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FREDHOLM, HODGE AND LIOUVILLE THEOREMS 
ON NONCOMPACT MANIFOLDS 

ROBERT LOCKHART 

ABSTRACT. Fredholm, Liouville, Hodge, and e-cohomology theorems are proved 
for Laplacians associated with a class of metrics defined on manifolds that have 
finitely many ends. The metrics are conformal to ones that are asymptotically 
translation invariant. They are not necessarily complete. The Fredholm results are, 
of necessity, with respect to weighted Sobolev spaces. Embedding and compact 
embedding theorems are also proved for these spaces. 

Two of the most useful facts in analysis on a compact Riemannian manifold are 
that the Laplacian is Fredholm and its kernel consists of closed and coclosed forms 
that provide unique representatives for all the de Rham cohomology classes. 
Naturally one would like to extend these results to noncompact manifolds. The first 
such result in this direction is due to Kodaira [9, 12, p. 165]. It is that 1.2(/\ qM, g) is 
the orthogonal direct sum of dCooo(/\ q-1M), d;Co'X)(/\ q+1M), and 

Unfortunately, if no restriction is made on the manifold or the metric, one cannot 
improve on this. The Laplacian need not be Fredholm; L 2-harmonic forms need not 
be closed or coclosed; even if they are closed and coclosed, the space of harmonic L 2 

forms need not be finite dimensional (see [7]); and even if the Laplacian is Fredholm 
and L 2-harmonic forms are closed and coclosed, those forms need not provide 
unique or total representation of de Rham cohomology. 

Thus one of the main questions in analysis on noncompact manifolds is what 
conditions on M and g allow one to carryover the Fredholm and Hodge theorems 
for compact manifolds and, if they cannot be carried over completely, to what extent 
can they be? In the case of Hodge's theorem, i.e., properties of the space of L 2 

harmonic forms, this question has been quite actively investigated recently (see [2-8, 
11, and 13]). 

For instance, one of the results of Atiyah, Patodi, and Singer in [2] is that if a 
manifold has cylindrical ends then §j 2(/\ g M, g) is naturally isomorphic to the image 
of H~omp(M) in HZR(M) (see [2, Proposition 4.9]). In [11], Milller investigates the 
spectrum of the Laplacian on manifolds that outside a compact set are Q X R +, with 
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Q compact, and are equipped with a metric that on Q X [1, (0) is of the form 
z-2(dz 2 + dsli) with dsli a metric on Q. A corollary of his Proposition 6.9 is that 
§j 2(/\ qM, g) is finite dimensional. In [4] Cheeger investigates, among other things, 
the L 2 cohomology of spaces of the form M = Q X (0,1) equipped with the metric 
g = dr 2 + r 2adsli with a ~ 1. One of the consequences of Lemma 3.4 of [4] is that if 
Q is compact then dim &)2(/\ qM, g) .::;; dim HbR(M). Using a separation of variables 
argument like that in [3] one can show that in fact dim &)2(/\ qM, g) = dim HbR(M) 
when 2q < dim M. 

In this paper we also examine the properties of L 2 harmonic forms on a class of 
manifolds equipped with certain metrics. However, unlike previous investigators who 
by and large treated ~, d, and [) as unbounded operators on L2, we consider the 
Fredholm properties of the Laplacian with respect to a particular family of weighted 
Sobolev spaces. There are three reasons for this. First of all, it allows for the 
consideration of a larger class of metrics. Secondly, a Fredholm theory for the 
Laplacian is as important to analysts as a Hodge theory. In particular, such a theory 
should be of use in nonlinear analysis on noncompact manifolds. It is for this reason 
that we do not restrict attention to weighted L 2 Sobolev spaces, but rather work 
with weighted LP spaces for 1 < P < 00. It is also for this reason that we present 
several embedding theorems for the Sobolev spaces which we use. Thirdly, by using 
weights, we are able to prove Liouville type theorems for harmonic forms. 

To be more precise, the noncompact manifolds we consider have finitely many 
ends. Thus M contains a compact manifold, Mo, with boundary; oMo has finitely 
many components, and Moo = M - Mo = oMo X R +. On such a manifold there is a 
natural R +-action on each end and so the notion of asymptotically translation 
invariant metric makes sense (see §2). If h is such a metric, then g = e 2Ph is said to 
be admissible if all the covariant derivatives of p have a limit at infinity (see 2.3.1). 

Examples of admissible metrics abound. For instance, every metric that is 
asymptotically translation invariant is admissible. For h such a metric, the metric 
that on Moo is g = e 2zh is admissible. As a special case of this, suppose h = dz 2 + 
dS~Mo on Moo' Letting r = e Z we see that g = dr 2 + r2ds~M() on (w, r) E oMo X 
(1,00) = Moo' In particular if oMo is k-copies of sn-\ then we have that every 
asymptotically Euclidean metric is admissible. The horns and cones of [4] that are of 
the form g = dr 2 + r2ads~Mo on (w, r) E oMo X (0,1) = Moo and with a ~ 1 are 
admissible in our sense. To see this, let z = -J{t-adt. Then on (w, z) E oMo X R+ 
= Moo 

g = ([eXP(-2(aj (a - 1))ln(a - l)z + 1))](dz 2 + dS~MJ, 
e- 2Z ( dz 2 + dS~MJ, a = 1. 

(0.1) 
a> 1, 

In both cases g is admissible. If p = -In z on oMo X (1,00) then g = e 2Ph is 
admissible and so for instance the cuspidal metrics of [11] are admissible. For more 
examples see the end of the introduction. 

It is for the Laplacians associated with admissible metrics that we prove Fredholm 
results. Since the manifolds under consideration are noncompact, weighted Sobolev 
spaces must be used. This is not due to some perversity of the author, but rather out 
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of necessity. It just is not the case that 
(0.2) Il g : Li(A qM, g) ~ LP(A qM, g) 

is always Fredholm. For instance, if g is asymptotically a product metric on Moo' 
then (0.2) is Fredholm if and only if HZ]/('dMo) = HZR('dMo) = O. 

In the case of metrics asymptotically translation invariant on Moo, the weights 
needed are exp(8) with 8 E COO(M; R) and 8(w, z) = 81z on the Ith end of M. 
What matters about 8 is its values on Moo, and so it may be identified with an 
element 8 of RL, where L is the number of ends of M and 8 (w, z) = 81z on' the I th 
end. Using this identification we write our weights as elJz. 

In the case of a general admissible metric, g = e 2Ph, these weights must be 
modified. It turns out for g = e 2Ph the appropriate Sobolev spaces are the ones with 
the norms 

(0.3) Ilall(W,~IJ'Q(AqM,g)) = C~o 1M IlelJz+(t+QlPD/g)all:dVgfIP 

with 8 E RL, 1 < P < 00, sEN, and a E R. The associated Sobolev spaces are 

(0.4) W,~IJ,a(AqM, g) = {a E Lf,loc(AqM) I Ilall(W,~IJ,a(AqM, g)) < oo}. 
Various properties of the spaces W,~IJ,a(A qM, g) are established in §§3 and 4. These 
include the density of CO'(A qM), a weighted Sobolev embedding theorem, and a 
compact embedding theorem. 

One of our principal Fredholm results is that 
(0.5) Il g : W,P+ 2,IJ.a(A qM, g) ~ W!,Il,a+2{A qM, g) 
is continuous for all 8 and Fredholm for almost all 8 E ,RL. Since LP(A qM, g) = 

Wrf,o,o(AqM,g) and W6,o,o(AqM,g)c W6,Il,o(AqM,g) for all 8 E RL with 81~ 0, it 
follows from this Fredholm result and some regularity results for harmonic forms 
that the space of harmonic forms in LP(AqM, g) is finite dimensional. In fact more 
generally there is the Liouville theorem that for all a E Rand 8 E RL the space of 
harmonic forms in W6,Il,a(A qM, g) is finite dimensional. This combined with the 
regularity results for harmonic forms in §5 implies that the space of harmonic forms 
satisfying sUPMllelJzallg < 00 is finite dimensional for each fixed 8 E RL. 

It is still not the case that 
(0.6) Il g : W{,o,_2(AqM,g) ~ W6,o,o(AqM,g) = LP(AqM,g) 
is always Fredholm. However, because the kernel and the kernel of the adjoint of 
(0.6) are finite dimensional and because (0.5) with a = -2 is Fredholm for some 
8 E RL with 81 ~ 0, it is possible to construct a Banach space W{,o,_2(A qM, g) such 
that 
(0.7) 
is Fredholm. If (0.6) is Fredholm, then W{,o,_2(A qM, g) turns out to be 
W{,o,_2(AqM,g) with an equivalent norm. In general W{,o,_2(AqM,g) is dense in 
W{,o,_2(AqM,g) and the latter space is contained in nll <ow{,1l.- 2(AqM,g). This 
along with the proof of the other Fredholm result is done in §5. The analogous 
results for d + d: are also proved there. 
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Because of these Fredholm results 

(0.8) 

with dim F = dimension of the space of harmonic forms in LP'(A qM, g) (lip' + 
lip = 1). In §6 by using the weighted Sobolev imbedding theorem we provide 
sufficient conditions for F to consist of harmonic forms. In fact this is done for the 
general space Jt?8 a(A qM, g). A consequence of these results is that on an orient able 
manifold if g is'~dmissible and cp is a function such that e 8zcp E LP(M, g) for 8, 
sufficiently negative for each I, then cp = d;a for some I-form 

a E n W6,T,_l(NM, g). 

In fact this is true even if g is only equivalent to an admissible metric; i.e., there is 
an admissible metric gland e E R + such that gl e ~ g 1 ~ eg. 

In §7 we turn our attention to the properties of the space of closed and coclosed 
forms in L 2(A q M, g) for metrics equivalent to admissible metrics. This space is 
denoted §j2(A qM, g). Note that in the case of complete metrics, §j2(A qM, g) is the 
same as the space of L 2-harmonic forms. 

Qne of the chief results of the section is that if a metric (not necessarily equivalent 
to an admissible one) is equivalent to one that is q-bounded above (see 7.3), then 
§j2(AqM, g) contains no exact elements. Thus dim§j\AqM, g) ~ dim HbR(M) and 
each element of §j2(AqM, g) is a unique closed and coclosed representative of a 
class in HbR(M). 

Here and throughout the paper 

(0.9) HbR(M) = [Kerd: coo(AqM) -4 coo(Aq+lM)]ldcoo(Aq-1M). 

There are many examples of metrics that are q-bounded above. For instance, if h 
is asymptotically translation invariant, then it is q-bounded above for all q. If 
g = e 2 </>h is conformal to h (g not necessarily admissible) and cp( w, z) is increasing 
on Moo for each w E 8Mo, then g is q-bounded above for q ~ n12; if cp is 
decreasing, then g is q-bounded above for q ~ n12. 

When g is equivalent to an admissible metric, the Fredholm results for d + d; 
mentioned above imply that every class of HbR(M) with a representative in 
L 2(A qM, g) has a representative in §j 2(A qM, g). Thus the question arises as to 
which cohomology classes have representatives in L 2(A qM, g). This is determined in 
(7.9). 

For g a metric and ai' ... , a L the components of 3Mo let 

(0.10) d= d(g; q) = {Ill Ilcp II~dVg = 00 for some cp E COO(A qM)R+} 
Q/xR+ 

where COO(A qM) R+ is the space of Coo q-forms that are R + invariant on Moo' Also 
let M;:;(g; q) = U'E""a, X R+. It is shown in (7.9) that if g is equivalent to an 
admissible metric, then the classes in HbR( M) with a representative in §j 2(A qM, g) 
are exactly those with compact support on M;:;(g; q); i.e. have a representative that 
is 0 on U, E "" a, x [R, 00) for some R > O. If in addition g is q-bounded above, then 
the representation is unique. 



