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ALEJANDRO ADEM 

ABSTRACT. Let Zip act on a finitistic space X with integral cohomology 
isomorphic to that of (sn}k as a ring. We show a direct relationship between 
the ZIp-module structure of Hn(x; Z) and the nature of the fixed-point set. 
In particular, we obtain a significant restriction on Hn(x; Z} for free actions. 

Introduction. Let Zip, p prime, act on a space X with integral cohomology 
isomorphic to that of (sn)k as a ring, which we abbreviate as X '" (sn)k. Then 
H*(X; Z) is a graded ZIp-module whose structure is determined by Hn(x; Z) and 

. the cup product. 
The indecomposable integral representations of Zip have been completely de-

scribed. Therefore it is natural to inquire whether there is any relationship between 
the ZIp-module structure of Hn(x; Z) and the nature of the fixed-point set. In 
this paper, we answer this question affirmatively: the following is an outline of this 
relationship. 

A theorem due to Diederichsen and Reiner (see [C-R]) states that there are a 
finite number of isomorphism classes of indecomposable integral representations of 
Zip, and that they fall into three different types: 

(1) Z, the trivial ZIp-module. 
(2) Ai, of rank p - 1, corresponding to elements of the ideal class group. 
(3) Pi, of rank p, one for each Ai and constructed from them. These are the 

projective indecomposables. 
Every integral representation can be expressed as a direct sum of these modules. 

We shall say that M is of type (r, s, t) if M ~ (Elr Ai) E9 (Ea s Pj) E9 (Eat Z). 
For the following statements we will suppose that Zip acts on a finitistic space 

X'" (sn)k with fixed-point set F. 

THEOREM 4.5. If Hn(x; Z) is of type (0, s, 0), then F i= 0 and has the coho-
mology ring of (sn)s with Zip coefficients. 

THEOREM 4.6. Ifp is odd and Hn(x;z) is of type (r,O,O), then F i= 0, 
H*(F; Z(p») is torsion-free, zero in odd dimensions, and of rank pT. 

THEOREM 4.7. Ifp is odd and Hn(x;z) is of type (r,s,O), then F i= 0, 
rkH*(F; Zip) 2: 2T+S, and H*(F; Zip) contains an exterior algebra on s n-dimen-
sional generators. 
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As a corollary we obtain the following restriction for free ZIp-actions: 

COROLLARY 4.8. Let Zip, p an odd prime, act freely on a finitistic space 
X'" (sn)k. Then Hn(x; Z) splits off a trivial direct summand as a Zip-module. 

Using some algebraic K-theory and 4.8 yield 

THEOREM 4.11. Let X be a finitely dominated complex such that 1fi (X) ~ Zip 
and X '" (sn)k, where X is the universal covering space of X (n > 1). Then X £s 
equivalent to a finite complex. 

The proof of these results requires using the cohomological description of 
Hn(x; Z) and its exterior powers in the spectral sequence associated to the Borel 
construction X xZ/p EZlp. We extend results due to Bredon [Brel], although he 
made no use of the representation theory as we do. Our work provides information 
about (Z I p Y -actions on (sn) k, and is a step towards extending work of Carlsson 
(see [Cal]) to homologically nontrivial actions. For example, Corollary 4.8 can be 
placed as part of a more general conjecture about free (ZlpY-actions for p odd (if 
p = 2, use F2 coefficients): 

CONJECTURE. If (ZlpY acts freely on X '" (sn)k, then r :::; rk(Hn(X; Z))G. 
The paper is organized as follows: in §1 we describe the integral representations of 

Zip and their relevant cohomological properties; in §2 we discuss the (co)homology 
automorphisms induced by ZIp-actions on (sn)k; in §3 we apply the Lefschetz 
fixed-point theorem to our problem; and finally in §4 we prove the main results in 
the paper by using cohomological methods. 

The results in this paper form part of a doctoral dissertation presented at Prince-
ton University. I am indebted to William Browder for his valuable advice. I would 
also like to thank the National University of Mexico and the Alfred P. Sloan Foun-
dation for their support while I was a graduate student. 

1. Integral representations of Zip. In this section we will give a complete 
description of the indecomposable integral representations of Zip. This is a theorem 
due to Reiner and Diederichsen; a reference for this section is [C-R, §74]. 

Let 8 be a primitive pth root of unity over Q, 
K = Q(8), Irr(8, Q) = 1 + X + ... + Xp-i = q)p(X), 
R = ring of algebraic integers in K. 
DEFINITION 1.1. An ideal in K is a finitely generated nonzero R-submodule of 

K. 0 
One can show that rkz(R) = (K : Q) = p - 1 and hence all the ideals A have 

rank p - 1. Let G ~ Zip, g a generator; we define a G-action on A as follows. 

g . a = 8 . a Va E A. 

Therefore every ideal is a ZIp-module of rank p - 1 and they are related in the 
following way. 

PROPOSITION 1.2 [C-R]. Ai ~ A2 as G-modules if and only if they are in the 
same ideal class (i.e. there exists a 1 f=. 0 in K such that A2 = lAd. 0 

A result from number theory is that there are only a finite number of ideal classes 
for any prime p. Therefore, by 1.2, there are only a finite number of isomorphism 
classes of ZIp-modules amongst the ideals for any prime p. 
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Let A be an ideal: take the abelian group A E9 Zy and fix ao E A. Define a 
G-action: 

g. a = 8· a, 
g. y = y + ao· 

aEA, 

This defines a ZIp-module of rank p, which is denoted by A(ao). 

