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FREDHOLM, HODGE AND LIOUVILLE THEOREMS
ON NONCOMPACT MANIFOLDS

ROBERT LOCKHART

ABSTRACT. Fredholm, Liouville, Hodge, and L?-cohomology theorems are proved
for Laplacians associated with a class of metrics defined on manifolds that have
finitely many ends. The metrics are conformal to ones that are asymptotically
translation invariant. They are not necessarily complete. The Fredholm results are,
of necessity, with respect to weighted Sobolev spaces. Embedding and compact
embedding theorems are also proved for these spaces.

Two of the most useful facts in analysis on a compact Riemannian manifold are
that the Laplacian is Fredholm and its kernel consists of closed and coclosed forms
that provide unique representatives for all the de Rham cohomology classes.
Naturally one would like to extend these results to noncompact manifolds. The first
such result in this direction is due to Kodaira [9, 12, p. 165]. It is that L*(A9M, g) is
the orthogonal direct sum of dCg°(A9*M ), d *Cg*(A?+'M ), and

$2(A'M, g) = {0 € L (A"M,g)|do = d}o = 0}.

Unfortunately, if no restriction is made on the manifold or the metric, one cannot
improve on this. The Laplacian need not be Fredholm; L?-harmonic forms need not
be closed or coclosed; even if they are closed and coclosed, the space of harmonic L?
forms need not be finite dimensional (see [7]); and even if the Laplacian is Fredholm
and L*harmonic forms are closed and coclosed, those forms need not provide
unique or total representation of de Rham cohomology.

Thus one of the main questions in analysis on noncompact manifolds is what
conditions on M and g allow one to carry over the Fredholm and Hodge theorems
for compact manifolds and, if they cannot be carried over completely, to what extent
can they be? In the case of Hodge’s theorem, i.e., properties of the space of L?
harmonic forms, this question has been quite actively investigated recently (see [2-8,
11, and 13)).

For instance, one of the results of Atiyah, Patodi, and Singer in [2] is that if a
manifold has cylindrical ends then $2(A3M, g) is naturally isomorphic to the image
of HZ,,..(M) in Hjr(M) (see [2, Proposition 4.9]). In [11], Miiller investigates the
spectrum of the Laplacian on manifolds that outside a compact set are @ X R*, with
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@ compact, and are equipped with a metric that on @ X [1, ) is of the form
z27%(dz? + dsd) with ds3 a metric on Q. A corollary of his Proposition 6.9 is that
SAAM, g) is finite dimensional. In [4] Cheeger investigates, among other things,
the L? cohomology of spaces of the form M = Q X (0,1) equipped with the metric
g = dr* + r2°ds with @ > 1. One of the consequences of Lemma 3.4 of [4] is that if
€ is compact then dim $2(AM, g) < dim Hfz(M). Using a separation of variables
argument like that in [3] one can show that in fact dim $2(AIM, g) = dim H§ (M)
when 2¢g < dim M.

In this paper we also examine the properties of L?> harmonic forms on a class of
manifolds equipped with certain metrics. However, unlike previous investigators who
by and large treated A, d, and 8 as unbounded operators on L?, we consider the
Fredholm properties of the Laplacian with respect to a particular family of weighted
Sobolev spaces. There are three reasons for this. First of all, it allows for the
consideration of a larger class of metrics. Secondly, a Fredholm theory for the
Laplacian is as important to analysts as a Hodge theory. In particular, such a theory
should be of use in nonlinear analysis on noncompact manifolds. It is for this reason
that we do not restrict attention to weighted L? Sobolev spaces, but rather work
with weighted L? spaces for 1 < p < co. It is also for this reason that we present
several embedding theorems for the Sobolev spaces which we use. Thirdly, by using
weights, we are able to prove Liouville type theorems for harmonic forms.

To be more precise, the noncompact manifolds we consider have finitely many
ends. Thus M contains a compact manifold, M,,, with boundary; 9M, has finitely
many components, and M_ = M — M, = dM, X R*. On such a manifold there is a
natural R*-action on each end and so the notion of asymptotically translation
invariant metric makes sense (see §2). If 4 is such a metric, then g = e2°h is said to
be admissible if all the covariant derivatives of p have a limit at infinity (see 2.3.1).

Examples of admissible metrics abound. For instance, every metric that is
asymptotically translation invariant is admissible. For /4 such a metric, the metric
that on M_ is g = e?’h is admissible. As a special case of this, suppose h = dz? +
ds3y, on M. Letting r = e* we see that g = dr? + r’ds3), on (w,r) € IM, X
(1,0) = M. In particular if M, is k-copies of S" !, then we have that every
asymptotically Euclidean metric is admissible. The horns and cones of [4] that are of
the form g = dr? + r?%ds,, on (w,r)€ dM; X (0,1) = M,, and with a > 1 are
admissible in our sense. To see this, let z = — [t *dt. Then on (w, z) € IMy; X R*
=M,

[exp(-2(a/(a = 1))In((a — 1)z + 1))](dz? + dsdy, ), a>1,
e'zz(d22+ds§Mo), a=1.

In both cases g is admissible. If p = —Inz on dM, X (1, 00) then g = e**h is
admissible and so for instance the cuspidal metrics of [11] are admissible. For more
examples see the end of the introduction.

It is for the Laplacians associated with admissible metrics that we prove Fredholm
results. Since the manifolds under consideration are noncompact, weighted Sobolev
spaces must be used. This is not due to some perversity of the author, but rather out

(01) g=
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of necessity. It just is not the case that
(0.2) A, LI(ANM,g) - L?(A‘M, g)

is always Fredholm. For instance, if g is asymptotically a product metric on M,
then (0.2) is Fredholm if and only if H§,(0M,) = H}z(0M,) =0

In the case of metrics asymptotically translation invariant on M_, the weights
needed are exp(8) with § € C*(M; R) and §(w,z) = 8,z on the /th end of M.
What matters about 8§ is its values on M_, and so it may be identified with an
element & of RY, where L is the number of ends of M and §(w, z) = 8,z on'the /th
end. Using this identification we write our weights as e?7.

In the case of a general admissible metric, g = efh, these weights must be
modified. It turns out for g = e?Ph the appropriate Sobolev spaces are the ones with

the norms

1/p
03 lolwz, A0 = [ £ [ Jer e miav,

with8 € RE,;1 < p < 0, s € N, and a € R. The associated Sobolev spaces are
(0.4) W75 J(AM,g) = {0 € L2 (A'M) | o [(W2; J(AM, g)) < o0}

Various properties of the spaces W7, ,(AM, g) are established in §33 and 4. These
include the density of C°(AYM), a weighted Sobolev embedding theorem, and a
compact embedding theorem.

One of our principal Fredholm results is that

(0.5) B Whiaso(AN'M, g) = W5 (MM, g)

is continuous for all § and Fredholm for almost all § € R%. Since L?(A‘M, g) =
Weoo(AM, g) and W, o(AM, g) C Wfso(AM, g) for all § € R" with §, <0, it
follows from this Fredholm result and some regularity results for harmonic forms
that the space of harmonic forms in L?(AM, g) is finite dimensional. In fact more
generally there is the Liouville theorem that for all a € R and 8 € R” the space of
harmonic forms in W{; ,(AM, g) is finite dimensional. This combined with the
regularity results for harmonic forms in §5 implies that the space of harmonic forms
satisfying sup,,||e%o|| ¢ < oo is finite dimensional for each fixed § € RE.
It is still not the case that

(0.6) Ag: Wio-2(AM, g) = W o(AM, g) = L?(A'M, g)

is always Fredholm. However, because the kernel and the kernel of the adjoint of

(0.6) are finite dimensional and because (0.5) with a = -2 is Fredholm for some

8 € R* with 8, < 0, it is possible to construct a Banach space WY, _,(AM, g) such

that

(0.7) Ay We, o(A'M,g) = L?(AM, g)

is Fredholm. If (0.6) is Fredholm, then W, W4, . 2(/\qM g) turns out to be

Wi 0 ,(AM, g) with an equivalent norm. In general W¥,_,(A“M, g) is dense in
W{,_,(A“M, g) and the latter space is contained in ﬁ,7<0W2,7 ,(AM, g). This

along with the proof of the other Fredholm result is done in §5. The analogous
results for d + d} are also proved there.
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Because of these Fredholm results
(0.8) L?(A'M, g) = A (Wf,_,(A'M,g)) ® F

with dim F = dimension of the space of harmonic forms in L?(AM, g) (1/p’ +
1/p =1). In §6 by using the weighted Sobolev imbedding theorem we provide
sufficient conditions for F to consist of harmonic forms. In fact this is done for the
general space W7, ,(AM, g). A consequence of these results is that on an orientable
manifold if g is admissible and ¢ is a function such that e®¢ € L?(M, g) for §,
sufficiently negative for each /, then ¢ = d Yo for some 1-form
o N Wy, 1 (A'M,g).
T<8
In fact this is true even if g is only equivalent to an admissible metric; i.e., there is
an admissible metric g, and ¢ € R* such that g/c < g, < cg.

In §7 we turn our attention to the properties of the space of closed and coclosed
forms in L2(A“M, g) for metrics equivalent to admissible metrics. This space is
denoted $2(AM, g). Note that in the case of complete metrics, S2NM, g) is the
same as the space of L?*-harmonic forms.

Qne of the chief results of the section is that if a metric (not necessarily equivalent
to an admissible one) is equivalent to one that is g-bounded above (see 7.3), then
$2(AM, g) contains no exact elements. Thus dim $2(AM, g) < dim HY (M) and
each element of $2(AIM, g) is a unique closed and coclosed representative of a
classin Hf(M).

Here and throughout the paper

(0.9)  Hjz(M) = [Kerd: C*(AM) — C*(A*'M)] /dC=(A9"'M).

There are many examples of metrics that are g-bounded above. For instance, if 4
is asymptotically translation invariant, then it is g-bounded above for all g. If
g = e2*h is conformal to & (g not necessarily admissible) and ¢(w, z) is increasing
on M_ for each w € dM,, then g is g-bounded above for ¢ > n/2; if ¢ is
decreasing, then g is g-bounded above for ¢ < n/2.

When g is equivalent to an admissible metric, the Fredholm results for d + d
mentioned above imply that every class of Hf (M) with a representative in
L*(AM, g) has a representative in $2(AM, g). Thus the question arises as to
which cohomology classes have representatives in L?(AM, g). This is determined in
(7.9).

For g a metric and £, ..., {; the components of M, let

(0.10) w=2(g;q)= {ll/x; - H¢||;dVg = oo for some ¢ € Coo(/\qM)R+}

where C*(A9M ) g- is the space of C* g¢-forms that are R* invariant on M. Also
let MZ(g;q)=U,c,Q X R It is shown in (7.9) that if g is equivalent to an
admissible metric, then the classes in H (M) with a representative in $2(AM, g)
are exactly those with compact support on M2(g; q); i.e. have a representative that
is0onU,c @, X [R, ) for some R > 0. If in addition g is g-bounded above, then
the representation is unique.
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In the last section we look at some properties of the L2-cohomology (see
Definition (8.2)) of the Riemannian manifolds which are considered in this paper. In
particular, if M is a manifold with finitely many ends, equipped with a metric g that
is equivalent to an admissible one, and H$(M ) is the L*-cohomology of M, then we
present some results concerning when the natural map

(0.11) i: §2(A'M, g) — H{(M)

is 1-1, is onto, is an isomorphism. When it is an isomorphism we say that the Strong
Hodge Theorem holds (see [4]). When (0.11) is not onto then we have the interesting
fact that HY( M) is infinite dimensional.