FREDHOLM. HODGE AND LIOUVILLE THEOREMS 5 

In the last section we look at some properties of the L 2-cohomology (see 
Definition (8.2» of the Riemannian manifolds which are considered in this paper. In 
particular, if M is a manifold with finitely many ends, equipped with a metric g that 
is equivalent to an admissible one, and lIt(M) is the L 2-cohomology of M, then we 
present some results concerning when the natural map 

(0.11) 

is 1-1, is onto, is an isomorphism. When it is an isomorphism we say that the Strong 
Hodge Theorem holds (see [4]). When (0.11) is not onto then we have the interesting 
fact that lIt( M) is infinite dimensional. 

For example, an easy result (Proposition (8.5» is that if g is equivalent to a metric 
that is q-bounded above, then (0.11) is 1-1. A more difficult result (Theorem (8.7» is 
that if g is equivalent to an admissible metric gl = e 2Ph and p is bounded below, 
then (0.11) is 1-1. Moreover, if limsupz--+oop(w, z) = 00 on at least one end of M, 
then (0.11) is not onto for q > O. 

In Theorem (8.9) we treat the case in which g is equivalent to an admissible metric 
gl = e 2Ph and p is bounded above. One of the results of that theorem is that if 
p ~ (£ - 1)ln z on aMo X [1,00) for some 0 < £ < 1 and p is slowly oscillating in 
the sense of (8.8) then (0.11) is onto if and only if lIb1/(aMo) = O. For example, if p 
is bounded, then either the Strong Hodge Theorem holds or, when lIbi/(aMo) =1= 0, 
lIt( M) is infinite dimensional (also see [13] for this result for bounded p). 

The condition that p ~ (£ - 1)ln z for some 0 < £ < 1 is in some sense sharp for 
the necessity of lIb1/(aMo) being 0 for (0.11) to be onto. If g is q-bounded above 
and ze P is bounded on aMo X R +, then the Strong Hodge Theorem holds regardless 
of what lIbR(aMo) is (see (8.9». Thus, for instance, this is true of the cuspidal 
metrics of [11]. 

Finally, if p is O(z) but not o(z) as z ~ 00 on aMo X R+, then (0.11) is onto. 
This is the case, for example, for the metric cones in [4]. 

To illustrate the scope of these results, four examples will now be given. In all the 
examples there is the orthogonal decomposition 
(0.12) 

L 2(1\. qM, g) = dW1~O,_1 (I\. Q- 1M, g) Efl d :W1~O,-1 (I\. q+ 1M, g) Efl iQ 2 (I\. qM, g). 

In the cases in which g is complete, ~ 2(1\. qM, g) contains all harmonic, L 2 forms 
and so 

EXAMPLE (0.14). g is asymptotically translation invariant. 
In this case g is q-bounded above for all q and admissible. Furthermore 

M::;(g; q) = Moo for all q, Thus 

(0.14.1) 

and provides unique representatives for that image. Also lIt(M) is infinite dimen-
sional if lIbi/(aMo) =1= O. Otherwise, lIt(M) z ~2(1\. qM, g). 
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EXAMPLE (0.15). h is asymptotically translation invariant, g = e 2Ph is admissible, 
p(w,z) is increasing on Moo for each w E aMo, and p(w,z) > [(1 + e)/2]lnz on 
aMo X [1, (0) for some e > O. 

In this case g is q-bounded above for q ~ nl2 and admissible. Furthermore 
M:(g, q) = Mx; if q ~ n12. However, if q > nl2 then M(g, q) is empty. Thus 

_ (HbR(M) for q > n12, 
(0.15.1) ,fd 2(/\ qM, g)::=. f Hq (M)' Hq (M) 'f = 12 Image 0 comp In DR I q n 

and provides unique representatives for these spaces. For q < nl2 only the image of 
H~mp(M) in HbR(M) has representatives in §j2(/\qM, g). Moreover the representa-
tives need not be unique. For example, if M is orientable, then obviously 
§j2(/\ qM, g) = * g §j2(/\ n-qM, g) and so dim §j2(/\ qM, g) = dim H~mp(M) for q < 
n12. Also dim Hf(M) = 00 if q > O. 

EXAMPLE (0.16). h is asymptotically translation invariant, g = e 2Ph is admissible, 
pew, z) decreasing, and pew, z) < -[(1 + e)/2]lnz on aMo X [1, (0) for some e > O. 

This case is exactly the same as the previous one except that all the inequalities for 
q are reversed. Thus 

_ {HbR(M) forq<nI2, 
(0.16.1) ,fd2(/\qM,g)::=. fHq (M)' Hq (M) 'f = 12 Image 0 comp In DR I q n 

and provides unique representatives for these spaces. For q > nl2 only the image of 
H~omp( M) in HbR( M) has representatives in §j 2(/\ qM, g). Moreover the representa-
tive need not be unique. If M is orientable, then dim §j2(/\ qM, g) = dim H~omp(M) 
for q > n12. Also if e > 1, then Hf(M) -'" §j2(/\qM, g) for q ~ n12. If moreover p 
is O(z) but not o(z) as z ~ 00 on aMo X R+, then dim Hf(M) ~ dim§j2(/\qM,g) 
for q > n12. 

EXAMPLE (0.17). h is asymptotically translation invariant, g = e 2Ph and pew, z) 
= (sin(ln z ))In z on aMo X [1,(0). 

Here g is admissible; however, it is q-bounded above only for q = nl2 (if n is 
even). Moreover M:(g; q) = Moo for all q. Thus only the image of H%omp(M) in 
HbR(M) has representatives in §j2(/\qM, g). If q = nl2 these representatives are 
unique. For q =1= nl2 our techniques do not allow us to say anything more; except, 
of course, if q = 0 or n, which are trivial cases. 

As we noted before, Example (0.15) contains all asymptotically Euclidean metrics 
on manifolds that outside Mo are diffeomorphic to a finite number of copies of Rn 
minus a ball. Similarly Example (0.17) contains the metric cones and horns in [4] 
and cusps in [11]. Also note that if g is equivalent to any of the me tries in these 
examples, then everything said about the space of closed and coclosed L 2 forms for 
the metric that g is equivalent to is also true for §j 2(/\ q M, g). In fact one can even 
get a version of the decomposition (0.12) when M is oriented. More specifically, if g 
is equivalent to an admissible metric gI' then 
(0.18) L 2(/\ qM, g) = dWI~O,_1 (/\ q-1M, gl) EB d;B EB §j 2(/\ qM, g) 
where B = * WI2o_I(/\n-q-IM, gl) and the norm on B is 

g " 

II a liB = II * g a II( WI~O,-l (/\ n-q-IM, gl))' 
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This follows easily from (0.12) and Kodaira's theorem. 
Finally there is the question as to whether one needs to use weighted Sobolev 

spaces in order to get Fredholm results for ~ g and d g + d: for admissible g. The 
answer is yes. For instance, suppose B is a Banach space of q-forms with the 
properties that Cooo(AqM) is dense in B and ~g: B ~ LP(AqM,g) is Fredholm. 
Since ~g: B -7 LP(AqM, g) is Fredholm, the norm on B is equivalent to II~gallp + 
II '7TBa II where '7TB is a projection of B onto Ker~g n B = K 1• Similarly the norm on 
Wl,o,_2(AqM, g) is equivalent to II~pllp + Ilwall with w a projection of 
Wl,o,_2(AqM, g) onto 

Ker~g n W{,o,_2(AqM,g) = K 2. 

Thus if F = B n W{,o._2(A qM, g) has norm IlailF = max(llaIlB, IlaII(W{,O,_2(A qM, g)), 
then II IIF is equivalent to II~pllp + II'7Tall where 17 = ('7TB , 17): F ~ Kl EB K 2 . It 
follows from this and the fact that Cooo(AqM) c F that ~g: F ~ LP(AqM, g) is 
Fredholm, which in turn means that as sets B = W{,o,_2(A qM, g) and that the norms 
are equivalent. 

1. Notation. In this section we list some of the notation used that is not defined in 
the text. First of all R is the real numbers, R + = {z E R I z > O}, and N is the 
nonnegative integers. 

As usual T/(M) is the bundle of (r, q) tensors over M, A qM is the bundle of 
exterior q-forms (we often think of A qM as being in ToqM), and A *M = EB ;~o A qM. 
If E is any of these bundles, then f(E) is the space of all sections of E and Coo(E) 
is the space of Coo sections; Coo(M) is the Coo functions on M. 

By a metric we always mean a Coo, Riemannian metric, though many of the 
results hold for metrics with much less regularity. For a metric, g, we let D(g) be the 
covariant derivative associated with g by the Levi-Civita connection. If tEN, then 
D/g ) = D(g) ••. D(g) t times, On the other hand 'Vi is, as usual, the covariant 
derivative in the ith coordinate direction. In this regard 'V i = gij'Vj . Also, we take 
1IIIg(x) to be the norm on T/M I x' or A qM I x' or A *M I x induced by g(x). 

For any metric, g, on M, sEN, and 1 .;;: P < 00 and for E = T/M, A qM, or 
A *M, we let 

where dVg is the volume measure arising from g. Also we take 

(1.2) Lf,loc( E) = {a E f( E) I </>a E Lf( E) for all </> E Cooo( M)}. 

Note that Lfloc(E) is independent of the metric. 
Lastly, if g is a metric, then d: is the operator from Coo(A qM) to Coo(A q-1M) 

defined locally by 

(1.3) 

Thus it is the formal adjoint of d. 
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2. Admissible metries on manifolds with finitely many ends. Let M be a manifold 
with finitely many ends. Recall this means that M contains a compact manifold, 
Mo, with boundary; that M - Mo = aMo X (0, 00), and that aMo has only finitely 
many components. There is an obvious R+-action on Moo == aMo X R+; namely 
(w, z) ~ (w, z + zo) for Zo E R +. We say that a metric on M is translation 
invariant, if on Moo it is invariant under this R +-action. 

DEFINITION (2.1). Suppose hoo is a translation invariant metric, with covariant 
derivative Doo' A metric, h, is asymptotic to hoo if for each tEN 

(2.1.1) lim sup IID~h(w,z)-D~hoo(w)llhoo=O. 
z--+oo wEaMo 

If h is asymptotic to a translation invariant metric, then h is said to be asymptoti-
cally translation invariant. 

CONVENTION (2.2). Henceforth h will always denote an asymptotically translation 
invariant metric. 

DEFINITION (2.3). Let g = e 2Ph with p E COO(M). The metric g is admissible if 
there is a Coo, R +-invariant I-form, (), on Moo with the property 

(2.3.1) 

A few remarks about these definitions are in order. First of all note that all 
geometric quantities associated with a metric, h, that is asymptotic to a translation 
invariant metric, hoo' asymptotically become those of hoo- In fact one has the 
following 

PROPOSITION (2.4). Let hoo be translation invariant and h asymptotic to hoo- Let A 
be the tensor field f/h)jk - f/hoo)jk' Then 

(2.4.1) lim sup IID~Allhoo = 0 
z->oo wEaMo 

for all tEN. Furthermore if X E COO(T/M) satisfies 

(2.4.2) sup IID~Xllhoo < 00 
M 

for all t, then 

(2.4.3) 

for all t. 

PROOF. Since 

Ajk = ~hil[(Dooh)kil + (Dooh)jlk -(Dooh)/jk], 

(2.4.1) follows from (2.1.1). As for (2.4.3) we have for I :;;. 0 that 
(2.4.4) 

IID(h'/X - D~+lXllhoo < IID(h)(D(h)X - DooX) - D~(D(h)X - DooX) Ik" 
+ II D~( D(h)X - DooX) Ilhoo + IID(h)DooX - D~DooXllhoo' 
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Clearly if X satisfies (2.4.2), then so does DooX. Furthermore because of (2.4.1) and 
the fact that D(h)X - DooX is a sum of contractions of ±A ® X, we have that 
D(h) X - Doo X also satisfies (2.4.2) when X does. Thus (2.4.3) holds for t = I + 1 if 
it holds for t = I. Since (2.4.3) is obviously true for I = 0, we are done. 0 

Another thing to note is that the norm and covariant derivative in (2.1.1) do not 
have to be those of h 00' 

PROPOSITION (2.5). Let h, j, and k be asymptotically translation invariant metrics. 
If X E COO(T/M) satisfies 

(2.5.1) lim sup IID{h)Xllh = ° 
z-+ 00 wEaMo 

for all t, then 

(2.5.2) lim sup IIDD)Xllk = ° z-+ 00 wEaMo 

for all t. 