PROPOSITION 1.3. Let A be an ideal. 
(1) If c E Z, p)' c, then A(ao) ~ A(cao), ao EA. 
(2) If a == a' mod(8 - l)A, then A(a) ~ A(a'), a, a' E A. 
(3) AI(8 - l)A ~ Zip. 
(4) If ao €f- (8 - 1) the following is exact (over ZG) : 

g-l O-+Z-+A(ao) -+ A-+O. 

PROOF. (1), (2) can be easily verified; (3) follows from the fact that (8 - l)R 
is a prime ideal of norm pin Rand AI(8 - l)A ~ RI(8 - l)R. 

For (4) we need 9 - 1 to be onto A. Now 

(g - l)A(ao) = (8 - l)A + Zao. 

This is an ideal, properly containing (8 - l)A, as ao €f- (8 - l)A. This is a 
maximal ideal, hence (g - l)A(ao) = A. 0 

From the above it follows that 

A(a) ~ A(a'), a,a' €f- (8 -l)A, 

and 
A(a)~AE9Z ifaE(8-1)A. 

THEOREM 1.4 (REINER-DIEDERICHSEN). Every Zip-module with finite Z-
basis is isomorphic to a direct sum of indecomposables, all of which fall into three 
types: (i) Z, (ii) Ai ideals in K; (iii) A(a), a €f- (8 - l)Ai. 

Furthermore if M = (Elf Ai) E9 (EB8 Aj(a)) E9 (EB t Z), the isomorphism class of 
M is determined by r, s, t and the ideal class (TIr Ai)(TI 8 Aj). 

PROOF. See [C-R, §74]. 0 
Up to G-isomorphism, there are only a finite number of ideals Ai, say h. By the 

correspondence Ai -+ Ai(a), a €f- (8 - l)A it follows that up to isomorphism there 
are only h indecomposables of type (iii) and therefore in total there are 2h + l. 

NOTATION. Let M be a ZIp-module with finite Z-basis. We shall say that M 
is of type (r, s, t) if there is a decom position 

This decomposition theorem allows us to have a good hold on ZIp-modules, 
simplifying the computation of their cohomological invariants. 

We recall that if G ~ Zip with generator 9 and M is a G-module 

H2i(G; M) ~ MG INM, H 2i+1 (G; M) ~ ker NI(g -l)M, 

where N = 1 + 9 + ... + gP-l is the norm map. 
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PROPOSITION 1.5. H*(G;A(a)) = 0 'VA ideal, a 'f- (8 - l)A. 

PROOF. Recall that as an abelian group, 

A(ao) ~ A EEl Zy. 

Let x E A(ao); then it is of the form a + o:y 

(g - l)x = (g - l)(a + o:y) = (8 - l)a + o:(g - l)y = (8 - l)a + o:ao. 

Suppose now that (g -l)x = 0; then o:ao E (8 -l)A and hence plo:. Using the fact 
that N A = 0, we can express 

-pao = (8 - 1)(1 + (1 + 8) + ... + (1 + ... + 8 P- 2))ao. 

Therefore if 0: = mp, we obtain 

(8 - 1)a = (8 - 1)(1 + (1 + 8) + ... + (1 + ... + 8P-2))mao. 

By 1.3(3), 8 - 1 is injective on A, so that 

a = (1 + (1 + 8) + ... + (1 + 8 + ... + 8P-2))mao. 

It follows that 

x = a + o:y = m((1 + (1 + 8) + ... + (1 + ... + 8 P- 2))ao + py) 
= m(1 + 9 + ... + gP-l)(y) E imN. 

This implies that ker 9 - 1 = im N and so H2i (G; A( ao)) = O. 
From the above we have that 

Ny = (1 + (1 + 8) + ... + (1 + ... + 8 P- 2))ao + py. 

By the decomposition (*) we obtain Ny i- 0 and as NA = 0, kerN = A c A(ao). 
From 1.3(4) img - 1 = A c A(ao) so that 

H2i+l(G;A(ao))~kerN/img-1=0. 0 

COROLLARY 1.6. The A(ao) are projective Z[GJ-modules. 

PROOF. These modules are torsion free and cohomologically trivial in positive 
dimensions. By Rim's theorem (see [Brown, p. 152]), they must be projective. 

COROLLARY 1.7. If A is an ideal, then 

k > O. 

PROOF. By 1.3(4), there is a short exact sequence 0 ---> Z ---> A(ao) ---> A ---> 0 
with A(ao) G-cohomologically trivial. 0 

Let G be a p-group and M a torsion-free ZG-module. Then M being projective 
as a G-module is equivalent to M (9 F P being free as an F pG-module. 

Therefore for every A(ao), ao 'f- (8 - 1)A, we have 

A(ao) (9 F p ~ F p[Z/pJ. 

Given the topological problem that interests us, we require a certain understand-
ing of the exterior powers of a module. 
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Let M be a RG-module with a finite R-basis. Then clearly G acts diagonally 
on ®n M and therefore on its quotient module A'lt(M). If ell ... , eK is an R-basis 
for M, then the G-action on A'lt(M) is determined by 

In this manner A~(M) may be considered as a graded RG-module with a basis 
of m elements in dimension i. 

We now return to the case G = Zip. 

