2m+2(f). Suppose f is orthogonal to the span of B. Then all 
Eichler-Shimura periods of f over the hyperbolic cycles in ~ vanish by the defining 
property of Bw , that is 

1"tZO 

((f, Bw)hm+2 = J(z)(cz2 + (d - a)z - b)m dz, 
Zo 

where (( , )hm+2 is the Petersson inner product on S2m+2(r). Hence, by Theorem 
2.1, Sh f annihilates the hyperbolic cycles in ~. But since f is cuspidal Sh f also 
annihilates the elliptic and parabolic cycles. But ~ spans H 1 (f, E*). Since the 
Kronecker pairing is perfect we find that Sh f = 0 and consequently J = O. 0 

REMARKS. 1. The converse is false. Indeed, choose ~ so that the homology 
classes of the elements of ~ are a basis for a Lagrangian subspace of Hl(f,R). 
Then B is a basis for S2(f), see Theorem 4.1 of Kudla and Millson [9l. But of 
course ~ does not span H 1(f, C). 

2. Since w ® ~w is a real class we see that the real span of ~ is Hl(f, ERJ if 
and only if the complex span of ~ is H 1 (f, E*). We shall see in Chapter 4 that B 
spans S2m+2 (f) as a real vector space if and only if ~ spans H 1 (f, ERJ 

3. Finally we remark that Theorem 2.2 is true whenever Sh is injective. 

3. Hermitian structures on cohomology. From now on we assume M is 
compact. We study Hermitian structures on Hl(M, E) obtained by its representa-
tion as the de Rham cohomology of forms with values in E. We denote the space 
of such forms by ,Al(M, E). We observe that the invariant symmetric bilinear form 
on E (and hence on E) when combined with the exterior product of forms gives us 
a skew-symmetric product, to be denoted 1\, 

Hl(M,E) ®Hl(M,E) ~ H2(M,C). 

Since the latter group is isomorphic to C we obtain a complex bilinear skew-
symmetric pairing on Hl(M,E) to be denoted [[ , ]] by evaluating on the fun-
damental class 

[[1],7]] = 1M 1] 1\ 7. 

The form [[ , II is real; that is, if 1] and 7 takes values in ER then [[1],7]] is real. By 
Poincare duality [[ , ]] is nonsingular. 

DEFINITION. A closed form w with values in E is said to be Poincare dual to 
hl ® a"t if for every closed form 1] with values in E we have 

[[1],w]] = ((1], hl ® a"t)). 

We will denote this class by PD(hl ® a".J 
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We now construct a positive definite Hermitian inner product on E. We first 
observe that V has an admissible inner product (see Borel and Wallach [2, p. 47] 
for the definition of admissible) to be denoted ( , )' and defined by 

(VI,V2)' = (JOV1,V2), where Vl,V2 E V and Jo = ~ [ - ~ ~]. 
Hence we obtain admissible inner products (again to be denoted ( , )') on smv 

for all m. We have the formula for x, y E V: 

(xm,ym), = (Jox,y)m. 

The following lemma relating the forms ( , )' and ( , ) on L_ c E is immediate 
(for the definition of L_ see §1). 

LEMMA 3.1. fix and yare in L_then (x,y)' = (-I)m(x,y). 

REMARK. The previous formulas remain true by G-invariance for x, y E ,C- and 
the G-invariant extensions ofthe forms ( , ) and ( , )' to E which are again denoted 
( , )' and ( , ) . 

We can now construct a positive definite Hermitian inner product on Hl(M, E). 
We observe that Al(M, E) has an almost complex structure J given by 

Jw(v) = -w(Jv). 
Here J is the invariant almost complex structure on T M. An easy calculation shows 
that J agrees with the operator * ® 1 where * is the Hodge star on scalar-valued 
forms. We define the Hodge star * on bundle-valued I-forms by requiring * = J. 
We have 

*"1 1\ *T = "I 1\ T. 

The action of J on forms commutes with d and we obtain an almost complex 
structure, again denoted J, on Hl(M,E). We may then define a positive definite 
Hermitian form to be denoted (( , )) on Al(M, E) by 

(("I, T)) = 1M "11\' *T. 