PROOF. Because hand k are asymptotically translation invariant, there is a 
constant, c, such that c-11111k ,-,:;; 1IIIh ,-,:;; cllilk' Thus (2.5.1) implies (2.5.2) for t = 0. 

If I;;, 0, then 
3 

(2.5.3) IIDD~lXllk'-':;; IID(j)D(h)Xllk + L IIDD)(D(i) - D(i+1))Xllk 
;=1 

with D(l) = D(J)' D(2) = D(Joo)' D(3) = D(hoo )' and D(4) = D(h)' 
Let B(;) = DU) - D(i+1)' Then D(i)X - D(i+1)X is a sum of contractions of 

± BU) ® X, and so by Leibnitz's rule 
I 

(2.5.4) IIDD~lXllk'-':;; IIDD)D(h)Xllk + c L IID/j )B11IJDDl sXllk 
s=o 

I 

+c L II D/j )B2 IIJDDlsXllk + IIDD)(D(hoo)X - D(h)X) t 
s=O 

It follows from the previous proposition that D(h oo ) X - D(h)X satisfies (2.5.1) for all 
t and that sUPMIID/j)B11I j < 00 for all s. Since B(2) is independent of z on 
3Mo X R + it also follows from (2.4) that sUPMIID/il B21I j < 00 for all s. Because 
D(h)X obviously satisfies (2.5.1) when X does and the j and k norms are equivalent, 
we have that (2.5.2) holds for t = I + 1 if it holds for t = I. Since it holds for t = ° 
we are done. 0 

It is also useful to note that if g = e2Ph is admissible, then p satisfies (2.3.1) for 
some O. 

PROPOSITION (2.6). Suppose g = e 2Ph is admissible. Then p satisfies (2.3.1) for 
some O. 

PROOF. By assumption there exists a metric, Ii, asymptotic to a translation 
invariant metric, li oo ; a function, p; and a translation invariant I-form, 0, such that 
g = e 2(p)1i and (2.3.1) holds for p and O. Hence h = e 2(p-p)li. By (2.1.1) and the 
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previous proposition this means that 

(2.6.1) lim sup II D/j) ( e 2(p-p)h - h oo ) Il = 0 
z .... oo wEaMo 

for all t and all asymptotically translation invariant metrics j. It follows that 
limz .... oo(p(w, z) - pew, z» exists for each w E aMo, call it <P(w), and that hoo = 
e 2 <Ph oo . Thus <p is Coo. Picking j = hoo in (2.6.1) we get 

(2.6.2) lim sup II D/hoo) ( e 2(p-p)h - e 2<Ph oo ) 11_ = O. 
z .... oo wEaMo hoo 

It is easy to see from this that p satisfies (2.3.1) with () = if - d<p. 0 
Several examples of admissible metrics were given in the introduction. In these 

examples the exponent of the conformal factor, p, is a function of only z on Moo 
and is O(z) as z ~ 00 on each component of Moo. We now show that every 
admissible metric is of this form. 

LEMMA (2.7). Suppose p and () are as in (2.3). If we express () as () = -.f ( w) + f ( w ) dz 
with -.f E Coo(A laMo), then f is locally constant on aMo. 

PROOF. Let p = f( w)z + a( w, z) on Moo. Since 
(2.7.1) dp = (j(w) + ap(w,z))dz + zdf+ do, 
where d is the exterior derivative on aMo, we have by (2.3.1) that 

(2.7.2) lim sup lap(w,z)l=o. 
z .... 00 wEaMo 

Let 'I: [0, 1] ~ aMo be a path from Wo to Wi. By Stokes's theorem and (2.7.2) we 
get 

(2.7.3) 

Since h is asymptotically translation invariant, (2.7.3) combined with the Cauchy-
Schwarz inequality gives 

(2.7.4) If{wl)-f(wo)l<clim sup Ildazp(w,z)llh. 
z .... oo wEaMo 

However this last term is no greater than limz .... oosuPweaMollazdp(w,z)llh and by 
(2.3.1) this is O. 0 

LEMMA (2.8). Let () = -.f(w) + f(w)dz, as above. Then -.f is an exact I-form on 
aMo· 

PROOF. As in the previous lemma, let p = f( w)z + a( w, z) on Moo. From that 
lemma we have that dp = f( w) dz + da( w, z). Hence by condition (2.3.1) 

(2.8.1) lim sup lido - -.f Ilh = O. 

If 'I: [0, 1] ~ aMo is any smooth loop, then 

(2.8.2) If -.f1=lf -.f-da(w,z)l<csup"-.f(w)-da(w,z)"h. 
y y aMo 

Since this is true for every z and (2.8.1) is true, fy -.f = o. 0 
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THEOREM (2,9). Suppose g = e 2Ph is admissible. There is a Coo function 15: M -4 R 
and an asymptotically translation invariant metric Ii such that 
(2.9.1) 

(2.9.2) 

(2.9.3) 

and 
(2.9.4) 

15 is a function of only z on Moo ; 

if n1,···, nL are the components of aMo, then there are 
constants c1, ... , cL such that limz~ooaz15(z) = CI uniformly on 
n/; 

lim a:15 ( z) = 0 uniformly on aMo for all t > 1; 
z~oo 

PROOF. For each I = 1, ... , L let w, be a fixed point in n,. We take 15 to be any 
Coo function on M that equals pew"~ z) on n, X R+ and take Ii to be e 2(p-p)h. 

If, as in (2.7) and (2.8), p is expressed on Moo as p = f( w)z + 0'( W, z), where 
() = !f;( w) + f( w) dz, then on n, X R + 15 = f( w,)z + 0'( WI' z). That 15 satisfies (2.9.2) 
and (2.9.3) follows from condition (2.3.1). 

To show that Ii is asymptotically translation invariant, first note that by Lemma 
(2.8) there is a function k( w) such that !f; = dk( w). Combining this with the fact 
that f is locally constant, we have that if y: [0,1] -4 n, is a path from w, to w then 

(2.9.5) p ( w, z) - p ( WI' z) = f dk ( w) + f [dO' ( w, z) - dk ( w )] . 
y y 

This means that 

(2.9.6) lim I p ( w, z) - 15 ( z) - ( k ( w) - k ( w, )) I < c lim sup II dO' - dk Ilh. 
z---+oo z--+oo wEaMo 

From condition (2.3.1) we have that for each t ;;:, 0 

(2.9.7) 

Thus the right-hand side of (2.9.6) is 0 and so 

(2.9.8) lim sup IIp(w,z)-15(z)-(k(w)-k(w,))llh=O. 
z~oo wEaMo 

Combining this with (2.9.7) and the fact that h is asympotic to a translation 
invariant hoo' we get that h is asympotic to e 2(k(w)-)(w))h oo where jew) = k(w,) on 
n,. 

That 15 satisfies condition (2.3.1) for some jj follows from Proposition 2.6. (jj in 
fact is f( w) dz.) 0 

We conclude this section with a lemma which will be useful in the next two 
sections. 

LEMMA (2.10). Let g be an admissible metric. If T E Coo(T/M), then in terms of a 
coordinate system of the form (nv X R +, (<Pv X id» on Moo 

a'rm, ·· .. m , 
'<'7 '<'7T m ,··· m - Jl ... J. +L(T) 
Vi, ••• Vi, ), ... j. '- ax .... ax 

'I '{ 

(2.10.1) 
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with L = L1al<,La(w, z)aa and La an (I + k)n X kn matrix. Moreover there exist 
translation invariant matrices L':( w) such that for all f3 E N n 

(2.10.2) lim a.B(L,,(w,z) -L':(w)) = 0 
z .... 00 

uniformly on compact subsets of Q •. 

PROOF. This is a straightforward calculation that uses condition (2.3.1). D 

3. Weighted Sobolev spaces. As was mentioned in the introduction weighted 
Sobolev spaces need to be used on noncompact manifolds in order to get Fredholm 
results for elliptic operators. Moreover which weights should be used depends on the 
operator. In the case of elliptic operators that are asymptotically translation in-
variant, the proper weights are the functions exp(B) with B E Coo(M) and Biz 
locally constant on Moo' Since Biz is locally constant on Moo and since we do not 
care what B is on M o, we may identify it with an element, 8, of RL , where L is the 
number of ends of M. 

DEFINITION (3.1). If L = number of components of aMo and 8 E RL, then 8z is a 
COO function on M that on the Ith component of Moo equals 8,z. 

NOTATION (3.2). If 81, 82 E RL, then 81 ~ 82 means 81/ ~ 82, for I = 1, ... , L. 
With this notation we are ready to define the weighted Sobolev spaces needed for 

Laplacians associated with asymptotically translation invariant metrics. In what 
follows we let E be either T/( M) or /\ q( M) and, as usual, take h to be asymptoti-
cally translation invariant. 

DEFINITION (3.3). Let 1 < P < 00, 8 E RL, and sEN. For a E L!,loc(E) set 

(3.3.1) 

DEFINITION (3.4). If 1 < p < 00, 8 E RL, and sEN, then 

(3.4.1) 

If 1 < P < 00, 8 E RL , and -s E N then W/Ii(E) is the dual space of W!~,_Ii(E), 
where lip + lip' = 1. 

A few remarks about these definitions are in order. First of all, it is easy to show 
that these are Banach spaces. Secondly notice that by picking 8 E RL instead of in It 
we allow for different growth on the different ends of M. Thirdly note that the 
standard Sobolev space, Lf(E, h), equals W/:'o(E) and that if 81, 82 E RL with 
81 ~ 82 and s ;;;, 0, then W/:'Ii/E) c W/:'Ii,(E). Thus we have embedded Lf(E, h) 
into a family of weighted Sobolev spaces. Finally observe that any two asymptoti-
cally translation invariant metrics give rise to equivalent weighted Sobolev norms. 
Indeed it follows from Lemma (2.10) that the norm (3.3.1) is equivalent to the 
following metric independent one. 

DEFINITION (3.5). Let {(Q., ci>.)}~=1 be an atlas for aMo and set M. = Q. X (0,00) 

and <P., = (ci>.,id). Then {(M.,<P.)}~=1 is an atlas for Moo' Extend this to a finite 
atlas, {(M.,<p.)}t'=+/ of M and let {l/J.}t'=+/ be a subordinate partition of unity. If 
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1 < P < 00, l) E RL , sEN, and (J E Lfloc(E), then 

:13~~1;~' ~ (N~J t . f 1 lexp(~oq,;l)aa(\fiv(J,;l::doq,;lIP dx)llP 
v-I lal~O 'I,. ,lq~1 </>,(M.) 

il'· .,J,~1 
It is the norm (3.5.1) that is used in [10] and so the Fredholm results there hold for 

the spaces in (3.4). Before stating these results we must say what an asymptotically 
translation invariant operator is. Recall that if A: Coo~E) ~ Coo(E) is an mth order 
linear differential operator, then in terms of the covariant derivative of h we have 
A = L~Oat' D(h) with at E Coo(Tl::+tM) and "." meaning tensor product fol-
lowed by contraction. A differential operator is said to be translation invariant if it 
is invariant under the R+-action on Moo' 

DEFINITION (3.6). Suppose that A = L~o at' D(h) and Aoo = L7'~o a~ . D/h) are 
two mth order differential operators and that Aoo is translation invariant. The 
operator A is asymptotic to A oo ' written A - A oo ' if for every lEN and 0 .:;; t .:;; m 

(3.6.1) lim sup IID/h)(a t - a~) Ilh = O. 
z--> 00 aMo 

If A - Aoo then A is said to be asymptotically translation invariant. 
It is easy to see from Lemma (2.10) that this definition is independent <?f the 

choice of asymptotically translation invariant metric, h, used to express A and Aoo' 
The Fredholm results we need are the following. 