LEMMA 1.8. Let G = Zip. A~ (Fp[GJ) is a free G-module for 0 < i < p. 
p 

PROOF. The elements 1, g, ... , gP-1 are a basis for F p[G] freely permuted by G. 
Their products gil /\ ... /\ gik also have full G-orbits and hence provide a G-free 
basis for A; (F pG), 0 < k < p. 0 

p 

PROPOSITION 1. 9. If P is a projective ZG-module, then A~ (P) is projective 
for 0 < j < p. 

PROOF. 
m 

P®z Fp ~ EeFp[G]. 
I 

Hence 
i l im 

Ee /\(FpG) ® ... ® /\(FpG). 

By hypothesis, at least one ir satisfies 0 < ir < p in each summand, implying that 
AiT (F pG) is G-free and hence the summand A~ (P ® F p) is G-free for 0 < j < p. 

p 

But 
j j 

/\(P®F p ) ~ /\(P)®F p 
Fp Z 

j 

'* /\(P) is ZG-projective for 0 < j < p. 0 
Z 

Let A be an indecomposable of rank p-1; there is a short exact sequence (1.3(4)) 
o -t Z -t P -t A -t 0 where P is projective. 

This induces another exact sequence 
i-I i i 

o -t /\ (A) -t !\(P) -t /\(A) -t o. 
Z Z· Z 

Apply Corollary 1. 7 and induction; we obtain 

k > 0, 0 ~ i ~ p - 1, 

because A~(A) ~ Z, trivial G-module. 
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If A' is another ideal, then 
i-I j i j i j 

0-> /\ (A) ®/\ (A') -> /\ (P) ®/\ (A') -> /\ (A) ®/\ (A') -> 0 

is exact because all the modules involved are Z-free. Now if Mis G-cohomologically 
trivial, M ®z N is G-cohomologically trivial. Hence we obtain the following propo-
sition inductively: 

PROPOSITION 1.10. Let AI, ... , Ar be ideals of rank p - 1. Then 

Hk (G;A(AIffi"'ffiAr)) ~ L Hk+N(G;Z). 0 
h+· .. +lr=N 

O<:::lq<:::p-I 

The above results will be used in §4. 

2. Automorphisms induced by Z/pZ-actions. Let X ~ (5 n )k; then 
H*(X; Z) is an exterior algebra on k n-dimensional generators /\;(el, ... , ek). 

If G ~ Zip acts on X, then Hn(x; Z) = M has a natural G-structure induced on 
it and so do its exterior powers, i.e. as a graded ZG-module H*(X; Z) ~c /\;(M). 

EXAMPLES. (1) p = 3, X = 53 X 53, T(x, y) = (y, y-IX- I ), T* = (~::::D in 
the usual basis, XC = {(x,x)lx3 = 1}, H3(X;Z) indecomposable Z[Z/3]-module 
of rank 2 (XC = 5 2+ point). 

This example is due to Bredon [Brel]. 
(2) Consider 5 2n+1 C en. Let p = e21ri/ p ; then p acts on 5 2n+1 by complex 

multiplication. This action is trivial in homology and free, and using it we can find 
free and homologically trivial actions on any (52n+l )k. 

(3) On 5 2n the antipodal map defines a Z/2-action which is free, and changes 
orientation: as before we can use this to produce free involutions on (52n )k. 

(4) T: (5n)P -> (5n)P, T(XI'''''Xp) = (X2, ... ,Xp,Xt}, 

T* = 

1 
o 

o 

010 
1 0 0 1 

(5) Select a E GL(k; Z); then a can be considered as a map of the k-torus 
a: Rk /Zk -> Rk /Zk. In this example 

a* = a E Aut(HI(Rk /Zk; Z)) = GL(k; Z). 

Hence any torsion-free Zip-module can be "realized" on Hd(5 I )k; Z) via an action 
on (51)k. 

If X is homotopy equivalent to a product of n-spheres, one may ask whether the 
Hopf invariant theorem imposes some restriction on the possible automorphisms of 
X. The following proposition sheds light on this issue. 
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PROPOSITION 2.1. Let T: (sn)k --> (sn)k, n f. 1,3,7, such that T;' E 
GL(k;Z). Then its reduction mod 2, T;'(2) E SL(k;F 2 ), is a permutation matrix 
in the usual basis. 

PROOF. Express T;' in the usual basis sn --> (sn)k. Reducing mod2, no two 
entries in the same row can be nonzero, because otherwise we could find a map 
sn X sn --> sn of bidegree (odd, odd), which is impossible for n f. 1,3,7. As 
det T;' =t 0 mod 2, then there must be exactly one nonzero entry in each row, and 
they must be in different columns. 

* T~(2) is a permutation matrix. 0 
Consider the case when (T;')P = 1, p an odd prime. Then T;'(2) permutes the 

basis mod 2, and this decomposes into orbits of length p or 1. In other words, by 
reordering the basis, we can express T;'(2) as 

[ p, 
1 , 

0 0 1 
1 0 

Pi = 0 1 18 = id8x8 · 

Pr J 18 
0 1 0 

This is a matrix in rational form over F 2 , with elementary divisors (XP + 1), r 
times, and (X + 1), s times. 

We derive 

COROLLARY 2.2. Let T E SL( k; Z) with TP = 1 and with Xp-l + Xp+2 + ... + 
X + 1 as an elementary divisor over F 2 . Then T is not realizable on Hn((sn)k; Z) 
by any map (sn)k --> (sn)k for n f. 1,3,7. 0 

The characteristic polynomial of a linear map is the product of its elementary 
divisors, so that Corollary 2.2 implies that T is not realizable on Hn((sn)k; Z), 
n f. 1,3,7, if its characteristic polynomial over F2 has the form 

(XP - 1)8(Xp-l + ... + X + l)t, t ~ 1. 