Here by 1\' we mean the exterior product formed by using the form ( , )' on the 
coefficients. The form (( , )) induces a Hermitian structure on Hl(M, E). 

We may use the form (( , )) to construct a Laplacian ~ and obtain harmonic 
representatives of cohomology classes. There is a unique harmonic form satisfying 
the defining equation for PD(h] ® u,). We will call this form the Poincare dual of 
h] ®u,. 

We recall that "I E .J38M, E) is said to be holomorphic if it is of type (1,0) 
and 8"1 = 0 where 8"1 is the type (0, 1) projection of dTJ. Also if "I has type (1, 0) 
it is holomorphic if and only if it is harmonic. By the theorem of Matsushima-
Murakami, see Murakami [11], Lemma 5.4, a harmonic (1,0) form takes values 
in ,C-, the lowest weight bundle. Hence we find the following simple relationship 
between the (( , )) and [[ , II on holomorphic bundle-valued I-forms or equivalently 
on H1,O(M, E). 

The following lemma is an immediate consequence of Lemma 3.1. 
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LEMMA 3. 2. If WI and W2 are holomorphic E -valued 1-forms we have 

((WI,W2)) = (-1)m[[WI' *W2]]' 
We also wish to compare the pull-back of (( , )) under Sh with the Petersson 

inner product (( , )hm+2 on S2m+2(r). 

LEMMA 3.3. 
1 

((f,g)hm+2 = 22m+1 ((Shf,Shg)). 

PROOF. From formula (6) in Shimura [13] we have 
1 -

((f,g)hm+2 = - (2i)2m+l [[Shf,ShgJ]. 

The lemma follows from this and the fact that Sh 9 has type (1, 0) and consequently 
*Shg = -i Shg. 0 

In what follows we will need the action of certain elements of GL2 (R) of deter-
minant -1 on the form (( , )). Suppose e is such an element which normalizes r. 
Then we can make e operate on HI (r, E) by the formula 

eC(r) = p(e)C(qCI), 
for c a representing cocycle. Here we have used p( e) to denote the action of e on 
E. 

We now examine the corresponding action of eon .AI(M,E). We first observe 
that if e = [~~ 1 then e acts on H by the formula 

eZ = (az + b)j(cz + d). 
Since e normalizes r this action descents to M. We denote the action on M again 
bye. We also obtain an action to be denoted p(e) on E as follows: 

p(e)[z,v] = [eZ,p(e)v]. 
Here [z, v] denotes the equivalence class of (z, v) in H x E. 

Then e acts on .A 1(M, E) by the formula 

eW = p( e) 0 e* W = p( e) 0 W 0 de. 

Let TJ and r be elements of .AI(M, E). An easy calculation yields 

eTJ 1\ er = e*TJ 1\ e*r = e*(TJ 1\ r). 
Then we have the following lemma. 

LEMMA 3.4. (i) [[eTJ, erJ] = - [[TJ, 1']], 
(ii) ((eTJ, er)) = ((TJ,r)). 
PROOF. We have eTJ 1\ er = e*(TJ 1\ 1'). Hence 

[[eTJ, er]] = f e*(TJ 1\ 1') = f TJ 1\ r = - f TJ 1\ l' = -[[TJ, 1']]. 1M 1e*M 1M 
We also have eTJ 1\' er = e*(TJ 1\' 1'). Noting that e anticommutes with * we have 

((eTJ,er)) = 1M eTJ 1\' *er = - 1M eTJ 1\' e*r = - 1M e*(TJ 1\' *1') = ((TJ,r)). 

With this the lemma is proved. 



EICHLER-SHIMURA HOMOLOGY 749 

4. The Poincare dual of a hyperbolic decomposable cycle. In this section 
we give the precise relationship between Sh9'Y and PD(h1 ® u'Y)' We use this to 
prove the equivalence of the problem of finding a collection of hyperbolic Poincare 
series which span S2m+2 (r) as a real vector space and a collection of decomposable 
cycles which span Hl(r, EFtJ. We can then apply results of S. Katok [81 and deduce 
that H 1 (r, EFtJ is spanned by decomposable cycles. 

We begin with the following theorem. 

THEOREM 4. 1. 