THEOREM (3.7). Suppose A, Aoo: Coo(E) ~ Coo(E) are mth order, elliptic differen-
tialoperators, Aoo is translation invariant, and A - Aoo' Then 

(3.7.1) A is continuous from J.-V/+ m,8(E) to W!,8(E) for aliI < p < 00, s E Z, and 
l) E RI.. 

(3.7.2) If 1 < P < 00, s E Z, and l) E RL , then for all (J E Lf+m,loc(E) 
11(Jllp,s+m,8':;; c(IIA(Jllp,s,8 +1I(Jllp,s,8) 

for some c independent of (J. 

(3.7.3) There is a subset ~A C RL such that if 1 < p < 00 and sEN, then A: 
W/+ m,8(E) ~ W!,8(E) is Fredholm if and only if l) E RL - ~A' 

PROOF. See inequality (2.4) in [10] for (3.7.2) and §7 in [10] for (3.7.3). 0 

Much can be said about the set ~A' For instance ~A = ~A • Also it is of measure 
zero in RL. In fact it is of the form 00 

(3.8) ~A = (~Al X RL - 1 ) U (R X ~A2 X RL - 2 ) U ... U (RL-1 X ~AJ 
with each ~A, a countable discrete set in R. That this is so comes from the fact that 
(l)l, ... ,l)L) is in ~A if at least one of the l)t is an eigenvalue of an associated 
generalized eigenvalue problem for Aoo on aMo X R. (See [10] for details.) For 
example, suppose h is a metric that is the product metric dz 2 + ho on MOO' Then on 
Moo a q-form (J equals H w, z) + '1'( w, z) 1\ dz for some \fi E r /\ q(aMo) and 'I' E 

r /\q-\aMo) and 

!l h(J = - a 2~ + !l h \fi + ( -1) q + 1 (_ a 2: + !l h '1') 1\ dz. az 0 az 0 
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In this case 5 = (51'" . ,5 L) is in !!2!1h if for some I we have that 5, is an eigenvalue 
for either Ilho: Coo(AqQ,) ~ Coo(AqQ,) or Ilho: C""(Aq-1Q,) ~ C oo (Aq-1Q,) where 
Q, is the Ith component of aMo. Thus for instance 

Il h : Lf(AqM) = W!,o(AqM) ~ LP(AqM) = W!.o(AqM) 

is Fredholm if and only if HZj/(aMo) = HbR(aMo) = 0. Finally let us point out 
that even though !!2A =!!2A it is not the case that ind 8 A = ind 8 Aoo if 5 E RL - !!2A-
However, if 51 < 52 and 57, 52 E RL - !!2A, then it is true that ind 81 A - ind 82 A = 
ind 81 Aoo - ind 82 Aoo' (For details see [10].) 

The reader may feel that the Fredholm result follows from the a priori inequality 
(3.7.2). However since M is not compact the imbedding U'/+m,8(E) ~ W/8(E) is 
not compact and so (3.7.2) does not imply Fredholm. We conclude this section by 
presenting various properties of the spaces W/8(E), including a weighted compact 
imbedding theorem. 

PROPOSITION (3.9). Cooo(E) is dense in W,~8(E). 

PROOF. This follows from the fact that (3.5.1) gives an equivalent norm for these 
spaces and classical facts about Sobolev spaces in Rn. 

THEOREM (3.10) (WEIGHTED SOBOLEV EMBEDDING). There is a continuous embed-
ding W,~8(E) ~ Wb(E) if 

(i) s - s:? nip - nip (n = dimM), 
(ii) s :? s :? ° and either 

(iii) 1 < p ::;;: p < 00 with 8 ::;;: 5 or 
(iii') 1 < P < p < 00 with 8 < 5. 

PROOF. See Lemma 7.2 in [10]. D 
In proving the compact embedding theorem we need the following 

LEMMA (3.11). For §c M, a measurable set, define 

(3.11.1) 

Also let MR = Mo u (aMo X (0, R». If s, s, p, p, 5 and 8 satisfy the conditions in 
(3.10), u E W/8(E), and R > 1, then 

(3.11.2) Ilullp,s,s(M - M2R )::;;: cllullp,s,8{M - MR) 

for some c independent of u and R. 

PROOF. For ~ E Co([O, 00» such that ~ == 1 on [0,1] and ~ == ° on [2,00), take 
~R(Z) = ~(zIR). Define <PR E Co(M) by 

(3.11.3) 
if x E Mo, 
if x = (w, z) E Moo' 

Clearly we have 

(3.11.4) 
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By (3.10) we have 

(3.11.5) 11(1 - <PR)allp,s,8 ~ cll(1 - <PR)allp,s,s = cll(1- <PR)allp,s,s(M - MR)' 
However from the construction of <PR we see that if R > 1, then 

(3.11.6) 11(1- <pR)allp,s,s(M - MR) ~ cllallp,s,s(M - MR) 
with c independent of a and R. 

THEOREM (3.12) (COMPACT EMBEDDING). If 
(i) s - s > nip - nip, 

(ii) s > s ~ 0, and 
(iii) 8 < Ii, 

then the embedding W,/s(E) ~ Wb(E) is compact. 

15 

PROOF. Suppose {aj } is a bounded sequence in W,/s(E). Using the notation in 
(3.11) and Minkowski's inequality we get 

(3.12.1) II aj II p,s,8 ~ c(lIajllp,s,8(M2R) +lI aj llp,s,8{M - M2R )). 

Let B be defined by BI = (iii + 81)/2. Then 8 < B < Ii and so by (3.11.2) 

(3.12.2) lIajllp,s,8(M - M2R ) ~ cllajllp,s,s{M - MR)' 
For all j we have 

(3.12.3) II aj II p,s,8(M - MR) = (t 1 Ile(S~S)ZeSZD(hPjll:dVh)lIP 
t~O aMoX(R,oo) 

,;:: e-bRlla.11 ,;:: ce- bR 
....,;;;:;: } p,s,S -....;;:: 

with ° < b = min{ iii - Bd and c = SUPj{ Ila;llp,s,d. On the other hand, it follows 
from the classical Rellich theorem that there is a subsequence of { aj } that converges 
in the II II p,s,8(M2R ) norm. Thus if N E N, we may pick R large enough so that 
there is a subsequence, { iij } of { aj } that satisfies 
(3.12.4) Ilii). - iimll- _ .. ~ 2- N p,s,u 
for all j and m. 

Let {ajd be a subsequence of {aj } such that Ilajl - amdl p,s,8 ~ 2-1 for all j and 
m. For N = 2,3,... pick {ajN } to be a subsequence of {ajN~d satisfying 
IlajN - amN ll p,s,8 ~ 2- N for all j and m. Finally let aj = ajj' Since Ilaj - am ll p,s,8 ~ 
2- K for j, m > K, the sequence {aj } converges in W{s(E). 0 

4. Weighted Sobolev spaces for admissible metrics. For the Laplacians associated 
with a general admissible metric, g = e 2Ph, the Sobolev spaces introduced in the last 
section are not the right ones to use, unless p is bounded. In this section we 
introduce the correct spaces and give some of their properties. As before E is either 
~qM or /\ qM and h is an asymptotically translation invariant metric. 

DEFINITION (4.1). Let 1 < P < 00, Ii E RL, a E R, and sEN. Suppose g = e 2Ph 
is admissible. If a E Lf,loJE), then 

(4.1.1) ( 
S ) lip 

lIa II(W/s,a(E, g)) = t~O 1M Ilesz+(t+a)PD(gp II:dVg 
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DEFINITION (4.2). If 1 < p < 00, 8 E RL , a E R, and sEN, then 

(4.2.1) 

If 1 < P < 00, 8 E RL , a E R, and -s E N, then W!s a(E, g) is the dual space of 
W!;_s_a(E, g), where lip + lip' = 1. ' , 

Once again it is straightforward to show that these are Banach spaces. Also notice 
that if p is bounded, and so g is asymptotically translation invariant, then 
~Zs.a<E, g) = W!,s(E), equipped with an equivalent norm. Note too that 
W6,o,o(E, g) = LP(E, g). However, if p is not bounded, then UiZo,o(E, g) is not the 
classical Sobolev space, LI(E, g). 

The need for the term exp«t + a)p) in (4.1.1) may seem strange. It is best 
explained by Proposition (4.4). Before giving that proposition let us mention the 
following useful representation for elements of W!,S,aCr/M, g) for s < 0. 

PROPOSITION (4.3). For every a E W!,s,AT/M, g) with s < 0, there is a unique 
(1 - s)-tuple, (ao,"" a_ s ) E ED t-':o W6,s,a_t(T,rtM, g), such that 

-s 

(4.3.1) a[cp] = f L (at'D/g)cp)gdVg 
M t~O 

forcp E W!;_s_a(T/M,g), and 

(4.3.2) lIall( W!'S,a(1~.qM, g)) = C~)lIat II( W6,S,a-t( ~q+tM, g))] P r/p 

PROOF. The standard proof, as in [1], can be used here too. D 

PROPOSITION AND DEFINITION (4.4). For g = e 2Ph admissible define the operator 
Ka,p on W!,s,a(T/M, g) as follows: if sEN, then 
(4.4.1) Ka,pa = e(a+r-q+n/p)Pa. 

If -s E Nand 
-s 

(ao, ... ,a_s) E EB W6,S,a_J~q+tM,g) 
t~O 

represents a E W!,S,a(T/M, g) as in (4.3), then 

(4.4.2) (Ka,pa)[1f;] = 1M t~O \ exp ( (a + r - q - t + ~)p )ap D/h)CP) h dVh 

for cP E W!;,_s,o(T/M, h). 
For all s E Z 

(4.4.3) 

is a Banach space isomorphism onto. 

PROOF. If s ? 0, then 
(4.4.4) II e(a+ r- q+n/p)Pa IIp,s,s 

( 
S ) l/p 

~ '\' '\' c f II eSz+(a+r-q+n/p)PDt-bpDb a liP dV '" £.... £.... bt (h) (h) h h 
t~O b~t M 
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( 4.4.5) 

Using Lemma (2.10) we get that this in turn is ~ cllall(W!,8,a(1~qM, g)). 
Thus (4.4.3) is continuous for sEN. In exactly the same way we can show that 

(Ka,p)-ldefined by 

( 4.4.6) ( K )-\ = e(q-r-a-n/p)Py a,p 
is continuous. This proves the proposition for s ;;, O. The case of s < 0 follows easily 
from this. 0 

We shall also use Ka,p on W!,8,a(/" qM, g) by considering A qM to be in ToqM. The 
proposition is true then in this case too. 

COROLLARY (4.5). If g is admissible, then CO'(O) is dense in W!,8,a(E, g). 

PROOF. The operator Ka,p obviously preserves supports and so this follows from 
Proposition (3.9). 0 

PROPOSITION (4.6). For admissible g 

(4.6.1) D(g): ~~8,a(E, g) ~ ~P_l,8,a+l(TrlM, g) 
is continuous. 

PROOF. For s ;;, 1 this follows easily from Definition (4.1). For s < 1 we have by 
the density of CO'(Trq+l) in Wts,_8,_a_l(T,.Q+1M, g) that 

(4.6.2) (D(gp)[1j;] = a[D(~)1j;l 
where 1j; E W{'~s,_8,_a_l(T,.q+1M, g) and D(~) is the formal adjoint of D(g). Thus 
(4.6.1) is continuous for s ~ 0 provided 

(4.6.3) 

is continuous. But (4.6.3) is continuous because 

(4.6.4) 

with \7 the covariant derivative for g. 0 
It is apparent from the proof of (4.4) that Ka,p would not be bounded were the 

term e tp not in the norm (4.1.1). However once one has introduced e tp then e ap is 
needed too in order for Proposition (4.6) to be true. 