Applying this to the decomposition theorem for Z[Zlp]-modules, we obtain 

PROPOSITION 2.3. Letn f.l,3, 7. There is no Zip-action on X = (sn)k such 
that, as a G-module, Hn(x; Z) is of type (r, s, t) with r > t. 

PROOF. If Hn(x; Z) is of type (r, s, t), r > t, then the characteristic polynomial 
of the action mod 2 would be 

r - t > O. 0 
The case X = (sn)k, n even, has fewer cohomology automorphisms than when 

n is odd: 

PROPOSITION 2.4. Let R* = H*((sn)k;z), n even, and T: R* --> R* an 
automorphism of finite period. Then T(n): R(n) --> R(n) can be represented by a 
signed permutation matrix. 

PROOF. R* = 1\* (el' ... ,ek), ei n-dimensional, i.e. R* is an exterior algebra on 
k n-dimensional generators, and as n is even, they commute. 
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k 

Tei = L ajiej. 
j=1 

Then, as e~ = 0 and T is a ring automorphism 

0= T(en = T(ei)2 = (L ajiej) 2 

=} L 2ajia liejel = 0, ajiali = 0, j i l, 
j=1 ..... k 

. 1=1 ..... k 
j$.l 

as the ejel, j i l, are a basis for R(2n). 
T is an automorphism, so some aji i 0 and therefore ali = 0, Vl i j. 
det T(n) = ±l as T(n) is invertible; thus aji = ±l and T(n) is a signed permu-

tation matrix. 0 
For an automorphism of order p = 2 this is not restrictive, but for p odd it is. 

There must necessarily be an even number of signs in the matrix, and hence by a 
change of basis it becomes a permutation matrix. We have 

PROPOSITION 2.5. Let Zip, p odd, act on X ~ (sn)k with n even. Then 

In particular, Hn(x; Z) is 01 type (0, s, t). 

3. Applications of the Lefschetz Fixed-Point Theorem. Given a map 
(sn)k L (sn)k, the most elementary tool available to decide the existence of fixed 
points is the Lefschetz Fixed-Point Theorem. 

If 1m is the induced map 1m: Hm((sn)k; Q) -+ Hm((sn)k; Q) the Lefschetz 
number of I is 

nk 
L(f) = L( _l)i tr Ii-

i=O 
The theorem says that if L(f) i 0, then I has a fixed point. 
For (sn)k we can use the trace in integral cohomology instead, and so 

nk k i 

L(f) = L(-l)i tr Ii = L(-l)intr /vr). 
i=O i=O 

Now let I be an automorphism of prime period p on (sn)k. We deal with the 
case n even first. 

If n is even, then 
k i 

L(f) = L tr Ivr). 
i=O 
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To help analyze L(f), we can study the algebraic properties of the following function 
on k x k matrices: 

DEFINITION 3.1. L: MkXk(C) - c, 

LEMMA 3.2. 
(1) 
(2) 

k i 

L(A) = L tr IVA). 
i=O 

L(A EEl B) = L(A) . L(B), 
L(QAQ-l) = L(A), Q E MkXk(C), 

PROOF. (1) follows from the identity for modules 
i j k 

I\(M EEl N) ~ L I\(M) ®I\(N) 
k+j=i 

and (2) from N(QAQ-l) = l\i(Q) l\i(A) l\i(Q)-l. D 
By Proposition 2.4, I(n) is a signed permutation module in a certain basis. 

Changing signs and reordering, we may suppose that 
r = (P1 EEl··· EEl Pr) EEl (-Iaxa) EEl (Itxd, 

I the identity matrix, Pj permutation matrices of length p. For p odd, s = O. 
It is easy to show that L(1) = 2, L( -1) = 0, L(Pi) = 2, and so on. 
PROPOSITION 3.3. Let I be an automorphism ofperiodp on (sn)k, n even. 
(1) If p is an odd prime then L(f) -=f 0 and hence I has a fixed point. 
·(2) If p = 2 and I(n) = (EB~ Pi) EEl Itxt , then L(f) -=f 0 and hence I has a fixed 

point. D 
Note that for both cases L(f) = 2r+t. (1) also follows from the result due to 

Conner and Floyd for ZIp-actions: 
X(Xz/P ) == X(X) modp. 

For n even X((sn)k) = 2k and 2k t:- 0 modp if p -=f 2. 
We now consider the case n odd, and so 

k i 

L(f) = L( _1)i tr I\(f(n») 
i=O 

where I\i is the usual exterior power on odd dimensional generators. 
As before we use the function L on k x k matrices. The trace of a matrix is the 

sum of its eigenvalues. This can be generalized to exterior powers to prove that 
tr(l\i(A)) = ith symmetric function of eigenvalues of A. 