ImSh8'Y = (-I)m22mpD(h1 ®u'Y)' 
The proof of this theorem follows from the ensuing discussion. 
By Hodge theory, there exists a unique harmonic I-form 0'1 on M with values 

in IE such that if", is any closed I-form with values in IE we have 

[[",,0'Yll = 1M'" /I. 0'1 = (("" h1 ® u'Y))' 

. that is 0'1 = PD(h1 ® u'Y)' 
We put <I>'Y = -J0'Y = -*0'1 and we define 

B'Y = ![<I>'Y + i0'Y1· 
We observe that 0'1 and <I>'Y are real. Therefore, 1m B'Y = !0'Y' We observe that 
B'Y ~s a holomorphic I-form (that is, a harmonic I-form ottype (1,0)) with values 
in E. 

We define a holomorphic I-form B with values in IE to be associated to the 
cycle h1 ® u'Y as above if for every holomorphic I-form", with values in IE we have 
((""B)) = ((""h1 ®u'Y))' Here ((, )) is the Hermitian form on bundle-valued 
I-forms described in the previous section. We recall (Lemma 3.3) that Sh is an 
isometry from S2m+2 to the holomorphic I-forms equipped with the Hermitian 
form 2-(2m+1)(( , )). 

LEMMA 4.1. (-I)mB'Y is the bundle-valued holomorphic I-form associated to 
h1®u'Y' 

PROOF. Let", be a holomorphic I-form. Then by Lemma 3.2: 

(("" B'Y)) = (_I)m[[",,* B'Y11 = (-I)mH[[",,* <I>'Yll- i[[",,* 0'Y]]}' 
But", has type (1,0); hence *", = -i",. We obtain 

[[",,* 0'Yll = 1M'" /1.* 0'1 = - 1M *", /I. 0'1 = i 1M'" /I. 0'1 = i[["" O'Yll· 

Also by definition *<I>'Y = 0'1 and we obtain 

(("" B'Y)) = (-I)mH[["" 0'Yll + i[["" 0'Y]]} = (_I)m(("" h1 ® u'Y))' 
With this the lemma is proved. 0 

COROLLARY. B'Y = (_I)m2-(2m+l) Sh8'Y' 

PROOF. From Lemma 3.3 we have for any bundle-valued holomorphic I-form '" 

2-(2m+1) (("" Sh 9'1)) = (("" h1 ® u'Y))' 
and the corollary follows. 0 

But since PD(h1 ®u'Y) = 21mB'Y we have now proved Theorem 4.1. 
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THEOREM 4.2. Let W be a (not necessary proper) subset of r. Then the set 
of decomposable cycles I: = {w ® ~w: w E W} spans H 1(r,EnJ if and only if 
e = {8 w : wE W} spans S2m+2(r) as a real vector space. 

PROOF. Suppose that I: spans H 1 (r, En) Then the complex span of I: is 
H 1 (r, E*) and we are done by Theorem 2.2. 

Conversely suppose 8 spans S2m+2(r) as a real vector space. The map f ---. 
1m f is easily seen to be an isomorphism of the real vector spaces S2m+2 (r) and 
H 1(r,ER ). Then the image of e under this isomorphism, {Ow: w E W} spans 
H1(r,ER)' By Theorem 4.1 the classes {PD(w ® ~w): w E W} span H 1(r,ER ) 
and we are done since PD is an isomorphism. 0 

THEOREM 4.3. The set of all hyperbolic Poincare series spans S2m+2 (r) as a 
real vector space in case r is a discrete subgroup of SL2 (R) which is normalized by 
c= [-~~]. 

PROOF. The result for arithmetic subgroups is contained in S. Katok [8]. The 
argument for a general r is very similar to that, but for completeness sake we will 
give it. 

Let "/' = c,,/c and 

e~+1,'"1 = ~(8m+1,'"1 + 8 m+1d ), e~+1,'"1 = (1/2i)(em+1,'"1 - em+1d )· 

Let SIi(r) be the R-span of {8;'+1,'"1} and S~(r) be the R-span of {8m+1,'"1}' For 
any two hyperbolic elements "/0, "/1 E r we have 

((8~+1''"10,e~+1.'"11)hm+2 E R and ((8~+1''"1o,e~+1.'"11)hm+2 E R. 
Then using Theorem l(ii) of [8] we have 

dimR sit(r) = dime S2m+2(r) and Sit n iSH. = {O}, 
which implies S~ (r) = Sit EB iSH.. This completes the proof. 0 

As a consequence of this theorem and Theorem 4.2 we have the following 
theorem. 