For example, an easy result (Proposition (8.9)) is that if g is equivalent to a metric
that is g-bounded above, then (0.11) is 1-1. A more difficult result (Theorem (8.7)) is
that if g is equivalent to an admissible metric g, = e2*h and p is bounded below,
then (0.11) is 1-1. Moreover, if limsup, , , p(w, z) = oo on at least one end of M,
then (0.11) is not onto for g > 0.

In Theorem (8.9) we treat the case in which g is equivalent to an admissible metric
g, = e?’h and p is bounded above. One of the results of that theorem is that if
p>=(e—1Dlnz on M, X [1, o) for some 0 < e <1 and p is slowly oscillating in
the sense of (8.8) then (0.11) is onto if and only if H§;'(0M,) = 0. For example, if p
is bounded, then either the Strong Hodge Theorem holds or, when H§z'(dM,) # 0,
HjY(M) is infinite dimensional (also see [13] for this result for bounded p).

The condition that p > (¢ — 1)lnz for some 0 < ¢ < 1 is in some sense sharp for
the necessity of Hf,'(9M,) being 0 for (0.11) to be onto. If g is g-bounded above
and ze® is bounded on dM, X R™, then the Strong Hodge Theorem holds regardless
of what HJR(dM,) is (see (8.9)). Thus, for instance, this is true of the cuspidal
metrics of [11].

Finally, if p is O(z) but not o(z) as z = oo on dIM, X R™, then (0.11) is onto.
This is the case, for example, for the metric cones in [4].

To illustrate the scope of these results, four examples will now be given. In all the
examples there is the orthogonal decomposition

(0.12)
L2(AM, g) = dWi, ((A7"'M., g) @ d Wi, 1(A7"'M. g) @ (M, g).

In the cases in which g is complete, $2(A“M, g) contains all harmonic, L? forms
and so

(0.13) Ag(sz,o,-z A'M, g)) = dﬁ/ﬁo,—l(/\q_lM? g)® d;Wﬁo.-l(/\qHM, g)-

ExaMPLE (0.14). g is asymptotically translation invariant.
In this case g is g-bounded above for all ¢ and admissible. Furthermore
M2(g; q) = M_, for all q. Thus

(0.141)  $*(AM, g) = image of HZ,, (M) in Hjp(M) forall g

and provides unique representatives for that image. Also H§(M) is infinite dimen-
sional if Hfz'(dM,) # 0. Otherwise, H{(M) = $*(AM, g).
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ExAMPLE (0.15). h is asymptotically translation invariant, g = e**h is admissible,
p(w, z) is increasing on M_ for each w € dM,, and p(w,z) > [(1 + ¢)/2]lnz on
oM, X [1, oo) for some & > 0.

In this case g is g-bounded above for ¢ > n/2 and admissible. Furthermore
M2(g,q9)= M if g < n/2. However, if ¢ > n/2 then M(g, q) is empty. Thus
Hjz(M) forq>n/2,
image of HZ, . (M) in H(M) if g=n/2
and provides unique representatives for these spaces. For g < n/2 only the image of
HE,. (M) in Hjp(M) has representatives in $2(AM, g). Moreover the representa-
tives need not be unique. For example, if M is orientable, then obviously
SUAM, g) = *ggjsz(/\"“'M, g) and so dim $*(AM, g) = dim HZ,, (M) for g <
n/2. Also dim HY(M) = « if ¢ > 0.

ExAMPLE (0.16). h is asymptotically translation invariant, g = e2°h is admissible,
p(w, z) decreasing, and p(w, z) < -[(1 + €)/2]lnz on IM,, X [1, ) for some & > 0.

This case is exactly the same as the previous one except that all the inequalities for
q are reversed. Thus

(0.15.1) $*(AM,g) =

Hix(M) forq<n/2,

image of HZ, . (M) in Hi,(M) if g=n/2

and provides unique representatives for these spaces. For ¢ > n/2 only the image of
HE, (M) in Hjr(M) has representatives in $2(AM, g). Moreover the representa-
tive need not be unique. If M is orientable, then dim $2(AM, g) = dim HE, (M)
for g > n/2. Also if € > 1, then H{(M) = $2(A\M, g) for g < n/2. If moreover p
is O(z) but not o(z) as z = o« on M, X R™, then dim H§(M) < dim $2(AM, g)
for g > n/2.

ExaMPLE (0.17). h is asymptotically translation invariant, g = e**h and p(w, z)
= (sin(In z))In z on IM,, X [1, 00).

Here g is admissible; however, it is g-bounded above only for ¢ = n/2 (if n is
even). Moreover M3 (g; q) = M, for all g. Thus only the image of H{,, (M) in
Hgr(M) has representatives in $2(AM, g). If g = n/2 these representatives are
unique. For g # n/2 our techniques do not allow us to say anything more; except,
of course, if ¢ = 0 or n, which are trivial cases.

As we noted before, Example (0.15) contains all asymptotically Euclidean metrics
on manifolds that outside M, are diffeomorphic to a finite number of copies of R”
minus a ball. Similarly Example (0.17) contains the metric cones and horns in [4]
and cusps in [11]. Also note that if g is equivalent to any of the metrics in these
examples, then everything said about the space of closed and coclosed L? forms for
the metric that g is equivalent to is also true for §2(AM, g). In fact one can even
get a version of the decomposition (0.12) when M is oriented. More specifically, if g
is equivalent to an admissible metric g, then

(0.18) LX(AM, g) = dW2, (A"'M, g,) ® d}B & $*(AM, g)
where B = * W2 _(A""9"M, g,) and the norm on B is
‘*g"”(le,o.—l(/\"‘q_lM’ g))-

(0.16.1) $*(AM,g) =

lolls =



FREDHOLM, HODGE AND LIOUVILLE THEOREMS 7

This follows easily from (0.12) and Kodaira’s theorem.

Finally there is the question as to whether one needs to use weighted Sobolev
spaces in order to get Fredholm results for A, and d, + d} for admissible g. The
answer is yes. For instance, suppose B is a Banach space of g¢-forms with the
properties that C§°(A’M) is dense in B and A, B - L?(AM, g) is Fredholm.
Since A,: B — L?(AM, g) is Fredholm, the norm on B is equivalent to ||A g||, +
||era|[ where 7 is a projection of B onto KerA, N B = K. Similarly the norm on
W{’O 2(AM, g) is equivalent to [|Agll, + |[7o|| with # a projection of

Wio-2(AM, g) onto

KerA, N Wf,_,(AM, g) = K,.

Thusif F = B N Wf,_,(AM, g) has norm [jo|| = max(fla]| 5, llo/(W4y_o(AM, g)),
then || || is equivalent to ||A o], + ||mo|| where 7 = (mg,7): F - K, ® K,. It
follows from this and the fact that CP(AIM) CF that A,: F - LP(A'M, g) is
Fredholm, which in turn means that as sets B = WY, _,(A’M, g) and that the norms
are equivalent.

1. Notation. In this section we list some of the notation used that is not defined in
the text. First of all R is the real numbers, R*= {z € R|z > 0}, and N is the
nonnegative integers.

As usual T9(M) is the bundle of (r,q) tensors over M, AYM is the bundle of
exterior g-forms (we often think of AYM as being in T{/M ), and A*M = ®)_, AIM.
If E is any of these bundles, then I'(E) is the space of all sections of E and C*(E)
is the space of C* sections; C*(M ) is the C* functions on M.

By a metric we always mean a C*, Riemannian metric, though many of the
results hold for metrics with much less regularity. For a metric, g, we let D, be the
covariant derivative associated with g by the Levi-Civita connection. If ¢ € N, then
D(’g) =Dy -+ Dy t times. On the other hand v, is, as usual, the covariant
derivative in the ith coordinate direction. In this regard v' = g"/v,. Also, we take
I ll z¢x) to be the normon 7'M | ,, or A’M | , or A*M |  induced by g(x).

For any metric, g, on M, s € N, and 1 < p < o0 and for E = TM, A‘M, or
A*M, we let

s » 1/p
(1.1) LF(E,g)= {a € r(z~:)|(§O fM HD{g)O“ngg) < oo}

where dV, is the volume measure arising from g. Also we take
(1.2) Lr(E)={oc€T(E)|¢o € LI(E)forall¢ € C°(M)}.

Note that L7, .(E) is independent of the metric.
Lastly, if g is a metric, then dy is the operator from C*(AM) to C*(A? M)
defined locally by

(1.3) (dga), ., =-Vi,

4

Thus it is the formal adjoint of 4.
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2. Admissible metrics on manifolds with finitely many ends. Let M be a manifold
with finitely many ends. Recall this means that M contains a compact manifold,
M,, with boundary; that M — M, = dM, X (0, o0), and that M, has only finitely
many components. There is an obvious R*-action on M_ = dM, X R™; namely
(w,2) = (w,z + z;) for z; € RT. We say that a metric on M is translation
invariant, if on M_ it is invariant under this R *-action.

DEFINITION (2.1). Suppose &, is a translation invariant metric, with covariant
derivative D_. A metric, h, is asymptotic to s, if for each r € N
(2.1.1) lim sup |DLh(w,z) — Dihy(w)|s, = 0.

120 ,edM,
If A is asymptotic to a translation invariant metric, then 4 is said to be asymptoti-
cally translation invariant.

CONVENTION (2.2). Henceforth 4 will always denote an asymptotically translation
invariant metric.

DEFINITION (2.3). Let g = e2??h with p € C*(M). The metric g is admissible if
there is a C*, R *-invariant 1-form, 8, on M_, with the property
(2.3.1) Jim  sup 0 | Di5e — D8||, = o

A few remarks about these definitions are in order. First of all note that all
geometric quantities associated with a metric, A, that is asymptotic to a translation
invariant metric, h_, asymptotically become those of h_. In fact one has the
following

[ookd

PROPOSITION (2.4). Let h, be translation invariant and h asymptotic to h . Let A

be the tensor field T, — T, ;- Then
(2.4.1) lim sup |DLA|, =0

I 0 wedIM,

for allt € N. Furthermore if X € C*(TM) satisfies

(2.4.2) sup |[DLX |5, < 0
M
for all t, then
(2.4.3) lim sup | D{,yX — DLX|, =0
220 M, *®
for all t.

PRrROOF. Since

) 1.,
_ljk = Ehll[(Dooh)ki‘l +(Dooh)j1k —(Dooh)ljk]’

(2.4.1) follows from (2.1.1). As for (2.4.3) we have for / > 0 that
(2.4.4)

| DX = DL X, <||D{yy( Dy X = Do X) = DL(Dyy X = Do X) |,

+|| DL(Dyy X — D X) ||hw +|| Dly Do X — DO’ODOOX”,,OO.
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Clearly if X satisfies (2.4.2), then so does D, X. Furthermore because of (2.4.1) and
the fact that D,,X — DX is a sum of contractions of +4 ® X, we have that
D)X — D, X also satisfies (2.4.2) when X does. Thus (2.4.3) holds for t = / + 1 if
it holds for 7 = /. Since (2.4.3) is obviously true for / = 0, we are done. O

Another thing to note is that the norm and covariant derivative in (2.1.1) do not
have to be those of & .