Clearly L(1) = O. Now let T represent the action of Zip on an indecomposable 
projective module M. The eigenvalues of Tare 1,..\,..\2, ... , ..\p-l, where ..\ is a 
primitive pth root of unity 

trT = 1 +..\ + '" + ..\p-l = O. 
We have shown that if M is projective, N(M) is projective for 0 < i < p. From 
this it follows that 

i 

tr I\(T) = 0, 0< i < p. 
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So 
o p 

L(T) = tr /VT) + (-1)Ptr /\(T) = 0 

( A (T) = 1, p odd and - 1 for p = 2) . 
If we take M to be an indecomposable of rank p - 1, then T has eigenvalues 

>', >,2, ... ,>,p-l 

Therefore in this case 
p-l i p-l 

L(T) = 2)-1)i tr /\(T) = I)-1)2i = P. 
i=O i=O 

This is summarized as follows. 

PROPOSITION 3.4 (n ODD). Let G ==: Zip with generator g act on (sn)k, with 
Hn((sn)k; Z) of type (r, 8, t) a8 a Zip-module. Then 

(1) If 8 or t are nonzero, L(g) = O. 
(2) If 8 = t = 0, L(g) = pr and the action has a fixed point. 0 

4. Results from cohomological methods. In this section we will apply 
the cohomological methods due to Borel. The spaces will be taken to be finitistic 
(e.g. compact or finite dimensional) and an appropriate (co)homology theory is 
used. Otherwise we can restrict ourselves to G-CW complexes to simplify technical 
details. The standard reference for this is [Brel, Chapter VII]. 

Let G be a compact Lie group and EG a free contractible G-space. Then G acts 
diagonally on X x EG, and the Borel construction of X is defined as 

X Xc EG = (X x EG)IG. 

This is the associated bundle over EGIG = BG with fiber X. In other words the 
projection 7r: EG ---+ BG induces a fibration 

with fiber X. 

X ---+ X Xc EG 
1 

BG 

Therefore there is an associated spectral sequence 

E~,q = HP(BG; Hq(X; R)) =} Hp+q(X Xc EG; R) 

where H* (X; R) is twisted by the action of 7rl (BG) = G, i.e. 

HP(BG; Hq(X; R)) = HP(G; Hq(X; R)), the group cohomology, 

provided G is finite. 
An important property of this gadget is the following theorem. 
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THEOREM 4.1. (SEE [Bre 1] FOR PROOF.) Let G ~ Zip act on X with fixed-
point set F. Denote by j: F -+ X the natural inclusion. Suppose that Hk(X; R) = 0 
for k > N. Then je: Hk(X Xc EG; R) -+ Hk(F X BG; R) is an isomorphism for 
k > N, jc the map induced on the Borel construction by j. 0 

This fundamental theorem allows us to relate F with the type of action on 
H*(X;R). 

The following lemma is a direct consequence of Theorem 4.1. 
LEMMA 4.2. G ~ Zip, X a G-space with 

Hi(X;Fp) ~ {FO,p, i = N, 
i > N. 

If the generator J1, E HN (X; F p) is in the image of i*, where i: X -+ X Xc EG is 
the fiber inclusion, then the action has fixed points. 

PROOF. Recall that for G ~ Zip 

H*(BG' F ) = {P(x), dim x = ~, p = 2, 
. , p E(x)®P(y), dlmx=1,dimy=2,podd. 

In both cases there is a nonzero element t in HI (BG; F p). 
Now the fact that J1, E im i* is equivalent to J1, E E~N, i.e. it is a permanent 

cocycle. Then 0 # tJ1, is also a permanent cocycle and cannot be killed in the 
spectral sequence by our hypothesis on the fiber. 

Therefore EJ,oN # 0, and so HN+l(X Xc EG;Fp) # O. By Theorem 4.1, this 
implies F # 0. 0 

This lemma will be used several times later on. If X has the cohomology of an 
orient able closed manifold, it can be stated as saying that if i* is nonzero on the 
orientation class modp, then XC # 0. 

Let X be a paracompact G-space, G ~ Zip (e.g. a G-CW complex). Then G 
acts on rr X via the permutation action. We recall a construction due to Steenrod 
[S-E] for cell-complexes and extended by Bredon [Bre1] to paracompact spaces. 

PROPOSITION 4.3. There exists a natural map (not a homomorphism) 

P: Hn(x; Fp) -+ Hpn ( (IT X) Xc EG;Fp) 

for each n, satisfying the following properties: 
(1) If k: rJP X -+ (rr X) Xc EG then 

k* p( a) = a X ... X a, 
(2) Let ~: X -+ TIP X be the inclusion of the fixed point set (the diagonal). Then 

n 

~GP(a) = L pi(a) ® J1,n-i E H*(X; F p) ® H*(BG; F p) 
i=O 

where J1,n-i E Hn-i(BG; F p) is a basis element and pi is used in the definition of 
the Steenrod operations. 0 

There is a G-equivariant map 
p 

h: X -+ II X, X f-> (x, Tx, ... , TP-lx), 

T the action on X. The following lemma using h is also due to Bredon [Bre2]. 
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LEMMA 4.4. Ifi: X --t X Xc EG, then 
(1) i*haP(a) = aU T*a U··· U (TP-l)*a, 
(2) jahaP(a) = E~=o pi (a IF) I8l /In-i, 

where F = FIX SET of X, j: F --t X. 

PROOF. (1) The diagram 

commutes. Therefore 

X 
hl 

IJP X 

i 
--t 

k 
--t 

XXc EG 
1 hG 

(IJP X) Xc EG 

i*haP(a) = h*k* P(a) = h*(a X ... X a) = aU T*a U ... U (TP-l )*a. 