THEOREM 4.4. The set of all decomposable cycles {,,/ ® ~'"1: "/ hyperbolic} spans 
H1(r,EnJ 

5. Rational structures on S2m+2(r). We show how the existence of two 
natural rational structures St,+2(r) and S2-;"+2(r) follows from the Shimura iso-
morphism. We recall that a rational structure on a complex vector space V is a 
rational vector space W and an isomorphism from W ®Q C to V. 

We now assume that our cocompact group r is arithmetic of the following type: 
r is commensurable with the group of units of an order 0 contained in a division 
quaternion algebra B, defined over Q, such that B ®Q R is isomorphic to the 
algebra of 2 by 2 real matrices M2(R). 

LEMMA 5.1. There exists a r -invariant rational subspace W2m of S2mc2 such 
that the natural map H1 (r, W 2m ) ®Q C ---. H1 (r, S2mC2) is an isomorphism. 

PROOF. Let BO be the traceless quaternions contained in the order O. Then 
BO induces a r-invariant rational subspace on S2C2 denoted by L. The lattice 
L induces a r-invariant rational structure smL on sm(S2C2). We wish to prove 
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that s2mc2 has a r-invariant rational structure. For this it is sufficient to show 
that the above rational structure induces a rational structure on the kernel of the 
projection 

p: sm(s2c2) ____ S 2mC 2. 

As indicated in §1, for k ~ 2 the space Sk(S2C2) may be realized as the space of all 
homogeneous polynomials of degree k in three variables, coordinates with respect 
to the basis of the lattice W in S2C2, which are quadratic forms in two variables. 
The projection 

Pk: Sk(S2C2) ____ S 2kC 2 

may then be realized by substitution: it projects the space Sk(S2C2) onto S2kC 2, 
the space of all homogeneous polynomials of degree 2k in two variables. For Ii E 
Si(S2C2) and /j E Sj(S2C2) we have Pi(li) . Pj(fj) = Pi+j(li· fj) where· is the 
product of polynomials. The homomorphism 

P2: S2(S2C2) ---- S4C2 

intertwines with the action of P S L2 (R). Therefore Ker P2 is an invariant subspace 
for PSL2(R). Computing dimensions we get dimS2(S2C2) = 6, dimS4C2 = 5 and 
therefore dim Kerp2 = 1. But the only I-dimensional representation of PSL2(R) 
is trivial, so Kerp2 is a line fixed by PSL2(R), and therefore by r. Consider the 
basis in S2(S2C2) which belongs to the r-invariant subspace S2 L. In this basis 
the group r has rational matrices. Kerp2 is defined by the vector of S2(S2C2) 
of eigenvalue 1 for all matrices from r which then has rational coordinates and 
therefore belongs to S2 L. We denote this vector by a. It is easy to see that 

dimSm(S2C2) = dimSm-l(S2C2) + m + 1 

and therefore 
dimSm(S2C2) = dimSm-2(S2C2) + 2m + 1 = dimSm-2(S2C2) + dimS2mC 2 

and 
dim Kerpm = dimSm-2(S2C2). 

Since p2(a) = 0 for any fm-2 E sm-2(S2C2) we have Pm(fm-2 . a) = 0, that is 
sm-2(S2C2)·a C Kerpm' Therefore sm-2(S2C2)·a = Kerpm, and sm-2W·a C 
sm L gives a rational structure on Ker Pm = Ker p. With this we have proved 
the existence of the rational structure on s2mC2 to be denoted W2m . Since the 
tensoring over a field is exact the lemma is proved. D 

LEMMA 5.2. ~"'( E W2m for all hyperbolic, E r. 
PROOF. It follows from the argument of Lemma 5.1 that it is sufficient to show 

that s"'( E L for all hyperbolic, E r. We have seen in §2 that p(T) = ,- ! (tq)I = 
!(T_,-I) E g. But since" ,-I E 0, p(T) is in the rational subspace of g generated 
by BO, and hence s"'( = -B(p(T)) E L. D 

LEMMA 5.3. The form ( , ) takes rational values on W 2m . 