PROPOSITION (2.5). Let h, j, and k be asymptotically translation invariant metrics.
If X € C*(TAM) satisfies

(25.1) lim sup |Df,X|, =0
270 wedM,

for all t, then

(2.5.2) lim sup |D{,X|[|, =0

220 yedM,
for all t.

PrROOF. Because 4 and k are asymptotically translation invariant, there is a
constant, c, such that ¢™|| ||, < || |l < ¢|l |l5- Thus (2.5.1) implies (2.5.2) for ¢ = 0.

If / > 0, then

3
1+1 i i

(2.5.3) |G x|, <[ 24 Pu X, + 2 |1D6,(Diy = D) X |,
with Dy, = D, Do = Dy, D3y = Dy, and Digy = Dy A

Let B, = D, — D1y Then D, X — D)X is a sum of contractions of

@)
+ B;) ® X, and so by Leibnitz’s rule

!
(2.5.4) | p{3x|, <[ Dl X |, + € ZOHDC')BI I péyx |,
b

/
+c ZO | ¢, Bo )| DG X [, + H D{( D X = Disy X “k
o

It follows from the previous proposition that D, ;X — D, X satisfies (2.5.1) for all
¢t and that sup,||D;B,|; < o for all s. Since B, is independent of z on
dM, X R" it also follows from (2.4) that sup,l||D’;B,||; < oo for all s. Because
Dy, X obviously satisfies (2.5.1) when X does and the j and k norms are equivalent,
we have that (2.5.2) holds for ¢+ = / + 1 if it holds for ¢ = /. Since it holds for r = 0
we are done. O

It is also useful to note that if g = e2#h is admissible, then p satisfies (2.3.1) for
some 8.

PROPOSITION (2.6). Suppose g = e**h is admissible. Then p satisfies (2.3.1) for
some 0.

PROOF. By assumption there exists a metric, h, asymptotic to a translation
invariant metric, A_; a function, p; and a translation invariant 1-form, @, such that
g = e¥Ph and (2.3.1) holds for p and 6. Hence h = ¢*?~#h. By (2.1.1) and the
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previous proposition this means that

(2.6.1) lim sup ||D{,(eX® ™k —h,)| =0
220 yedM,
for all ¢ and all asymptotically translation invariant metrics j. It follows that
lim, , (p(w, z) — p(w, 2)) exists for each w € M, call it ¢(w), and that s =
e**h_. Thus ¢ is C*. Picking j = h_, in (2.6.1) we get
(2.6.2) lim sup “D(’hw)(ez(‘_’_")ﬁ - e2*h,,)
170 wedM,

It is easy to see from this that p satisfies (2.3.1) with§ = § — d¢. O

Several examples of admissible metrics were given in the introduction. In these
examples the exponent of the conformal factor, p, is a function of only z on M_
and is O(z) as z = o on each component of M_. We now show that every
admissible metric is of this form.

= 0.

©

LEMMA (2.7). Suppose p and 8 are as in (2.3). If we express 8 as 0 = Y(w) + f(w) dz
with y € C*(A'OM,), then f is locally constant on IM,,.

PROOF. Let p = f(w)z + o(w, z) on M. Since

(2.7.1) dp = (f(w) +3,0(w,2))dz + zdf + do,
where d is the exterior derivative on dM,, we have by (2.3.1) that
(2.7.2) lim sup |3,0(w,z)|=0.

270 wedM,

Let v: [0,1] — 3M, be a path from w, to w;. By Stokes’s theorem and (2.7.2) we
get

(273) 100) = flan) = Jim | [ d0

Since h is asymptotically translation invariant, (2.7.3) combined with the Cauchy-
Schwarz inequality gives
(2.7.4) [f(w)) = f(wp) | < Czlinolo sup [|d3,p(w, )|,

weEIM,

However this last term is no greater than lim, _, , sup, c 4y, 19,dp(w, 2)||, and by
(2.3.1) thisis 0. O

LEMMA (2.8). Let 0 = Y(w) + f(w) dz, as above. Then § is an exact 1-form on
oM,.

PROOF. As in the previous lemma, let p = f(w)z + o(w, z) on M_. From that
lemma we have that dp = f(w) dz + do(w, z). Hence by condition (2.3.1)
(2.8.1) lim sup |do—y|,=0.

=0 yedM,

If v: [0,1] — 9M, is any smooth loop, then

fyzp fyxp—do(w,z)

Since this is true for every z and (2.8.1) is true, [, = 0. O

(2.8.2)

< cesup [y (w) — do(w, 2) |4,
M,
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THEOREM (2.9). Suppose g = e**h is admissible. There is a C* function p: M — R
and an asymptotically translation invariant metric h such that

(2.9.1) p is a function of only z on M__;
if 9,,...,8, are the components of dM,, then there are
(2.9.2)  constants cy,. .., c; such that lim,_,  9,p(z) = ¢, uniformly on
Q;
(2.9.3) lim 9!5(z) = O uniformly on M, forall t > 1;
and
(2.9.4) g = e’"h.

PrROOF. For each / = 1,..., L let w, be a fixed point in Q,. We take p to be any
C* function on M that equals p(w,, z) on 2, X R™ and take 4 to be e**~Pp,

If, as in (2.7) and (2.8), p is expressed on M_ as p = f(w)z + o(w, z), where
0 =y(w)+ f(w)dz, thenon Q, X R* p = f(w,)z + 0(w,, z). That p satisfies (2.9.2)
and (2.9.3) follows from condition (2.3.1).

To show that h is asymptotically translation invariant, first note that by Lemma
(2.8) there is a function k(w) such that Y = dk(w). Combining this with the fact
that f is locally constant, we have that if y: [0, 1] — &, is a path from w, to w then

(2.9.5) p(w,z)—p(m,,z)=jydk(w)+[Y [do(w,z) — dk(w)].

This means that
(2.9.6) lim |p(w,z) —p(z) —(k(w) — k(w,))|< clim sup |do — dk|x.

270 wedM,

From condition (2.3.1) we have that for each ¢t > 0

(2.9.7) lim sup || Die — DYy dk||, = 0
Thus the right-hand side of (2.9. 6) is 0 and so
(2.9.8) lim sup [[p(w,z) = p(z)—(k(w)—k(w))],=0.

270 wedM,

Combining this with (2.9.7) and the fact that & is asympotic to a translation
invariant h_, we get that & is asympotic to e**(“)=/(“Dp_ where j(w) = k(w,) on
Q,.

That p satisfies condition (2.3.1) for some 8 follows from Proposition 2.6. (8 in
factis f(w)dz.) O

We conclude this section with a lemma which will be useful in the next two
sections.

LEMMA (2.10). Let g be an admissible metric. If T € C*(T,’M), then in terms of a
coordinate system of the form (2, X R*, (¢, X id)) on M,

i - m,
ml~~m,=#_
(2.10.1) Vi o VI ax - ox T L(T)

I 4
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with L = Y, <, L(w,2)0% and L, an (I + k)n X kn matrix. Moreover there exist
translation invariant matrices L?(w) such that for all B € N*

(2.10.2) lim F(L(w,z) - L*(w)) =0

uniformly on compact subsets of 2,.
PrOOF. This is a straightforward calculation that uses condition (2.3.1). O

3. Weighted Sobolev spaces. As was mentioned in the introduction weighted
Sobolev spaces need to be used on noncompact manifolds in order to get Fredholm
results for elliptic operators. Moreover which weights should be used depends on the
operator. In the case of elliptic operators that are asymptotically translation in-
variant, the proper weights are the functions exp(8) with § € C*(M) and §/:
locally constant on M. Since §/z is locally constant on M, and since we do not
care what & is on M,, we may identify it with an element, 8, of RY, where L is the
number of ends of M.

DEFINITION (3.1). If L = number of components of dM, and § € RE, then 8z is a
C* function on M that on the /th component of M_ equals §,z.

NOTATION (3.2). If §,, 8, € R%, then 8, < 8, means §,, < §,, for/=1,..., L.

With this notation we are ready to define the weighted Sobolev spaces needed for
Laplacians associated with asymptotically translation invariant metrics. In what
follows we let E be either T9(M) or AY(M) and, as usual, take 4 to be asymptoti-
cally translation invariant.

DEFINITION (3.3). Let 1 < p < 00, 8 € R*, and s € N. For o € L7, .(E) set

s 1/p
4
(3.3.1) lollp.s.6 = ( ) f |e®:Dfy0 ||th,,) .
1=0 "M
DEFINITION (3.4). If 1 < p < 00, 8 € RY, and s € N, then
(3.4.1) Wr(E) = {0 € L2 (E) | llollp.ss < 0}

If1 <p < o0, 8 € RE, and —s € N then W/(E) is the dual space of W?,_(E),
wherel/p + 1/p" = 1.

A few remarks about these definitions are in order. First of all, it is easy to show
that these are Banach spaces. Secondly notice that by picking § € R” instead of in R
we allow for different growth on the different ends of M. Thirdly note that the
standard Sobolev space, LP(E,h), equals W/ (E) and that if &;, 8, € R* with
8, <8, and s > 0, then W/ (E) € W7, (E). Thus we have embedded Lf(E,h)
into a family of weighted Sobolev spaces. Finally observe that any two asymptoti-
cally translation invariant metrics give rise to equivalent weighted Sobolev norms.
Indeed it follows from Lemma (2.10) that the norm (3.3.1) is equivalent to the
following metric independent one.

DEFINITION (3.5). Let {(£,, ¢,)}_, be an atlas for 3M,, and set M, = &, X (0, 0)
and ¢, = (¢,,id). Then {(M,,¢,)})_, is an atlas for M_. Extend this to a finite
atlas, {(M,,¢,)}N*7 of M and let {y,})/ be a subordinate partition of unity. If

v=1
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l1<p<ow,8 R, seN and o € LY (E), then

(3.5.1) .
N+J s n .

lol;os =| 2 = L [ |exa(Bos)a(viopis)oa?]
v=1 |a|=0 i---» i,=1 "$(M,)

It is the norm (3.5.1) that is used in [10] and so the Fredholm results there hold for
the spaces in (3.4). Before stating these results we must say what an asymptotically
translation invariant operator is. Recall that if A: C*(E) —» C*®(E) is an mth order
linear differential operator, then in terms of the covariant derivative of A we have
A =2Xya, Df, with a,€ C*(T/!/,,M) and “-” meaning tensor product fol-
lowed by contraction. A differential operator is said to be translation invariant if it
is invariant under the R *-action on M_.