(2) In this case 

commutes. Therefore 

XXc EG 
jG i 

FxBG jxl 
--t 

(OP X) Xc EG 
i Ll.G 

XxBG 

jahap(a) = (j x 1)* Aap(a) = (j x 1)* (~pi(a) I8l /In-i) 

n 

= L: pi(aIF) I8l /In-i· 
i=O 

The preceding machinery will now be applied to the case X '" (sn) k, G ~ Zip 
acting on X. Given a certain G-module structure on Hn(x; Z), we will derive some 
cohomological results on F. 

THEOREM 4.5. Let G ~ Zip act on the finitistic space X '" (sn)k such that 
Hn(x;z) is projective (of type (0,8,0)) as a ZG-module. Then F t= 0 and F "'p 
(sn)s. 

PROOF. As Hn(x; Z) is of type (0,8,0), then Hn(x; F p) ~ EB s F pG, free F pG-
module. 

For each summand, choose Xi so that Xi, T*Xi, ... , (TP-l )*Xi are linearly inde-
pendent, where T: X --t X represents the action. This is possible because 1 E F pG 
satisfies this (the identity element of G). 

Consider the elements 

TJi = Xi U T*Xi U··· U TP-l· Xi E Hpn(x; F p). 

By Bredon's lemma (4.4(1)), each of them lies in imi*, i: X --t X Xc EG. 
We use the modp spectral sequence associated to X Xc EG --t BG, E~,q = 

HP(G; Hq(X; F p)). 
The elements TJi originate from different summands, so they are linearly inde-

pendent and in fact generate an exterior algebra 1\ C im i* = E~:. The product 
v = TJl ... TJs is a nonzero multiple of the orientation class, so by Lemma 4.2, F t= 0. 
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Choose t E H2 (BG; F p) such that tk # O'Vk. Then, as /.I has highest fiber degree ° # tk /.I E E;};,psn, i.e. it cannot be killed in the spectral sequence. The same must 
be true of tkfli for each i. Otherwise suppose tkfli = d(~) for some i. 

Then 

d (w (n qj)) ~ dW (Ih) ~ ±t'v 

(d is a derivation, the fli are permanent cocycles). The elements tkfli are represented 
by tkhcP(Xi) E H2k+pn(x Xc EG;Fp). 

Therefore, for sufficiently large k 

jc(tkhcP(Xi)) # 0, 

tkjc(hcP(Xi)) # ° 'Vi, and by 4.4(2), 

Xi!F # ° 'Vi. 
We will show that the Xi!F generate H*(F;Fp) as an exterior algebra; first we 
bound its rank. 

For k large 
(*) Hk(X Xc EG;Fp) ~ Hk(F X BG;Fp) 

k 

~ L Hk-n(F; F p) ® Hn(BG; F p) 
n=O 

(Kiinneth formula). 

, 
I\(Hn (Xi Fp)) ~ 

il+···+i.=i 
If for some J~, p J in then the summand is G-cohomologically trivial. If i = pi, 

then up to cohomology the right side is 

il+··+i.=pl 
pli., "Ir 

F p trivial G-module. 

From this it follows that 
k· {O, ifpJi, 

H (G;Hm(X;Fp)) = Hk(G;E9(;) Fp), i=pl. 

From (*) 
rk H* (F· F ) = '""" rk EM < '""" rk EM p 'P L..J Poo-L..J p2· 

p+q=k p+q=k 
We conclude that 

rkpH*(F;Fp) ~ t (;) = 28. 
1=0 

Take t E H2(BG; F p) as before; the t, fib ... ,fl8 generate a subalgebra in E~ of the 
form P( t) ® A (fit. ... , fl8). Hence for sufficiently large k they generate a subspace 
of rank 28 in Lp+q=k E'goq, and so all of it. 
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Suppose some element 

Then 

(1 ® t'l (~Pj(ZIF 1 ® Mm- j ) ~ 0 Vk, t' M berme 

=? l· j(jhcP(Z) = 0. 

For k large enough this implies t k hcP( Z) = 0. But this element represents 

t k ("""' a' . rI' ... rI) =? """' a .. ·a rI .. ·rI· = ° ~ 1.1 ···t T '/1.1 'I2r ~ 1.1 'l.r 'Itl 'f'l,r • 

Therefore {Xi IF} generate an exterior algebra in H*(F; F p) of rank 28 • 

and so F ~p (sn)8. 0 

THEOREM 4.6. Let G ~ Zip act on X ~ (sn)(p-l)r, n odd, and suppose that 
Hn(x;z) is of type (r,O,O) as a G-module. Then F =f. 0, H*(F;Z(p)) is torsion 
free, zero in odd dimensions, and of rank pr if reduced mod p. 

PROOF. By Proposition 1.10 

k > 0, ° :S jq :S p - 1. 

Let Ef,q be the integral spectral sequence associated to the Borel construction. 
The possible nonzero differentials are of the form Et~~nl .:J:.. E;n+;~+l,(J-l)n. 

Then, by (*), E~,tn = ° if k + t is odd, and as n is odd this is equivalent to k + tn 
odd. Therefore the above differentials are all ° if k > 0. 

Choose k sufficiently large so that Ek,jn cannot be killed by any element on 
the vertical edge of the spectral sequence. Then by the preceding observation, 
E~,jn = E~/n. In other words the spectral sequence degenerates in large total 
degree. 