An immediate corollary of (4.6) is 

COROLLARY (4.7). For g admissible, s E Z, 8 E R L , a E Rand 1 < P < 00 the 
following operators are continuous: 

(4.7.1) d: ~~8,a(AqM, g) -> ~P-l,8,a+l(A q+1M, g), 

(4.7.2) 
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(4.7.3) 
n n 

(4.7.4) d + d;: EB w,~8,a(l\qM,g) ~ EB W!-1,8,a+1(l\qM,g). D 
q=O q=O 

Proposition (4.4) allows us to carryover the properties of the spaces W,~8( E) in §3 
to the spaces w,P8 a( E, g). 

THEOREM (4.8) (WEIGHTED SOBOLEV EMBEDDING). Suppose g is admissible. There 
is a continuous embedding 

(4.8.1) 

if 

W,~8,a(E, g) ~ Jf'/S,a+n(1/p-1/P,)(E, g) 

(i) s - S ~ n(llp - lip), 
(ii) s ~ S ~ 0 and either 

(iii) 1 < P :::;; P < 00 with ~ :::;; 8 or 
(iii') 1 < P < p < 00 with ~ < 8. 

PROOF. Let g = e 2ph. By (4.4) and (3.10) we have the sequence of continuous 
maps: 

(4.8.2) 

(Ku+n(\/p_l/p),p)-l -1-
-: (p) W/.s,a+n(1/p-1/P)(E,g). 

Furthermore by (4.4.1) and (4.4.6) if a E W,~8,a<E, g), then in (4.8.2) it is mapped to 

(4.8.3) e(q-r-a-n/p+n/p-n/p)p . e(a+r-q+n/p)Pa = a. D 

THEOREM 4.9 (COMPACT EMBEDDING). The embedding (4.8.1) is compact when 
(i) s - s > nip - nip, 

(ii) s > S ~ 0 and 
(iii) ~ < 8. 

PROOF. Theorem (3.11) implies the middle map in (4.8.2) is compact when (i)-(iii) 
hold. D 

5. Fredholm results. In this section the Fredholm properties of Laplacians associ-
ated with admissible metrics are established. Throughout the section h is, as usual, 
an asymptotically translation invariant metric. We start with a straightforward 
lemma. 

LEMMA (5.1). If g = e 2Ph is admissible, then D(g) is an asymptotically translation 
invariant operator for every tEN. 

PROOF. It is clear from Definition (3.6) that the composition of asymptotically 
translation invariant operators is again asymptotically translation invariant. Hence 
we need only consider t = 1. In that case D(g) = D(h) + L with L a Oth order 
operator with coefficients that depend only on hand D(h)P, The lemma, then, is a 
consequence of condition (2.3.1) on p. 
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THEOREM (5.2). Let g = e 2Ph be admissible. For every 1 < P < 00, sEN, and 
a E R there is a subset :»t;,. = :»t;,.(g, p, q, a) of RL with the properties 

(5.2.1) !/)t;,. = (!/)l X RL- 1) U(R X:»2 X RL - 2 ) U ... U(RL- 1 x:»J 

with each !/), countable and discrete. 

(5.2.2) !/)t;,. depends on p, q, a, the metric g, and n = dim M, but not sEN. 

(5.2.3) Ll g: W!+2,s,a(A qM, g) -4 W/S,a+2 (A qM, g) 

is Fredholm if and only if 13 E RL - :»t;,.. 

PROOF. For b E R, define A (b) to be the operator 

(5.2.4) 

Letting V' be the covariant derivative for g, we have by a standard identity that 
(5.2.5) 

(A(b)o L, ···iq = e(2+b)p [e-bPLlPi, ... iq - 2( V'ke-bPV'koi, ... J - (Llge- bP )Oi' '" iJ. 
Computing the second and third terms on the right-hand side of (5.2.5) and using 
the definition of Ll g we get 
(5.2.6) 

(A(b)o)i"'iq = e 2P [-V'k\hOi, ... iq + t (-l)"(V'i.V'k - V'kV'iJOki! ... i."" q 
"=1 

Since g = e 2Ph, it follows from (5.2.6) that 
(5.2.7) 

(A(b)0)i1'i" 

= htk [-V' tV' kOi, ... iq + t (-1)" (V'i,V't - V'tV'iJ 0ki!' . i .... iq + 2b( V'tPV' kOi, ... iJ] 
"=1 

Thus as a result of Lemma (5.1) and condition (2.3.1) on p, we see that A(b) is an 
asymptotically translation invariant operator. Hence by Theorem (3.7) there is a 
subset !/)A(b) of RL of the form described in (5.2.1) with the property that 

(5.2.8) A(b): W!+2,s(AqM) -4 W/s(AqM) 

is Fredholm if and only if 13 E RL - :»A(b)' In particular this is true for b = a - q + 
nip. However, in this case we also have the commutative diagram: 

W!+2.s(AqM) 
A(a-q+n/p) 

W/s(AqM) -4 

(5.2.9) !( Ku.pr! i K u + 2,p 

W!+2,s.a(A qM, g) 
tlg 

W/s.a +2 (AqM, g) -4 
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Because of the fact that (Ka,p)-l and K a+ 2,p are Banach space isomorphisms, the 
operator (5.2.3) is Fredholm exactly when (5,2,8) with b = a - q + nip is Fred-
holm, In fact we see from (5,2.9) that the horizontal maps in that diagram have 
isomorphic kernels, ranges, and cokernels. In particular when they are Fredholm, 
they have the same indices. D 

Using the ideas in the proof of this theorem, we may establish the next fact about 
harmonic forms. 

PROPOSITION (5.3). If s E Z and a E W/8 AAqM, g) is harmonic, then a E 

U'Z'8,a(A qM, g) for all t E Z. 

PROOF. Letting A(a - q + nip) be as above, we see from (5.2.9) that Ka,pa E 

KerA(a - q + nip) n W/8(AqM). Since ~g is formally selfadjoint, elliptic, and has 
COO coefficients, a is in COO(A qM) and so Ka,pa is also in Lf,loc(A qM) for all k. 
Thus if we use the a priori inequality (3.7.2) for A = A(a - q + nip) and a 
standard bootstrap argument, we get that Ka,pa E U'Z'8(A qM) for all t. But this 
means a E WZ'8,AAqM, g) for all t. D 

Because of this proposition the next definition is independent of s. 
DEFINITION (5.4). For g admissible 

(5.4.1) 

COROLLARY (5.5). For all 0 ~ q ~ n, 8 E RL , and a E R the space S::>C,a(A qM, g) 
is finite dimensional for admissible g. 

PROOF. For 8 E RL -~!::. this is merely a property of ~g being Fredholm. For 
8 E~!::. it follows from the fact that ~!::. has the form (5.2.1) that there is a 
8 E RL - ~!::. such that 8 < 8. The assertion is then a result of the obvious fact that 
S::>C,a(A qM, g) c S::>C,a(A qM, g) for 8 < 8. D 

COROLLARY (5.6). Suppose g is admissible. For each fixed 8 E RL , the space of 
harmonic a satisfying 

(5.6.1) 

is finite dimensional. 

PROOF. If a satisfies (5.6.1), then a E W68 o(A qM, g) for any 8 satisfying 8, - 8, 
< -nip for I = 1, ... , L. D 

We see from Corollary (5.5) that the kernel of 

(5.7) 

is always finite dimensional. The kernel of the adjoint of (5.7) is also always finite 
dimensional; for it is S::>~~,_a_2(AqM, g), where lip + lip' = 1. Hence if (5.7) is 
not Fredholm, it is because it does not have a closed range. Nevertheless we shall see 
in Theorem (5.10) that there is always a Banach space JV/+ 2,8,a(A qM, g) such that 

(5.8) ~g: Jf?+2,8,a(NM, g) ~ W'/8,a+2(AqM, g) 

is Fredholm. The key is the next technical lemma. 
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LEMMA (S.9). Let Bo, B I, R o, and RI be Banach spaces. Suppose Bo c BI and 
Ro c RI as sets and the inclusions are continuous. Also suppose A is a linear operator 
that is continuous from B; to R; for i = 0, L If A: BI ~ RI is Fredholm and A*: 
R'/) ~ B/J has a finite dimensional kernel, then there is a Banach space, 13, with the 
properties: 

(S.9.1) Bo c 13 C BI and the inclusions are continuous, 
(S.9.2) Bo is dense in 13, 

(S.9.3) A: 13 ~ Ro is defined, continuous, and Fredholm, 
(S.9.4) the range of A: 13 ~ Ro is the closure of the range of A: Bo ~ Ro. 

PROOF. Let B = {u E BII Au E Ro} and equip B with the norm lIull B = IlullB, + 
IIAuII Ro' It is straightforward to show that B is a Banach space, that Bo c B C BI, 
as sets, that the inclusions are continuous, and that A: B ~ R 0 is continuous. In 
fact A: B ~ Ro is Fredholm. 

To see this let KB be the kernel of A in Band W be the closure of A(B) in Ro. 
Since B c BI and A: BI ~ RI is Fredholm, K B is finite dimensional. Also if 
wE W then WE RI and in fact W is in the closure of A(BI) in R I. Thus there is a 
u E BI such that Au = w. However u E BI and Au E Ro means u E B. Hence 
A(B) = W. Finally W contains the closure of A(Bo) in Ro and so W is finite 
codimensional, for A*: R'/) ~ B/J has a finite dimensional kernel. 

Unfortunately, B might not satisfy (S.9.2) and (5.9.4). For this reason we take 13 
to be the closure of Bo in B with respect to II II B and equip it with the norm II liB' 
Clearly A: 13 ~ Ro is continuous and has a finite dimensional kernel. Also, since 
A(Bo) c A(13), the closure of A(13) in Ro is finite codimensional. Thus to finish we 
only have to show that A(13) is closed in Ro. 

Recalling that KB is the kernel of A in B, we have from the finite dimensionality 
of KB that E = KB + 13 is closed in B. Hence CBE, the set complement of E in B, 
is open. It follows from the fact that A: B ~ A(B) is an open, onto map that 
A(CBE) is open in A(B) and that A(B) = A(E) U A(CBE). Since A(B) is closed in 
Ro we are done if we show that A(E) n A(CBE) is empty. But this is clear; for if 
A(g) = A(e) for some g E CBE and e E E then g = e + k with k E K B, i.e. 
gEE. D 

THEOREM (S.10). Suppose g is an admissible metric, 8 E RL , a E R, sEN, and 
1 < P < 00. There is a Banach space, W/+2 8 a (I, qM, g), with the properties: 

(S.10.1) Ll g : JV,P+2,8,a(AqM,g) ~ W/8,a+2(AQM,g) 

is continuous and Fredholm; JV,P+ 2,8,a(A QM, g) = Jf'/+2,8,a(A QM, g), equipped with an 
equivalent norm, if 8 E RL - !»/:,.; in general 

(S.1O.2) W/+ 2,8,a(A QM, g) c n W/: 2,1],a(A QM, g); 
1]<8 

and the range of (S.1O.1) is the closure of the range of 

(S.1O.3) Ll g : Wt+2,8,a(AQM,g) ~ W/8,a+2(AQM,g). 
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PROOF. Since ~Il has the form (5.2.1), almost all l' ~ 8 are in RL - ~Il' For each 
such l' let BT be the closure of W/+ 2,li,A/\ qM, g) in 

(5.10.4) BT= {OE W/+2'T,a(/\qM,g)I~!pE W!.li,a+2(/\qM,g)} 

with respect to the norm 

(5.10.5) 110 liB, = 110 II( W.t+2,T,a(/\ qM, g») + II ~ gO 11(w,~li,a+2 (/\ qM, g») 

and equip BT with the norm II II B,' By the previous lemma 
(5.10.6) ~g: BT ~ W,~li,a+2(/\qM, g) 

is continuous and Fredholm with range equal to the closure of the range of (5.10.3). 
We claim that all the BT are equal as sets and have equivalent norms. To see this 

first suppose 1'1 < 1'2 ~ 8. Then there is a continuous inclusion i: BT2 ~ BTl' and so 
we have the commutative diagram 

BT2 
Ilg 

W,~li,a+2 (/\ qM, g) ~ 

(5.10.7) d ? Ag 

BTl 

~ecause ~g: BTl ~ W,~li,a+2(/\qM, g) is Fredholm, i: BT2 ~ BTl alsoJs. This _means 
BT is closed in BT. But W/+2li a(/\ qM, g) is dense in both. Hence BT and BT are 2 I , , 1 2 

equal as sets and i is an isomorphism. 
For general, 1'1' 1'2 < 8 and in RL - ~Il there is a 1'3 E RL - ~Il such that 1'1' 

1'2 < 1'3 ~ 8. Thus BT = BT = BT and they all have equivalent norms. Because of _ 2 3 1 ... 

this we may take w,P+ 28 a(/\qM, g) to be anyone of the BT. 
To see that (5.10.2) 'holds for W'/+2,li,a(/\ qM, g) all we have to do is note that for 

11 < 8 there is aTE RL - ~Il such that 11 < l' ~ 8. For such l' it is clear that 
BT c w,P+ 2,TJ,ANIM, g). 