DEFINITION (3.6). Suppose that 4 =Y/ ja,- D,y and 4, =X/ ,a° - D}, are
two mth order differential operators and that A_ is translation invariant. The
operator A is asymptotic to A, written 4 ~ A_, if forevery/€ Nand0 <t < m

(3.6.1) lim sup| D}, (a, — a)|, = o.
200 M,

If 4 ~ A, then A is said to be asymptotically translation invariant.
It is easy to see from Lemma (2.10) that this definition is independent of the
choice of asymptotically translation invariant metric, A, used to express 4 and A4 .
The Fredholm results we need are the following.

THEOREM (3.7). Suppose A, A,: C*(E) = C*(E) are mth order, elliptic differen-
tial operators, A is translation invariant, and A ~ A_,. Then
(3.7.1) A is continuous from W7, s(E) to WPs(E) forall1 <p < o0, s € Z, and
8 € R
(372)If1<p<oo,s€Z and b € R, thenforallo € LY, (E)
lollp.ssms < c(l4ollp.s.s + o llp.s.5)
for some c independent of o.

(3.7.3) There is a subset 9, C RE such that if 1 <p < oo and s € N, then A:
WP, . s(E) = WFs(E) is Fredholm if and only if 8 € R" — 2.

PROOF. See inequality (2.4) in [10] for (3.7.2) and §7 in [10] for (3.7.3). O
Much can be said about the set 2. For instance 9, = 9, . Also it is of measure
zero in RE, In fact it is of the form

(38) 2,=(2, xR URXZ, XxR2)U - URI X 9, )
with each 9, ,a countable discrete set in R. That this is so comes from the fact that
(84,...,6;,) is in @, if at least one of the §, is an eigenvalue of an associated

generalized eigenvalue problem for 4, on dM, X R. (See [10] for details.) For
example, suppose & is a metric that is the product metric dz? + h, on M. Then on
M_ a g-form o equals Y (w,z) + 7(w, z) A dz for some ¢ € ' A90dM,) and 7 €
L' A"} (9M,) and

3 T

” ) Adz.

aZ
Ao = —87‘12’+A,,0¢ +(-1)"“( + A7
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In this case § = (8;,...,08,) isin ), if for some / we have that §, is an eigenvalue
for either A, : C*(A/Q;) - C*(A1Q,) or A, : C(AT71Q,) > C*(A?7'Q,) where
{2, is the /th component of dM,,. Thus for instance
Ay LE(A'M) = WH(AM) — LP(ANM) = W{,(AM)

is Fredholm if and only if H§z'(d0M,) = H{z(dM,) = 0. Finally let us point out
that even though 2, = 9, itis not the case thatind; A = ind; 4, if § € RE-9,.
However, if 8, < 8, and §,, 8, € R* — 9,, then it is true that ind; 4 — ind; 4 =
ind; A, —ind, A, (For details see [10].)

The reader may feel that the Fredholm result follows from the a priori inequality
(3.7.2). However since M is not compact the imbedding W7, ,, s(E) = WPFs(E) is
not compact and so (3.7.2) does not imply Fredholm. We conclude this section by
presenting various properties of the spaces W/fs(E), including a weighted compact
imbedding theorem.

PROPOSITION (3.9). Ci°(E) is dense in W[s(E).

PrOOF. This follows from the fact that (3.5.1) gives an equivalent norm for these
spaces and classical facts about Sobolev spaces in R”.

THEOREM (3.10) (WEIGHTED SOBOLEV EMBEDDING). There is a continuous embed-
ding WEy(E) > WIS(E) if
i)s—5=n/p—n/p(n=dmM),
(ii) s > § > 0 and either
()1 <p<p<oowithd <dor
(iii’)1 <p < p < cowith 8 < 8.

PROOF. See Lemma 7.2 in[10]. O
In proving the compact embedding theorem we need the following

LeMMA (3.11). For #C M, a measurable set, define

s 1/p
»
(3111) fohoo(#) = | £ [ IRl a2
t=0

Also let My = M, U (dM, X (0, R)). If 5, 5, p, P, 8 and § satisfy the conditions in
(3.10), 0 € WFs(E), and R > 1, then
(3.11.2) lollp.s.5(M — Myg) < cllollp.s.6(M — Mg)
for some c independent of o and R.

ProOF. For ¢ € C§°([0, 0)) such that ¢=10n(0,1] and ¢ = 0 on [2, 00), take
$r(2) = $(z/R). Define ¢ € C3°(M) by

1 if x € M,,
op(z) ifx=(w,z)EM,.

(3.11.3) op(x) = {

Clearly we have

(3-11'4) ||°||i7va3(M - M2R) < “(1 - ¢R)0”17‘s',3'



FREDHOLM, HODGE AND LIOUVILLE THEOREMS 15

By (3.10) we have

(3-11-5) ”(1 - ¢‘R)°“ﬁ,§,3 < C“(l - ¢R)0|]p,s,8 = C”(l - ¢R)°”p,s,s(M - MR)-
However from the construction of ¢, we see that if R > 1, then
(3.11.6) (1 = ¢x)all,ss(M — Mp) < cllollp.s.s(M — M)

with ¢ independent of o and R.

THEOREM (3.12) (CoMPACT EMBEDDING). If
»s—5>n/p-n/p,
(i) s >35> 0, and
(iii) 8 < 8,
then the embedding Wrs(E) — WZs(E) is compact.
PROOF. Suppose {o;} is a bounded sequence in W/s(E). Using the notation in
(3.11) and Minkowski’s inequality we get

(3.12.1) Hoj ”ﬁ_g,s < C(”Uj ”;,,g,g(Mzk) + “"j“,—,,g,g(M - MZR))'
Let & be defined by §, = (8, + 8,)/2. Then § < § < § and so by (3.11.2)
(3.12.2) “oj”ﬁjj(M — Myz) < C““j”,,,s,s(M - Mpg).

For all j we have

s

(123 T4~ M) = | &

“ (5-8)z 8zD1 pdV p
(=0 ’/E;MoX(R,oo) ¢ € (h)alllh h

<o, 5 < cet”

with 0 < b = min{§, — 3,} and ¢ = sup;{|lo/, ;s }- On the other hand, it follows
from the classical Rellich theorem that there is a subsequence of {o;} that converges
in the || || ;5(M,z) norm. Thus if N € N, we may pick R large enough so that
there is a subsequence, {6, } of {0, } that satisfies

(3.12.4) 16, = G, 5< 27V

for all j and m.

Let {0, } be a subsequence of {o;} such that ||o; — 0,5 ;5 < 27! for all j and
m. For N =2,3,... pick {g;y} to be a subsequence of {o,_;} satisfying
l6jxy = Ounll5s5 <27V for all j and m. Finally let 6, = o,,. Since ||6; — 6,,|| <
2-Xfor j, m > K, the sequence {6} converges in W/5(E). O

p,5,8

4. Weighted Sobolev spaces for admissible metrics. For the Laplacians associated
with a general admissible metric, g = e?h, the Sobolev spaces introduced in the last
section are not the right ones to use, unless p is bounded. In this section we
introduce the correct spaces and give some of their properties. As before E is either
T M or A“M and h is an asymptotically translation invariant metric.

DEFINITION (4.1). Let 1 < p < o0, 8 € RE, a € R, and s € N. Suppose g = e**h
is admissible. If 0 € L/, .(E), then

s 1/p
P
(4.1.1) ||6||(VV;{’8‘0(E, g)) = (E:O fM “e82+(t+a)pD(lg)o ”ngg
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DEFINITION (4.2). If 1 < p < o0, 8 € RE, a € R, and s € N, then

(421) W7 (E.8) = {0 € LI (E) | o(WZs o(E. g)) < oo}

If1<p<o0,8€R: aeR, and —s € N, then W, (E, g) is the dual space of
WP _s_ (E,g),wherel/p +1/p’ = 1.

Once again it is straightforward to show that these are Banach spaces. Also notice
that if p is bounded, and so g is asymptotically translation invariant, then
Wps (E, g) = WZs(E), equipped with an equivalent norm. Note too that
Wdoo(E, g) = LP(E, g). However, if p is not bounded, then W}, ((E, g) is not the
classical Sobolev space, L?(E, g).

The need for the term exp((z + a)p) in (4.1.1) may seem strange. It is best
explained by Proposition (4.4). Before giving that proposition let us mention the
following useful representation for elements of W75 ,(T°M, g) for s < 0.

PROPOSITION (4.3). For every o € W}y (TM,g) with s <0, there is a unique
(1 — s)-tuple, (0y,...,0_) € & W5 . (T7"'M, g), such that

(4.3.1) a[¢] :f i <01’D(tg)¢>ngg
M -9

for o € WF_s_(TM,g), and

-s~8,~a
1/p

(432) o922, (71, 6)) = | £ (o) (093, (77 01.)

PrOOF. The standard proof, as in [1], can be used here too. O

PROPOSITION AND DEFINITION (4.4). For g = eh admissible define the operator
K, ,on Wrs (T7M, g) as follows: if s € N, then

(4.4.1) K, 0= elatr=atn/peg,

If -s € N and

)

(0g,--50.) € @ W5 (T7 M, g)
t=0
represents 6 € Wl (TM, g) as in (4.3), then

(442) (K, ,0)[¥]= fM EO <exp((a tr—qg—t+ %)p)at, D(‘,,)¢> v,

h
for & € WZ_yo(TSM, h).
Foralls € Z

(443) K, WPy (T, g) > W2y o(TIM. h) = W2y(TM)
is a Banach space isomorphism onto.

Proor. If s > 0, then
(4.4.4) |etetr—atn/Prg|, 55

S

t=0 b<t

1/p



FREDHOLM, HODGE AND LIOUVILLE THEOREMS 17

It follows from condition (2.3.1) on p that this is

s » 1/p
(4.4.5) < c( bgo /M ||e3z+(a—q+r+n/p)PD(’;')0 ”h th)

s 1/p
— c(bgo /M lle8z+(a+b)pr)0|| dV)

Using Lemma (2.10) we get that this in turnis < c||o|(W/s (T,7M, g)).

Thus (4.4.3) is continuous for s € N. In exactly the same way we can show that
(K, )" defined by
(4.4.6) (K,,) 'y =elarma-n/pey
is continuous. This proves the proposition for s > 0. The case of s < 0 follows easily
from this. O

We shall also use K, , on W (A“M, g) by considering A’M to be in T/M. The
proposition is true then i 1n this case too.

COROLLARY (4.5). If g is admissible, then C5°(0) is dense in Wls (E, g).

PROOF. The operator K, , obviously preserves supports and so this follows from
Proposition (3.9). O

PROPOSITION (4.6). For admissible g
(461) D(g) Wﬁa(E g)_) W 18a+l(T lM g)
is continuous.

PROOF. For s > 1 this follows easily from Definition (4.1). For s < 1 we have by
the density of C(T* ) in W', _5_,_ (T M, g) that

(4.6.2) (Do)[¥] = o[ D]
where € Wlls s-a_1(T7"M, g) and D, is the formal adjoint of D,,. Thus

(4.6.1) is continuous for s < 0 provided

(4.6.3) DXy W 50 (T M, g) > W2 5 (TM, g)

is continuous. But (4.6.3) is continuous because
(4.6.4) (Dgyw)i = e on v pf s,
with v the covariant derivative for g. O

It is apparent from the proof of (4.4) that K, , would not be bounded were the
term e’” not in the norm (4.1.1). However once one has introduced e’ then e’ is
needed too in order for Proposition (4.6) to be true.