PROOF. Since the projection P intertwines with the action of PSL2(R), the 
group r has rational matrices in the basis of W2m induced by p. It follows immedi-
ately from irreducibility of S2mc2 that any PSL2(C)-invariant symmetric bilinear 
form on s2mC2 is a multiple of ( , ). By the Borel density theorem, Raghunathan 
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[12, Chapter V], the same statement holds with PSL2 (C) replaced by f. But 
since f acts with rational entries we conclude that there exists a complex number 
oX such that oX( , ) takes rational values on W2m . However, by Lemma 5.2 we have 
~'Y E W2m for "f E f, and it is easily seen that (~'Y' ~'Y) is rational (see computations 
in §7). Consequently oX is rational and may be chosen to be 1. With this the lemma 
is proved. D 

In what follows m will play no role and we will abbreviate W2m by W. We now 
assume that f is normalized by an orientation reversing isometry e of order 2. We 
assume that e preserves 0 ® Q in its action on BO. Then e preserves W. Hence, 
the action of e on HI (f, E) discussed in the previous section preserves HI (f, W). 
We may decompose HI(f, W) into a direct sum of +1 and -1 eigenspaces for c. 
We denote those spaces by HI(f, W)+ and HI(f, W)- respectively. We let N de-
note the dimension over C of HI (f, E) - of course; this is equal to the dimension 
of HI(f, W) over Q. We have seen that the de Rham cohomology HI(M, E) ad-
mits a nondegenerate skew-symmetric form. Hence N is even. The corresponding 
symplectic structure on HI (f, E) may be described directly by the cup-product of 
I-cycles followed by the evaluation on the fundamental class. We again denote it by 
[[ , ]]. According to Lemma 5.3, the form [[ , II takes rational values on HI(f, W). 

LEMMA 5.4. dimHI(f, W)+ = dimHI(f, W)- = 1N. 
PROOF. By Lemma 3.4 e changes the symplectic form [[ , II on HI(f, W) to its 

negative. Hence the two eigenspaces are totally isotropic. But since HI(f, W) is a 
direct sum of these two spaces each space must be Lagrangian. D 

Now let Sh: S2m+2(r) -t HI(f,E) be the Shimura map. We let p+ and p_ be 
the projections of HI(f, H) onto HI(f, E)+ and HI(f, E)- respectively. From the 
universal coefficient theorem we have 

Thus we will have found the desired rational structures if we prove the following 
lemma. 

LEMMA 5.5. p+ 0 Sh and p_ 0 Sh are isomorphisms. 

PROOF. By a dimension count it is sufficient to prove that the above maps are 
injective. This is in turn equivalent to the statements 

(i) Sh(S2m+2(f)) n HI(f, E)+ = {O}, 
(ii) Sh(S2m+2(f))nHI(f,E)- = {O}. 

But we have seen that the image of Sh is contained in HI,O(f, E). Thus to complete 
the proof it is sufficient to check that e interchanges HI,O(f, E) and HO,I(f, E). 

We have seen §3 that the induced action of con J',1(M, E) is given by 

ew(v) = p(e)w(de(v)). 

But the action of p( c) commutes with J (they operate on opposite sides of w) and 
de anticommutes with J. Hence e anticommutes with J and interchanges the two 
eigenspaces of J. With this the lemma is proved. D 

Thus we obtain a ratiOIial structure on S2m+2 (r) considered as a real vector 
space: 
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and two rational structures on S2m+2 (r) considered as a complex vector space: 

S2~+2(r) = {f E S2m+2(r): p+ 0 Sh f E Hl(r, W)+}, 
S2-;"+2(r) = {f E S2m+2(r): p- 0 Shf E Hl(r, W)-}. 
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REMARK. The rational structure S2~+2 (r) may be described as those f whose 
period polynomials r(f, .) satisfy 

r(f, CJc) + p(c)r(f, ,) E W for all ,E r. 
Similarly the rational structure S2-;"+2 (r) may be described as those f whose period 
polynomials r(f, .) satisfy 

r(f, CJc) - p(c)r(f, ,) E W for all ,E r. 
In more concrete terms f E Stn+2(r) if and only if 

j 'ZO j"ZO zj f(z) dz + z1f(z) dz E Q 
Zo Zo 

for j even, 

r'zo zjf(z)dz- r,lzo zjf(z)dzEQ 
lzo lzo for j odd. 