Finally if 8 E RL - ~Il' then we have Bli . Obviously Bli is W,P+ 2,li,A/\ qM, g) 
equipped with an equivalent norm. 0 

Observe that while it is true that the range of (5.10.1) is the closure of the range of 
(5.10.3), the kernel of (5.10.1) may be strictly larger than that of (5.10.3). For 
instance if g is a product metric on aMo X R+, then o(x) == 1 is in W!,o(/\oM,g) 
though not in W!.o(/\ OM). 

To finish this section we shall prove an analogous result for d + d;. This result 
will be useful in §7. In stating it we let 

q~O 

W!.li,a(/\*M,g) = ffi w,~li,A/\qM,g). 
n 

THEOREM (5.11). Suppo..se g is admissible, 8 E RL , a E R, sEN, and 1 < P < 00. 

There is a Banach space W/+ l,li,a(/\ *M, g), with the properties: 

(5.11.1) d+ d;: W,P+1,li,a(/\*M,g) ~ W,~li,a+l(/\*M,g) 
is continuous and Fredholm; if 

(5.11.2) d + d;: W/+1,li,a(/\*M, g) ~ W,~li,a+l(/\*M, g) 
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is Fredholm, then W?+1.8,a(A *M, g) = W{+l,o,a(A *M, g), equipped with an equivalent 
norm; in general 
(5.11.3) w,.P+1,o,a(A*M, g) C n fV{+l,1),a(A*M,g); 

1)<8 
and the range of (5.11.1) is the closure of the range of 
(5.11.4) d+ d;: W,P+ 1,8,a(A*M,g) ~ w,~o,a+l(A*M,g). 

PROOF. Let r = n~=o22~(g, p, q, a-I) and let 00 E r. Then 

(5.11.5) Il g : W,P+2,80,a~1(A*M,g) ~ W,~8o,a+l(A*M,g) 

is Fredholm. Moreover it factors as 

(5.11.6) 
d+d* 

W,P+2,oo,a~1(A *M, g) ~ g w,P+1,oo,a(A *M, g) 
d+d* 
~g w,~oo,a+l(A*M,g). 

Since (5.11.5) has a closed, finite codimensional range, so does 

(5.11.7) d + d;: w,P+1,oo,a(A *M, g) ~ W;'oo,a+l(A *M, g). 

Because the kernel of (5.11.7) is contained in &:,>Co,a, it is also finite dimensional. 
Thus (5.11.7) is Fredholm for 00 E r. 

For any 0 E RL there is a 00 E r such that 00 ~ o. Hence we may proceed' as in 
the previous theorem. 0 

6. Hodge decomposition. In the last section we showed for admissible metrics that 
W,~o,a(AqM,g)=Il/V.P+2,o,a~2(AqM,g)EDF with F a finite dimensional space. 
Unlike the situation for a compact manifold, F cannot always be picked to be 
&:'>C,a(AqM, g). In fact the dimensions usually are not the same, for the dimension of 
F is the same as that of the kernel of the adjoint of Il g : W,P+2,o,a~2(AqM, g) ~ 
W!oa(AqM,g), and so equals dim&:,>~'o_a(AqM,g) where lip + lip' = 1. Since 
any ~ E &:'> ~~,_a(A qM, g) that is also in W;'o,a(A qM, g) may be put in F, this suggests 
that F can be chosen to be &:'> ~~ _ aCA q M, g). However, that can only be done if 
&:'>~~,_a(AqM,g)c W,~o,a(AqM,g). In the next theorem sufficient conditions are 
provided for this to be true. 

THEOREM (6.1). For 1 < P < 00, 0 E RL, a E R, sEN, and g admissible 
,~~'o,- a(A qM, g) c W;'o,a(A qM, g) if any of the following is true: 
(6.1.1) p ~ 2 and oz + (a + nl2 - nlp')p is bounded above, 

p < 2 and (0 + e)z + (a + nl2 - nlp')p is bounded above 
( 6.1.2) for some e > 0, 

(6.1.3) p ~ 2, 0 ~ 0, a = 0, and f dVg < 00. 
M 

PROOF. All we need to do is show that &:'>~~,_a(A qM, g) c W6,o,a(A qM, g), for then 
it is in &:'>L(A qM, g), which by (5.3) is in Wlo a(A qM, g) for all s. In the case of 
(6.13) this' is a result of the fact that W6,~~,~(A qM, g) c W6,o,o(A qM, g), which 
follows easily from Holder's inequality. 
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As for the first two cases, note that according to Theorem (4.7) we can, for large 
enough t, continuously imbed ~~li,_a(AqM, g) into Wb,-a+n/p'-n/p(AqM, g) pro-
vided either 

(i) p ;:;. 2 and 8 < -S or 
(ii) p < 2 and 8 < -S. 

Hence f?j~'li,_a(AqM, g) c W6,8,-a+n/p'-n//AqM, g) when either of these conditions 
hold. 

Since 
(6.1.4) 

Sz + ap = (S - 8)z + 2(a + nl2 - nlp')p + 8z +(-a + nip' - nlp)p, 
Holder's inequality implies that Wb,_a+n/p'_n/p(AqM, g) c W6,lijAqM, g) if 
(S - 8)z + 2(a + nl2 - nlp')p is bounded above. For p ;:;. 2 we may pick 8 = -S, 
but for p < 2 we must pick 8 = -S - e for some e > O. Hence we have conditions 
(6.1.1) and (6.1.2). 0 

COROLLARY (6.2). Given a E R, 1 < p < 00, and an admissible metric g there is a 
So E RL with the property that 

(6.2.1) W,~li,a(AqM,g) = Il g (W!+2,li,a_2(AqM,g)) EB f?j~'li,_a(AqM,g) 

for all S < So. 

PROOF. A consequence of Theorem (2.9) is that Ip(z)1 < cz on Moo for some c. 
Thus (6.11) and (6.12) can be satisfied by picking S sufficiently negative on each 
end. 0 

COROLLARY (6.3). For admissible g the decomposition 

(6.3.1) LP(A qM, g) = 11 g( W{0-2 (A qM, g)) EB f?jf(o(A qM, g) 
holds if any of the following are true: 
(6.3.2) p = 2, 
( 6.3.3) p ;:;. 2 and p is bounded below, 

(6.3.4) p < 2 and 1M dVg < 00. 0 

If g is admissible but not complete, then f?j g:o(A qM, g) can have elements that are 
not closed or coclosed. However, S can be picked so that every element of 
f?j ~~,_ aCA q M, g) is closed and coclosed. 

PROPOSITION (6.4). For a E Rand g admissible, there is a 8 E RL such that every 
element of f?j~~._a(A qM, g) is closed and coclosed if S < 8. 

PROOF. As a result of Theorem (2.9) there is a 8 E RL such that 
8z + ((a - 1) + nl2 - nlp')p 

is bounded above. Thus by the proof of (6.1) we have, for large enough t, a 
continuous inclusion 

(6.4.1) ~~~li,-a+l(NM, g) C W6,li,a-l(NM, g) 
for all r and all S < 8. 



FREDHOLM, HODGE AND LIOUVILLE THEOREMS 25 

Let 0 E ~l!.~_a(l,qM, g). Since Co(AqM) is dense in ~I{l_s_a(AqM, g), there is 
a sequence {<1>i} c Co(AqM) that converges to 0 in ~I{l_s'_)AqM,g). From the 
continuity of d and d;, we get that d<1>i ~ do in fi?~'s,_a+l(Aq+1M, g) and 
d;<1>i ~ d;o in ~:~S,_a+l(Aq-1M, g). Hence by (6.4.1) d<1>i ~ do in W6,S,a-l(AqM, g) 
and d ;<1>i ~ d;o in W6,S,a-l (A q-1M, g). It follows from this and the duality of the 
spaces W{S,_a+l(NM, g) and W6,S,a-l(NM, g) that 

J (do, do\dVg and J (d;o, d;o)gdVg 
M M 

are finite and that 

(6.4.2) 

and 

(6.4.3) 

But Stokes's theorem implies that the integrals on the right-hand side of (6.4.2) 
and (6.4.3) are zero for 0 E Yjl!.~,_a(AqM, g). 0 

In the next theorem we deal with a larger class of metrics than the admissible 
ones; namely those equivalent to admissible ones in the following sense. 

DEFINITION (6.5). Two metrics, go and gl' are equivalent if there is a constant 
e > 0 such that go/e ~ gl ~ ego· This relation is denoted go ::=:: gl' 

Notice that if go ::=:: gl' then LP(A qM, fdVgo) and LP(A qM, fdVg,) are equal as 
vector spaces and have equivalent norms for any continuous f: M ~ R +. Also note 
that equivalent metrics can have quite different curvature properties. For instance on 
Sl X R the metrics d()2 + dx 2 and (2 + sin(e X2 ))(d()2 + dx 2) are equivalent. 

THEOREM (6.6). In addition to the conditions already assumed for M, suppose M is 
oriented. Let gl be a metric on M that is equivalent to an admissible metric g. There is 
a ~ E RL such that if 8 < ~ and <1> E W6,s,o(A oM, g), then <1> = d%,.o for some 
o E nT<s W6,T,_l(NM, g). 

PROOF. By (6.2) and (6.4) there is a ~ such that if 8 < ~ then 

(6.6.1) W6,s,o(A OM,g) = d;d(W{S,_2(A OM,g)) Ell Yjl!.~,o(AOM,g) 

with Yj l!.~,o containing only constants. Picking ~ ~ ~ so that J Me - piJz dVg = 00, we 
get 

(6.6.2) 

for 8 < ~. 
Since gl is equivalent to g, the isomorphism 

(6.6.3) 

extends to an isomorphism 

(6.6.4) * *: WefT a(A qM, g) ~ W6.T a(A qM, g), gl g , , , , 
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Hence the solution to cP = d ~(J we seek is (J = * gl * gO with 0 ~he solution to 
(_l)n-l*g* gl cP = d;ii. Since ii can be picked to be dF for some F E W!,/l,_2(/\ oM, g), 
it follows from Theorem (5.10) that ii has all the properties we want. Hence by 
(6.6.4) (J also does. 0 

7. Hodge representation. We now turn our attention to determining the dimension 
of the space of closed and coclosed forms in L 2 and determining to what extent its 
elements represent de Rham cohomology. The key result is Theorem (7.4), which 
holds for many admissible and nonadmissible metrics. In the theorem we do not 
assume g is admissible. 

NOTATION (7.1). Let go be a metric on M that is a product metric on Moo' If g is 
a metric on M, then Fg = (det g/det gO)1/2. Thus dVg = FgdVg . _ 0 _ 

NOTATION (7.2). For 0 ~ t the function .At: aMo X R+~ aMo X R+ is given by 
(w, z) ~ (w, tz). 

DEFINITION (7.3). A metric g on M is q-bounded above if it is conformal to an 
asymptotically translation invariant one and if for every 0 ~ t ~ 1, every (w, z) E 

Moo> and every v E /\ qM(w,zt) the inequality 

(7.3.1) 

holds for some c independent of v, t, and (w, z). 