An immediate corollary of (4.6) is

COROLLARY (4.7). For g admissible, s€ Z, § € R, a€ R and 1 < p < o the
following operators are continuous:

(4.7.1) d: W25 J(NM, g) = WE 5 .1(N7M, g),
(4-7'2) d* 8a(AqM g) > W? 1sa+1(/\q_1M,g)’
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(4.7.3) A we sa(/\ M,g) > W7 28a+2(/\ M,g),
(4.74) d+d} ea 75 o(ATM, g) > ego W2 15 aer(AM, g).

Proposition (4.4) allows us to carry over the properties of the spaces W75(E) in §3
to the spaces W/, ,(E, g).

THEOREM (4.8) (WEIGHTED SOBOLEV EMBEDDING). Suppose g is admissible. There
is a continuous embedding

(481) VVSI,)S,a(E’ g) - E?E,(H—n(l/p-—l/p')(E’ g)
if

W) s—-5=>nQ1/p-1/p),

(11) s > § > 0 and either

()1 <p <p < ocowithd <8or
(iii’) 1 <p < p < cowith § < 8.

PrROOF. Let g = e?*h. By (4.4) and (3.10) we have the sequence of continuous
maps:

Ka,
(4.8.2) W5 (E.g) = WE(E) > Wis(E)

-1
(Kysn/p-1/p).p)

~-l11,5
g (p) %I.)I_S,a+n(1/p—l/i))(E’g)'

Furthermore by (4.4.1) and (4.4.6) if 0 € W/, ,(E, g), then in (4.8.2) it is mapped to

(4.8.3) eld—r—a—n/ptn/p=n/p)p , platr—q+n/plog — 5 [

THEOREM 4.9 (CoMPACT EMBEDDING). The embedding (4.8.1) is compact when
(@)s-35>n/p—n/p,

(1) s> 5> 0and

(iii) 8 < 8.

PrOOF. Theorem (3.11) implies the middle map in (4.8.2) is compact when (i)—(iii)
hold. O

5. Fredholm results. In this section the Fredholm properties of Laplacians associ-
ated with admissible metrics are established. Throughout the section # is, as usual,
an asymptotically translation invariant metric. We start with a straightforward
lemma.

LEMMA (5.1). If g = e**h is admissible, then D(,, is an asymptotically translation
invariant operator for every t € N.

ProoFr. It is clear from Definition (3.6) that the composition of asymptotically
translation invariant operators is again asymptotically translation invariant. Hence
we need only consider ¢ = 1. In that case D, = D, + L with L a Oth order
operator with coefficients that depend only on 4 and D,,p. The lemma, then, is a
consequence of condition (2.3.1) on p.
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THEOREM (5.2). Let g = e?*h be admissible. For every 1 <p < o0, s € N, and
a € R there is a subset 9y = Dx(g, p, q, a) of RE with the properties

(521) 2,=(2, xREHURXZ,XRE2) U -+ U(RET x 2,)
with each 9, countable and discrete.
(5.2.2) 9, dependsonp,q,a, the metricg, andn = dim M, but not s € N.
(5.2.3) By Wois o NOM.g) > W2y 5 (AM. 8)
is Fredholm if and only if § € R — 9,.
PRrROOF. For b € R, define A(b) to be the operator

(5.2.4) A(b) = e@TDrA embe,
Letting v be the covariant derivative for g, we have by a standard identity that
(5.2.5)

(A(b)o)i i, = e(“”)"[e‘b“'Als,ai1 iy 2(5’%"””5,(0,.1 ,__,.q) -—(Age‘b”)o. <-~iq]'

Computing the second and third terms on the right-hand side of (5.2.5) and using
the definition of A , we get
(5.2.6)

() (F.54 - 99, Jou 1.
1

M-

(A(b)o)’l ey = ezpli—gk—v—koll sy +

q

V2175T0, (P12 ),
Since g = e2*h, it follows from (5.2.6) that

(5.2.7)
(A(b)o)s .,

q
= h'* |-V ,0, i, T )y (“1)V(Vf,vt - Vtviy)okfx by, T 2b(v’pvkail mlq):|
v=1

+(bAyp — b(b—n+2)|Vel4), ..., -

q

Thus as a result of Lemma (5.1) and condition (2.3.1) on p, we see that A(b) is an
asymptotically translation invariant operator. Hence by Theorem (3.7) there is a
subset 24, of R of the form described in (5.2.1) with the property that

(52.8) A(b): Wiy s(N'M) > W5(AM)
is Fredholm if and only if § € RL — 9,,,,. In particular this is true for b = a — ¢ +

n/p. However, in this case we also have the commutative diagram:

A(a—q+n/p)
W, 5(A'M) -

W2s(AM )
(5.2.9) l(Ka,p)-l T Kyiap

A
I'Vsl-,f-Z.cS.a(AqM9 g) - Wf&,a%—Z(AqMa g)
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Because of the fact that (K, p)‘1 and K, , are Banach space isomorphisms, the
operator (5.2.3) is Fredholm exactly when (5.2.8) with b =a — ¢ + n/p is Fred-
holm. In fact we see from (5.2.9) that the horizontal maps in that diagram have
isomorphic kernels, ranges, and cokernels. In particular when they are Fredholm,
they have the same indices. O

Using the ideas in the proof of this theorem, we may establish the next fact about
harmonic forms.

PROPOSITION (5.3). If s€ Z and o € W}, (AN'M, g) is harmonic, then o €
Wirs «(NM, g) forallt € L.

PROOF. Letting A(a — g + n/p) be as above, we see from (5.2.9) that K, o €
KerA(a — g + n/p) N WIs(AM). Since A, is formally selfadjoint, elliptic, and has
C* coefficients, ¢ is in C*(A“M) and so K, ,0 is also in Lf;, (AM) for all k.
Thus if we use the a priori inequality (3.7.2) for 4 = A(a — g+ n/p) and a
standard bootstrap argument, we get that K, 6 € W (AM) for all . But this
means 0 € WP (AM, g)forall . O

Because of this proposition the next definition is independent of s.

DEFINITION (5.4). For g admissible

(5.4.1) 98.(AN'M,g) = {0 € Wl; (AM,g)|A 0 =0}.
COROLLARY (5.5). Forall 0 < g <n, 8 € R, and a € R the space 9§ ,(AM, g)
is finite dimensional for admissible g.

PrOOF. For § € R — 9, this is merely a property of A . being Fredholm. For
60 €2, it follows from the fact that 2, has the form (5.2.1) that there is a
§ € RE — 9, such that § < 8. The assertion is then a result of the obvious fact that
98 ANM, g) C 9§ (AM, g)for § <. O

COROLLARY (5.6). Suppose g is admissible. For each fixed 8 € RE, the space of
harmonic o satisfying

(5.6.1) sup [leo g < oo
M

is finite dimensional.

PrROOF. If o satisfies (5.6.1), then o € W{5((A'M, g) for any 8 satisfying &, — §,
<-n/pfori=1,...,L. O
We see from Corollary (5.5) that the kernel of

(5.7) By Whias l(N'M, 8) > Wy ,2(A'M, g)
is always finite dimensional. The kernel of the adjoint of (5.7) is also always finite
dimensional; for it is ©75_, ,(A’M, g), where 1/p + 1/p’ = 1. Hence if (5.7) is

not Fredholm, it is because it does not have a closed range. Nevertheless we shall see
in Theorem (5.10) that there is always a Banach space W/, , 5 ,(A“M, g) such that

(58) Ag: I;i/sp-ﬁ-l,t‘},a(/\q‘,‘l* g) - VVS{;S,(J-F2(AqM’ g)

is Fredholm. The key is the next technical lemma.
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LemMMA (5.9). Let B,, B;, R,, and R, be Banach spaces. Suppose B, C B, and
R, C R, as sets and the inclusions are continuous. Also suppose A is a linear operator
that is continuous from B; to R, for i =0, 1. If A: B, — R, is Fredholm and A*:
R — B§ has a finite dimensional kernel, then there is a Banach space, B, with the
properties:

(5.9.1) B, C B C B, and the inclusions are continuous,
(5.9.2) B, is dense in B,
(5.9.3) A: B > R, is defined, continuous, and Fredholm,

(5.9.4) the range of A: B > R, is the closure of the range of A: By — R,,.

PROOF. Let B = {u € B,| Au € R, } and equip B with the norm ||u|| 5 = ||u|| 5, +
| Au| g, It is straightforward to show that B is a Banach space, that B, C B C B,
as sets, that the inclusions are continuous, and that 4: B — R, is continuous. In
fact A: B - R, is Fredholm.

To see this let K, be the kernel of 4 in B and W be the closure of 4(B) in R,
Since B C B, and A: B, = R, is Fredholm, K, is finite dimensional. Also if
w € W then w € R, and in fact W is in the closure of A(B;)in R,. Thus thereis a
u € B, such that Au = w. However u € B; and Au € R, means u € B. Hence
A(B) = W. Finally W contains the closure of A(B,) in R, and so W is finite
codimensional, for A*: R¥ — B} has a finite dimensional kernel.

Unfortunately, B might not satisfy (5.9.2) and (5.9.4). For this reason we take B
to be the closure of B, in B with respect to || || 5 and equip it with the norm || || 5.
Clearly A: B - R, is continuous and has a finite dimensional kernel. Also, since
A(B,) C A(B), the closure of A(B) in R, is finite codimensional. Thus to finish we
only have to show that A(B)is closed in R,

Recalling that K is the kernel of 4 in B, we have from the finite dimensionality
of K that E = K, + B is closed in B. Hence C,E, the set complement of E in B,
is open. It follows from the fact that A: B — A(B) is an open, onto map that
A(CgE)is openin A(B) and that A(B) = A(E) U A(CRE). Since A(B) is closed in
R, we are done if we show that A(E) N A(CRzE) is empty. But this is clear; for if
A(g) = A(e) for some g€ CzE and e € E then g=e + k with k € K, ie.
g€E€E O

THEOREM (5.10). Suppose g is an admissible metric, 8 € RL, a € R, s €N, and
1 < p < oo. There is a Banach space, W7, , 5 ,(AM, g), with the properties:
(5.10.1) Ag: Whap o AM, g) > WPs 12 (ATM, g)

is continuous and Fredholm; WP, F25.aNM, g) = WZ , 5 (NM, g), equipped with an
equivalent norm, if 8§ € RE — 9,; in general

(5'102) Wy+28a(/\ M g)C ﬂ +2na(/\ M g)
'r,<8

and the range of (5.10.1) is the closure of the range of
(5.10.3) Ay Whipsa(AM,8) = W75 .2 (AM, g).
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PROOF. Since 2, has the form (5.2.1), almost all 7 < § are in R- — 9,. For each
such 7 let B, be the closure of W7, , ;5 ,(A’M, g) in

(5104) B, ={o€ Wi, (AM,g)|Ap € W5 ,.,(A'M, g)}

with respect to the norm

(5105)  lolls, =llo(W2s, o(A'M, g)) +[|A 0 [(W25 1i2(AM, 8))

and equip B, with the norm || || 5~ By the previous lemma
(5.10.6) A B, - WP ai2(AM, g)

is continuous and Fredholm with range equal to the closure of the range of (5.10.3).