6. Comparison with the rational structure coming from relative Poin-
care series. In this section we relate the rational structures Sfk(r), s2t(r) and 
S2k(r) with the rational structures constructed in S. Katok [8] and denoted S~k(r), 
sii,(r) and S21.,(r) there. For this and the next section we switch from m to k - 1 
to conform to [8]. 

We prove the following theorem. 

THEOREM 6.1. (i) Sfdr) = S~k(r); 
(ii) Sii,(r) = iSii,(r) and S2k(r) = S21.,(r) if k is even, S2k(r) = iSii,(r) and 

Sik (r) = S21., (r) if k is odd. 

PROOF. We begin by recalling the definitions of the rational structures S~k(r), 
sii,(r) and S21.,(r). Let Sk" be the relative Poincare series. The elements 8t" 
and 8;" of S2k(r) are defined as in §4, Theorem 4.3. It was proved in S. Katok 
[8] that the Q-span of {Sk"" E r} was a rational structure S~k(r) for S2k(r) as 
a real vector space, the Q-span of {St", , E r} was a rational structure Sii,(r) 
and the Q-span of {S;"" E r} was a rational structure s21.,(r) for S2k(r) as a 
complex vector space. 

By Lemma 5.2 we have, @~, E H1(r, W2'k-2). Then 

0, = ~ImShS, = (_1)m22m-lpDh @ ~~I) E Hl(r, W2k- 2), 

and part (i) follows. 
Since p+ 0 Sh and p_ 0 Sh are injective, part (ii) will follow if we can prove that 

for k even 
(i) p+(Sh(Sii,(r))) C iHl(r, W2k- 2)+, 
(ii) p-(Sh(Sik(r))) c Hl(r, W2k-2)-, 

and for k odd 
(iii) p_(Sh(sii,(r))) c iHl(r, W2k-2)-, 
(iv) p+(Sh(S2i(r))) C Hl(r, W2k-2)+. 
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Indeed since the two spaces in (i) have the same dimension they must coincide and 
consequently their inverse images under P+ 0 Sh coincide. But these inverse images 
are S:t (r) and S21 (r) respectively. A similar argument applies to the spaces in 
(ii)-(iv). 

LEMMA 6.1. (i) dl.y = (-1)kfl.y" 
(ii) c~'") = (_1)k+l~'")" 
("') ;::; - ( 1)k+l;::; 111 c~'") - - ~'")" 

PROOF. To prove the first formula we observe that Lemma 2.2 implies p(c)s'") = 
-s'"), and consequently p(c)S~-1 = (_1)k-ls~;-I. The first formula now follows 
from the naturality of Poincare duality combined with the fact that c reverses the 
sign of the fundamental class. The second formula is a consequence of the first and 
the fact that c and J anticommute. The third formula is a consequence of the first 
and the second. 0 

We are now ready to prove Theorem 6.1 by a direct calculation. 

LEMMA 6.2. If k is even 
(i) P+ 0 Sh 8~ = i( _1)k- 122k- 2(0'") + 0'"),), 
(ii) p_ 0 Sh 8:;- = (_1)k- 122k- 2(0'") - 0'"),). 

If k is odd 
(iii) p_ 0 Sh 8~ = i( _1)k- 122k- 2(0'") + 0'"),), 
(iv) P+ 0 Sh 8:;- = (_1)k- 122k- 2(0'") - 0'"),). 

PROOF. We prove (iii) and leave the rest to the reader. 

p_ 0 Sh 8~ = 1P-(Sh 8'") + Sh 8'"),) 
= (_1)k-122k-2{p_(~'") + iO'")) + p_(~'"), + iO'"),)} 
= (_1l-122k-3{(~'") + iO'") - c~'") - icO'")) 

+ (~'")' + iO'"), - c~'")' - icO'"), )}. 