THEOREM (7.4). Suppose g is q-bounded above. If (J E L 2(/\qM, g) n dCoo(/\q-1M), 
then (J E dCt (/\ q-1M), the closure of dCt(/\ q-1M) in L 2(/\ qM, g). 

PROOF. Let (J = dlj; for some Ij; E C oo (/\ q-1M). With CPR as in Lemma (3.11), we 
have (J = dCPllj; + d(l - CPl)lj;. Since dCPllj; E dCt(/\q-1M), all we need to do is 
show that (Joo = d(l - CPl)1j; is in dCooo (/\ q-1M). Now (1 - CPl) has its support in 
aMo X [1, (0) and there (Joo = 1/ + v /\ dz with 1/( w, z) E Coo(/\ qaMo) and v E 

C oo (/\ q-1aMo)' Define /L( w, z) by 

(7.4.1 ) (
(_l)q-l{ z(.Aiv)(w,z)dt 

/L(w,z)= 0 
o on Mo. 

Then /L E Coo(/\ q-1M), and, as an easy calculation shows, d/L = (Joo' 

Setting /L R = CPR/L, we get 

(7.4.2) 

with ~ as in (3.11). Clearly CPR(Joo ~ (Joo in L 2(/\qM, g) as R ~ 00. Therefore, to 
finish the proof we must show the convergence to 0 in L2(/\ qM, g) as R ~ 00 of 

(7.4.3) 
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Because of the fact that supp ~'(z/R) c aMo X [R, 2R] == MR , 

(7.4.4) IIARI12= (f z:(~,(;))21ItdZ/\(vlltV)(W'Z)dtI12 dVg)11 / 2 
MR R 0 g(w,z) 

( 
2 ) 1/2 

<:;; e f Ilf dz /\(vlltv)(w,z)dtll dVg 
MR 0 g(w,z) 

In turn, Minkowski's inequality applied to the last integral in (7.4.4) gives 

(7.4.5) II A R 112 <:;; e f( laMo t2R II dz /\ (vii tv )( w, z) 11:(w,z)Fg( w, z) dz dw f/2 dt. 

Since g is q-bounded above, it follows from (7.4.5) that 

(7.4.6) IIARI12 <:;; e t (1 f2R Iidz /\ vll~(w,tz)Fg(w, tz) dZdw)1 / 2 dt. 
o oMo R 

The change of variable, ~ = zt, in (7.4.6) then yields 

(7.4.7) IIARI12 <:;; ef r 1/2 (1 fIR Iidz /\ vll~Fgd~dW)1/2 dt 
o oMo IR 
l R - 1/2 

<:;; e 0 r1/211 v /\ dz 112 dt 

+ efl rl/2 (1 II v /\ dz II~ dVg) 1/2 dt 
Wl/2 oMo X[/R,2R] 

= eR-1/ 4 11v /\ dzl1 2 + e(l Ilv /\ dzll~dVg)1/2 
oMoX[/R ,2R] 

This last quantity obviously goes to 0 as R ~ 00. 0 

COROLLARY (7.5). Let 

(7.5.1) 

If g is q-bounded above, then 

(7.5.2) 

PROOF. By the theorem of Kodaira mentioned in the introduction, the space of 
closed forms in L 2(1\. qM, g) is the orthogonal direct sum 

(7.5.3) 

Thus by Theorem (7.4) there are no exact forms in §J2(1\. qM, g). 0 
Examples of q-bounded above metrics were given in the introduction. In the case 

that g is equivalent to a q-bounded above metric that is also admissible, we may use 
the Fredholm results of the previous sections to obtain a precise determination of 
Sj2(l\.qM, g). 
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THEOREM (7.6). Suppose that gl is both q-bounded above and admissible and that g 
is equivalent to gl' Every v E HbR( M) with a representative in L 2(1\. qM, g) has a 
unique representative in ~ 2(1\. qM, g). 

PROOF. Once again the equivale~ce of g and gl means L2(1\. qM, g) = L2(1\. qM, gl) 
with equivalent norms. Taking W?O_l(1\. *M, gl) to be as in Theorem (5.11) and 
W/O.-1(1\. q--1M, gl) to be the q - l' forms in W1:O,-1(1\. *M, gl)' we have from that 
t~eorem that dW1:O,_1 (I\. q-1M, gl) is closed in L 2(1\. qM, g). Since C({'(I\. q-1M) c 
Wl~O,_l (I\. q-1M, gl) this means that 

(7.6.1) 

In other words every element of dC({' (I\. q-1M) is exact. 
The theorem then follows from Kodaira's theorem and the fact that no element of 

~ 2(1\. qM, gl) is exact. 0 
Naturally, the question arises as to which cohomology classes have representatives 

in L 2(l\.qM, g). We answer this in the next theorem. But first some terminology 
needs to be established. 

DEFINITION (7.7). For Q, a component of aMo, a cohomology class v E H'lJR(M) 
is said to have compact support on Q, X R + if there is a representative, (J, of v such 
that (J == 0 on Q, X [R, 00) for some R ;;;. O. 

DEFINITION (7.8). Let Ql"'" QL be the components of aMo' Also take 
Coo(1\. qMh+ to be the set of cf> E Coo(1\. qM) that are R + invariant on Moo' For a 
metric g 

(7.8.1) .#(g; q) = {Ill 11cf>II~dVg = 00 for some cf> E Coo(l\.qM)R"}' 
fl,xR+ 

Observe that in the case g = e 2Ph is admissible 
.#(g,q) = {/le- 2qp $. Ll(Q, X R+,dVg)}. 

THEOREM (7.9). Suppose gl = e2Ph is admissible and g z gl' With .# and Q, as in 
(7.8), set M:(g; q) = U'E.#Q, X R+. The cohomology classes in HbR(M) with 
representatives in ~2(1\. qM, g) are exactly those that have compact support on 
M:(g; q). 

PROOF. As in Theorem (7.6), the equivalence of g and gl' combined with 
Kodaira's theorem and Theorem (5.11) implies that the classes in HZR(M) with 
representatives in ~ 2(1\. qM, g) are the same as those with representatives in 
~ 2(1\. qM, gl)' Hence we only need to prove the theorem for gl' 

According to Theorem (2.9) there is apE Coo(M) that is a function only of z on 
Moo and an asymptotically translation invariant metric h such that g = e 2Ph. By 
Propositions (2.5) and (2.6) p satisfies condition (2.3.1) for some (J and any 
asymptotically translation invariant metric. In particular if h ° is any metric that on 
Moo is the product metric dS~Mo + dz 2, then e 2Pho is admissible. Since gl is 
equivalent to e 2Ph o, we can use the argument in the preceding paragraph to see that 
we only have to prove the theorem for metrics of the form e 2Ph o. 
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Thus without loss of generality suppose g is an admissible metric and that 
g = e 2Pho with p a function only of z on Moo and ho = dS~M + dz 2 on Moo' Let ~ _ 0 _ 

be the Laplacian on aMo associated with dS~Mo' d the exterior derivative, and d* 
the coderivative. Take {1/-1i} u {1/0i} u {1/1i} u ... U {1/Li} to be an orthonormal 
basis of L 2(/\ q- 1aMo, ds~M) consisting of eigenforms of ~ with the 1/-1i closed but 
not coclosed, the 1/0i coclosed but not closed, and the 1/1i harmonic and equal to ° on 
Qj for j =t= I. Say ~1/01 = ;\20i1/0i' If {I/; -I;} is an orthonormal basis for the coclosed 
nonharmonic forms in L2(/\ qaMo, dslMo ) and {I/; Ii} is an orthonormal basis for the 
harmonic q-forms on aMo such that I/;Ii == ° on Qj for j =t= I, then {I/;-ld U 
{;\O~J1/0i} U {I/;li} U ... U { I/; Li} is an orthonormal basis for L 2(/\ qaMo, dS~Mo)' 

Every (J E L 2(/\ qMoo ' g) has an orthogonal series expansion of the form 
L 

(7.9.1) (J = L L Iii ( Z ) dz /\ 1/ Ii + L h -Ii ( Z ) I/; -Ii 
/=-1 i 

L 

+ Lhoi(Z);\O~J1/0i + L L hli(z)I/;Ii' 
/=1 i 

From this we see that 

L 

+ L h_li(Z) JI/;_li + L L h;i(Z) dz /\ I/;Ii' 
/=1 i 

If d(J = 0, then it follows that 

(7.9.3) 

Similarly we have 

+ L( hOi(z );\Oie(n-2 qjp - [/oi(z )e(n-2qjp ]')e(2q-n jp 1/0i 
i 

L 
- L L[IIi(z)e(n-2qjP]'e(2q-njp1/Ii' 

/=1 i 

If d *(J = 0, then it follows that 

(7.9.5) I-Ii == 0, [/oi(z)e(n-2 qjp ]' = ;\OihOi(z)e(n-2qjp, 

and Iii = bli e(2q-n jp for I > ° and bli E R. 

As a result of (7.9.3) and (7.9.5) we have that if (J E ffJ2(/\ qM, g), then on Moo 

(7.9.6) (J = d[ ~ hOi(Z);\-O~1/Ol + /~l ~ blif e(2q-njpmd~1/lil + /~l ~ alil/;Ii 

with hOi satisfying h~i + (n - 2q)p'h'0l - ;\20ihOi = 0. 
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In order for a to be in L 2(A qM, g) each term in (7.9.1) must be in L 2(A qMoo ' g). 
Therefore the ali in (7.9.6) must be 0 if IE S!i'(g; q) and may be anything if 
I $. S!i' (g; q). Hence letting 

(7.9.7) 
L • 

(J = L hOi(z)Ao~TJoi + L L b/it e(2 q-n)p(\)drTJ/i 
i 1~1 i 0 

on aMo X [1, (0) and letting {3 be a COO extension of (J to all of M we get that on 
aMo X [1, (0) 

(7.9.8) a - d{3 = L L a/i!/;/i' 
1ft$' ; 

This means that the only classes in HbR(M) with representatives in ~2(A qM, g) 
are the ones that are compactly supported on M;:(g; q). On the other hand if 
v E HbR(M) is such a class and <p is a representative of v, then by de Rham's 
theorem on Moo 

(7.9.9) <p = L L a/i!/;/i + dyo' 
1ft$' i 

Choosing y to be a Coo extension to all of M of the restnctlOn of Yo to 
aMo X {I, oo}, we see that v has a representative that is Llft$'L; a/i!/;/i on Moo, 
namely <p - dy. Thus v has a representative in L 2(AqM, g). It follows, therefore, 
from Kodaira's theorem and Theorem (5.11) that v has a representative in 
~2(AqM,g). 0 

COROLLARY (7.10). If g "" gl and gl is admissible and q-bounded above, then the 
classes of HbR(M) with representatives in ~2(AqM,g) are exactly those compactly 
supported on M;:(g; q). Moreover the representation is unique. 0 

8. L 2-cohomology. In this section we give a few applications of the results of the 
preceding sections to L 2-cohomology. Recently this cohomology has received quite a 
bit of attention; in part, because of its use in the study of singular algebraic varieties 
(see [4, 5 and 13]). We begin by defining various subspaces of L2. 

DEFINITION 8.1. For an arbitrary Riemannian manifold X 
(8.1.1) L;(A qX) = the closure of dCooo(A q-1X) in L 2(A q X), 

(8.1.2) 

(8.1.3) 

(8.1.4) 

L~e(AqX) = the closure of d;qx'(Aq+1X) in L 2(AqX), 

~q(X) = {a E L 2(AqX) Ida E L 2(Aq+1X)}, 

~~e(X) = ~q(X) n L~e(AqX). 
We equip L;(AqX) and L~e(AqX) with the L2 norm and equip ~q(X) and ~~e(X) 
with the norm lIall Q = (1Iall~ + Ildall~)lj2. So equipped each space is a sub-Hilbert 
space of L2. 