We claim that all the B, are equal as sets and have equivalent norms. To see this
first suppose 7, < 7, < 8. Then there is a continuous inclusion i: sz - B,l, and so
we have the commutative diagram

A

~ g

B - W;I,Is,au(/\qMag)

T2

(5.10.7) i s

B,
Because A B - Wks ,12(AM, g) is Fredholm, i: B - B also is. This means
BT2 is closed in B But W2, , 5 .(AM, g) is dense in both Hence B and B are
equal as sets and i 1s an isomorphism.

For general, 7, 7, < 6 and in Rf — 9, there is a 7, € R — 9, such that =,
T, < 73 < 8. Thus B B, = B and they all have equivalent norms. Because of
this we may take W7, , , ,,(/\"M g) to be any one of the B,.

To see that (5.10.2) holds for W7, , 5 ,(A’M, g) all we have to do is note that for
n <& there is a 7 € RE — 9, such that n <7< 8. For such 7 it is clear that
B, C Wiy, N M, ).

Finally if 8 € RE — 9,, then we have B;. Obviously By is W2, (AM, g)
equipped with an equivalent norm. O

Observe that while it is true that the range of (5.10.1) is the closure of the range of
(5.10.3), the kernel of (5.10.1) may be strictly larger than that of (5.10.3). For
instance if g is a product metric on M, X R*, then o(x) =1 is in szfo(/\OM,g)
though not in W/,(A°M).

To finish this section we shall prove an analogous result for d + d . This result
will be useful in §7. In stating it we let

q=0

VK’,’s,a(A*M,g) @ sa(/\qM g)-
THEOREM (5.11). Suppose g is admissible, 8 € R, a € R, s € N, and 1 < p < o0.
There is a Banach space WP, P 1.5.0(A*M, g), with the properties:
(5111) d+d* ~s+18a(/\ M g)_) s,B,a+1(A M’g)
is continuous and Fredholm; if

(5112) d+d* s+18a(A*M’g)—> u/;]?S,a+1(A*M’g)
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is Fredholm, then Ws 1.6.N*M, g) = WE 5 (A*M, g), equipped with an equivalent
norm; in general
(5113) Vi/spﬁ-l,S,a(A*M’g) n +1na(A M g)
1]<8
and the range of (5.11.1) is the closure of the range of

(5.11.4) d+dr:Whs . (A*M,g) > W5 ,.1(AN*M, g).
PrROOF. Let I' = N7_,25(g, p,g,a — 1) and let §, € T'. Then
(5-11~5) A W+2 ,80,a— I(A M g) - sI,JSO,a+1(A*M’ g)

is Fredholm. Moreover it factors as
(5.11.6) I’Vsﬂz,sn,aq(/\*Mag)d:i sp+1,so,a(/\*M,8)
d+d*

g
- 5{)80,a+1(A*M’ g)
Since (5.11.5) has a closed, finite codimensional range, so does
(5.11.7) d+dr Whys, J(A*M,g) > Wr . 1(A*M, g).

Because the kernel of (5.11.7) is contained in 9§ ,, it is also finite dimensional.
Thus (5.11.7) is Fredholm for §, € I'.

For any 8 € R’ there is a §, € T such that §, < 8. Hence we may proceed as in
the previous theorem. O

6. Hodge decomposition. In the last section we showed for admissible metrics that
Wrs JANM,g)=A gWsﬂz,s’a,Z(AqM, g)® F with F a finite dimensional space.
Unlike the situation for a compact manifold, F cannot always be picked to be
©§ ,(AM, g). In fact the dimensions usually are not the same, for the dimension of
F is the same as that of the kernel of the adjoint of A,: W/, ,; , ,(A/M, g) >

WPrs (AM, g), and so equals dim SZ)”s a(/\qM g) where 1/p + 1/p’ = 1. Since
any o € 7 8‘_H(A"M g) that is also in W, ,(A“M, g) may be put in F, this suggests
that F can be chosen to be @E'B,_H(A"M, g). However, that can only be done if
©75_o(ANM, g) C W2 (A'M, g). In the next theorem sufficient conditions are
provided for this to be true.

THEOREM (6.1). For 1<p <o, 8§ €RL, a€R, s€N, and g admissible
D75 o(NM, g) € W25 (AM, g) if any of the following is true:
(6.1.1) p>2and 8z +(a+n/2 — n/p')p is bounded above,

p<2and (6§ +e)z+ (a+n/2—n/p)p is bounded above

(612) for some € > 0,

(6.1.3) p<2,8<0,a=0, and/ v, < .
M

PROOF. All we need to do is show that $75_,(AM, g) C W, ,(A"M, g), for then
itis in 9§ ,(AM, g), which by (5.3) is in W7, ,(AM, g) for all s. In the case of
(6.13) this is a result of the fact that W¢ s,(AM, g) C W{so(AM, g), which
follows easily from Holder’s inequality.
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As for the first two cases, note that according to Theorem (4.7) we can, for large
enough ¢, continuously imbed W,{f&_a(/\"M, g) into Wfs_ . p—n,p(ANM, g) pro-
vided either

(i) p>2and § < -8or

(ii) p <2 and § < -8.
Hence $%5_,(AM,8)C W¢s_0in/y
hold.

Since
(6.1.4)

Sz+ap=(8-8)z+2a+n/2—n/p)p+8z+(-a+n/p’"—n/p)o,
Holder’s inequality implies that W{s_,., v —n/,(AM, g) C W a(/\"M g) if
(8 —8)z+ 2a+n/2 - n/p )p is bounded above. For p > 2 we may pick § = -8,
but for p < 2 we must pick 8 = -8 — ¢ for some ¢ > 0. Hence we have conditions
(6.1.1) and (6.1.2). O

—nyp(AN"M, g) when either of these conditions

COROLLARY (6.2). Given a € R, 1 < p < o0, and an admissible metric g there is a
8, € RE with the property that
(62.1) W2 J(AM,8) = A (WYirs.2(AM, 8)) ® 975 _,(A'M, g)
for all § < §,.

PROOF. A consequence of Theorem (2.9) is that |p(z)| < ¢z on M, for some c.

Thus (6.11) and (6.12) can be satisfied by picking 8 sufficiently negative on each
end. O

COROLLARY (6.3). For admissible g the decomposition

(631)  LPAM, g) = A, (WEy2(AM, g)) @ SF,(AM, g)
holds if any of the following are true:

(6.3.2) p=2,

(6.3.3) p>2 and p is bounded below,

(6.3.4) p<2 and /M dV,< . O

If g is admissible but not complete, then @5:0(/\ 9M, g) can have elements that are
not closed or coclosed. However, § can be picked so that every element of
©75_.(AM, g) is closed and coclosed.

PROPOSITION (6.4). For a € R and g admissible, there is a & € R such that every
element of @fls‘_a(/\"M, g) is closed and coclosed if 8 < §.

PROOF. As a result of Theorem (2.9) there is a € R” such that
dz+((a-1)+n/2—-n/p')p
is bounded above. Thus by the proof of (6.1) we have, for large enough ¢, a
continuous inclusion
(6.4.1) W s anr(AM,8) C Wy o ((N'M, g)
for all r and all § < 4.
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Let 6 € @{’:sy_a(A"M, g). Since C°(AM) is dense in VV,’;’L_&_a(/\qM, g), there is
a sequence {¢,} € CP(AM) that converges to ¢ in W7 1-8-a(AM, g). From the
continuity of d and dJ, we get that d¢, > do in VV,{’_'&_(,H(/\"”M, g) and
die, > droinWr s , (AN 'M, g). Hence by (6.4.1) d¢, = do in W5 ,_1(\M, g)
and d}¢, — dYo in W ,_(AN9"'M, g). It follows from this and the duality of the

spaces Wf s_,,1(A'M, g) and Wds.a—1(A"M, g) that

fM (do,do),dV, and fM (dfo,d}e),dv,

are finite and that

(6.4.2) fM (do, do),dV, = lim fM (do,de,),dV,
and
(6.4.3) fM (dfo.d}a),dV, = lim fM (d¥o,d ey, dV,.

But Stokes’s theorem implies that the integrals on the right-hand side of (6.4.2)
and (6.4.3) are zero for 0 € $75_(A/M, g). O

In the next theorem we deal with a larger class of metrics than the admissible
ones; namely those equivalent to admissible ones in the following sense.

DEFINITION (6.5). Two metrics, g, and g,, are equivalent if there is a constant
¢ > 0 such that g,/c < g; < cg,. This relation is denoted g, = g;.

Notice that if g, = g,, then L?(AM, fdV, ) and LP(AM, fdV, ) are equal as
vector spaces and have equivalent norms for any continuous f: M — R™*. Also note
that equivalent metrics can have quite different curvature properties. For instance on
S! X R the metrics d02 + dx? and (2 + sin(e**))(d?* + dx?) are equivalent.

THEOREM (6.6). In addition to the conditions already assumed for M, suppose M is
oriented. Let g, be a metric on M that is equivalent to an admissible metric g. There is
a 8§ € R such that if 8 <8 and ¢ € W5 o(A°M, g), then ¢ =d}o for some
0 €N, s W, 1AM, g).

PROOF. By (6.2) and (6.4) there is a & such that if 6 < & then
(6.6.1) Wolfs.o(/\OM’ g) = d;d(Wz‘p,s,-z(AoMa g)) ® @f:s,o(/\OM’ g)

with §”5, containing only constants. Picking &§ < § so that [, e 7% dv, = oo, we
get

(6.6.2) Wiso(A°M, g) = dd(Wis (M, g))
for § < 8.

Since g, is equivalent to g, the isomorphism
(6.6.3) e ANM - ANM

extends to an isomorphism
(6.6.4) R W, (AN M, g) = WE, (AM, g).
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Hence the solution to ¢ = djo we seek is 0 = ; x,6 with 6 the solution to
(-1)""lxg*, ¢ = d }§. Since 6 can be picked to be dF for some F € W¥s_,(AN°M, g),
it follows from Theorem (5.10) that 6 has all the properties we want. Hence by
(6.6.4) o also does. O

7. Hodge representation. We now turn our attention to determining the dimension
of the space of closed and coclosed forms in L? and determining to what extent its
elements represent de Rham cohomology. The key result is Theorem (7.4), which
holds for many admissible and nonadmissible metrics. In the theorem we do not
assume g is admissible.

NortATION (7.1). Let g, be a metric on M that is a product metricon M. If g is
a metric on M, then F, = (det g/det g,)"/2. Thus dV, = F,dV, . B

NOTATION (7.2). For 0 < ¢ the function /#,: 9M, X R*— dM, X R" is given by
(w,2) = (w,12).

DEFINITION (7.3). A metric g on M is g-bounded above if it is conformal to an
asymptotically translation invariant one and if for every 0 < 7 < 1, every (w, z) €
M, and every v € A’M,,, ., the inequality

2 2
(7.3.1) “dz /\(./il,*v)(w, z) ||g(m,z)Fg(w9 z) < cf|(dz A v)(w,2z) ”g(w,IZ)Fg(“’v 1z)

holds for some ¢ independent of », ¢, and (w, 2).