Fix N large: the Et:o term is an F p-vector space and 

L Ef;,q = L Eli -tn,tn 
p+q=N O::;t::;r(p-l) 

(Recall n is odd.) Therefore 

N {O, N odd, 
rkpE(X) = ",r(p-l) P (t) N even. 0t=0 r , 
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Pr(t) denotes the number of partitions of t by r integers between (and including) 0 
and p - 1. By induction, it can be shown that 

r(p-l) 

2: Pr(t) = pro 
t=O 

Thus we have obtained 
N odd, 
N even. 

For N large, p annihilates HN (XxG EG; Z) as this is a finitely generated module 
over H*(BG; Z). Therefore, using Theorem 4.4(2) 

N {
o N odd, rk H (F x BG· Z) = ' 

p 'pr, N even. 

H*(BG; Z) = P(x), a polynomial algebra over Fp on one generator in dimension 
2. By the Kunneth formula, H*(F; Z(p)) = ° for k odd and H*(F; Z(p)) has no p-
torsion (otherwise two consecutive nonzero terms would appear in H*(F x BG; Z)). 

Finally if we reduce modp 

rkpHN (F x BG; F p) = pr for any N sufficiently large 

and therefore rkpH*(F; Fp) = pro 0 
Note. If p is odd, n must be odd by Proposition 2.5. For p = 2, Z/2 acts freely 

on s2n changing orientation, i.e. H2n(x) ==' A where A is the twisted action on Z, 
1 --'-+ -1 (Example 3, §2). 

The case (r, s, 0) is not as complete as the preceding ones: the structure of 
H* (F; F p) is not easy to determine. 

THEOREM 4.7. Let G ==' Zip, p odd, act on X ~ (sn)(p-l)r+Ps and suppose 
that Hn(x; Z) is o/type (r,s,O) as a G-module. Then F t- 0, rkpH*(F;Fp) 22r+s 
and H*(F;Fp) contains an exterior algebra on s n-dimensional generators. 

PROOF. Let 

Then 
(p-l)r+ps (P-l P-l) 1\ (Hn(x; Z)) =='G 1\ (Al) ® ... ® 1\ (Ar) 

® (A(Pd®···®A(Ps)). 
As p is odd, /\P-l(Ai ) ==' Z ==' /\P(Pj ), trivial G-modules. Let Vi generate /\P-\Ai). 

Reducing mod p, the analogous isomorphism holds. Choose""i E Hpn (X; F p) as 
in Theorem 4.5: i.e. they generate /\P(Pi) ® F p and are in the image of i*, i: X Co....+ 

X XG EG. Then (Dl ... vr )(J.ll ... J.ls) is a nonzero multiple of the orientation class 
modp, and J.ll ... J.ls E im i*, Vi the reduction of Vi. Therefore if we can show 
Vi E imi* integrally, then Vi E imi* (modp) and so by Lemma 4.2 F t- 0. 



806 ALEJANDRO ADEM 

Consider the spectral sequence associated to X x G EG with integral coefficients: 
E~,q = HP(G; Hq(S; Z)). Then Vi E E~,(p-l)n. 

Claim. Vi is a permanent cocycle. 
Look at the differentials EO,(p-l)n ~ Ejn+l,(p-j-l)n These are the only dif-In+l In+l . 

ferentials which can possibly involve the Vi. 

Hjn+1(G; H(p-j-l)n(x; Z)) ~ Hjn+1 ( G; P7\l (( E9 Ai) EB (E9 Pj )) ) 

~ Hjn+1 ( G; Pi\-l (E9 Ai) ), Pj are projective and p - j - 1 < p, 

~ L: H jn+1+p-j-l(G; Z) (Proposition 1.10). 

However if p is odd, n must be odd (Proposition 2.5). So j(n -1) + p is odd, hence 

Hj(n-l)+p(G; Z) = 0 

'* Ejn+l,(p-j-l)n = 0 \:fJ' 
In+l 

'* Vi are permanent cocycles, hence Vi E E!(p-l)n = im i*. 

We have proved F =1= 0. 
The Vi, TJj generate a free H* (BG; F p) module of rank 2r+8. This is verified as 

in the proof of 4.5. Also as in 4.5, ifTJj = ajUT*ajU·· ·UTP-haj , then the {ajIF} 
generate an exterior algebra in H*(F;Fp). 0 

Note. The case p = 2 can be approached differently. Assume that F =1= 0; then 
the Vi are transgressive, and must transgress to 0, i.e. they are permanent cocycles. 
Then we proceed as above; but by rank considerations rkpH*(F; F p) = 2r+8 and 
in fact the spectral sequence degenerates. This result is due to Bredon [Bre2, p. 
273]. 

Given the classification Theorem 1.4, Theorem 4.7 has the following corollary. 

COROLLARY 4.8. Let G ~ Zjp act freely on X ~ (sn)k, p odd. Then 
Hn(x; Z) has a trivial direct summand as a G-module. 0 

The cup product on H*(X; Z) restricts its G-module structure. If we only require 
that X have the homology of (sn)k, then 4.8 is false. Counterexamples can easily 
be constructed without cohomology products. 

Many of the cohomological techniques available for Zjp can be extended to 
(Zjp)l, and one may expect a version of 4.8. The following example is helpful in 
formulating a plausible extension of it. 

EXAMPLE 4.9. G = Zjp x Zjp. Let S, T be generators of G. Denote by 
p: s2n-l ~ s2n-l the free Zjp-action on S2n-l, X ~ e27ri /px, and by P: (S2n-l)p 
~ (S2n-l)p the permutation action P(Xl,"" xp) = (X2' X3, ... , xP' xd. 