Substituting from Lemma 6.1 we obtain the lemma and as a consequence Theorem 
6.1 is proved. 0 

7. The intersection formula. We conclude this paper by explaining how 
the period formula, Theorem 3 of S. Katok [8], follows from a computation of 
intersection products in Eichler-Shimura homology theory. This period formula 
expresses the quantity I defined by 

1 
1= 2i{((8'")0,8'")Jhk - ((8'")~,8'")~)hd = Im((8'")0,8'")1))2k 

as the sum over the points {Pi} of /0 n /1 of terms involving elementary multiples of 
J.LiPk-t{COS(}i) where P k - 1(t) is the (k -1)th Legendre polynomial, (}i is the angle 
of intersection at Pi and J.Li is the intersection multiplicity (hence J.Li = ±1) of the 
intersection Pi of two oriented curves hoI and hI}' 

We begin by simplifying I. 

LEMMA 7.1. 
1- (-1)k-122k-21 ° A ° - '")0 '")1' 

M 
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1= Im((8'"1o,8'"1Jhk = 2-(2k-l)((Sh8'"1o,Sh8'"1J) 

= 22k- 1 Im((6'"1o, 6'"11)). 

An easy computation gives 

With this the lemma is proved. 0 
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Since Poincare duality makes the exterior product of differential forms corre-
spond to the intersection product of the corresponding cycles we obtain 

where the product on the right-hand side is the intersection pr9duct of cycles with 
coefficients. Recall that u'"1o and U'"11 are parallel sections of E* corresponding to 
the ~'"10 and ~'"11 restricted to hoJ and hd respectively (see §2). 

By the definition we have 

Here J.Li is the intersection multiplicity, J.Li = sgn(sinBi), and (u'"1o(Pi),U'"11(Pi)) is 
the coefficient contribution which we are going to compute. 

Let [loJ and [ld denote the lifts of hoJ and hIJ into H which intersect in a point 
denoted Pi. If we consider oriented geodesics [loJ and [11J in H as infinite cycles 
with coefficients [loJ ® ~'Yo and [11J®'Y1 with ~'Yo' ~'Y1 E E*, then U'"1o(Pi) = ~'Yo and 
U'"11 (Pi) = ~'Y1' and in order to compute the intersection product we need a formula 
for (~'Yo' ~'Y1 ). Since the form ( , ) is P S L2 (R)-invariant we can always bring the 
geodesic [loJ into the y-axis by conjugation. Then 

~'Yo = D~-1/2( -sgn tr,o)k-l uk-l vk-l, 

where Do = (tf/O)2 - 4 (see [8, p. 471]). Let ~'Y1 = (Au2 + Buv + Cv2)k-l. We 
have Dl = B2 - 4AC = (tf/d2 - 4 > 0, and [11J intersects [loJ if and only if 
AC > o. The form ( , ) has a very simple matrix W in the basis {uiv2k-2-i} 

Therefore 

(~'Yo'~'YJ = D~-1/2 (-sgntf/o)k-l eL-n-1(-1)k-l 

. {coefficient of Uk-1vk- 1 in ~'Y1}. 

The computation of the above coefficient is done in the following combinatorial 
lemma. 
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LEMMA 7.2. The coefficient of unvn in (Au2 + Buv + Cv 2 )n is equal to 
D~/2 Pn(B/~) where Dl = B2 - 4AC and Pn is the nth Legendre polynomial. 

PROOF. The standard formula 

P, (z)=z F -- --'1'1--v ( v I-v 1) 
v 2' 2 " z2 

(cf. Bateman [1, 3.2(24)]) expressing the Legendre function of the first kind in terms 
of the hypergeometric function becomes a polynomial identity 

where v = n is a nonnegative integer. Substituting z = B/~ gives 

'" n! n 2j j ~ '!2(n_2.)!B - (AC) 
OSjSn/ /2 J J 

Dn/2p (~) 
1 n ~ 

= {coefficient of unvn in (Au 2 + Buv + Cv2 )n}. 

With this the lemma is proved. 0 
We have B/~ = (-sgntfJ'dcosBi (see [8, p. 478]) and therefore 
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