THEOREM (7.4). Suppose g is g-bounded above. If o € L*(AM, g) N dC*®(AT7M),
then 6 € dCZ(AN9"M), the closure of dC(ANY~M) in L2(AM, g).

PROOF. Let 6 = dy for some ¢ € C*(AY"'M). With ¢ as in Lemma (3.11), we
have o = d¢,y + d(1 — ¢,)¢. Since do,y € dCP(AT'M), all we need to do is
show that o = d(1 — ¢,)¢ is in dC(A9"'M ). Now (1 — ¢,) has its support in
0M, X [1,00) and there o, =1 + » A dz with n(w,z) € C*(A9M,) and v €
C*®(A9"'dM,). Define p(w, z) by

(—1)"‘1fo1 2(M*v)(w,z)dt on M,

0 on M,.

(7.4.1) plw,z) =

Then p € C®(A97 M), and, as an easy calculation shows, du = 0.
Setting p g = dpu, we get

(7.4.2) dity = (- 1)"“5,( )fol zdz A( M) (0, 2) dt + g0,

>a|N

with ¢ as in (3.11). Clearly ¢z0,, — o, in L*(A'M, g) as R — 0. Therefore, to
finish the proof we must show the convergence to 0 in L>(AM, g) as R — oo of

(7.4.3) %&u( )j(;lzdz AN AM¥v)(w,z)dt = Ag(w,2).
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Because of the fact that supp ¢'(z/R) C M, X [R,2R] = M,

2 (-2 W 2 i
(1.4.4) ||Agll, = (fM F((ﬁ(ﬁ)) fo dz N M) (w0, 2) di g(w‘z)dVg)
. 2 1,2
*
< c(/MR “j(; dz AN(M¥v)(w,z)dt g(w’z)dVg) .

In turn, Minkowski’s inequality applied to the last integral in (7.4.4) gives

1/2
(7.45) | Agll, < cj:(fwo fRZR |z A(ﬂfv)(w,z)“;w,z)Fg(w,z)dzdw) dt.
Since g is g-bounded above, it follows from (7.4.5) that
(7.4.6) Azl < c/l (/ f” ldz A »|[iwie Fy (o, tz)dzdw)l/z dt.
o \Yam, ’R
The change of variable, £ = zt, in (7.4.6) then yields

12
1 -12 2tR 2
(7.4.7) ||AR]|2<C£) t ('/;Mo /;R ||dz/\v[|gng£dw) dt

-1,2
<ch 72 v A dz|2dt
0

1/2
1

tof el ||v/\dz[|2ngg) dt
R1/? My x[yR 2R]

1,2
=RV v Adz|a+ ¢ v A dzl|idVg) .

faMox[\/ﬁ 2R]

This last quantity obviously goesto 0 as R — co. O
COROLLARY (7.5). Let

(7.5.1) $2(AM,g) = {0 € LX(A'M, g)|do = d}o = 0}.

If g is g-bounded above, then

(7.5.2) dim $*(AM, g) < dim Hjx(M).

PROOF. By the theorem of Kodaira mentioned in the introduction, the space of
closed forms in L%(A“M, g) is the orthogonal direct sum

(7.5.3) dCP(ATM) ® $2(AM, g).

Thus by Theorem (7.4) there are no exact forms in §3(AM, g). O

Examples of g-bounded above metrics were given in the introduction. In the case
that g is equivalent to a g-bounded above metric that is also admissible, we may use
the Fredholm results of the previous sections to obtain a precise determination of
S*AM, g).
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THEOREM (7.6). Suppose that g, is both g-bounded above and admissible and that g
is equivalent to g,. Every v € Hjr(M) with a representative in L>(A"M, g) has a
unique representative in $*(AM, g).

PROOF. Once again the equivalence of g and g; means L*(A‘M, g) = L*(A’M, g,)
with equivalent norms. Taking W12,o,_1(/\ *M, g,) to be as in Theorem (5.11) and

Wi, _1(AT"'M, g,) to be the ¢ — 1 forms in Wi 1(A*M, g,), we have from that
theorem that deO‘_l(/\"‘lM, g,) is closed in L*(AM, g). Since CZ(A9" M) C
W2, 1(A“"'M, g,) this means that

(7.6.1) dC(NTTM) = dﬁ/lz.o,-l(/\q-lMa 81)-

In other words every element of dC°(A9~M ) is exact.

The theorem then follows from Kodaira’s theorem and the fact that no element of
$2(A\M, g,) is exact. O

Naturally, the question arises as to which cohomology classes have representatives
in L2(AM, g). We answer this in the next theorem. But first some terminology
needs to be established.

DEFINITION (7.7). For €, a component of dM,,, a cohomology class v € Hf (M)
is said to have compact support on £, X R™ if there is a representative, o, of v such
that 0 = 0 on , X [R, o) for some R > 0.

DEFINITION (7.8). Let ,,...,2, be the components of 9M,. Also take
C®(AIM) g~ to be the set of ¢ € C®(AIM) that are R™ invariant on M. For a
metric g

(7.81) #(g;q)= {llfsz . ]|<1>||;alVg = oo for some ¢ € Coo(/\qM)w}.
)X

Observe that in the case g = ¢?h is admissible
(g,q) = {lle 2 & LN(Q,x R*,aV,)}.

THEOREM (7.9). Suppose g, = e**h is admissible and g = g,. With o/ and Q, as in
(7.8), set M2(g;q) =U,c R X R*. The cohomology classes in Hjr(M) with
representatives in $>(AIM, g) are exactly those that have compact support on
MZ(g: q).

PrROOF. As in Theorem (7.6), the equivalence of g and g;, combined with
Kodaira’s theorem and Theorem (5.11) implies that the classes in Hfz(M) with
representatives in $>*(AM, g) are the same as those with representatives in
$2(AM, g,). Hence we only need to prove the theorem for g;.

According to Theorem (2.9) there is a p € C*(M) that is a function only of z on
M, and an asymptotically translation invariant metric 4 such that g = e?®h. By
Propositions (2.5) and (2.6) p satisfies condition (2.3.1) for some # and any
asymptotically translation invariant metric. In particular if & is any metric that on
M, is the product metric dsj), + dz’, then e*”h, is admissible. Since g, is
equivalent to e??h,, we can use the argument in the preceding paragraph to see that
we only have to prove the theorem for metrics of the form e??h,.
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Thus without loss of generality suppose g is an admissible metric and that
g = e*Ph,, with p a function only of z on M, and h, = dsaM +dz*on M. Let A
be the Laplac1an on dM, associated with ds? My d the exterior derivative, and d *
the coderivative. Take {n_;;} U {n¢;} U {my;} U --- U{n,,;} to be an orthonormal
basis of LX(AY~'9M,y, ds},, ) consisting of eigenforms of A with the n_j, closed but
not coclosed, the n,, coclosed but not closed, and the 7,, harmonic and equal to 0 on
Q; for j # I Say Ang, = N3mo,- If {$_y;} is an orthonormal basis for the coclosed
nonharmonic forms in L>(A%9M,, dng ) and {{;;} is an orthonormal basis for the
harmonic g-forms on 8M0 such that ¢, =0 on Q, for j#/, then {y_;,} U
{A&dne,} U {¢,} U -+ U{y,,)} is an orthonormal ba51s for LA(A99M,, dSaMo)

Every o € L2(A'M,,, g) has an orthogonal series expansion of the form

(7.9.1) 0= Z th( )dZ/\"lh"'Zh w(2) ¥y,

I=-1 i
+ Zhol'(z)koli‘i”lol' + Z Z h/i(z)‘l/li-
i I=1 i

From this we see that

(7.9.2) do= Z(hi)i(z))\_oli _fOi(Z)) dz A ‘Z’"lm + Z hl_u(z)dz AY_y,

L
+ Zh-li(z)‘i‘l/-li + Z Zh;i(z)dz A Y.
i =1 i

If do = 0, then it follows that
(7.9.3) h_;=0,hly; =Ny fo,and h; =a, €R forl> 0.

Similarly we have

(7.9.4) d*o——Z[fl,( )e(n=20p) ¢ 2a=mey Zfl, z)dz A d*n_y,

+ Z(hOi(Z)AOie("_zq)p - [fOi(Z)e(n_zq)p] )e(zq_n)pnm

L
% [ fule)etrion)etamny,
=1 i
If d*o = 0, then it follows that

(7.95) f-li = O’ [foi(z)e(n—ZQ)p]’ — }\OihOi(Z)e(n—Zq)p’
and f,, = b,;e??"™* forl> 0and b, € R.
As a result of (7.9.3) and (7.9.5) we have that if 6 € $>(AM, g), then on M,

L
(7.9.6) o =d|X ho(z)Aging + E Zb/f e M) gey, ]"‘ X X any,
i ; I=1 i

with h; satisfying hy, + (n — 2q)p’hy, — Nay;hg; = 0.
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In order for o to be in L*(AM, g) each term in (7.9.1) must be in L*(AM_, g).
Therefore the a, in (7.9.6) must be 0 if / € &/(g;q) and may be anything if
| & /(g; q). Hence letting

L >4
(7.9.7) B= Z ho,(2)Xomo; + XX buf eCGamme® gy,
i =1 i 0
on dM, X [1, c0) and letting B be a C* extension of B to all of M we get that on
oM, X [1, o)
(7.9.8) o—dB=3 Y ay,
lgst i
This means that the only classes in Hjz(M ) with representatives in $2AM, g)
are the ones that are compactly supported on MZ(g; ¢). On the other hand if
v € Hj (M) is such a class and ¢ is a representative of », then by de Rham’s
theorem on M

(7.9.9) o= X auy,+dy.

lest i
Choosing y to be a C* extension to all of M of the restriction of y, to
0M, X {1, 0}, we see that » has a representative that is X, ,2,a,y, on M_,
namely ¢ — dy. Thus » has a representative in L*(AM, g). It follows, therefore,
from Kodaira’s theorem and Theorem (5.11) that » has a representative in
$AUAM,g). O

COROLLARY (7.10). If g = g, and g, is admissible and g-bounded above, then the
classes of Hz(M) with representatives in $*(AM, g) are exactly those compactly
supported on MZ(g; q). Moreover the representation is unique. O

8. L-cohomology. In this section we give a few applications of the results of the
preceding sections to L2-cohomology. Recently this cohomology has received quite a
bit of attention; in part, because of its use in the study of singular algebraic varieties
(see [4, 5 and 13]). We begin by defining various subspaces of L>.

DEerFINITION 8.1. For an arbitrary Riemannian manifold X

(8.1.1) L(A9X) = the closure of dC(A971X) in L2(AX),
(8.1.2) L2,(A7X) = the closure of d *Cg°(A9'X) in L*(A7X),
(8.1.3) Q9(X) = {o € L*(AX)|do € L*(A""'X)},
(8.1.4) Q4 (X)=g9X) N L%L(AX).