We define a G-action on (S2n-l )p+l as follows. 

S(Xl,"" xp+d = (pXl, ... , pXP' xp+d, 
T(Xl,"" xp+d = (P(Xl,"" xp), PXp+1)' 
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S, T commute and define an effective G-action on (S2n-l )p+l. Suppose z is fixed 
under an element in G, i.e. 

SiTj(zl, ... , zp+d = (Zl, ... , zp+d 
=? (pj (pi Z1 , ... , pizp), pi zp+d = (Zl,"" zp+d, 
piXp+l = Xp+l =? j == 0 modp. 

Hence pj = 1 and so piZk = Zk and hence i == 0 modp =? SiTj = 1 and the action 
is free. 

As a Z[ (S) ]-module, Hn((s2n-l )P+1; Z) ~ (Z)p+1, a trivial module of rank p+ 1. 
As a module over Z[(T)], Hn((S2n-l)p+1;Z) ~ Z[(T)] EB Z. 

Clearly then, the n-dimensional cohomology module does not split off a trivial 
ZG-module of rank 2, but nevertheless 

rkzHn((S2n-l)p+1; Z)G = 2. 

This leads us to the following conjecture for p odd (if p = 2, use F2): 
CONJECTURE. Let G = (Zlp)l act freely on X ~ (sn)k; then 

l ~ rk(Hn(X; Z))G. 0 

This conjecture is true when the action is trivial in homology (see rCa, Bra]), 
but the result can be proved in that case without the cup product structure. 

Another approach is to restrict a (Zlp)l-action to its cyclic subgroups. In this 
way we can show that many modules can only be realized on Hn((sn)k; Z) under 
certain conditions. For example: 

PROPOSITION 4.10. Let G = (Zlp)l act on X ~ (sn)k such that Hn(x; Z) is 
(1) projective or (2) cohomologous to 02m+1(Z). Then every cyclic subgroup has a 
fixed point. 

PROOF. If Hn(x; Z) is ZG-projective, then Hn(x; F p) is F p[G]-free. Therefore 
it is free restricted to each cyclic subgroup, and so they must have fixed points 
( 4.5). 

By the definition of 02m+l(Z), in cohomology we have 

iI*(H; 02m+l(z)) ~ iI*-2m-l(H; Z) 

for every subgroup H ~ G. In particular for H ~ Zip 

iIi(H; 02m+l(z)) ~ iIi- 2m- 1(Zlp; Z) = { ~,Ip, i odd, 
t even, 

because 2m + 1 is odd. Hence 02m+l(Z) is of type (1, s, 0) and H has fixed points 
(4.7). 0 

To conclude this paper, we give a topological application of 4.8. 

THEOREM 4. 11. Let X be a C W-complex dominated by a finite m-dimensional 
complex such that 

(1) n1(X) ~ Zip, p odd, 
(2) X ~ (sn)k, n> 1, m = kn. 

X universal cover of X. 
Then X is equivalent to a finite complex of dimension max(3, m). 
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PROOF. The proof requires computing the finiteness obstruction 

O(X) E Ko(Z[Zjp]). 

The reference for this is Wall's paper [W]. 
We recall how it is defined. Let Ci = Ci(X); then these are free Z[Ih(X)] = 

Z[Zjp]-modules. The short exact sequence 

0---> 8Cm+! ---> Cm ---> Cmj8Cm+1 ---> 0 

splits over Z[Zjp] by our hypothesis, and by definition 

O(X) = [Cmj8Cm+!] E Ko(Z[Zjp]). 

From the chain complex O(X) ---> Cm - 1 ---> ••• ---> Co we can compute O(X) as 
an element in Go(Z[Zjp]) (see [SW] for the definition). 

The Euler characteristic formula implies 
m m-l 2) -l)i[Hi(X)] = (-l)m[o(x)] + L (-l)i[Ci] 

i=O i=O 

in Go(Z[Zjp]). 
By Poincare duality 

Hm-i(X; Z) ~ Hi(X; Z) as Zjp-modules. 

Therefore 
m m L( -l)i[Hi(X)] = L( _l)i[Hm-i(x)] 

i=O i=O 
m 

= L( _1)2i-m( _l)m-i[Hm-i(x)] 
i=O 

(n is odd). 

We define the following element in Go(Z[Zjp])). 

(M torsion-free); 

using the isomorphism 1\* (M EB N) ~ 1\ * (M) ® 1\ * (N) it is not hard to show 

L([M EB N]) = L([M]) . L([N]) in Go(Z[Zjp]). 

[In fact L is well defined as a function on G~(Z[Zjp]).] 
Now II1(X) ~ Zjp acts freely on X; hence by Corollary 4.8 

Hn(x; Z) ~ M EB Z as Z[Zjp]-modules. 

Trivially L([Z]) = 0, so L([Hn(x)]) = O. 
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From (*) we conclude 

O(X) = (_l)m+l (~\ -l)i[Cil) 

as elements in Go(Z[Zjp]). However, for G = Zjp, the Cartan map Ko(Z[Zjp]) -; 
Go(Z[Zjp]) is a monomorphism (see [Sw]) 

=:;. O(X) = (_l)m+1 (~\ -l)i[Cil) 

in Ko(Z[Zjp]); but the Ci are free, hence in the reduced group Ko(Z[Zjp]), O(X) 
=0. 

Wall's theorem implies the result. D 
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