DEFINITION (8.2). The qth-L2-cohomology group of X is 

(8.2.1) Hi(X) = [Kerd: ~q(X) -7 ~q+l(X)]/d~q-l(X). 

One of the interesting questions about Hi( X) is whether or not the map 

(8.3) i: ~2(AqX,g)-7Hi(X) 
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is an isomorphism. If it is, then one says that the Strong Hodge Theorem holds (see 
[4 and 5]). It follows from Kodaira's theorem that 

(8.4) Hq X = L;(I\ qX) EEl ~2(A qx, g) 
2 ( ) d ~~; 1 ( X) . 

Hence (8.3) is 1-1 if d~'i;l(X) c L;(AqX) and is onto if d~'i;l(X) is closed in 
L 2(AqX, g). 

For the remainder of this section we restrict our attention to the manifolds and 
metrics considered in the preceding sections. Thus M has finitely many ends and g 
is equivalent to gl = e 2Ph with h asymptotically translation invariant. An easy 
consequence of Theorem (7.4) is 

PROPOSITION (8.5). If g is equivalent to a metric that is q-bounded above, then (8.3) 
is 1-1. 

LEMMA (8.6). Suppose g = e 2Ph is an admissible metric on M and that p is bounded 
below. Then ~'ie(M) c Wl20 _ l(AqM, g). 

PROOF. Let (J E ~~e<M). Then (d + d;)(J E L2(A q+lM, g) and so D.g(J E 

W_2l,O,l(AqM, g). It follows from Proposition (4.4) that K l,2D. g(J E W_2l ,O,o(AqM, h) = 

W_2l ,O(A qM). However from the definition of the asymptotically translation invariant 
operator A( -1 + q + nj2) in Theorem (5.2) we see that 

K l ,2D.P = A( -1 + q + nj2)K_l ,2(J. 

Thus A( -1 + q + nj2)K _l,2(J is in W_2l,O(A qM). Hence using the a priori inequality 
(3.7.2) we get 

(8.6.1) IIK_1,2(J112,l,O:( c(IIA(-1 + q + ~)K-l'2(Jt_l'O +IIK_l,2(J112,-l,O)' 

Since p is bounded below and (J E L2(A qM, g), we have that (J E WiO_l(A qM, g). 
This means that K_ l2(J E Wo2o(A qM, g) and so in W_2l o(A qM, g). Thus by (8.6.1) we 
have that K_ l2(J E' W?o(A qM, g) which by Propo~ition (4.4) means that (J E 

Wl:O,_l(AqM, g): ' 

THEOREM (8.7). Suppose g is equivalent to an admissible metric, gl = e 2Ph, and that 
p is bounded below. Then (8.3) is 1-1. Moreover, if limsupz->00 p(w, z) = 00 on at 
least one end, then (8.3) is not onto for q > 0; and so the Strong Hodge Theorem does 
not hold in this case. 

PROOF. As usual we only need to prove this for gl' Furthermore, we may assume 
that p is a function of just z on Moo and that h is a product metric on Moo' The first 
part of the theorem follows trivially from Lemma (8.6) and the fact that 
dWl:o,_l (A q-lM, g) c L;(A qM). 

For the second part of the theorem, let 

(8.7.1) 
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It follows from Theorem (5.11) that K = d;W/O,_2(AqM, g) + ~;,o,_l(Aq-lM) where 
~;o_I(Aq-lM) is the finite dimensional space of closed and coclosed forms in 
WI~~,_l(A q-1M, g). Note that since d;W2:0,_2(A qM, g) is finite codimensional in K 
and is the image of a continuous operator, it is closed in K and so also in 
W1:O,-1 (A q-lM, g). Also note that S!:~; l( M) c K. 

Suppose d: K ~ L;(A qM) is onto; if it is not then a fortiori d: S!: ~~' l( M) ~ 
L;(A qM) is not. In this case an equivalent norm on K is 

(8.7.2) 

It is easy to see that we then have the commutative diagram of continuous maps 

(8.7.3) ! i 

K 

d 
~ 

)"d 

where i is the inclusion. If dS!:~;l = L;(AqM), then i mu~t be Fredholm and so 
S!:~;l(M) is closed in K. Now Cooo(AqM) is dense in W}0_2(AqM, g) and so 
d*Coo(AqM) is dense in d*W 2 (AqM g) Since d*Coo(AqM) c S!:q-l(M) and gOg 2,0,- 2 ,. ~ g 0 ce 

S!:~;l(M) is closed in K, it follows that d;W2:O,_2(AqM, g) c S!:~;l(M). In fact, 
sinc~ S!:~;l(M) contains no closed forms and dK = dS!:~;l(M), we have that 
d;W/O,_2(A qM, g) = S!:~;l(M). 

However this is impossible if lim supz -> 00 P (z) = 00 on an end of M. To see this 
note that it follows from (2.3) that there is an increasing sequence {z n} such that 
ZI > 4, zn+l - zn ~ 4, and p(z) > n on (zn - 1, zn + 1). Now let p E Coo(A qM) be 
such that p is translation invariant on Moo and p( w, z) E A qaMo for (w, z) E Moo' 
Let <I>(z) E Cooo(R) be such that suPP<l> c [-1,1] and <I> == 1 on [- t n 

Finally take f E Coo(M) to be such that fez) = L~~ln-l<l>(z - zn) on the end of 
M on which limsupz->00 p(z) = 00 and f== 0 elsewhere. If T = e(q+2-n/2)Pfp, then 
a calculation shows that T E W2:0,_2(A qM, g) but d;T tE L 2(N- lM, g). 

DEFINITION (8.8). Let G be a compact manifold. A function p: G X R + ~ R is 
slowly oscillating if 

(8.8.1) sup Ip(w,z)-p(w,t)l<c forsomecindependentofwandz. 
tE[z/2,z] 

THEOREM (8.9). Suppose g is equivalent to an admissible metric gl = e 2Ph and that p 
is bounded above. For i = 1,2,3 let G; be a, possibly empty, union of components of 
aMo satisfying (i) G; Ii Gj = 0 for 1 ~ i, j ~ 3 and i =1= j and (Ii) Gl U G2 U G3 = 
aMo. Suppose that p is slowly oscillating on G1 X R + and that p( w, z) ~ (e - l)ln z 
on Gl X [1, 00) for some 0 < e < L Also assume that on G2 X [1, 00) both gl is 
q-bounded above and ze P is bounded. Finally assume that p is O(z) but not o(z) as 
z ~ 00 on G3 X [1,00). Then (8.3) is onto if and only if H'bI/(G 1 ) = O. 

PROOF. Suppose (J = d'l' for some 'I' E Wl:O,-l (A q-lM, gl)' Let {<I>o, <1>1' <1>2' <l>3} 
be a partition of unity subordinate to the cover Mo U (aMo X [0,2)), Gl X (1,00), 
G2 X (1,00), G3 X (1,00), with <1>; omitted if G; is empty. Then (J = Ld( <1>;'1') and 
<1>0'1' is clearly in S!:q-l(M). Also if G3 is not empty, then it follows from Definition 
(2.3) and the construction of W1:O,_I(A *M, gl) that <1>3'1' E S!:q-I(M). 
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If G3 = 8Mo, then we are done. Therefore assume that Gl U G2 = U~l Q, where 
(K < Land Ql"'" QL) are the components of 8Mo. Also, without loss of general-
ity, assume that p just depends on z and h is a product metric on (Gl U G2 ) X R +. 

Let (Joo = d( 1>1'1') + d( 1>2'1'). Using the notation of Theorem (7.9) we have that 
K 

(8.9.1) (Joo = L L fli( z) dz /\ 1/1i + L h- li ( Z )'I'-li 
1~-1 i 

K 

+ L hOi{z )Ao~d1/0i + L L hli{z )'I'li' 
1~1 i 

Since (Joo is exact it follows that h-li == 0; hOi = AoJOi; and hli == 0 for I > O. Thus 
(Joo = d'T where 

K 1 
(8.9.2) 'T = L hOi(Z)Ao~1/0i + Lf-li{Z) dz /\ Y-li + L L 1 zfli{zt) dt1/li, 

i i I~l i 0 

with dY-li = 1/-1i' 
Since p is bounded above we get from the fact that (Joo E L 2(/\ qM, gl) that 

(8.9.3) i = L hOi(z )Ao~1/0i + Lf-li(Z) dz /\ Y-li is in L2(/\ q-1M, gl)' 

Furthermore, if Q, c G2 , then M zfli(zt)dt1/1i also is in L 2(/\q- 1M, gl)' This follows 
from the chain of inequalities 

(8.9.4) Ilf zfli{zt) dt1/lill(L2(/\q- IM, gl)) 

= (1000 In/ e(n-2q+2)pllf Zfli(zt)dt1/ li ll: dwdz f/2 

11 ( 00 2 ) 1/2 < c 0 10 e(n- 2q)p(z)1 fli( zt) 1 dz dt 

< c f (1000 e(n-2q)p(ZI)lfli(zt) 12 dz f/2 dt < 00 
where the next to last inequality is Minkowski's and the last is q-bounded above. 
Thus if HZ[/(G l ) = 0, we have that 'T E L 2(/\q- 1M, gl) and so (Joo E dDq-l(M). 
But this means that dWI:O,_l (/\ q-IM, gl) = d D q-l( M) and hence that (8.3) is onto. 

If, however, there is an Q, c Gl and HJri/(Q,) -=1= 0, then we can construct an 
infinite dimensional space of fli such that fli(z) dz /\ 1/1i E L 2(/\ qM, gl)' but 
fO fli( t) dt + k is not in L 2(/\ q-IM, gl) for any k. It follows from Kodaira's 
theorem that in this case d D q -l( M) is not closed and so (8.3) is not onto. 

More specifically for -1/2 - e/2 < a < -1/2 let fa E COO(M) be such that 
fa == 0 on M - (Q, X [1, (0» and fa(w, z) = e(q-n/2)pz a on Q, X [2, (0). If 1/11 is a 
harmonic representative of a nonzero class in HZ[/(Q,), then (Ja = fadz /\ 1/11 is 
exact and in L 2(/\ qM, gl)' Moreover if (Ja = d'Ta, then on Q, X [1, (0) we have 
'Ta = (j{ fa(t)dt + k)1/11' However 'Ta $. L 2(/\q- 1M, gl) for any value of k. 
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To see this note that 

( 
2 ) 1/2 ~ C £00 e(n-2q+2)P(Z)1 ~Z e(q-n/2)p(t)t fr dt + k I dz 

First suppose that It e(q-n/2)p(/)t fr dt = 00. Then there is a Zo ~ 4, depending on k, 
such that for z ~ zo' we have 

(S.9.6) ~Z e(q-n/2)p(/)t fr dt + k ~ ~ ~z e(q-n/2)p(l)t fr dt. 

Thus in this case the right-hand side of (S.9.5) is 

(8.9.7) 

( 
2 ) 1/2 ~ C /00 z2e-2! /Z e(n/2-q)(p(z)-p(/»t fr dt! dz 

Zo z/2 

From (8.S.1) we get that this last expression is 

(8.9.8) 

( 00 ) 1/2 (00 ) 1/2 
= C ~o z2e+ 2fr dz ~ C ~o ze- 1 dz = 00. 

Finally, suppose that Ite(q-n/2)p(/)t fr dt<00. Since 0:>-1, this means that 
q > n/2 and so It) e(n-2q+2)p(l) dt = 00. Hence the only way the right-hand side of 
(S.9.5) could be finite is if k = -It e(q- n/2)p(t)t fr dt. In this case we have that the 
right-hand side of (8.9.5) 

(8.9.9) ( 
2 ) 1/2 

= C £00 e(n-2q+2)P(Z)I~oo e(q-n/2)p(l)tfrdt l dz 

( 
2 )1/2 ~ C £00 Z2f-21~2Z e(n/2-q)(P(Z)-P(I))tfrdtl dz 

Again by (8.S.1) we get that this last expression is 

(8.9.10) 00. 
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