We equip L2(A?X) and L?,(A9X) with the L? norm and equip 29(X) and 27,(X)
with the norm ||o||g = (||o6]|3 + [|do]|3)*/2. So equipped each space is a sub-Hilbert
space of L2,

DEFINITION (8.2). The gth-L2-cohomology group of X is
(8.2.1) HY(X) = [Kerd: 29(X) > Q9*Y(X)] /d 247 (X).

One of the interesting questions about H{( X) is whether or not the map
(8.3) i: §2(AX,g) — H{(X)
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is an isomorphism. If it is, then one says that the Strong Hodge Theorem holds (see
[4 and 5)). It follows from Kodaira’s theorem that

Li(AX) @ $*(A'X, g)

(8.4) Hi(x) = A

Hence (8.3) is 1-1 if dQ% 7 (X) c L2(A9X) and is onto if dR9,}(X) is closed in
L*(AX, g).

For the remainder of this section we restrict our attention to the manifolds and
metrics considered in the preceding sections. Thus M has finitely many ends and g
is equivalent to g, = e??h with h asymptotically translation invariant. An easy
consequence of Theorem (7.4) is

PrOPOSITION (8.5). If g is equivalent to a metric that is q-bounded above, then (8.3)
is 1-1.

LEMMA (8.6). Suppose g = e2°h is an admissible metric on M and that p is bounded
below. Then 4,(M) C W2,_|(AM, g).

PROOF. Let o &€ 24 (M). Then (d+d})o € L*(A"'M,g) and so Ag €
W3 01(AM, g). Tt follows from Proposition (4.4) that K, ,A o6 € W3 (o(AM, h) =
w32 o(AM). However from the definition of the asymptotically translation invariant
operator A(-1 + g + n/2) in Theorem (5.2) we see that

K ,Ap0=A(-1+q+n/2)K_| 0.
Thus A(-1 + g + n/2)K_,,0 is in W3 o(A’M). Hence using the a priori inequality
(3.7.2) we get

n

(8:61) Kyl e[ 4(-1+ g+ 5)K 0

o +| K_ 0 "2,-1,0) .

Since p is bounded below and ¢ € L*(AM, g), we have that 0 € W, _;(A'M, g).
This means that K_, ,0 € VI/(fO(/\ 9M, g) and so in W_ZLO(/\ M, g). Thus by (8.6.1) we
have that K_,,0 € W2 (A’M, g) which by Proposition (4.4) means that o €
Wi 1(AM, g).

2-1,

THEOREM (8.7). Suppose g is equivalent to an admissible metric, g, = e>h, and that
p is bounded below. Then (8.3) is 1-1. Moreover, if limsup,_, . p(w,z) = oo on at
least one end, then (8.3) is not onto for q > 0; and so the Strong Hodge Theorem does
not hold in this case.

PROOF. As usual we only need to prove this for g,. Furthermore, we may assume
that p is a function of just z on M_ and that 4 is a product metric on M_,. The first
part of the theorem follows trivially from Lemma (8.6) and the fact that
AW 1(A17'M, 8) € LUAM).

For the second part of the theorem, let

(8.7.1) K =Kerd}: W2, ,(N"'M,g) > L*(A“°M, g).



32 ROBERT LOCKHART

It follows from Theorem (5.11) that K = d W2 (NM, g) + $7_1(AT" M) where
512.0,_1(/\"_1M ) is the finite dimensional space of closed and coclosed forms in
Wio_1(A7"'M, g). Note that since d*W;%,_,(AM, g) is finite codimensional in K
and is the image of a continuous operator, it is closed in K and so also in
W2, _1(NT7M, g). Also note that 9, '(M) C K.

Suppose d: K — L*(A“M) is onto; if it is not then a fortiori d: L9, (M) —
L2(A“M) is not. In this case an equivalent norm on K is

(8.7.2) lollx =lloI(Weo(A?M, g)) + o ].

It is easy to see that we then have the commutative diagram of continuous maps
d
QM) > LI(AM)

i 2d

K

where i is the inclusion. If 29, = L2(A’M), then i must be Fredholm and so
Q4 Y(M) is closed in K. Now Cg°(A’M) is dense in Wfo‘_z(/\"M, g) and so
dXCP(NM) is dense in d}W;, ,(AM, g). Since d}C3*(A'M)C &4 ' (M) and
Q41 (M) is closed in K, it follows that dg"‘WfO._z(/\"M, g) C {4 Y M). In fact,
since {9, (M) contains no closed forms and dK = dQ9;' (M), we have that
d;Wfo,fz(AqM’ g) = LU M).

However this is impossible if limsup, _, ,, p(z) = co on an end of M. To see this
note that it follows from (2.3) that there is an increasing sequence {z, } such that
z,>4,2,,,—z,>4and p(z)>non(z,— 1,2z, + 1). Nowlet » € C*(AIM) be
such that » is translation invariant on M_ and »(w, z) € A9%OM, for (w,z) € M.
Let ¢(z) € C&(R) be such that supp¢ € [-1,1] and ¢ = 1 on [~ 3, 3].

Finally take f € C*(M) to be such that f(z) = X*_,n"'¢(z — z,) on the end of
M on which limsup, ,  p(z) = o and f = 0 elsewhere. If 7 = ¢(@*27"/D¢fy_then
a calculation shows that 7 € W, _,(A’M, g) but d}r & L*(A1"'M, g).

DEFINITION (8.8). Let G be a compact manifold. A function p: G X R*— R is
slowly oscillating if

(8.7.3)

(8.8.1) sup |p(w,z)—p(w,t)|<c forsome ¢ independent of w and z.
te(z/2,z)

THEOREM (8.9). Suppose g is equivalent to an admissible metric g, = e*°h and that p
is bounded above. For i = 1,2,3 let G, be a, possibly empty, union of components of
dM, satisfying (i) G,;N G, = @ for 1 <i, j<3andi# jand (ii) G; U G, U G3 =
M. Suppose that p is slowly oscillating on G, X R and that p(w,z) > (¢ — D)nz
on Gy X [1,00) for some 0 <e <1. Also assume that on G, X [1,00) both g, is
g-bounded above and ze® is bounded. Finally assume that p is O(z) but not o(z) as
z = 0 on G4 X [1, 0). Then (8.3) is onto if and only if H}z'(G,) = 0.

PROOF. Suppose o = d¥ for some ¥ € W2 _(A7"'M, g,). Let {$g, b1, 5, b3}
be a partition of unity subordinate to the cover M, U (dM, X [0,2)), G, X (1, o),
G, X (1,00), G; X (1, 00), with ¢, omitted if G, is empty. Then o = Xd($,¥) and
ooV is clearly in R97(M). Also if G, is not empty, then it follows from Definition
(2.3) and the construction of W,_(A*M, g,) that ¢,¥ € Q77 (M).
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If G, = 9M,, then we are done. Therefore assume that G; U G, = UL, @, where
(K< L and Q,,...,9,) are the components of dM,. Also, without loss of general-
ity, assume that p just depends on z and 4 is a product metric on (G, U G,) X R™.

Let o, = d(¢,¥) + d(¢,¥). Using the notation of Theorem (7.9) we have that

(8.9.1) Oy = Z Zfli(z)dz Amy+ Z h_(2)¥_y,

I=-1 i i

K
+ 2 ho(2)Ngidmg, + 2 2 hy(2) Y,
i I=1 i
Since o, is exact it follows that h_;; = 0; hy, = Ay, fy;; and hy; = 0 for / > 0. Thus
o, = dt where

K
(8.92) =Y ho(2)Ngme; + Lfa(2)dz Ay i+ X X j: zf,(zt) dtmy,,
i i =1 i

with dy_; = 1_y,.
Since p is bounded above we get from the fact that o, € L2(AM, g,) that

(8.9.3) 7= Z hoi(z)Ngimo; + Zf—li(z)dz A Yy isin Lz(Aq71M$ 81)-

Furthermore, if @, C G,, then [§ zf,;(zt) dt n,; also is in L>(A9~'M, g,). This follows
from the chain of inequalities

fol zf,;i(zt) din, l‘(Lz(/\"”lM, gl))

00
=f fe<n—2q+2>p
o g
0
<cf e(n=2a)p
0

1 [ oo 2 \2
<ef (/ =200 £, (1) | dz) dr
0 0

(8.9.4)

. 5 1,2
/ zfy(zt) dimy;| dw dz)
0 h

. 2 \12
j(; fu(zt) dt’ dz)

1 0 2 1/2
<c/ (/ e 2000 £ (21) | dz) dt < o
0 0

where the next to last inequality is Minkowski’s and the last is g-bounded above.
Thus if Hfz'(G,) =0, we have that r € L>(A?"'M, g,) and s0 o,, € Q7 '(M).
But this means that dW;%,_,(A?"'M, g;) = d 27~ }(M) and hence that (8.3) is onto.

If, however, there is an @, C G, and H$z'(R,) # 0, then we can construct an
infinite dimensional space of f, such that f,(z)dz A, € LX(AM, g,), but
J§fi(t)dt + k is not in L*(A9"'M, g,) for any k. It follows from Kodaira’s
theorem that in this case d Q97 !( M) is not closed and so (8.3) is not onto.

More specifically for -1/2 —¢e/2 <a < -1/2 let f, € C°(M) be such that
fo=0o0n M — (2, X[1,00)) and f,(w,z)= e "/P?z% on Q, X [2,0). If n,, is a
harmonic representative of a nonzero class in Hjz'(®,), then o, = f,dz A n, is
exact and in L*(AM, g,). Moreover if o, = dr,, then on €, X [1,00) we have
7, = (f# f(t)dt + k)n,. However 7, & L* (A9 M, g,) for any value of k.
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To see this note that
(8.9.5) |7 lL2(A"M, g,)

© 2 2 1/2
> c(f e(n=2q+2)p(2) f dz) _
4 2

First suppose that [5°e(9™"/2*(O¢2 gt = oo, Then there is a z, > 4, depending on &,
such that for z > z,, we have

z 1 z
(8.9.6) / el /ey 4 k> 5[ ela=n/De(Opa gy,
2 2

Thus in this case the right-hand side of (8.9.5) is

(8.9.7) > c(foo ("2 D0

29

00
> C(/ 225—-2

; ) 1/2
/ e(q—n/zmr),ad,\ dz)
2

2 1/2
dz) .

fz o (/2= a)Xp()=p (D) a gy
z/2

20
From (8.8.1) we get that this last expression is

o 1/2
(8.9.8) > c(f z2€—2|za+1|2d2)

20
o 1/2 o 12
=c(/ z“*z"‘dz) >c(/ ze_ldz) = 0.
Zo 20
Finally, suppose that [5°e(9~"/Dp()tgdt < oo, Since @ > -1, this means that
g > n/2 and so [P e("29*DP() gt = 0. Hence the only way the right-hand side of

(8.9.5) could be finite is if k = — [~ "/DP(O¢2 s In this case we have that the
right-hand side of (8.9.5)

(899) = (/DO e("“24+2)p(z)
4

o0
> ¢ f 225—2
4

Again by (8.8.1) we get that this last expression is

0 2 172
f e(a=n/Dp(0a gy ! dz)

z

X 2 \12
fze(n/z—qxp(z)w(r»,ad,' dz) )

z

o , \12
(8.9.10) > c(/ 2272z % dz) = 0.
4
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